
Certified Branch-and-Bound MaxSAT Solving

Dieter Vandesande
Joint work with Jordi Coll, Chu-Min Li, and Bart Bogaerts

November 7, 2024
Lund

COMBINATORIAL SOLVING AND OPTIMIZATION

I Searching an assignment of values to variables that satisfy a set of constraints (and
optimizes an objective).

I Revolution last couple of decades in combinatorial solvers for
I Boolean satisfiability (SAT) solving [BHvMW21]
I Maximum Satisfiability (MaxSAT) [LM21, BJM21]
I Satisfiability modulo theories (SMT) solving [BSST21]
I Constraint programming (CP) [RvBW06]
I Mixed integer linear programming (MIP) [AW13, BR07]
I Answer Set Programming (ASP) [GKKS12]

I Solve NP problems (or worse) very successfully in practice!
I Except solvers are sometimes wrong… [BLB10, CKSW13, AGJ+18, GSD19, GS19]
I Software testing doesn’t suffice to resolve this problem
I Formal verification techniques cannot deal with complexity of modern solvers [BHI+23]

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 1/50

COMBINATORIAL SOLVING AND OPTIMIZATION

I Searching an assignment of values to variables that satisfy a set of constraints (and
optimizes an objective).

I Revolution last couple of decades in combinatorial solvers for
I Boolean satisfiability (SAT) solving [BHvMW21]
I Maximum Satisfiability (MaxSAT) [LM21, BJM21]
I Satisfiability modulo theories (SMT) solving [BSST21]
I Constraint programming (CP) [RvBW06]
I Mixed integer linear programming (MIP) [AW13, BR07]
I Answer Set Programming (ASP) [GKKS12]

I Solve NP problems (or worse) very successfully in practice!
I Except solvers are sometimes wrong… [BLB10, CKSW13, AGJ+18, GSD19, GS19]
I Software testing doesn’t suffice to resolve this problem
I Formal verification techniques cannot deal with complexity of modern solvers [BHI+23]

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 1/50

COMBINATORIAL SOLVING AND OPTIMIZATION

I Searching an assignment of values to variables that satisfy a set of constraints (and
optimizes an objective).

I Revolution last couple of decades in combinatorial solvers for
I Boolean satisfiability (SAT) solving [BHvMW21]
I Maximum Satisfiability (MaxSAT) [LM21, BJM21]
I Satisfiability modulo theories (SMT) solving [BSST21]
I Constraint programming (CP) [RvBW06]
I Mixed integer linear programming (MIP) [AW13, BR07]
I Answer Set Programming (ASP) [GKKS12]

I Solve NP problems (or worse) very successfully in practice!
I Except solvers are sometimes wrong… [BLB10, CKSW13, AGJ+18, GSD19, GS19]
I Software testing doesn’t suffice to resolve this problem
I Formal verification techniques cannot deal with complexity of modern solvers [BHI+23]

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 1/50

COMBINATORIAL SOLVING AND OPTIMIZATION

I Searching an assignment of values to variables that satisfy a set of constraints (and
optimizes an objective).

I Revolution last couple of decades in combinatorial solvers for
I Boolean satisfiability (SAT) solving [BHvMW21]
I Maximum Satisfiability (MaxSAT) [LM21, BJM21]
I Satisfiability modulo theories (SMT) solving [BSST21]
I Constraint programming (CP) [RvBW06]
I Mixed integer linear programming (MIP) [AW13, BR07]
I Answer Set Programming (ASP) [GKKS12]

I Solve NP problems (or worse) very successfully in practice!
I Except solvers are sometimes wrong… [BLB10, CKSW13, AGJ+18, GSD19, GS19]
I Software testing doesn’t suffice to resolve this problem
I Formal verification techniques cannot deal with complexity of modern solvers [BHI+23]

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 1/50

COMBINATORIAL SOLVING AND OPTIMIZATION

I Searching an assignment of values to variables that satisfy a set of constraints (and
optimizes an objective).

I Revolution last couple of decades in combinatorial solvers for
I Boolean satisfiability (SAT) solving [BHvMW21]
I Maximum Satisfiability (MaxSAT) [LM21, BJM21]
I Satisfiability modulo theories (SMT) solving [BSST21]
I Constraint programming (CP) [RvBW06]
I Mixed integer linear programming (MIP) [AW13, BR07]
I Answer Set Programming (ASP) [GKKS12]

I Solve NP problems (or worse) very successfully in practice!
I Except solvers are sometimes wrong… [BLB10, CKSW13, AGJ+18, GSD19, GS19]
I Software testing doesn’t suffice to resolve this problem
I Formal verification techniques cannot deal with complexity of modern solvers [BHI+23]

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 1/50

CERTIFIED RESULTS WITH PROOF LOGGING

Design certifying algorithms [ABM+11, MMNS11] that
I not only solve problem but also
I do proof logging to certify that

I solution is correct
I obtained by correct reasoning

Proof logging should be done
I with minimal overhead
I without changing a solver’s reasoning

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 2/50

CERTIFIED RESULTS WITH PROOF LOGGING

Design certifying algorithms [ABM+11, MMNS11] that
I not only solve problem but also
I do proof logging to certify that

I solution is correct
I obtained by correct reasoning

Proof logging should be done
I with minimal overhead
I without changing a solver’s reasoning

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 2/50

CERTIFIED RESULTS WITH PROOF LOGGING

Design certifying algorithms [ABM+11, MMNS11] that
I not only solve problem but also
I do proof logging to certify that

I solution is correct
I obtained by correct reasoning

Proof logging should be done
I with minimal overhead
I without changing a solver’s reasoning

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 2/50

CERTIFIED RESULTS WITH PROOF LOGGING

Workflow:
1. Run solver on problem input
2. Get as output not only answer but also proof
3. Feed input + answer + proof to proof checker
4. Check if proof checker says answer is correct

Solver

Proof checker

Input Answer

Proof

4/7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 3/50

CERTIFIED RESULTS WITH PROOF LOGGING

Workflow:
1. Run solver on problem input
2. Get as output not only answer but also proof
3. Feed input + answer + proof to proof checker
4. Check if proof checker says answer is correct

Solver

Proof checker

Input Answer

Proof

4/7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 3/50

CERTIFIED RESULTS WITH PROOF LOGGING

Workflow:
1. Run solver on problem input
2. Get as output not only answer but also proof
3. Feed input + answer + proof to proof checker
4. Check if proof checker says answer is correct

Solver

Proof checker

Input Answer

Proof

4/7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 3/50

CERTIFIED RESULTS WITH PROOF LOGGING

Workflow:
1. Run solver on problem input
2. Get as output not only answer but also proof
3. Feed input + answer + proof to proof checker
4. Check if proof checker says answer is correct

Solver

Proof checker

Input Answer

Proof

4/7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 3/50

YET ANOTHER SAT SUCCESS STORY

Well established — required in main track of SAT competitions

Many proof logging formats for SAT solving using CNF clausal format:
I DRAT [HHW13a, HHW13b, WHH14]
I GRIT [CMS17]
I LRAT [CHH+17]
I …

Formally verified proof checkers exist

But efficient proof logging has remained out of reach for other paradigms,
e.g. Maximum Satisfiability (MaxSAT)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 4/50

YET ANOTHER SAT SUCCESS STORY

Well established — required in main track of SAT competitions

Many proof logging formats for SAT solving using CNF clausal format:
I DRAT [HHW13a, HHW13b, WHH14]
I GRIT [CMS17]
I LRAT [CHH+17]
I …

Formally verified proof checkers exist

But efficient proof logging has remained out of reach for other paradigms,
e.g. Maximum Satisfiability (MaxSAT)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 4/50

YET ANOTHER SAT SUCCESS STORY

Well established — required in main track of SAT competitions

Many proof logging formats for SAT solving using CNF clausal format:
I DRAT [HHW13a, HHW13b, WHH14]
I GRIT [CMS17]
I LRAT [CHH+17]
I …

Formally verified proof checkers exist

But efficient proof logging has remained out of reach for other paradigms,
e.g. Maximum Satisfiability (MaxSAT)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 4/50

YET ANOTHER SAT SUCCESS STORY

Well established — required in main track of SAT competitions

Many proof logging formats for SAT solving using CNF clausal format:
I DRAT [HHW13a, HHW13b, WHH14]
I GRIT [CMS17]
I LRAT [CHH+17]
I …

Formally verified proof checkers exist

But efficient proof logging has remained out of reach for other paradigms,
e.g. Maximum Satisfiability (MaxSAT)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 4/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 5/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 6/50

MaxSAT and how to proof log it.

PRELIMINARIES
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}

I Boolean variable: x

I Assignment α: assigns variables true (= 1) or false (= 0)
I Literal l: variable x (satisfied if α(x) = 1) or its negation x (satisfied if α(x) = 0)
I Clause C: Disjunction of literals l1 ∨ · · · ∨ lk

(C is satisfied by α if at least one literal in C is assigned true)
I Propositional formula in CNF: F = C1 ∧ · · · ∧ Cn

(F is satisfied if all clauses Ci are satisfied)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 7/50

MaxSAT and how to proof log it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3 (min)

Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A (feasible) solution is an assignment for all variables such that F is satisfied.

An optimal solution is a solution such that no other solution has lower objective value.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 8/50

MaxSAT and how to proof log it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3 (min)
Solution: α = {x1 7→ 1, x2 7→ 0, x3 7→ 1}

Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A (feasible) solution is an assignment for all variables such that F is satisfied.

An optimal solution is a solution such that no other solution has lower objective value.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 8/50

MaxSAT and how to proof log it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3 (min)
Solution: α = {x1 7→ 1, x2 7→ 0, x3 7→ 1}

Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A (feasible) solution is an assignment for all variables such that F is satisfied.

An optimal solution is a solution such that no other solution has lower objective value.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 8/50

MaxSAT and how to proof log it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 9/50

MaxSAT and how to proof log it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 9/50

MaxSAT and how to proof log it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 9/50

MaxSAT and how to proof log it.

MAXSAT SOLVERS

Four main categories:
I Branch-and-Bound
I Solution-Improving
I Core-Guided
I Implicit Hitting Set

Different reasoning techniques!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 10/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):

I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality

Idea (Does not work):

I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver

I Check solution to be satisfying assignment
Easy to check!

I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!

I Create formula F ′ = F ∧

CNF(

O < v∗

)
Requires proof logging – Not possible with state-of-the-art proof systems for SAT

I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!

I Create formula F ′ = F ∧

CNF(

O < v∗

)
Requires proof logging – Not possible with state-of-the-art proof systems for SAT

I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)
Requires proof logging – Not possible with state-of-the-art proof systems for SAT

I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧ CNF(O < v∗)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧ CNF(O < v∗)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead

Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧ CNF(O < v∗)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 11/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]
I Core-Guided Search

I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!

A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]
I Core-Guided Search

I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:

I Solution Improving Search
I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]

I Core-Guided Search
I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]

I Core-Guided Search
I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]
I Core-Guided Search

I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]
I Core-Guided Search

I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]

I Branch-and-Bound with clause learning
I MaxCDCL – This talk (and a little bit about Solution Improving Search)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

MaxSAT and how to proof log it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I Solution Improving Search

I QMaxSAT: Focus on proof logging PB-to-CNF encodings [Van23, VDB22]
I Core-Guided Search

I RC2 and CGSS: First state-of-the-art MaxSAT solver with proof logging [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints,

I Solution Improving Search revisited
I Pacose: Challenging without-loss-of-generality reasoning in Dynamic Polynomial Watchdog

Encoding [BBN+24]
I Branch-and-Bound with clause learning

I MaxCDCL – This talk (and a little bit about Solution Improving Search)
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 12/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 14/50

VeriPB’s proof system

VeriPB: A PROOF SYSTEM FOR PSEUDO-BOOLEAN OPTIMIZATION

VeriPB is a proof system for pseudo-Boolean optimization [BGMN22, EGMN20].

A pseudo-Boolean constraint is a 0–1 integer linear inequalities:∑
i

ai`i ≥ A

I ai, A ∈ Z
I literals `i: xi or xi (where xi + xi = 1)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 15/50

VeriPB’s proof system

REASONING OVER PSEUDO-BOOLEAN CONSTRAINTS USING VeriPB

VeriPB reasons on such pseudo-Boolean constraints with:

I Cutting Planes proof system [CCT87]
I e.g., adding up two constraints

I Reverse Unit Propagation [GN03]
I allows deriving constraints without providing an explicit derivation
I if F ∧ ¬C `UP ⊥, then F |= C

I Redundance-Based Strenghtening [GN21, BGMN22]
I generalisation of the RAT-rule [BT19]
I allows for proving without-loss-of-generality reasoning
I e.g. introducing “fresh” reification variables, such as r ⇔ (

∑
i aili ≥ A)

I Support for Optimisation [BGMN22]
I allows deriving solution-improving constraints (O < v∗)
I proving optimality by contradiction

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 16/50

VeriPB’s proof system

REASONING OVER PSEUDO-BOOLEAN CONSTRAINTS USING VeriPB

VeriPB reasons on such pseudo-Boolean constraints with:
I Cutting Planes proof system [CCT87]

I e.g., adding up two constraints

I Reverse Unit Propagation [GN03]
I allows deriving constraints without providing an explicit derivation
I if F ∧ ¬C `UP ⊥, then F |= C

I Redundance-Based Strenghtening [GN21, BGMN22]
I generalisation of the RAT-rule [BT19]
I allows for proving without-loss-of-generality reasoning
I e.g. introducing “fresh” reification variables, such as r ⇔ (

∑
i aili ≥ A)

I Support for Optimisation [BGMN22]
I allows deriving solution-improving constraints (O < v∗)
I proving optimality by contradiction

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 16/50

VeriPB’s proof system

REASONING OVER PSEUDO-BOOLEAN CONSTRAINTS USING VeriPB

VeriPB reasons on such pseudo-Boolean constraints with:
I Cutting Planes proof system [CCT87]

I e.g., adding up two constraints
I Reverse Unit Propagation [GN03]

I allows deriving constraints without providing an explicit derivation
I if F ∧ ¬C `UP ⊥, then F |= C

I Redundance-Based Strenghtening [GN21, BGMN22]
I generalisation of the RAT-rule [BT19]
I allows for proving without-loss-of-generality reasoning
I e.g. introducing “fresh” reification variables, such as r ⇔ (

∑
i aili ≥ A)

I Support for Optimisation [BGMN22]
I allows deriving solution-improving constraints (O < v∗)
I proving optimality by contradiction

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 16/50

VeriPB’s proof system

REASONING OVER PSEUDO-BOOLEAN CONSTRAINTS USING VeriPB

VeriPB reasons on such pseudo-Boolean constraints with:
I Cutting Planes proof system [CCT87]

I e.g., adding up two constraints
I Reverse Unit Propagation [GN03]

I allows deriving constraints without providing an explicit derivation
I if F ∧ ¬C `UP ⊥, then F |= C

I Redundance-Based Strenghtening [GN21, BGMN22]
I generalisation of the RAT-rule [BT19]
I allows for proving without-loss-of-generality reasoning
I e.g. introducing “fresh” reification variables, such as r ⇔ (

∑
i aili ≥ A)

I Support for Optimisation [BGMN22]
I allows deriving solution-improving constraints (O < v∗)
I proving optimality by contradiction

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 16/50

VeriPB’s proof system

REASONING OVER PSEUDO-BOOLEAN CONSTRAINTS USING VeriPB

VeriPB reasons on such pseudo-Boolean constraints with:
I Cutting Planes proof system [CCT87]

I e.g., adding up two constraints
I Reverse Unit Propagation [GN03]

I allows deriving constraints without providing an explicit derivation
I if F ∧ ¬C `UP ⊥, then F |= C

I Redundance-Based Strenghtening [GN21, BGMN22]
I generalisation of the RAT-rule [BT19]
I allows for proving without-loss-of-generality reasoning
I e.g. introducing “fresh” reification variables, such as r ⇔ (

∑
i aili ≥ A)

I Support for Optimisation [BGMN22]
I allows deriving solution-improving constraints (O < v∗)
I proving optimality by contradiction

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 16/50

VeriPB’s proof system

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Input/model axioms From the input

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication for any c ∈ N+
∑

i ai`i ≥ A∑
i cai`i ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i ai`i ≥ A∑

i

⌈ai
c

⌉
`i ≥

⌈
A
c

⌉

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 17/50

VeriPB’s proof system

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Input/model axioms From the input

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication for any c ∈ N+
∑

i ai`i ≥ A∑
i cai`i ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i ai`i ≥ A∑

i

⌈ai
c

⌉
`i ≥

⌈
A
c

⌉

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 17/50

VeriPB’s proof system

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Input/model axioms From the input

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication for any c ∈ N+
∑

i ai`i ≥ A∑
i cai`i ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i ai`i ≥ A∑

i

⌈ai
c

⌉
`i ≥

⌈
A
c

⌉

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 17/50

VeriPB’s proof system

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Input/model axioms From the input

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication for any c ∈ N+
∑

i ai`i ≥ A∑
i cai`i ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i ai`i ≥ A∑

i

⌈ai
c

⌉
`i ≥

⌈
A
c

⌉

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 17/50

VeriPB’s proof system

PSEUDO-BOOLEAN REASONING: CUTTING PLANES [CCT87]

Input/model axioms From the input

Literal axioms `i ≥ 0

Addition
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(ai + bi)`i ≥ A + B

Multiplication for any c ∈ N+
∑

i ai`i ≥ A∑
i cai`i ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i ai`i ≥ A∑

i

⌈ai
c

⌉
`i ≥

⌈
A
c

⌉
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 17/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y + 2z + 2z ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y + 2 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 2 1
3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
p 1 2 * 2 + ∼z 2 * + 3 d

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

VeriPB’s proof system

CUTTING PLANES TOY EXAMPLE
w + 2x + y ≥ 2

Multiply by 2
2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add
3w + 6x + 6y + 2z ≥ 9

z ≥ 0
Multiply by 2

2z ≥ 0
Add

3w + 6x + 6y ≥ 7
Divide by 3

w + 2x + 2y ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation)
as

Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0
such a calculation is written in the proof log in reverse Polish notation as

p 1 2 * 2 + ∼z 2 * + 3 d
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 18/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 19/50

MaxCDCL: A Combination of Branch and Bound and CDCL

BRANCH AND BOUND

Branch and Bound:
I Explore the search tree for solutions
I Update Upper Bound UB when solution with better objective value is found
I Underestimate Lower Bound LB at every node
I Prune branch when conflict found or when LB ≥ UB

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 20/50

MaxCDCL: A Combination of Branch and Bound and CDCL

MAXCDCL AS BRANCH AND BOUND

Branch and Bound in MaxCDCL:
I Explore the search tree for solutions
I Update Upper Bound UB when solution with better objective value is found
I Underestimate Lower Bound LB at every node using lookahead with UP
I Prune branch when conflict found or when LB ≥ UB and learn a clause

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 21/50

MaxCDCL: A Combination of Branch and Bound and CDCL

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

I Hard conflict:
I A clause is falsified

I Soft conflict:
I (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 22/50

MaxCDCL: A Combination of Branch and Bound and CDCL

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

I Hard conflict:
I A clause is falsified

I Soft conflict:
I (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 22/50

MaxCDCL: A Combination of Branch and Bound and CDCL

LOOKAHEAD: LB UNDERESTIMATION (UNWEIGHTED CASE)

Lookahead with UP for underestimating LB:

1. Assume unassigned objective literals false and apply UP until:
I A hard clause is falsified
I Or a not yet assigned objective literal is assigned 1

2. We have found a local unsatisfiable core

3. Since unweighted case: Each disjoint core increases the LB by 1

4. When LB ≥ UB, a soft conflict is found

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 23/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10

ya
2 x11

p ya
3 ya

4 xp
12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p

ya
3 ya

4 xp
12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3

ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 `UP �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 24/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict
Conflicting clause: x1 ∨ x2 ∨ x4 ∨ x7

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 26/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient

Ot = y1 + y2 + 1y3 + 1y4 + y5 + y6 + 1y7 + y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores

Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = 7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores

Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = 7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 5y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 5y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 �5 �4 1y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest coefficient of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of an objective literal cannot exceed its coefficient
Ot = �7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7
Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB

Soft conflict Conflicting clause: x1 ∨ x2 ∨ x4
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 27/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101
PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102
PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101
PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102
PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING SOFT CONFLICTS
To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

id 101

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

id 102

PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:

id 99

7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

By adding literal axioms:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by a large enough number (and rounding up): x1 + x2 + x4 ≥ 1

In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d s

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 28/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING MAXCDCL

Proof logging Learned clause after conflict analysis RUP

Proof logging Optimality:
I Unit propagation in MaxCDCL derives conflict at DL = 0
I Proof: RUP 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 29/50

MaxCDCL: A Combination of Branch and Bound and CDCL

PROOF LOGGING MAXCDCL

Proof logging Learned clause after conflict analysis RUP

Proof logging Optimality:
I Unit propagation in MaxCDCL derives conflict at DL = 0
I Proof: RUP 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 29/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 30/50

Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 31/50

Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 31/50

Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 31/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5

ya
9 yp

1 yp
3 ya

5 ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5

ya
9 yp

1 yp
3 ya

5 ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5

ya
9 yp

1 yp
3 ya

5 ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3

ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3

ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5

ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7

ya
2 ⊥

Found disjoint local “cores”
Core 1: y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 + y2 +��y3 + y4 +��y5 +��y6 +��y7 + y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7

ya
2 ⊥

Found disjoint local “cores”
Core 1: y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 +��y2 +��y4 + y7 +��y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 + y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 +��y2 +��y4 + y7 +��y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 +��y2 +��y4 + y7 +��y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y9 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: ��y9 + y5 + y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y9 → y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y9 ∧ y5 + y6 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: ��y9 +��y5 +��y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: y9 → y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y9 ∧ y5 + y6 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: ��y9 +��y5 +��y6 + y2 ≥ 1

Conclusion
∑9

i=1 yi ≥ 4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 32/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥
Found disjoint local “cores”:
Core 1: y9 → y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: ��y9 +��y5 +��y6 + y2 ≥ 1

To Derive:
∑9

i=1 yi ≥ 4

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥
Found disjoint local “cores”:
Core 1: y9 → y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
y9 + y3 ≥ 1

(RUP)

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2
“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

y9 + y5 + y6 + y1 ≥ 1

(RUP)

y9 + y5 + y6 + y7 ≥ 1

(RUP)

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1

(RUP)

To Derive:
∑9

i=1 yi ≥ 4
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥
Found disjoint local “cores”:
Core 1: y9 → y3 +��y5 +��y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”
y9 + y3 ≥ 1 (RUP)

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2
“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

y9 + y5 + y6 + y1 ≥ 1 (RUP)
y9 + y5 + y6 + y7 ≥ 1 (RUP)

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP)

To Derive:
∑9

i=1 yi ≥ 4
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥ Notation:
Found disjoint local “cores”: L = {y9}
Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}

“{y9} unlocks Core 1 on {y3}”
y9 + y3 ≥ 1 (RUP)

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2 U2 = {y1, y7}, R2 = {y2, y4, y8}
“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

y9 + y5 + y6 + y1 ≥ 1 (RUP)
y9 + y5 + y6 + y7 ≥ 1 (RUP)

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP)

To Derive:
∑9

i=1 yi ≥ 4
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥ Notation:
Found disjoint local “cores”: L = {y9}
Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}

“{y9} unlocks Core 1 on {y3}” “L unlocks Core 1 on U1”
y9 + y3 ≥ 1 (RUP)

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2 U2 = {y1, y7}, R2 = {y2, y4, y8}
“{y9, y5, y6} unlocks Core 2 on {y1, y7}” “L ∪R1 unlocks Core 2 on U2”

y9 + y5 + y6 + y1 ≥ 1 (RUP)
y9 + y5 + y6 + y7 ≥ 1 (RUP)

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP)

To Derive:
∑9

i=1 yi ≥ 4
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥ Notation:
Found disjoint local “cores”: L = {y9}
Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}

“{y9} unlocks Core 1 on {y3}” “L unlocks Core 1 on U1”
y9 + y3 ≥ 1 (RUP) L + y3 ≥ 1

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2 U2 = {y1, y7}, R2 = {y2, y4, y8}
“{y9, y5, y6} unlocks Core 2 on {y1, y7}” “L ∪R1 unlocks Core 2 on U2”

y9 + y5 + y6 + y1 ≥ 1 (RUP) L + R1 + y1 ≥ 1
y9 + y5 + y6 + y7 ≥ 1 (RUP) L + R1 + y7 ≥ 1

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP) L + R1 + R2 ≥ 1

To Derive:
∑9

i=1 yi ≥ 4
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥ Notation:
Found disjoint local “cores”: L = {y9}
Core 1: y9 → y3 +��y5 +��y6 ≥ 1 U1 = {y3}, R1 = {y5, y6}

“{y9} unlocks Core 1 on {y3}” “L unlocks Core 1 on U1”
y9 + y3 ≥ 1 (RUP) L + y3 ≥ 1

Core 2: y9 ∧ y5 ∧ y6 → y1 + y2 + y4 + y7 + y8 ≥ 2 U2 = {y1, y7}, R2 = {y2, y4, y8}
“{y9, y5, y6} unlocks Core 2 on {y1, y7}” “L ∪R1 unlocks Core 2 on U2”

y9 + y5 + y6 + y1 ≥ 1 (RUP) L + R1 + y1 ≥ 1
y9 + y5 + y6 + y7 ≥ 1 (RUP) L + R1 + y7 ≥ 1

New core: ��y9 +��y5 +��y6 + y2 ≥ 1
y9 + y5 + y6 + y2 ≥ 1 (RUP) L + R1 + R2 ≥ 1

To Derive:
∑9

i=1 yi ≥ 4 L + (
∑

i Ui + Ri) ≥
∑

i bi + 1
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 33/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING

From the constraints

Li ≥ bi (∀1 ≤ i ≤ k), L +
∑
j<i

Rj + ` ≥ 1 (∀1 ≤ i ≤ k, ` ∈ Ui), L +
∑

j

Rj ≥ 1

we derive

L +
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

for each i ∈ {1, . . . , k + 1}.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 34/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj .

By induction on i.

For i = k + 1 (base case):

L +
∑

j

Rj ≥ 1

For i between 1 and k − 1: Cutting Planes Derivation from IH:

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

For i = 1 (New cardinality constraint!):

L +
∑

j

Lj ≥ 1 +
∑

j

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 35/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i = k + 1 (base case):

L +
∑

j

Rj ≥ 1

For i between 1 and k − 1: Cutting Planes Derivation from IH:

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

For i = 1 (New cardinality constraint!):

L +
∑

j

Lj ≥ 1 +
∑

j

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 35/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i = k + 1 (base case):

L +
∑

j

Rj ≥ 1

For i between 1 and k − 1: Cutting Planes Derivation from IH:

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

For i = 1 (New cardinality constraint!):

L +
∑

j

Lj ≥ 1 +
∑

j

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 35/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i = k + 1 (base case):

L +
∑

j

Rj ≥ 1

For i between 1 and k − 1: Cutting Planes Derivation from IH:

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

For i = 1 (New cardinality constraint!):

L +
∑

j

Lj ≥ 1 +
∑

j

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 35/50

Literal Unlocking

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i = k + 1 (base case):

L +
∑

j

Rj ≥ 1

For i between 1 and k − 1: Cutting Planes Derivation from IH:

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

For i = 1 (New cardinality constraint!):

L +
∑

j

Lj ≥ 1 +
∑

j

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 35/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 36/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Binary Decision Diagram:

I Every node corresponds with part of
the original PB constraint and,

I Every node propagates based on one
decision literal.

I If vF node is propagated true, then
constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Binary Decision Diagram:
I Every node corresponds with part of

the original PB constraint and,

I Every node propagates based on one
decision literal.

I If vF node is propagated true, then
constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Binary Decision Diagram:
I Every node corresponds with part of

the original PB constraint and,
I Every node propagates based on one

decision literal.

I If vF node is propagated true, then
constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Binary Decision Diagram:
I Every node corresponds with part of

the original PB constraint and,
I Every node propagates based on one

decision literal.
I If vF node is propagated true, then

constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Introducing fresh variables for each node
with meaning:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6

I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Introducing fresh variables for each node
with meaning:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7

I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Introducing fresh variables for each node
with meaning:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes solution-improving constraint

Introducing fresh variables for each node
with meaning:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

After introducing the variables, clauses
are added to the solver.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF
Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 37/50

Encoding the solution-improving constraint in a CNF formula

HOW TO PROOF LOG BDDS?

Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 38/50

Encoding the solution-improving constraint in a CNF formula

HOW TO PROOF LOG BDDS?

Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

by introducing
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8 (only in proof)
and deriving
I v′

2,2 → v2,2

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 38/50

Encoding the solution-improving constraint in a CNF formula

HOW TO PROOF LOG BDDS?
Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

by introducing
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8 (only in proof)
and deriving
I v′

2,2 → v2,2

Step 2: Derive clauses.
I Straight-forward cutting planes

derivation.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 38/50

Encoding the solution-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if there exists a
substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 39/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

We have
I v2,2 → 4x2 + 5x3 ≤ 5
I v′

2,2 ← 4x2 + 5x3 ≤ 8
and we want to derive
I v′

2,2 → v2,2

If we can prove
I x2 + v′

2,2 + v2,2 ≥ 1
I x2 + v′

2,2 + v2,2 ≥ 1
then v′

2,2 + v2,2 ≥ 1 follows.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 40/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

To derive:
I x2 + v′

2,2 + v2,2 ≥ 1
We have for node v2,2:
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8
For node v3:
I v3 → 5x3 ≤ 0
I v3 ← 5x3 ≤ 4

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 41/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 42/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 42/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 42/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 42/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction.

Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 42/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v′

2,2 ↔ 4x2 + 5x3 ≤ 8 v2,2 ↔ 4x2 + 5x3 ≤ 5
v3 ← 5x3 ≤ 4 v3 → 5x3 ≤ 0

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 42/50

Encoding the solution-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

We have
I v2,2 → 4x2 + 5x3 ≤ 5
I v′

2,2 ← 4x2 + 5x3 ≤ 8
and we want to derive
I v′

2,2 → v2,2

If we can prove
I x2 + v′

2,2 + v2,2 ≥ 1
I x2 + v′

2,2 + v2,2 ≥ 1
then v′

2,2 + v2,2 ≥ 1 follows.

Clauses: Derived from reification
constraints.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 43/50

Encoding the solution-improving constraint in a CNF formula

MULTI-VALUED DECISION DIAGRAM (MDD)

10

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 0
x2 = 1

x3 = 1

x3 = 0

x3 = 0

x3 = 1

x4 = 0x4 = 1

x1 + x2 ≤ 1

x3 + x4 ≤ 1

0 1

x2 = 1 x1 = 1, else

x4 = 1
x3 = 1, else

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 44/50

Presentation Outline

OUTLINE OF THIS PRESENTATION

I MaxSAT and how to proof log it
I An introduction to the VeriPB proof system.
I MaxCDCL: Branch-and-Bound with clause learning
I Unweighted MaxCDCL revisited with literal unlocking
I Solution-Improving Constraint using Binary Decision Diagram (BDD) encoding
I Conclusions & Future work

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 45/50

WRAPPING UP

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

This talk:
I Proof logging for yet another MaxSAT Solver

I MaxCDCL: MaxSAT solving by combining Branch-and-Bound and CDCL
I Pseudo-Boolean reasoning helps to express MaxSAT algorithms
I Proof logging for MaxSAT is possible with VeriPB!!

Thank you for your attention!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 46/50

WRAPPING UP

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

This talk:
I Proof logging for yet another MaxSAT Solver

I MaxCDCL: MaxSAT solving by combining Branch-and-Bound and CDCL

I Pseudo-Boolean reasoning helps to express MaxSAT algorithms
I Proof logging for MaxSAT is possible with VeriPB!!

Thank you for your attention!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 46/50

WRAPPING UP

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

This talk:
I Proof logging for yet another MaxSAT Solver

I MaxCDCL: MaxSAT solving by combining Branch-and-Bound and CDCL
I Pseudo-Boolean reasoning helps to express MaxSAT algorithms

I Proof logging for MaxSAT is possible with VeriPB!!

Thank you for your attention!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 46/50

WRAPPING UP

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

This talk:
I Proof logging for yet another MaxSAT Solver

I MaxCDCL: MaxSAT solving by combining Branch-and-Bound and CDCL
I Pseudo-Boolean reasoning helps to express MaxSAT algorithms
I Proof logging for MaxSAT is possible with VeriPB!!

Thank you for your attention!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 46/50

WRAPPING UP

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

This talk:
I Proof logging for yet another MaxSAT Solver

I MaxCDCL: MaxSAT solving by combining Branch-and-Bound and CDCL
I Pseudo-Boolean reasoning helps to express MaxSAT algorithms
I Proof logging for MaxSAT is possible with VeriPB!!

Thank you for your attention!

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 46/50

references

REFERENCES

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction
to certifying algorithms. it - Information Technology Methoden und innovative Anwendungen der Informatik
und Informationstechnik, 53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing
of constraint solvers. In Proceedings of the 24th International Conference on Principles and Practice of
Constraint Programming (CP ’18), volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In
Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481.
Springer, 2013.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided
MaxSAT solving. In Brigitte Pientka and Cesare Tinelli, editors, Automated Deduction - CADE 29 - 29th
International Conference on Automated Deduction, Rome, Italy, July 1-4, 2023, Proceedings, volume 14132
of Lecture Notes in Computer Science, pages 1–22. Springer, 2023.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

references

REFERENCES

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.
Certifying without loss of generality reasoning in solution-improving maximum satisfiability. In Paul Shaw,
editor, 30th International Conference on Principles and Practice of Constraint Programming, CP 2024,
September 2-6, 2024, Girona, Spain, volume 307 of LIPIcs, pages 4:1–4:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance
breaking for combinatorial optimisation. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial
Intelligence (AAAI ’22), 2022. accepted.

[BHI+23] Tomáš Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. The 2023 international SAT
competition. https://satcompetition.github.io/2023/, 2023.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BHvW21] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2021.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 48/50

https://satcompetition.github.io/2023/

references

REFERENCES

[BJ19] Jeremias Berg and Matti Järvisalo. Unifying reasoning and core-guided search for maximum satisfiability. In
Francesco Calimeri, Nicola Leone, and Marco Manna, editors, Logics in Artificial Intelligence - 16th
European Conference, JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture
Notes in Computer Science, pages 287–303. Springer, 2019.

[BJM21] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiabiliy. In Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336 of
Frontiers in Artificial Intelligence and Applications, pages 929–991. IOS Press, 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF
solvers. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BLM06] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. A complete calculus for max-sat. In Armin Biere and
Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006, 9th International
Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in
Computer Science, pages 240–251. Springer, 2006.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 49/50

references

REFERENCES

[BLM07] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for max-sat. Artif. Intell., 171(8-9):606–618,
2007.

[BMM13] Anton Belov, António Morgado, and João Marques-Silva. Sat-based preprocessing for maxsat. In Kenneth L.
McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19,
2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 96–111. Springer, 2013.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back
from the other side of the tipping point. Annals of Operations Research, 149(1):37–41, February 2007.

[BSST21] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo theories. In
Biere et al. [BHvW21], pages 1267–1329.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In
Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing
(SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 50/50

references

REFERENCES

[CHH+17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp.
Efficient certified RAT verification. In Proceedings of the 26th International Conference on Automated
Deduction (CADE-26), volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer,
August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for
exact rational mixed-integer programming. Mathematical Programming Computation, 5(3):305–344,
September 2013.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution proof
checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in Computer Science, pages
118–135. Springer, April 2017.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using
pseudo-Boolean reasoning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 1486–1494. AAAI Press, 2020.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 51/50

references

REFERENCES

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891,
March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 3768–3777. AAAI Press, 2021.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation at KTH
Royal Institute of Technology. Slides available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In
Proceedings of the 25th International Conference on Principles and Practice of Constraint Programming
(CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582. Springer, October 2019.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 52/50

https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

references

REFERENCES

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In
Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design
(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction (CADE-24),
volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June 2013.

[HL06] Federico Heras and Javier Larrosa. New inference rules for efficient max-sat solving. In Proceedings, The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages 68–73. AAAI Press,
2006.

[IBJ22] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Clause redundancy and preprocessing in maximum
satisfiability. In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated Reasoning - 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of
Lecture Notes in Computer Science, pages 75–94. Springer, 2022.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 53/50

references

REFERENCES

[LCH+22] Shoulin Li, Jordi Coll, Djamal Habet, Chu-Min Li, and Felip Manyà. A tableau calculus for maxsat based on
resolution. In Atia Cortés, Francisco Grimaldo, and Tommaso Flaminio, editors, Artificial Intelligence
Research and Development - Proceedings of the 24th International Conference of the Catalan Association
for Artificial Intelligence, CCIA 2022, Sitges, Spain, 19-21 October 2022, volume 356 of Frontiers in
Artificial Intelligence and Applications, pages 35–44. IOS Press, 2022.

[LH05] Javier Larrosa and Federico Heras. Resolution in max-sat and its relation to local consistency in weighted
csps. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005,
pages 193–198. Professional Book Center, 2005.

[LM21] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Biere et al. [BHvW21], pages 903–927.

[LM22] Chu Min Li and Felip Manyà. Inference in maxsat and minsat. In Wolfgang Ahrendt, Bernhard Beckert,
Richard Bubel, and Einar Broch Johnsen, editors, The Logic of Software. A Tasting Menu of Formal
Methods - Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday, volume 13360 of
Lecture Notes in Computer Science, pages 350–369. Springer, 2022.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 54/50

references

REFERENCES

[LMS16] Chu Min Li, Felip Manyà, and Joan Ramon Soler. A clause tableau calculus for minsat. In Àngela Nebot,
Xavier Binefa, and Ramón López de Mántaras, editors, Artificial Intelligence Research and Development -
Proceedings of the 19th International Conference of the Catalan Association for Artificial Intelligence,
Barcelona, Catalonia, Spain, October 19-21, 2016, volume 288 of Frontiers in Artificial Intelligence and
Applications, pages 88–97. IOS Press, 2016.

[LNOR11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. A framework for
certified Boolean branch-and-bound optimization. J. Autom. Reason., 46(1):81–102, 2011.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, May 2011.

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof builder for max-sat. In Chu-Min Li and
Felip Manyà, editors, Theory and Applications of Satisfiability Testing - SAT 2021 - 24th International
Conference, Barcelona, Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer
Science, pages 488–498. Springer, 2021.

[PCH22] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs and certificates for max-sat. J. Artif. Intell.
Res., 75:1373–1400, 2022.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 55/50

references

REFERENCES

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming,
volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[Van23] Dieter Vandesande. Towards certified MaxSAT solving: Certified MaxSAT solving with SAT oracles and
encodings of pseudo-Boolean constraints. Master’s thesis, Vrije Universiteit Brussel (VUB), 2023.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Georg
Gottlob, Daniela Inclezan, and Marco Maratea, editors, Logic Programming and Nonmonotonic Reasoning -
16th International Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022, Proceedings, volume
13416 of Lecture Notes in Computer Science, pages 429–442. Springer, 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, July 2014.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 56/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj .

By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i = k + 1:

L +
∑

j

Rj ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i = k + 1:
L +

∑
j

Rj ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 0. Induction Hypothesis

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 0. Induction Hypothesis

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

Step 1. Addition of L +
∑

j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 0. Induction Hypothesis

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

Step 1. Addition of L +
∑

j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Step 2. Addition with IH gives :

(bi + 1) · L + (bi + 1)
∑
j<i

Rj +
∑
j≥i

Uj +
∑
j≥i

Rj ≥ 1 +
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 0. Induction Hypothesis

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

Step 1. Addition of L +
∑

j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Step 2. Addition with IH gives (with Ri ∪ Ui = Li):

(bi + 1) · L + (bi + 1)
∑
j<i

Rj +
��������
∑
j≥i

Uj +
∑
j≥i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 0. Induction Hypothesis

L +
∑

j<i+1
Rj +

∑
j≥i+1

Lj ≥ 1 +
∑

j≥i+1
bj

Step 1. Addition of L +
∑

j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Step 2. Addition with IH gives (with Ri ∪ Ui = Li):

(bi + 1) · L + (bi + 1)
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 2. Addition with IH gives (with Ri ∪ Ui = Li):

(bi + 1) · L + (bi + 1)
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 2. Addition with IH gives (with Ri ∪ Ui = Li):

(bi + 1) · L + (bi + 1)
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

Step 3. Multiplying all constraints Lj ≥ bj for j ≥ i with bi gives:

bi

∑
j≥i

Lj ≥ bi

∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 2. Addition with IH gives (with Ri ∪ Ui = Li):

(bi + 1) · L + (bi + 1)
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

Step 3. Multiplying all constraints Lj ≥ bj for j ≥ i with bi gives:

bi

∑
j≥i

Lj ≥ bi

∑
j≥i

bj

Step 4. Addition of constraints from Step 2 and Step 3:

(bi + 1) · L + (bi + 1)
∑
j<i

Rj + (bi + 1)
∑
j≥i

Lj ≥ 1 + (bi + 1)
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 4. Addition of constraints from Step 2 and Step 3:

(bi + 1) · L + (bi + 1)
∑
j<i

Rj + (bi + 1)
∑
j≥i

Lj ≥ 1 + (bi + 1)
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

PROOF LOGGING LITERAL UNLOCKING
To Derive: L +

∑
j<i Rj +

∑
j≥i Lj ≥ 1 +

∑
j≥i bj . By induction on i.

For i between 1 and k − 1 (assuming already derived for i + 1):
Step 4. Addition of constraints from Step 2 and Step 3:

(bi + 1) · L + (bi + 1)
∑
j<i

Rj + (bi + 1)
∑
j≥i

Lj ≥ 1 + (bi + 1)
∑
j≥i

bj

Step 5. Dividing this by bi+1 + 1 (and rounding the righthand-side up) yields

L +
∑
j<i

Rj +
∑
j≥i

Lj ≥ 1 +
∑
j≥i

bj

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 47/50

Appendix

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if and only if there
exists a substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 48/50

Appendix

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if and only if there
exists a substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 48/50

Appendix

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 49/50

Appendix

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 49/50

Appendix

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 49/50

Appendix

INTERMEZZO: PROOF BY CASE SPLITTING

To show:
(a · x +

∑
i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Addition of (a · x +
∑

i bili ≥ B) with (
∑

i bili ≥
∑

i bi −B + 1) gives
a · x +

∑
i

bili +
∑

i

bili ≥ B +
∑

i

bi −B + 1

which is equal to
a · x ≥ 1

After saturation: x ≥ 1.
Similarly, addition of (a · x +

∑
i bili ≥ B) and (

∑
i bili ≥

∑
i bi −B + 1) and saturation gives

x ≥ 1
which is clearly contradiction with x ≥ 1.

Dieter Vandesande Certified Branch-and-Bound MaxSAT Solving November 7, 2024 Lund 50/50

	
	
	Presentation Outline
	Presentation Outline
	MaxSAT and how to proof log it.
	Presentation Outline
	VeriPB's proof system
	Presentation Outline
	MaxCDCL: A Combination of Branch and Bound and CDCL
	Presentation Outline
	Literal Unlocking
	Presentation Outline
	Encoding the solution-improving constraint in a CNF formula
	Presentation Outline
	
	references
	Appendix

