## A MIP Perspective on Pseudo-Boolean Optimization

Alexander Tesch Bool Al tesch@boolai.com



1st SLOPPY Workshop 2024, Lund University, Sweden 06. November 2024

### 1 Introduction

- 2 Mixed-Integer Programming
- 3 0-1 Integer Linear Programming
  - Pseudo-Boolean Optimization
  - 5 Research Interests

# Motivation

- formerly Zuse Institute Berlin (ZIB)
- **industries**: healthcare, railways, steel production, conference scheduling
- founded own company about 2 years ago
- development of a CP solver (easy API)
- runs a lazy PB solver at its core
- written in C (fast, memory management)
- main applications: **hospital optimization** (scheduling, rostering, planning, ... )

| Bool/                      |           |           | • Tabolo |      |        |        |         |      |           |       |          |       |         |       |        |         |     |      |
|----------------------------|-----------|-----------|----------|------|--------|--------|---------|------|-----------|-------|----------|-------|---------|-------|--------|---------|-----|------|
| Resource                   |           |           |          |      |        | Phasen |         |      |           |       |          | Fat   | en .    |       |        |         | Sm  | hter |
| <ul> <li>OF-SSR</li> </ul> |           | Chinaple  |          | 0.06 | offege | G 101  | enebung | B 50 | No Fall   | C No. | Ittenitu | • •   | Abeling | 0.0   | 6005 I | Privita | 1.0 | e -  |
| © ANRIES                   | 164 O     | Avliether | e-Pflege |      |        | C Enh  | itung   | B Au | leitung . |       |          |       | 10.00   |       |        |         |     |      |
|                            |           |           |          |      |        |        |         |      |           |       |          | 10.00 | ~~      | 10.04 |        |         |     |      |
| 2.                         | 41.000    |           |          |      |        |        | םי      | H    | _         | Ъ     |          | В     |         |       |        |         |     |      |
| 24                         | 4 31 AC   |           |          |      |        | B      |         |      |           | H     |          | В     |         |       |        |         |     |      |
| 24                         | 4 31 AC   |           |          |      |        |        | PC      | ŀ    |           |       |          |       | P       |       |        |         |     |      |
|                            | d 4. 199  |           |          |      |        |        | 5H      | B    | 1         |       | E        | 5     |         |       |        |         |     |      |
| 54                         | ai 51 U#1 |           |          |      |        |        | ٩       |      | Р         |       |          |       |         |       |        |         |     |      |
| 50                         | 40.07     |           |          |      |        |        | 1       | щ.   | H         | ŀ     | 6        |       |         |       |        |         |     |      |
| 50                         | e 1: 611  |           |          |      |        |        | ٩       |      | B         | 0     |          | В     |         |       |        |         |     |      |
| 50                         | a e. ces  | н         |          |      | -      |        | B-      | œ    |           |       |          | H     | -       |       | В      |         |     |      |
| 50                         | 49.00     | н         |          |      | -      | ł.     | U       | -    |           | μ     | ł        |       | B       |       |        |         |     |      |
| 50                         | e 10.06   | ы         |          |      |        |        | 9       |      | H         | H.    |          | P     |         |       |        |         |     |      |
| -                          | 4 11. M   | v         |          |      | 9      |        | P       | Ċ    |           | H     | H        | H_    | H       | 5     |        |         |     |      |
| -                          | al 825 MB | u         |          |      |        |        | ٩       |      | в         |       | P        | ٩     | 5       |       |        |         |     |      |
|                            | ai 13. 18 | •         |          |      |        |        | в       |      | P         |       | 1        | H     |         | B     |        |         |     |      |
|                            | ai 10. OP |           |          |      |        |        | q       |      | Be        |       |          | 18    |         |       |        |         |     |      |



- requires lazy encodings of CP constraints
- heavy focus on adding PB constraints during runtime
- automated callbacks

## Example: all\_different Constraint

**Given:** variables  $y_1, \ldots, y_n$  with finite domains  $D_1, \ldots, D_n$ 

$$\texttt{all\_different}((y_i)_{i=1}^n, (D_i)_{i=1}^n) \iff y_i \neq y_j \quad \forall i < j$$

**Binary encoding:**  $x_{iv} = 1$  iff  $y_i = v$  and  $x_{iv} = 0$  otherwise

$$\sum_{v \in D_i} x_{iv} = 1 \qquad \qquad \forall i = 1, \dots, n$$
$$\sum_{i=1}^n x_{iv} \le 1 \qquad \qquad \forall v \in D_1 \cup \ldots \cup D_n$$

Contains **PHP formulas** as special case  $\implies$  exponentially stronger than CP with **lazy clause generation** (Ohrimenko et al. '09).

# Pseudo-Boolean Solving Engine

### LazyPB Features:

- CDCL as solving algorithm
- lazy adding of PB constraints by (user-)callbacks
- specific constraint handling: clauses, cardinality, PB constraints
- specific handling of watched literals
- PB conflict analysis: clausal, MIR, lifted cover
- restarts + constraint deletion strategies
- preprocessing: coefficient strengthening, redundant literal detection
- literal selection similar to VSIDS
- no phase saving, separate counters for  $x_i$  and  $\bar{x}_i$

### Currently:

- rather "standard" features implemented
- improve by more sophisticated techniques (also from MIP)
- solve optimization problems (cost function)
- focus on **performance**: fast feasible solutions + strong lower bounds (or UNSAT certificates)

### Introduction

- 2 Mixed-Integer Programming
- 3 0-1 Integer Linear Programming
  - Pseudo-Boolean Optimization
  - 5 Research Interests

- cost vector  $c \in \mathbb{R}^n$
- constraint matrix  $A \in \mathbb{R}^{m \times n}$  with right-hand side  $b \in \mathbb{R}^m$
- variables  $x_i$  with i = 1, ..., n which may take real or integer values

We solve the system:

 $\min c^{\mathsf{T}} x$  $Ax \ge b$  $x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2}$ 

- many combinatorial problems can be modeled this way
- highly used in *operations research*

# Modern MIP Solvers

- LP solver: Simplex and Interior Point (Barrier)
- Branch-and-Bound (with Dual Simplex)
- additional techniques: presolving, node selection, branching rules, heuristics, conflict analysis, symmetry handling, ...
- cutting plane generation: GC, MIR, cover, flow-cover, disjunctive, ... (mostly in root node)

### Branch-and-Bound

- solve LP relaxation with solution  $x^*$
- if  $x^*$  is integer  $\rightarrow$  return  $x^*$  optimal
- else select fractional  $x_i^* = v$  and branch  $x_i^* \ge \lceil v \rceil$  and  $x_i^* \le \lfloor v \rfloor$ , repeat for each subproblem recursively

### Note:

- B&B is more like DPLL but with an LP solver!
- LP solving very often compensates for the absence of CDCL

# Geometry of MIP

In MIP, we often look on the geometry of the solution space. A (bounded) MIP defines a polytope:



Geometry plays a crucial role for solving MIPs (and 0-1 IPs)!

# Geometry of MIP

In MIP, we often look on the geometry of the solution space. A (bounded) MIP defines a polytope:



Geometry plays a crucial role for solving MIPs (and 0-1 IPs)!

- we want strongest possible descriptions (integer hull)
- facets define strongest possible inequalities
- $\bullet$  complete description: solve LP  $\implies$  solve IP

# Geometry of MIP

In MIP, we often look on the geometry of the solution space. A (bounded) MIP defines a polytope:



Geometry plays a crucial role for solving MIPs (and 0-1 IPs)!

- we want strongest possible descriptions (integer hull)
- facets define strongest possible inequalities
- $\bullet$  complete description: solve LP  $\implies$  solve IP

## MIP "Proof Systems"

- let  $P = \{x \in \mathbb{R}^n : Ax \ge b\}$  and  $P_I = conv(P \cap \mathbb{Z}^n)$
- consider multipliers y<sub>j</sub> ≥ 0 for each constraint C<sub>j</sub>, the following linear inequality is valid:

$$\lceil y^T A \rceil x \ge \lceil y^T b \rceil$$

• define the (first) Chvátal-closure by

$$P^{(1)} = \bigcap_{y \ge 0} \left\{ x \in P^{(0)} : \lceil y^T A \rceil x \ge \lceil y^T b \rceil \right\}$$

- $P^{(1)}$  is a **polytope** (assuming  $P^{(0)}$  was a polytope)
- we can **repeat** this procedure on  $P^{(1)}$  to get  $P^{(2)}$ , then  $P^{(3)}, \ldots$

## MIP "Proof Systems"

- let  $P = \{x \in \mathbb{R}^n : Ax \ge b\}$  and  $P_I = conv(P \cap \mathbb{Z}^n)$
- consider multipliers y<sub>j</sub> ≥ 0 for each constraint C<sub>j</sub>, the following linear inequality is valid:

$$\lceil y^T A \rceil x \ge \lceil y^T b \rceil$$

• define the (first) Chvátal-closure by

$$P^{(1)} = \bigcap_{y \ge 0} \left\{ x \in P^{(0)} : \lceil y^T A \rceil x \ge \lceil y^T b \rceil \right\}$$

- $P^{(1)}$  is a **polytope** (assuming  $P^{(0)}$  was a polytope)
- we can **repeat** this procedure on  $P^{(1)}$  to get  $P^{(2)}$ , then  $P^{(3)}, \ldots$
- **Theorem (Chvátal):** There exists a *finite* minimum  $k \in \mathbb{N}$  such that  $P_I = P^{(k)}$ . This number k is called the *Chvátal rank* of P.

### Introduction

- 2 Mixed-Integer Programming
- 3 0-1 Integer Linear Programming
  - Pseudo-Boolean Optimization
  - 5 Research Interests

Essentially, a 0-1 integer (or binary) program:

 $\min c^{\mathsf{T}} x$  $Ax \ge b$  $x \in \{0,1\}^n$ 

- equivalent to pseudo-Boolean optimizaton
- defines a 0-1 polytope (subset of the unit cube)
- rich history of cutting plane theory
- Theorem (Eisenbrand & Schulz '99): The Chvátal rank of 0-1 polytopes is  $O(n^2 \log n)$ .
- meaning: "depth" of cutting plane proofs for 0-1 ILP is polynomial!

### Consider a simple knapsack inequality of the form:

$$\sum_{i=1}^n a_i x_i \le b$$

with  $x_i \in \{0, 1\}$ ,  $a_i \ge 0$  and b > 0.

- complete descriptions for the knapsack polytope are unknown in general
- many different classes of facets were defined and studied: (*lifted*) cover inequalities, (extended) strong covers, MIR, ...

## Knapsack Covers

A knapsack cover is a subset  $C \subseteq \{1, ..., n\}$  such that  $\sum_{i \in C} a_i > b$ . Hence, the inequality

$$\sum_{i\in C} x_i \le |C| - 1$$

is valid. A cover is **minimal** if  $\sum_{i \in C \setminus \{j\}} a_i \leq b$  for all  $j \in C$ .

• **Example:**  $4x_1 + 6x_2 \le 7$  with  $x_1, x_2 \in \{0, 1\}$ 



# Knapsack Covers

A knapsack cover is a subset  $C \subseteq \{1, ..., n\}$  such that  $\sum_{i \in C} a_i > b$ . Hence, the inequality

$$\sum_{i\in C} x_i \le |C| - 1$$

is valid. A cover is **minimal** if  $\sum_{i \in C \setminus \{j\}} a_i \leq b$  for all  $j \in C$ .

• **Example:**  $4x_1 + 6x_2 \le 7$  with  $x_1, x_2 \in \{0, 1\}$ 



•  $x_1 + x_2 \le 1$  is a minimal cover inequality.

# Lifted Knapsack Covers

Assume we are given a **knapsack inequality**  $\sum_{i=1}^{n} a_i x_i \leq b$  and an associated **minimal cover inequality**  $\sum_{i \in C} x_i \leq |C| - 1$ .

Consider an element  $j \notin C$ . We want to extend the cover inequality to

$$\sum_{i\in C} x_i + \alpha_j x_j \le |C| - 1$$

How large can  $\alpha_j$  be at maximum?

# Lifted Knapsack Covers

Assume we are given a **knapsack inequality**  $\sum_{i=1}^{n} a_i x_i \leq b$  and an associated **minimal cover inequality**  $\sum_{i \in C} x_i \leq |C| - 1$ .

Consider an element  $j \notin C$ . We want to extend the cover inequality to

$$\sum_{i\in C} x_i + \alpha_j x_j \le |C| - 1$$

How large can  $\alpha_j$  be at maximum? Assume  $x_j = 1$  and compute

$$\alpha_j \leq |\mathcal{C}| - 1 - \max\left\{\sum_{i \in \mathcal{C}} x_i : \sum_{i=1}^n a_i x_i \leq b, x_j = 1\right\} = |\mathcal{C}| - 1 - \phi$$

For a maximum coefficient set  $\alpha_j = \phi$ . The value  $\phi$  can be computed by solving a **knapsack problem** with dynamic programming in  $O(b \cdot |C|)$  (integer data).

# Sequential Lifting

We can repeat this procedure for the already computed lifting coefficients. Hence, consider the sequence  $\{j_1, \ldots, j_k\}$  with k = n - |C| of all  $j \notin C$  and compute sequentially

$$\alpha_{j_{l+1}} = |C| - 1 - \max\left\{\sum_{i \in C} x_i + \sum_{r=1}^{l} \alpha_{j_r} x_{j_r} : \sum_{i=1}^{n} a_i x_i \le b, x_{j_{l+1}} = 1\right\}$$

This yields the lifted cover inequality:

$$\sum_{i\in C} x_i + \sum_{r=1}^k \alpha_{j_r} x_{j_r} \le |\mathcal{C}| - 1$$

• the sequence  $\{j_1, \ldots, j_k\}$  is called the **lifting sequence** 

- different lifting sequences yield different inequalities
- lifted cover inequalities define facets of the associated knapsack polytope
- not all facets of the knapsack polytope are lifted cover inequalities
- complexity:  $O(bn^2)$  with DP but can be improved to O(bn)

Full sequential lifting in O(bn) can still be **too slow**. We can look at **relaxations**.

Index Approach (Balas '75) Assume we sort the coefficients of the cover elements  $j \in C$  in *non-increasing* order, i.e.  $\{j_1, \ldots, j_k\}$  with  $a_{j_r} \ge a_{j_{r+1}}$  and let  $A_r = \sum_{h=1}^r a_{j_r}$  for  $r = 0, \ldots, k$ .

For each element  $j \notin C$  we can let

$$lpha_j = rg\max\left\{A_r \leq a_j : r = 0, \dots, k
ight\}$$

**Complexity:**  $O(|C| \log |C|)$  but weaker than full sequential lifting

There are other relaxations and approximations for lifted cover inequalities.

## Sequential Lifting - Example

Consider the knapsack constraint:

$$10x_1 + 6x_2 + 6x_3 + 4x_4 + 4x_5 + 2x_6 \le 13$$

and the minimal cover  $C = \{2, 3, 4\}$  with the minimal cover inequality

$$x_2 + x_3 + x_4 \le 2$$

Consider the lifting sequence  $\{6, 5, 1\}$  then we get

$$\begin{aligned} \alpha_6 &= 2 - \max\{x_2 + x_3 + x_4 : 6x_2 + 6_3 + 4x_4 \le 11\} = 0\\ \alpha_5 &= 2 - \max\{x_2 + x_3 + x_4 : 6x_2 + 6_3 + 4x_4 \le 9\} = 1\\ \alpha_1 &= 2 - \max\{x_2 + x_3 + x_4 + x_5 : 6x_2 + 6_3 + 4x_4 + 4x_5 \le 3\} = 2\end{aligned}$$

The final lifted cover inequality is

$$2x_1 + x_2 + x_3 + x_4 + x_5 \le 2$$

The 'relaxed' lifted cover inequality would be

$$x_1 + x_2 + x_3 + x_4 \le 2$$

# Mixed Integer Rounding

Assume a PB constraint of the form:

$$\sum_{i=1}^n a_i x_i \ge b$$

For a given divisor  $d \in \mathbb{N}$ , let the **Mixed-Integer Rounding (MIR)** inequality be given by

$$\sum_{i \in I_1} \left\lceil \frac{a_i}{d} \right\rceil x_i + \sum_{i \in I_2} \left( \left\lfloor \frac{a_i}{d} \right\rfloor + \frac{f(a_i/d)}{f(b/d)} \right) x_i \ge \left\lceil \frac{b}{d} \right\rceil$$

with the partition

$$i \in I_1 \iff f(a_i/d) \ge f(b/d) \text{ or } f(a_i/d) \in \mathbb{Z}$$
  
 $i \in I_2 \iff f(a_i/d) < f(b/d) \text{ and } f(a_i/d) \notin \mathbb{Z}$ 

where  $f(x) = x - \lfloor x \rfloor$ .

## Mixed-Integer Rounding - Example

Consider the PB constraint

$$8x_1 + 7x_2 + 6x_3 + 4x_4 \ge 16$$

which yields the MIR inequalities:

| d = 2:         | $4x_1 + 4x_2 + 3x_3 + 2x_4 \ge 8$    |
|----------------|--------------------------------------|
| <i>d</i> = 3 : | $3x_1 + 3x_2 + 2x_3 + 2x_4 \ge 6$    |
| <i>d</i> = 4 : | $2x_1 + 2x_2 + 2x_3 + x_4 \ge 4$     |
| <i>d</i> = 5 : | $2x_1 + 2x_2 + 2x_3 + x_4 \ge 4$     |
| <i>d</i> = 6 : | $1.5x_1 + 1.25x_2 + x_3 + x_4 \ge 3$ |
| <i>d</i> = 7 : | $1.5x_1 + x_2 + x_3 + x_4 \ge 3$     |
| d = 8:         | $1.5x_1 + x_2 + x_3 + x_4 \ge 2$     |

However, a lifted cover inequality with the minimum cover  $C = \{3, 4\}$  and lifting the sequence  $\{1, 2\}$  yields the **lifted cover inequality** (facet)

$$\begin{array}{l} 8\bar{x}_1+7\bar{x}_2+6\bar{x}_3+4\bar{x}_4 \leq 9 \stackrel{cover}{\Longrightarrow} \bar{x}_3+\bar{x}_4 \leq 1 \stackrel{lifting}{\Longrightarrow} \bar{x}_1+\bar{x}_2+\bar{x}_3+\bar{x}_4 \leq 1 \\ \stackrel{sense}{\Longrightarrow} \bar{x}_1+\bar{x}_2+\bar{x}_3+\bar{x}_4 \geq 3 \end{array}$$

Hence, the lifted cover inequality dominates the MIR inequality.

### 1 Introduction

- 2 Mixed-Integer Programming
- 3 0-1 Integer Linear Programming
- Pseudo-Boolean Optimization
  - 5 Research Interests

# PB Solvers vs. MIP Solvers

- PB solvers are based on SAT methodology
- solving method: conflict-driven constraint (clause) learning
  - $\implies$  conflict analysis is the solving method, no branching!

### Pros:

- PB constraint propagation is very fast (faster than LP)
- can generate strong non-trivial cutting planes during conflict analysis
- often good for problems where LP-relaxation is weak (e.g. big-M)

### Cons:

- no "global view" on the problem: conflicts may be detected later
- optimization can be difficult: no dual information

# Pseudo-Boolean Conflict Analysis

Given a conflict constraint  $C_{conflict}$  and a reason constraint  $C_{reason}$ .

 $C_{reason}$  propagates a literal  $x_i$  which is falsified in  $C_{conflict}$ .

### Conflict Analysis in RoundingSAT (Elffers & Nordström '18):

- Or Cweaken ← weaken all non-false literals in Creason that are not a multiple of a<sub>i</sub> (coefficient of x<sub>i</sub> in Creason)
- **a** divide  $C_{weaken}$  by  $a_i$
- **(a)** cancel out  $x_i$  by adding  $C_{weaken}$  and  $C_{conflict}$

#### Note:

- in general, adding  $C_{conflict}$  and  $C_{reason}$  to cancel out  $x_i$  may lead to a non-conflicting constraint
- the LP-relaxation may still contain a feasible point but not the IP!
- we need the constraint (resp. the integer LP) to propagate tightly

## Pseudo-Boolean Conflict Analysis

During unit propagation, observe a **conflict constraint**:

$$C_{conflict}: 2x_1 + 6x_2 + 5x_3 + x_4 + 3x_5 \ge 8$$

Look at the last propagated literal, say  $\bar{x}_2$ , and look at its **reason constraint**:

 $C_{reason}: \mathbf{6}x_1 + 3\bar{x}_2 + 3x_4 + 5x_6 + 7x_7 \ge 11$ 

#### Weakening in RoundingSAT:

| C'reason :                    | $6x_1 + 3\bar{x}_2 + 3x_4 + 6x_7$ | $\geq 6$ |
|-------------------------------|-----------------------------------|----------|
| $C_{reason}^{\prime\prime}$ : | $2x_1 + \bar{x}_2 + x_4 + 2x_7$   | $\geq 2$ |

#### Partial Weakening:

$$\begin{array}{ll} & \overset{?'}{reason}: & & 6x_1 + 3\bar{x}_2 + 3x_4 + 3x_6 + 7x_7 \ge 9 \\ \overset{"'}{reason}: & & 2x_1 + \bar{x}_2 + x_4 + x_6 + 3x_7 \ge 3 \end{array}$$

# Conflict Analysis in LazyPB

•  $C_{cover} \leftarrow minimum cover constraint from <math>C_{reason}$  which propagates  $x_i$ 

- **2**  $C_{lifted} \leftarrow$  perform lifting on literals in  $C_{reason} \setminus C_{cover}$  which yields  $C_{lifted}$
- cancel out  $x_i$  by adding  $C_{lifted}$  and  $C_{conflict}$

Note: lifting does not change the slack of Ccover

#### Back to Example:

| C <sub>reason</sub> : | $6x_1 + 3\bar{x}_2 + 3x_4 + 5x_6 + 7x_7 \ge 11$                   |
|-----------------------|-------------------------------------------------------------------|
| $\iff$                | $6\bar{x}_1 + 3x_2 + 3\bar{x}_4 + 5\bar{x}_6 + 7\bar{x}_7 \le 13$ |
|                       |                                                                   |

| C <sub>cover</sub> :  | $\bar{x}_1 + \underline{x}_2 + \bar{x}_7 \le 2$             |
|-----------------------|-------------------------------------------------------------|
| C <sub>lifted</sub> : | $\bar{x}_1 + \underline{x_2} + \bar{x_6} + \bar{x_7} \le 2$ |
| $\iff$                | $x_1 + \bar{x}_2 + x_6 + x_7 \ge 2$                         |

MIR with division of 3 yields some seemingly incomparable constraint:

 $2x_1 + \bar{x}_2 + x_4 + 2x_6 + 2.5x_7 \ge 4$ 

# Notes on Pseudo-Boolean Conflict Analysis

- we can also convert  $C_{conflict}$  to a lifted cover inequality
- lifted covers and MIR are complementary, not exclusive
- weakening seems somewhat "odd" to me
- the **strongest possible** tightly propagating constraints are the **facets** of the associated knapsack polytope
- tons of research on facets of knapsack polytopes
- Which tightly propagating facet should we use?
- Which **lifting sequence** to prefer? High activation literals? (currently some experiments)

### **Conjecture:**

- stronger LP-relaxations lead to better PB solving
- Can we measure this relationship somehow?

# Some Computational Results

### Scheduling:

• RCPSP: achieve results close to state-of-the-art, sometimes better

| PSPLib | # Inst. | SAT #opt | SAT $\#$ conf | PB #opt | PB #confl |
|--------|---------|----------|---------------|---------|-----------|
| J30    | 480     | 480      | 5577          | 480     | 5426      |
| J60    | 480     | 426      | 70295         | 423     | 52866     |

### MIPLIB2017 (integer version):

- solver not yet competitive for pure optimization problems
- some "interesting" instances after 300s

| Instance            | obj SAT  | obj PB  | #conflicts SAT | #conflicts PB |
|---------------------|----------|---------|----------------|---------------|
| circ10-3            | 390.00   | -       | 264,599        | 106,696       |
| decomp2             | -160.00* | 76.00   | 310,538        | 225,539       |
| neos-953928         | -99.75   | -       | 220,826        | 50,670        |
| cvs16r70-62         | -32.00   | -39.00  | 253,813        | 108,619       |
| neos-3555904-turama | -        | -34.70* | 121,797        | 6,377         |

### Solution time for large instances:

- ivu59 (2.5 million vars and cons): 29s.
- ivu06-big (2.2 million vars and cons): 5.5s.
- supportcase11: (8 million vars and 17 millions cons): 0.58s.

### 1 Introduction

- 2 Mixed-Integer Programming
- 3 0-1 Integer Linear Programming
  - Pseudo-Boolean Optimization

### 5 Research Interests

- MIP: "first" order method (duals)
- PBO: "zero" order method (no duals)
- How to "simulate" dual information in PBO?
- How to use information of more than two PB constraints in conflict analysis or propagation?

$$\frac{C_1\oplus\cdots\oplus C_k}{D}$$

- are there any other strong derivation rules? (proof complexity?)
- effect of stronger LP-relaxations on PBO?
- column-generation in PBO?
- technical details on core-guided search