
A MIP Perspective on Pseudo-Boolean Optimization

Alexander Tesch
Bool AI

tesch@boolai.com

1st SLOPPY Workshop 2024,
Lund University, Sweden
06. November 2024

1 / 25

Outline

1 Introduction

2 Mixed-Integer Programming

3 0-1 Integer Linear Programming

4 Pseudo-Boolean Optimization

5 Research Interests

1 / 25

Motivation

formerly Zuse Institute Berlin (ZIB)

industries: healthcare, railways, steel
production, conference scheduling

founded own company about 2 years ago

development of a CP solver (easy API)

runs a lazy PB solver at its core

written in C (fast, memory management)

main applications: hospital optimization
(scheduling, rostering, planning, ...)

2 / 25

LazyCP - Solver Concept

real-world problem

CP solver PB solver

API

initial PB encoding

add lazy PB constraint

solve

PB constraint callback

requires lazy encodings of CP constraints

heavy focus on adding PB constraints during runtime

automated callbacks

3 / 25

Example: all different Constraint

Given: variables y1, . . . , yn with finite domains D1, . . . ,Dn

all different((yi)
n
i=1, (Di)

n
i=1) ⇐⇒ yi ̸= yj ∀i < j

Binary encoding: xiv = 1 iff yi = v and xiv = 0 otherwise∑
v∈Di

xiv = 1 ∀i = 1, . . . , n

n∑
i=1

xiv ≤ 1 ∀v ∈ D1 ∪ . . . ∪ Dn

Contains PHP formulas as special case =⇒ exponentially stronger than CP
with lazy clause generation (Ohrimenko et al. ’09).

4 / 25

Pseudo-Boolean Solving Engine

LazyPB Features:

CDCL as solving algorithm

lazy adding of PB constraints by (user-)callbacks

specific constraint handling: clauses, cardinality, PB constraints

specific handling of watched literals

PB conflict analysis: clausal, MIR, lifted cover

restarts + constraint deletion strategies

preprocessing: coefficient strengthening, redundant literal detection

literal selection similar to VSIDS

no phase saving, separate counters for xi and x̄i

Currently:

rather ”standard” features implemented

improve by more sophisticated techniques (also from MIP)

solve optimization problems (cost function)

focus on performance: fast feasible solutions + strong lower bounds (or
UNSAT certificates)

5 / 25

Outline

1 Introduction

2 Mixed-Integer Programming

3 0-1 Integer Linear Programming

4 Pseudo-Boolean Optimization

5 Research Interests

5 / 25

Mixed-Integer Programming

cost vector c ∈ Rn

constraint matrix A ∈ Rm×n with right-hand side b ∈ Rm

variables xi with i = 1, . . . , n which may take real or integer values

We solve the system:

min cT x

Ax ≥ b

x ∈ Rn1 × Zn2

many combinatorial problems can be modeled this way

highly used in operations research

6 / 25

Modern MIP Solvers

LP solver: Simplex and Interior Point (Barrier)

Branch-and-Bound (with Dual Simplex)

additional techniques: presolving, node selection, branching rules,
heuristics, conflict analysis, symmetry handling, ...

cutting plane generation: GC, MIR, cover, flow-cover, disjunctive, ...
(mostly in root node)

Branch-and-Bound

solve LP relaxation with solution x∗

if x∗ is integer → return x∗ optimal

else select fractional x∗i = v and branch x∗i ≥ ⌈v⌉ and x∗i ≤ ⌊v⌋,
repeat for each subproblem recursively

Note:

B&B is more like DPLL - but with an LP solver!

LP solving very often compensates for the absence of CDCL

7 / 25

Geometry of MIP

In MIP, we often look on the geometry of the solution space. A (bounded) MIP
defines a polytope:

cT x

integrality gap

Geometry plays a crucial role for solving MIPs (and 0-1 IPs)!

we want strongest possible descriptions (integer hull)

facets define strongest possible inequalities

complete description: solve LP =⇒ solve IP

8 / 25

Geometry of MIP

In MIP, we often look on the geometry of the solution space. A (bounded) MIP
defines a polytope:

cT x

integrality gap

Geometry plays a crucial role for solving MIPs (and 0-1 IPs)!

we want strongest possible descriptions (integer hull)

facets define strongest possible inequalities

complete description: solve LP =⇒ solve IP

8 / 25

Geometry of MIP

In MIP, we often look on the geometry of the solution space. A (bounded) MIP
defines a polytope:

cT x

integrality gap

Geometry plays a crucial role for solving MIPs (and 0-1 IPs)!

we want strongest possible descriptions (integer hull)

facets define strongest possible inequalities

complete description: solve LP =⇒ solve IP

8 / 25

MIP ”Proof Systems”

let P = {x ∈ Rn : Ax ≥ b} and PI = conv(P ∩ Zn)

consider multipliers yj ≥ 0 for each constraint Cj , the following linear
inequality is valid:

⌈yTA⌉x ≥ ⌈yTb⌉

define the (first) Chvátal-closure by

P(1) =
⋂
y≥0

{
x ∈ P(0) : ⌈yTA⌉x ≥ ⌈yTb⌉

}
P(1) is a polytope (assuming P(0) was a polytope)

we can repeat this procedure on P(1) to get P(2), then P(3), . . .

Theorem (Chvátal): There exists a finite minimum k ∈ N such that
PI = P(k). This number k is called the Chvátal rank of P.

9 / 25

MIP ”Proof Systems”

let P = {x ∈ Rn : Ax ≥ b} and PI = conv(P ∩ Zn)

consider multipliers yj ≥ 0 for each constraint Cj , the following linear
inequality is valid:

⌈yTA⌉x ≥ ⌈yTb⌉

define the (first) Chvátal-closure by

P(1) =
⋂
y≥0

{
x ∈ P(0) : ⌈yTA⌉x ≥ ⌈yTb⌉

}
P(1) is a polytope (assuming P(0) was a polytope)

we can repeat this procedure on P(1) to get P(2), then P(3), . . .

Theorem (Chvátal): There exists a finite minimum k ∈ N such that
PI = P(k). This number k is called the Chvátal rank of P.

9 / 25

Outline

1 Introduction

2 Mixed-Integer Programming

3 0-1 Integer Linear Programming

4 Pseudo-Boolean Optimization

5 Research Interests

9 / 25

0-1 Integer Linear Programming

Essentially, a 0-1 integer (or binary) program:

min cT x

Ax ≥ b

x ∈ {0, 1}n

equivalent to pseudo-Boolean optimizaton

defines a 0-1 polytope (subset of the unit cube)

rich history of cutting plane theory

Theorem (Eisenbrand & Schulz ’99): The Chvátal rank of 0-1 polytopes
is O(n2 log n).

meaning: ”depth” of cutting plane proofs for 0-1 ILP is polynomial!

10 / 25

Knapsack Polytope

Consider a simple knapsack inequality of the form:

n∑
i=1

aixi ≤ b

with xi ∈ {0, 1}, ai ≥ 0 and b > 0.

complete descriptions for the knapsack polytope are unknown in general

many different classes of facets were defined and studied:

(lifted) cover inequalities, (extended) strong covers, MIR, ...

11 / 25

Knapsack Covers

A knapsack cover is a subset C ⊆ {1, . . . , n} such that
∑

i∈C ai > b.
Hence, the inequality ∑

i∈C

xi ≤ |C | − 1

is valid. A cover is minimal if
∑

i∈C\{j} ai ≤ b for all j ∈ C .

Example: 4x1 + 6x2 ≤ 7 with x1, x2 ∈ {0, 1}

1

1

(0,0)

x2

x1

x1 + x2 ≤ 1 is a minimal cover inequality.

12 / 25

Knapsack Covers

A knapsack cover is a subset C ⊆ {1, . . . , n} such that
∑

i∈C ai > b.
Hence, the inequality ∑

i∈C

xi ≤ |C | − 1

is valid. A cover is minimal if
∑

i∈C\{j} ai ≤ b for all j ∈ C .

Example: 4x1 + 6x2 ≤ 7 with x1, x2 ∈ {0, 1}

1

1

(0,0)

x2

x1

x1 + x2 ≤ 1 is a minimal cover inequality.

12 / 25

Lifted Knapsack Covers

Assume we are given a knapsack inequality
∑n

i=1 aixi ≤ b and an associated
minimal cover inequality

∑
i∈C xi ≤ |C | − 1.

Consider an element j /∈ C . We want to extend the cover inequality to∑
i∈C

xi + αjxj ≤ |C | − 1

How large can αj be at maximum?

Assume xj = 1 and compute

αj ≤ |C | − 1−max

{∑
i∈C

xi :
n∑

i=1

aixi ≤ b, xj = 1

}
= |C | − 1− ϕ

For a maximum coefficient set αj = ϕ. The value ϕ can be computed by solving a
knapsack problem with dynamic programming in O(b · |C |) (integer data).

13 / 25

Lifted Knapsack Covers

Assume we are given a knapsack inequality
∑n

i=1 aixi ≤ b and an associated
minimal cover inequality

∑
i∈C xi ≤ |C | − 1.

Consider an element j /∈ C . We want to extend the cover inequality to∑
i∈C

xi + αjxj ≤ |C | − 1

How large can αj be at maximum? Assume xj = 1 and compute

αj ≤ |C | − 1−max

{∑
i∈C

xi :
n∑

i=1

aixi ≤ b, xj = 1

}
= |C | − 1− ϕ

For a maximum coefficient set αj = ϕ. The value ϕ can be computed by solving a
knapsack problem with dynamic programming in O(b · |C |) (integer data).

13 / 25

Sequential Lifting

We can repeat this procedure for the already computed lifting coefficients. Hence,
consider the sequence {j1, . . . , jk} with k = n − |C | of all j /∈ C and compute
sequentially

αjl+1
= |C | − 1−max

{∑
i∈C

xi +
l∑

r=1

αjr xjr :
n∑

i=1

aixi ≤ b, xjl+1
= 1

}

This yields the lifted cover inequality:

∑
i∈C

xi +
k∑

r=1

αjr xjr ≤ |C | − 1

the sequence {j1, . . . , jk} is called the lifting sequence

different lifting sequences yield different inequalities

lifted cover inequalities define facets of the associated knapsack polytope

not all facets of the knapsack polytope are lifted cover inequalities

complexity: O(bn2) with DP but can be improved to O(bn)

14 / 25

Some Relaxations

Full sequential lifting in O(bn) can still be too slow. We can look at relaxations.

Index Approach (Balas ’75)
Assume we sort the coefficients of the cover elements j ∈ C in non-increasing
order, i.e. {j1, . . . , jk} with ajr ≥ ajr+1 and let Ar =

∑r
h=1 ajr for r = 0, . . . , k.

For each element j /∈ C we can let

αj = argmax {Ar ≤ aj : r = 0, . . . , k}

Complexity: O(|C | log |C |) but weaker than full sequential lifting

There are other relaxations and approximations for lifted cover inequalities.

15 / 25

Sequential Lifting - Example

Consider the knapsack constraint:

10x1 + 6x2 + 6x3 + 4x4 + 4x5 + 2x6 ≤ 13

and the minimal cover C = {2, 3, 4} with the minimal cover inequality

x2 + x3 + x4 ≤ 2

Consider the lifting sequence {6, 5, 1} then we get

α6 = 2−max{x2 + x3 + x4 : 6x2 + 63 + 4x4 ≤ 11} = 0

α5 = 2−max{x2 + x3 + x4 : 6x2 + 63 + 4x4 ≤ 9} = 1

α1 = 2−max{x2 + x3 + x4 + x5 : 6x2 + 63 + 4x4 + 4x5 ≤ 3} = 2

The final lifted cover inequality is

2x1 + x2 + x3 + x4 + x5 ≤ 2

The ’relaxed’ lifted cover inequality would be

x1 + x2 + x3 + x4 ≤ 2

16 / 25

Mixed Integer Rounding

Assume a PB constraint of the form:

n∑
i=1

aixi ≥ b

For a given divisor d ∈ N, let the Mixed-Integer Rounding (MIR) inequality be
given by ∑

i∈I1

⌈ai
d

⌉
xi +

∑
i∈I2

(⌊ai
d

⌋
+

f (ai/d)

f (b/d)

)
xi ≥

⌈
b

d

⌉
with the partition

i ∈ I1 ⇐⇒ f (ai/d) ≥ f (b/d) or f (ai/d) ∈ Z
i ∈ I2 ⇐⇒ f (ai/d) < f (b/d) and f (ai/d) /∈ Z

where f (x) = x − ⌊x⌋.

17 / 25

Mixed-Integer Rounding - Example

Consider the PB constraint

8x1 + 7x2 + 6x3 + 4x4 ≥ 16

which yields the MIR inequalities:

d = 2 : 4x1 + 4x2 + 3x3 + 2x4 ≥ 8

d = 3 : 3x1 + 3x2 + 2x3 + 2x4 ≥ 6

d = 4 : 2x1 + 2x2 + 2x3 + x4 ≥ 4

d = 5 : 2x1 + 2x2 + 2x3 + x4 ≥ 4

d = 6 : 1.5x1 + 1.25x2 + x3 + x4 ≥ 3

d = 7 : 1.5x1 + x2 + x3 + x4 ≥ 3

d = 8 : 1.5x1 + x2 + x3 + x4 ≥ 2

However, a lifted cover inequality with the minimum cover C = {3, 4} and lifting
the sequence {1, 2} yields the lifted cover inequality (facet)

8x̄1 + 7x̄2 + 6x̄3 + 4x̄4 ≤ 9
cover
=⇒ x̄3 + x̄4 ≤ 1

lifting
=⇒ x̄1 + x̄2 + x̄3 + x̄4 ≤ 1
sense
=⇒ x̄1 + x̄2 + x̄3 + x̄4 ≥ 3

Hence, the lifted cover inequality dominates the MIR inequality.
18 / 25

Outline

1 Introduction

2 Mixed-Integer Programming

3 0-1 Integer Linear Programming

4 Pseudo-Boolean Optimization

5 Research Interests

18 / 25

PB Solvers vs. MIP Solvers

PB solvers are based on SAT methodology

solving method: conflict-driven constraint (clause) learning

=⇒ conflict analysis is the solving method, no branching!

Pros:

PB constraint propagation is very fast (faster than LP)

can generate strong non-trivial cutting planes during conflict analysis

often good for problems where LP-relaxation is weak (e.g. big-M)

Cons:

no ”global view” on the problem: conflicts may be detected later

optimization can be difficult: no dual information

19 / 25

Pseudo-Boolean Conflict Analysis

Given a conflict constraint Cconflict and a reason constraint Creason.

Creason propagates a literal xi which is falsified in Cconflict .

Conflict Analysis in RoundingSAT (Elffers & Nordström ’18):

1 Cweaken ← weaken all non-false literals in Creason that are not a multiple of ai
(coefficient of xi in Creason)

2 divide Cweaken by ai
3 cancel out xi by adding Cweaken and Cconflict

Note:

in general, adding Cconflict and Creason to cancel out xi may lead to a
non-conflicting constraint

the LP-relaxation may still contain a feasible point but not the IP!

we need the constraint (resp. the integer LP) to propagate tightly

20 / 25

Pseudo-Boolean Conflict Analysis

During unit propagation, observe a conflict constraint:

Cconflict : 2x1 + 6x2 + 5x3 + x4 + 3x5 ≥ 8

Look at the last propagated literal, say x̄2, and look at its reason constraint:

Creason : 6x1 + 3x̄2 + 3x4 + 5x6 + 7x7 ≥ 11

Weakening in RoundingSAT:

C ′
reason : 6x1 + 3x̄2 + 3x4 + 6x7 ≥ 6

C ′′
reason : 2x1 + x̄2 + x4 + 2x7 ≥ 2

Partial Weakening:

C ′
reason : 6x1 + 3x̄2 + 3x4 + 3x6 + 7x7 ≥ 9

C ′′
reason : 2x1 + x̄2 + x4 + x6 + 3x7 ≥ 3

21 / 25

Conflict Analysis in LazyPB

1 Ccover ← minimum cover constraint from Creason which propagates xi
2 Clifted ← perform lifting on literals in Creason \ Ccover which yields Clifted

3 cancel out xi by adding Clifted and Cconflict

Note: lifting does not change the slack of Ccover

Back to Example:

Creason : 6x1 + 3x̄2 + 3x4 + 5x6 + 7x7 ≥ 11

⇐⇒ 6x̄1 + 3x2 + 3x̄4 + 5x̄6 + 7x̄7 ≤ 13

Ccover : x̄1 + x2 + x̄7 ≤ 2

Clifted : x̄1 + x2 + x̄6 + x̄7 ≤ 2

⇐⇒ x1 + x̄2 + x6 + x7 ≥ 2

MIR with division of 3 yields some seemingly incomparable constraint:

2x1 + x̄2 + x4 + 2x6 + 2.5x7 ≥ 4

22 / 25

Notes on Pseudo-Boolean Conflict Analysis

we can also convert Cconflict to a lifted cover inequality

lifted covers and MIR are complementary, not exclusive

weakening seems somewhat ”odd” to me

the strongest possible tightly propagating constraints are the facets of the
associated knapsack polytope

tons of research on facets of knapsack polytopes

Which tightly propagating facet should we use?

Which lifting sequence to prefer? High activation literals?
(currently some experiments)

Conjecture:

stronger LP-relaxations lead to better PB solving

Can we measure this relationship somehow?

23 / 25

Some Computational Results

Scheduling:
RCPSP: achieve results close to state-of-the-art, sometimes better

PSPLib # Inst. SAT #opt SAT #conf PB #opt PB #confl

J30 480 480 5577 480 5426

J60 480 426 70295 423 52866

MIPLIB2017 (integer version):
solver not yet competitive for pure optimization problems
some ”interesting” instances after 300s

Instance obj SAT obj PB #conflicts SAT #conflicts PB

circ10-3 390.00 - 264,599 106,696
decomp2 -160.00* 76.00 310,538 225,539

neos-953928 -99.75 - 220,826 50,670
cvs16r70-62 -32.00 -39.00 253,813 108,619

neos-3555904-turama - -34.70* 121,797 6,377

Solution time for large instances:
ivu59 (2.5 million vars and cons): 29s.
ivu06-big (2.2 million vars and cons): 5.5s.
supportcase11: (8 million vars and 17 millions cons): 0.58s. 24 / 25

Outline

1 Introduction

2 Mixed-Integer Programming

3 0-1 Integer Linear Programming

4 Pseudo-Boolean Optimization

5 Research Interests

24 / 25

Research Interests

MIP: ”first” order method (duals)

PBO: ”zero” order method (no duals)

How to ”simulate” dual information in PBO?

How to use information of more than two PB constraints in conflict analysis
or propagation?

C1 ⊕ · · · ⊕ Ck

D

are there any other strong derivation rules? (proof complexity?)

effect of stronger LP-relaxations on PBO?

column-generation in PBO?

technical details on core-guided search

25 / 25

	Introduction
	Mixed-Integer Programming
	0-1 Integer Linear Programming
	Pseudo-Boolean Optimization
	Research Interests

