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COMBINATORIAL SOLVING AND OPTIMIZATION

I Searching an assignment of values to variables that satisfy a set of constraints (and
optimizes an objective).

I Revolution last couple of decades in combinatorial solvers for
I Boolean satisfiability (SAT) solving [BHvMW21]
I Maximum Satisfiability (MaxSAT) [LM21, BJM21]
I Satisfiability modulo theories (SMT) solving [BSST21]
I Constraint programming (CP) [RvBW06]
I Mixed integer linear programming (MIP) [AW13, BR07]
I Answer Set Programming (ASP) [GKKS12]

I Solve NP problems (or worse) very successfully in practice!
I Except solvers are sometimes wrong… [BLB10, CKSW13, AGJ+18, GSD19, GS19]
I Software testing doesn’t suffice to resolve this problem
I Formal verification techniques cannot deal with complexity of modern solvers [BHI+23]
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CERTIFIED RESULTS WITH PROOF LOGGING

Design certifying algorithms [ABM+11, MMNS11] that
I not only solve problem but also
I do proof logging to certify that

I solution is correct
I obtained by correct reasoning

Proof logging should be done
I with minimal overhead
I without changing a solver’s reasoning
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CERTIFIED RESULTS WITH PROOF LOGGING

Workflow:
1. Run solver on problem input
2. Get as output not only answer but also proof
3. Feed input + answer + proof to proof checker
4. Check if proof checker says answer is correct

Solver

Proof checker

Input Answer

Proof

4/7
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YET ANOTHER SAT SUCCESS STORY

Well established — required in main track of SAT competitions

Many proof logging formats for SAT solving using CNF clausal format:
I DRAT [HHW13a, HHW13b, WHH14]
I GRIT [CMS17]
I LRAT [CHH+17]
I …

Formally verified proof checkers exist

But efficient proof logging has remained out of reach for other paradigms,
e.g. Maximum Satisfiability (MaxSAT)
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Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work
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MaxSAT and how to proof log it.

PRELIMINARIES
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}

I Boolean variable: x

I Assignment α: assigns variables true (= 1) or false (= 0)
I Literal l: variable x (satisfied if α(x) = 1) or its negation x (satisfied if α(x) = 0)
I Clause C: Disjunction of literals l1 ∨ · · · ∨ lk

(C is satisfied by α if at least one literal in C is assigned true)
I Propositional formula in CNF: F = C1 ∧ · · · ∧ Cn

(F is satisfied if all clauses Ci are satisfied)
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MaxSAT and how to proof log it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3 (min)

Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A (feasible) solution is an assignment for all variables such that F is satisfied.

An optimal solution is a solution such that no other solution has lower objective value.
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MaxSAT and how to proof log it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!
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MaxSAT and how to proof log it.

MAXSAT SOLVERS

Four main categories:
I Branch-and-Bound
I Solution-Improving
I Core-Guided
I Implicit Hitting Set

Different reasoning techniques!
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MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):

I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!
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MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]
I Core-Guided Search

I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)
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VeriPB’s proof system

VeriPB: A PROOF SYSTEM FOR PSEUDO-BOOLEAN OPTIMIZATION

VeriPB is a proof system for pseudo-Boolean optimization [BGMN22, EGMN20].

A pseudo-Boolean constraint is a 0–1 integer linear inequalities:∑
i

ai`i ≥ A

I ai, A ∈ Z
I literals `i: xi or xi (where xi + xi = 1)
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VeriPB’s proof system

REASONING OVER PSEUDO-BOOLEAN CONSTRAINTS USING VeriPB

VeriPB reasons on such pseudo-Boolean constraints with:

I Cutting Planes proof system [CCT87]
I e.g., adding up two constraints

I Reverse Unit Propagation [GN03]
I allows deriving constraints without providing an explicit derivation
I if F ∧ ¬C `UP ⊥, then F |= C

I Redundance-Based Strenghtening [GN21, BGMN22]
I generalisation of the RAT-rule [BT19]
I allows for proving without-loss-of-generality reasoning
I e.g. introducing “fresh” reification variables, such as r ⇔ (

∑
i aili ≥ A)

I Support for Optimisation [BGMN22]
I allows deriving solution-improving constraints (O < v∗)
I proving optimality by contradiction
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VeriPB’s proof system

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Input/model axioms From the input

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication for any c ∈ N+
∑

i ai`i ≥ A∑
i cai`i ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i ai`i ≥ A∑

i

⌈ai
c

⌉
`i ≥

⌈
A
c

⌉
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VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y + 2z + 2z ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y + 2 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 2 1
3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50



Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 19/50



MaxCDCL: A Combination of Branch and Bound and CDCL

BRANCH AND BOUND

Branch and Bound:
I Explore the search tree for solutions
I Update Upper Bound UB when solution with better objective value is found
I Underestimate Lower Bound LB at every node
I Prune branch when conflict found or when LB ≥ UB

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB
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MaxCDCL: A Combination of Branch and Bound and CDCL

MAXCDCL AS BRANCH AND BOUND

Branch and Bound in MaxCDCL:
I Explore the search tree for solutions
I Update Upper Bound UB when solution with better objective value is found
I Underestimate Lower Bound LB at every node using lookahead with UP
I Prune branch when conflict found or when LB ≥ UB and learn a clause

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB
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MaxCDCL: A Combination of Branch and Bound and CDCL

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

I Hard conflict:
I A clause is falsified

I Soft conflict:
I (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)
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MaxCDCL: A Combination of Branch and Bound and CDCL

LOOKAHEAD: LB UNDERESTIMATION (UNWEIGHTED CASE)

Lookahead with UP for underestimating LB:

1. Assume unassigned objective literals false and apply UP until:
I A hard clause is falsified
I Or a not yet assigned objective literal is assigned 1

2. We have found a local unsatisfiable core

3. Since unweighted case: Each disjoint core increases the LB by 1

4. When LB ≥ UB, a soft conflict is found
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MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10

ya
2 x11

p ya
3 ya

4 xp
12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p

ya
3 ya

4 xp
12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3

ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50



MaxCDCL: A Combination of Branch and Bound and CDCL
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O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
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3 x4
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5 xp
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7
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x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50



MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient

Ot = y1 + y2 + 1y3 + 1y4 + y5 + y6 + 1y7 + y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores

Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4
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MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101
PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102
PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s
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MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING MAXCDCL

Proof logging Learned clause after conflict analysis RUP

Proof logging Optimality:
I Unit propagation in MaxCDCL derives conflict at DL = 0
I Proof: RUP 0 ≥ 1
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Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work
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Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9
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Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5

ya
9 yp

1 yp
3 ya

5 ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?
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Conclusion
∑9

i=1 yi ≥ 4 ?
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Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥
Found disjoint local “cores”:
Core 1: y9 → y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: ��y9 +��y5 +��y6 + y2 ≥ 1

To Derive:
∑9

i=1 yi ≥ 4
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PROOF LOGGING LITERAL UNLOCKING
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(RUP)
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y9 + y5 + y6 + y2 ≥ 1

(RUP)

To Derive:
∑9

i=1 yi ≥ 4
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Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
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3 ya
5 ya

6 yp
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Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}
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“{y9, y5, y6} unlocks Core 2 on {y1, y7}” “L ∪R1 unlocks Core 2 on U2”

y9 + y5 + y6 + y1 ≥ 1 (RUP)
y9 + y5 + y6 + y7 ≥ 1 (RUP)
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Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥ Notation:
Found disjoint local “cores”: L = {y9}
Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}

“{y9} unlocks Core 1 on {y3}” “L unlocks Core 1 on U1”
y9 + y3 ≥ 1 (RUP) L + y3 ≥ 1

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2 U2 = {y1, y7}, R2 = {y2, y4, y8}
“{y9, y5, y6} unlocks Core 2 on {y1, y7}” “L ∪R1 unlocks Core 2 on U2”

y9 + y5 + y6 + y1 ≥ 1 (RUP) L + R1 + y1 ≥ 1
y9 + y5 + y6 + y7 ≥ 1 (RUP) L + R1 + y7 ≥ 1

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP) L + R1 + R2 ≥ 1

To Derive:
∑9

i=1 yi ≥ 4
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Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥ Notation:
Found disjoint local “cores”: L = {y9}
Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}

“{y9} unlocks Core 1 on {y3}” “L unlocks Core 1 on U1”
y9 + y3 ≥ 1 (RUP) L + y3 ≥ 1

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2 U2 = {y1, y7}, R2 = {y2, y4, y8}
“{y9, y5, y6} unlocks Core 2 on {y1, y7}” “L ∪R1 unlocks Core 2 on U2”

y9 + y5 + y6 + y1 ≥ 1 (RUP) L + R1 + y1 ≥ 1
y9 + y5 + y6 + y7 ≥ 1 (RUP) L + R1 + y7 ≥ 1

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP) L + R1 + R2 ≥ 1

To Derive:
∑9

i=1 yi ≥ 4 L + (
∑

i Ui + Ri) ≥
∑

i bi + 1
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Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

From the constraints

Li ≥ bi (∀1 ≤ i ≤ k), L +
∑
j<i

Rj + ` ≥ 1 (∀1 ≤ i ≤ k, ` ∈ Ui), L +
∑

j

Rj ≥ 1

we derive

L +
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

for each i ∈ {1, . . . , k + 1}.
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Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj .

By induction on i.

For i = k + 1 (base case):

L +
∑

j

Rj ≥ 1

For i between 1 and k − 1: Cutting Planes Derivation from IH:

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

For i = 1 (New cardinality constraint!):

L +
∑

j

Lj ≥ 1 +
∑

j

bj
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Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work
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Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0
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MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Binary Decision Diagram:

I Every node corresponds with part of
the original PB constraint and,

I Every node propagates based on one
decision literal.

I If vF node is propagated true, then
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Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Introducing fresh variables for each node
with meaning:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6

I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]
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Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Introducing fresh variables for each node
with meaning:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

After introducing the variables, clauses
are added to the solver.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

. . .. . .

v1

vTvF
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Encoding the solution-improving constraint in a CNF formula

HOW TO PROOF LOG BDDS?

Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

. . .. . .

v1

vTvF
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HOW TO PROOF LOG BDDS?

Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

by introducing
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8 (only in proof)
and deriving
I v′
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Encoding the solution-improving constraint in a CNF formula

HOW TO PROOF LOG BDDS?
Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

by introducing
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8 (only in proof)
and deriving
I v′

2,2 → v2,2

Step 2: Derive clauses.
I Straight-forward cutting planes

derivation.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

. . .. . .

v1

vTvF

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 38/50



Encoding the solution-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if there exists a
substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1
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Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

We have
I v2,2 → 4x2 + 5x3 ≤ 5
I v′

2,2 ← 4x2 + 5x3 ≤ 8
and we want to derive
I v′

2,2 → v2,2

If we can prove
I x2 + v′

2,2 + v2,2 ≥ 1
I x2 + v′

2,2 + v2,2 ≥ 1
then v′

2,2 + v2,2 ≥ 1 follows.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

. . .. . .

v1

vTvF
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Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

To derive:
I x2 + v′

2,2 + v2,2 ≥ 1
We have for node v2,2:
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8
For node v3:
I v3 → 5x3 ≤ 0
I v3 ← 5x3 ≤ 4

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0
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Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.
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Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

We have
I v2,2 → 4x2 + 5x3 ≤ 5
I v′

2,2 ← 4x2 + 5x3 ≤ 8
and we want to derive
I v′

2,2 → v2,2

If we can prove
I x2 + v′

2,2 + v2,2 ≥ 1
I x2 + v′

2,2 + v2,2 ≥ 1
then v′

2,2 + v2,2 ≥ 1 follows.

Clauses: Derived from reification
constraints.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

. . .. . .

v1

vTvF
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Encoding the solution-improving constraint in a CNF formula

MULTI-VALUED DECISION DIAGRAM (MDD)

10

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 0
x2 = 1

x3 = 1

x3 = 0

x3 = 0

x3 = 1

x4 = 0x4 = 1

x1 + x2 ≤ 1

x3 + x4 ≤ 1

0 1

x2 = 1 x1 = 1, else

x4 = 1
x3 = 1, else

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 44/50



Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work
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WRAPPING UP

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

This talk:
I Proof logging for yet another MaxSAT Solver

I MaxCDCL: MaxSAT solving by combining Branch-and-Bound and CDCL
I Pseudo-Boolean reasoning helps to express MaxSAT algorithms
I Proof logging for MaxSAT is possible with VeriPB!!

Thank you for your attention!
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Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj .

By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
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To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 0. Induction Hypothesis

L +
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Step 5. Dividing this by bi+1 + 1 (and rounding the righthand-side up) yields
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j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50



Appendix

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if and only if there
exists a substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1
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Appendix

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1
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Appendix

INTERMEZZO: PROOF BY CASE SPLITTING

To show:
(a · x +

∑
i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Addition of (a · x +
∑

i bili ≥ B) with (
∑

i bili ≥
∑

i bi −B + 1) gives
a · x +

∑
i

bili +
∑

i

bili ≥ B +
∑

i

bi −B + 1

which is equal to
a · x ≥ 1

After saturation: x ≥ 1.
Similarly, addition of (a · x +

∑
i bili ≥ B) and (

∑
i bili ≥

∑
i bi −B + 1) and saturation gives

x ≥ 1
which is clearly contradiction with x ≥ 1.
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