Branch-and-Bound MaxSAT Solving with MaxCDCL

Jordi Coll

Universitat de Girona

Djamal Habet, Kun He, Chu-Min Li, Shuolin Li, Felip Manyà, Zhenxing Xu

Lund, November 6, 2024

Branch-and-Bound MaxSAT Solving with MaxCDCL

15/11/2023

1 / 32

MaxSAT

Given:

- H: set of hard clauses
- S: a multiset of weighted soft clauses

Find an assignment ρ that:

- Satisfies all clauses in H
- Minimizes the sum of the weights of unsatisfied clauses in S

Example:

$$H: (x \lor y), (x \lor z), (y \lor \overline{z}) \qquad S: (x, 3), (y, 4), (\overline{z}, 5), (\overline{x} \lor z, 2)$$

$$\rho: x = 1, y = 1, z = 0, \qquad (\text{or } x \ y \ \overline{z})$$

$$cost(\rho) = 2$$

2021: State-of-the-art in MaxSAT Solving

State-of-the-art solvers are SAT-based:

- Problem translated to a series of satisfiability calls
- hitting set, model-based, core-based

Branch and Bound:

- Lack of clause learning
- Well-suited for random and some crafted
- Poor performance on industrial
- Not in MaxSAT evaluations since 2017

Solvers in MSE19-20	HS	model	core	BnB
EvalMaxSAT			Х	
MaxHS	Х			
Pacose		Х		
UWrMaxSAT		Х	Х	
RC2			Х	
Open-WBO			Х	
maxino			Х	
QMaxSAT		Х		
smax			Х	
ahmaxsat (MSE16)				Х

2021: State-of-the-art in MaxSAT Solving

State-of-the-art solvers are SAT-based:

- Problem translated to a series of satisfiability calls
- hitting set, model-based, core-based

Branch and Bound:

- Lack of clause learning
- Well-suited for random and some crafted
- Poor performance on industrial
- Not in MaxSAT evaluations since 2017

MaxCDCL:

- BnB MaxSAT solver with clause learning
- Make BnB MaxSAT competitive for industrial MaxSAT

Solvers in MSE19-20	HS	model	core	BnB
EvalMaxSAT			Х	
MaxHS	Х			
Pacose		Х		
UWrMaxSAT		Х	Х	
RC2			Х	
Open-WBO			Х	
maxino			Х	
QMaxSAT		Х		
smax			Х	
ahmaxsat (MSE16)				Х

Normalization: express soft clauses as soft literals (blocking literals)

Convert:

$$\begin{array}{l} H: \ (x \lor y), (x \lor z), (y \lor \overline{z}) \\ S: \ (x,3), (y,4), (\overline{z},5), (\overline{x} \lor z,2) \end{array}$$

To:

 $\begin{array}{l} H: \ (x \lor y), (x \lor z), (y \lor \overline{z}), p \leftrightarrow (\overline{x} \lor \overline{z}) \\ S: \ (x,3), (y,4), (\overline{z},5), (p,2) \end{array}$

MaxSAT

Given:

- H: set of hard clauses
- S: a set of weighted soft literals

Find an assignment v that:

- Satisfies all clauses in H
- Minimizes the sum of the weights of unsatisfied literals in S

Example:

$$H: (x \lor y), (x \lor z), (y \lor \overline{z}), p \leftrightarrow (\overline{x} \lor \overline{z}) \qquad S: (x,3), (y,4), (\overline{z},5), (p,2)$$

minimize $3\overline{x} + 4\overline{y} + 5z + 2\overline{p}$

Branch and Bound

Branch and Bound: [Abramé and Habet, 2014]

- Explore the search tree looking for optimal solutions
- Update Upper Bound UB when solution with better cost is found
- Prune branch when $LB \ge UB$
- Lookahead: underestimate LB of the cost at every node

Branch-and-Bound MaxSAT Solving with MaxCDCL

MaxCDCL as Branch and Bound

Branch and Bound in MaxCDCL: [Li et. al, 2021, 2022]

- Explore the search tree (CDCL) looking for satisfiable assignments
- Update Upper Bound UB when solution with better cost is found
- Prune branch when $LB \ge UB$ and learn a clause
- Lookahead: underestimate LB of the cost at some nodes using UP and core reasoning

MaxCDCL execution: sequence of trails / assignments (ρ) that end with conflict

- Hard conflict:
 - A hard clause is falsified

• Soft conflict:

- Check $cost(\rho)$
- Maybe, underestimate LB of the cost
- If LB \geq UB, an implicit hard clause is falsified

In both cases we do conflict analysis.

 $\begin{array}{l} x_1^d \ \overline{x_2}^p \ x_3^p \ \overline{x_4}^d \ x_5^p \ x_6^p \ x_7^p \quad \text{Conflict} \ \overline{x_5} \lor \overline{x_7} \ (\text{hard or soft conflict}) \\ x_1^d \ \overline{x_2}^p \ x_3^p \ \overline{x_5}^p \ \dots \quad \text{Conflict analysis, Learn} \ \overline{x_3} \lor \overline{x_5}, \quad \text{Backjump and UP} \end{array}$

```
\rho \leftarrow \{\}: /* Assignment */
while true do
      (confl, \rho) \leftarrow UP(H, \rho):
      if confl is a conflicting clause then
             if decisionLevel(\rho) = 0 then
                    return UNSAT:
             else
                   learntClause \leftarrow analyze(confl);
                   H \leftarrow H \cup \{ \text{learntClause} \};
                    dl \leftarrow 2^{nd} highest decision level in learntClause;
                    \rho \leftarrow \mathsf{backtrackTo}(dl, \rho):
      else
             if all variables are assigned in \rho then
                    return (SAT,\rho);
             else
                   I \leftarrow pickBranchLit();

\rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/
```

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ (confl, \rho) \leftarrow \text{UP}(H, \rho);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else	
$\begin{array}{c c} \textit{learntClause} \leftarrow \text{ analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$
if all variables are assigned in ρ then return (SAT, ρ);	$x_3 \lor \overline{x}_5$
else $ \begin{bmatrix} I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/ \end{bmatrix} $	ho =

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do}\\ (\ confl, \rho) \leftarrow \ \text{UP}(H, \rho);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then}\\ \ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then}\\ \ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else	
$ \begin{array}{c} \textit{learntClause} \leftarrow \text{ analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ \textit{dl} \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(\textit{dl}, \rho); \end{array} $	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$
if all variables are assigned in ρ then return (SAT, ρ);	$x_3 \lor \overline{x}_5$
else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{l\}; /* \text{ Make a decision }*/$	$ ho = x_1^d$

$\rho \leftarrow \{\}; /* \text{ Assignment }*/$ while true do $(confl, \rho) \leftarrow UP(H, \rho);$ if confl is a conflicting clause then $ \begin{array}{c} \text{if } cocollectore (local) = 0 \text{ then} \\ & \text{return UNSAT}; \end{array} $	Annotated assignment (trail) : / ^d : decision / ^p : unit propagation
else	
$ \begin{array}{c} \textit{learntClause} \leftarrow \text{analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(dl, \rho); \end{array} $	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$
if all variables are assigned in ρ then return (SAT, ρ);	$x_3 \lor \overline{x}_5$
else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{l\}; /* \text{ Make a decision }*/$	$\rho = x_1^d \ x_4^p$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ (confl, \rho) \leftarrow \text{UP}(H, \rho);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \begin{array}{c} \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} else \\ [earntClause \leftarrow analyze(confl); \\ H \leftarrow H \cup \{learntClause\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause; \\ \rho \leftarrow backtrackTo(dl, \rho); \end{array}$	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return (SAT, ρ); else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{l\}; /*$ Make a decision */	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$ $x_3 \lor \overline{x}_5$ $\rho = x_1^d x_4^p x_2^d$

$\rho \leftarrow \{\}; /* \text{ Assignment }*/$ while true do $(confl, \rho) \leftarrow UP(H, \rho);$ if confl is a conflicting clause then $ \begin{array}{c} \text{if } confl \text{ is a conflicting clause then} \\ \text{ if } decisionLevel}(\rho) = 0 \text{ then} \\ \text{ return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} else \\ learntClause \leftarrow analyze(confl); \\ H \leftarrow H \cup \{learntClause\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause; \\ \rho \leftarrow backtrackTo(dl, \rho); \end{array}$	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return (SAT, ρ); else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{l\}; /*$ Make a decision */	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$ $x_3 \lor \overline{x}_5$ $\rho = x_1^d x_4^p x_2^d \overline{x_3^p}$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \text{ Assignment } */\\ \text{while } true \ \text{do} \\ (confl, \rho) \leftarrow \text{UP}(H, \rho);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \begin{array}{c} \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } clause \ \text{then} \\ \ \text{return } \text{UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else	
$\begin{array}{c c} \textit{learntClause} \leftarrow \text{analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(dl, \rho); \end{array}$	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else	$\overline{\chi}_2 \vee \overline{\chi}_4 \vee \chi_5$
if all variables are assigned in ρ then return (SAT, ρ);	$x_3 \vee \overline{x}_5$
else $ \begin{bmatrix} I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/ \end{bmatrix} $	$\rho = x_1^d \ x_4^p \ x_2^d \ \overline{x_3^p} \ x_5^p$

$\rho \leftarrow \{\}; /* \text{ Assignment }*/$ while true do $(confl, \rho) \leftarrow UP(H, \rho);$ if confl is a conflicting clause then $ \text{ if } decisionLevel}(\rho) = 0 \text{ then}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^P</i> : unit propagation
$ \begin{array}{c c} & \text{return UNSAT;} \\ \hline \textbf{else} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	Example CNF: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return (SAT, ρ); else $I \leftarrow pickBranchLit()$; $\rho \leftarrow \rho \cup \{I\}$; /* Make a decision */	$\overline{x}_{2} \lor \overline{x}_{4} \lor x_{5}$ $x_{3} \lor \overline{x}_{5}$ $\rho = x_{1}^{d} x_{4}^{p} x_{2}^{d} \overline{x_{3}^{p}} x_{5}^{p} confl = (x_{3} \lor \overline{x}_{5})$

```
\rho \leftarrow \{\}; /* Assignment */
while true do
      (confl, \rho) \leftarrow UP\_UB(H, S, \rho, UB);
      if confl is a conflicting clause then
             if decisionLevel(\rho) = 0 then
                    return UNSAT:
            else
                   learntClause \leftarrow analyze(confl);
                   H \leftarrow H \cup \{ \text{learntClause} \};
                   dl \leftarrow 2^{nd} highest decision level in learntClause;
                    \rho \leftarrow \mathsf{backtrackTo}(dl, \rho);
      else
             if all variables are assigned in \rho then
                    return (cost(\rho), \rho);
             else
                   I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/
```

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ \ (confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return $(cost(\rho), \rho)$; else $l \leftarrow pickBranchLit()$; $\rho \leftarrow \rho \cup \{l\}$; /* Make a decision */	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$ $2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$ ho =

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ \ (confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return } \text{UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return ($cost(\rho), \rho$); else $I \leftarrow pickBranchLit()$; $\rho \leftarrow \rho \cup \{I\}$; /* Make a decision */	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$ $2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$ $\rho = x_1^d$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while true do} \\ (confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if confl is a conflicting clause then} \\ \ \text{if cecisionLevel}(\rho) = 0 \ \text{then} \\ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return ($cost(\rho), \rho$); else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{I\}; /*$ Make a decision */	$\overline{x}_{2} \lor \overline{x}_{4} \lor x_{5}$ $2\overline{x}_{1} + 4\overline{x}_{3} + 4x_{5} < 8$ $\rho = x_{1}^{d} x_{4}^{p}$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ \ (confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return $(cost(\rho), \rho)$; else $I \leftarrow pickBranchLit()$; $\rho \leftarrow \rho \cup \{I\}$; /* Make a decision */	$\overline{x}_2 \lor \overline{x}_4 \lor x_5$ $2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$ $\rho = x_1^d \ x_4^p \ x_2^d$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ \ (confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return ($cost(\rho), \rho$); else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{I\}; /*$ Make a decision */	$\overline{x}_{2} \lor \overline{x}_{4} \lor x_{5}$ $2\overline{x}_{1} + 4\overline{x}_{3} + 4x_{5} < 8$ $\rho = x_{1}^{d} x_{4}^{p} x_{2}^{d} \overline{x_{3}^{p}}$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ \ (confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if } confl is a \ conflicting \ clause \ \text{then} \\ \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return ($cost(\rho), \rho$); else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{I\}; /*$ Make a decision */	$\overline{x}_{2} \lor \overline{x}_{4} \lor x_{5}$ $2\overline{x}_{1} + 4\overline{x}_{3} + 4x_{5} < 8$ $\rho = x_{1}^{d} x_{4}^{p} x_{2}^{d} \overline{x_{3}^{p}} x_{5}^{p}$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while true do} \\ (\ confl, \rho) \leftarrow \text{UP}_\text{UB}(H, S, \rho, UB);\\ \text{if confl is a conflicting clause then} \\ \ \ \text{if cecisionLevel}(\rho) = 0 \ \text{then} \\ \ \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else $\begin{array}{c} learntClause \leftarrow \text{ analyze}(confl);\\ H \leftarrow H \cup \{learntClause\};\\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause;\\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{array}$	Example CNF + UB constraint: $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor x_4$
else if all variables are assigned in ρ then return ($cost(\rho), \rho$); else $I \leftarrow pickBranchLit();$ $\rho \leftarrow \rho \cup \{I\}; /*$ Make a decision */	$\overline{x}_{2} \lor \overline{x}_{4} \lor x_{5}$ $2\overline{x}_{1} + 4\overline{x}_{3} + 4x_{5} < 8$ $\rho = x_{1}^{d} x_{4}^{p} x_{2}^{d} \overline{x_{3}^{p}} x_{5}^{p} confl = (x_{3} \lor \overline{x}_{5})$

```
\rho \leftarrow \{\}; /* Assignment */
while true do
      (confl, \rho) \leftarrow UP\_UB\_Harden(H, S, \rho, UB);
      if confl is a conflicting clause then
             if decisionLevel(\rho) = 0 then
                    return UNSAT:
            else
                   learntClause \leftarrow analyze(confl);
                   H \leftarrow H \cup \{ \text{learntClause} \};
                   dl \leftarrow 2^{nd} highest decision level in learntClause;
                    \rho \leftarrow \mathsf{backtrackTo}(dl, \rho);
      else
             if all variables are assigned in \rho then
                    return (cost(\rho), \rho);
             else
                   I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/
```

$\rho \leftarrow \{\}; /* \text{ Assignment }*/$ while true do $(confl, \rho) \leftarrow \text{UP}_\text{UB}_\text{Harden}(H, S, \rho, UB);$ if confl is a conflicting clause then $ \text{ if decisionLevel}(\rho) = 0 \text{ then}$ $ \text{ return UNSAT};$	Annotated assignment (trail) : / ^d : decision / ^p : unit propagation
else	
$ \begin{array}{c} \text{learntClause} \leftarrow \text{ analyze}(\text{confl}); \\ H \leftarrow H \cup \{\text{learntClause}\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in } \text{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(dl, \rho); \end{array} $	Example CNF + UB constraint : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$
else	$\overline{\mathbf{x}}_{1} \vee \mathbf{x}_{4}$
if all variables are assigned in ρ then return $(cost(\rho), \rho)$;	$2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$
else	
$ \begin{bmatrix} I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/ \end{bmatrix} $	ho =

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ & (confl, \rho) \leftarrow \text{UP}_\text{UB}_\text{Harden}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ & \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ & \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else	
$ \begin{array}{l} \textit{learntClause} \leftarrow \text{ analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ \textit{dl} \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(\textit{dl}, \rho); \end{array} $	Example CNF + UB constraint : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$
else	$\overline{\mathbf{v}}$
if all variables are assigned in ρ then	
return $(cost(\rho), \rho)$:	$2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$
else	
$ \begin{bmatrix} I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/ \end{bmatrix} $	ho= extstyle extstyle

$\begin{array}{c} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ & (confl, \rho) \leftarrow \text{UP_UB_Harden}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ & \ \text{if } \ decisionLevel}(\rho) = 0 \ \text{then} \\ & \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : / ^d : decision / ^p : unit propagation
else	
$learntClause \leftarrow analyze(confl);$	
$H \leftarrow H \cup \{ \text{learntClause} \}$	
$dl \leftarrow 2^{nd}$ highest decision level in <i>learntClause</i>	Evenuela CNE UD constanting
$a \neq backtrackTa(dL_a)$	Example CNF + OB constraint:
$\rho \leftarrow backtrack ro(a, p),$	$\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3$
else	
if all variables are assigned in a then	∧⊥ v ∧4
(a)	$2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$
return $(cost(\rho), \rho);$	1 5 5 5
else	
$I \leftarrow pickBranchLit();$	d P
$a \leftarrow a \sqcup \{l\}$ /* Make a decision */	$\rho = x_1^a x_4^r$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ & (confl, \rho) \leftarrow \text{UP}_\text{UB}_\text{Harden}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ & \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ & \ \text{return UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else	
$ \begin{array}{c} \textit{learntClause} \leftarrow \text{ analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ \textit{dl} \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(\textit{dl}, \rho); \end{array} $	Example CNF + UB constraint : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$
else	
if all variables are assigned in ρ then return $(cost(\rho), \rho)$;	$2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$
eise $ \begin{bmatrix} l \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/ \end{bmatrix} $	$\rho = x_1^d \ x_4^p \ x_2^d$

$\begin{array}{l} \rho \leftarrow \{\}; \ /* \ \text{Assignment } */\\ \text{while } true \ \text{do} \\ & (confl, \rho) \leftarrow \text{UP}_\text{UB}_\text{Harden}(H, S, \rho, UB);\\ \text{if } confl \ is \ a \ conflicting \ clause \ \text{then} \\ & \ \text{if } decisionLevel}(\rho) = 0 \ \text{then} \\ & \ \text{return } \text{UNSAT}; \end{array}$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
else	
$\begin{array}{l} \textit{learntClause} \leftarrow \text{ analyze}(\textit{confl}); \\ H \leftarrow H \cup \{\textit{learntClause}\}; \\ \textit{dl} \leftarrow 2^{nd} \text{ highest decision level in }\textit{learntClause}; \\ \rho \leftarrow \text{backtrackTo}(\textit{dl}, \rho); \end{array}$	Example CNF + UB constraint : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$
else	
if all variables are assigned in ρ then return $(cost(\rho), \rho)$;	$2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$
$ \begin{bmatrix} I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* \text{ Make a decision }*/ \end{bmatrix} $	$\rho = x_1^d x_4^p x_2^d \overline{x_3^p}$
L	

	-
$\rho \leftarrow \{\}; /* \text{ Assignment }*/$ while true do $(confl, \rho) \leftarrow \text{UP}_\text{UB}_\text{Harden}(H, S, \rho, UB);$ if confl is a conflicting clause then $ if \ decisionLevel(\rho) = 0 \text{ then} \\ return \ UNSAT; \\ else \\ learntClause \leftarrow analyze(confl);$	Annotated assignment (trail) : <i>I^d</i> : decision <i>I^p</i> : unit propagation
$H \leftarrow H \cup \{learntClause\}; \\ dl \leftarrow 2^{nd} \text{ highest decision level in } learntClause; \\ \rho \leftarrow \text{ backtrackTo}(dl, \rho); \end{cases}$	Example CNF + UB constraint : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$
else if all variables are assigned in ρ then return $(cost(\rho), \rho)$; else $I \leftarrow pickBranchLit()$; $\rho \leftarrow \rho \cup \{I\}$; /* Make a decision */	$\overline{x}_1 \lor x_4$ $2\overline{x}_1 + 4\overline{x}_3 + 4x_5 < 8$ $x_3 \lor \overline{x}_5$ $\rho = x_1^d x_4^p x_2^d \overline{x_3^p} \overline{x_5^p}$

MaxCDCL algorithm

```
\rho \leftarrow \{\}: /* Assignment */
while true do
      (confl, \rho) \leftarrow UP\_UB\_Harden\_Lookahead(H, S, \rho, UB);
      if confl is a conflicting clause then
            if decisionLevel(\rho) = 0 then
                   return UNSAT:
            else
                   learntClause \leftarrow analyze(confl):
                   H \leftarrow H \cup \{ learntClause \};
                   dl \leftarrow 2^{nd} highest decision level in learntClause:
                   \rho \leftarrow \mathsf{backtrackTo}(dl, \rho):
      else
            if all variables are assigned in \rho then
                   return (cost(\rho), \rho);
            else
                 I \leftarrow pickBranchLit(); \\ \rho \leftarrow \rho \cup \{I\}; /* Make a decision */
```

Lookahead: LB underestimation, unweighted

Lookahead by UP for underestimating LB. At some nodes of the search:

- Assume (y^a) unassigned soft literals and apply UP until:
 - A hard clause is falsified
 - Or a soft literal is falsified
- We have found a local unsatisfiable core
- Each disjoint core increases the LB by
- **(**) Repeat the process until $LB \ge UB$, o no more disjoint cores are found
- When $LB \ge UB$, a soft conflict is found

Soft conflict detection: full example

Find a core (by falsified clause): $x_1^d \overline{x_2}^p x_3^p \overline{x_4}^d x_5^p x_6^p x_7^p y_1^a x_9^p x_{10}^p y_2^a \overline{x_{11}}^p y_3^a y_4^a x_{12}^p$ (Falsify $\overline{x_{12}} \lor x_{11}$)

Soft conflict detection: full example

Find a core (by falsified clause): $x_1^d \ \overline{x_2}^p \ x_3^p \ \overline{x_4}^d \ x_5^p \ x_6^p \ x_7^p \ y_1^a \ x_9^p \ x_{10}^p \ y_2^a \ \overline{x_{11}}^p \ y_3^a \ y_4^a \ x_{12}^p$ (Falsify $\overline{x_{12}} \lor x_{11}$) $x_1^d \ \overline{x_2}^p \ x_3^p \ \overline{x_4}^d \ x_5^p \ x_6^p \ x_7^p \ y_1^a \ y_2^a \ y_2^a \ y_3^a \ y_4^a$ (Assumptions suffice)
Find a core (by falsified clause): $x_{1}^{d} \overline{x_{2}}^{p} x_{3}^{p} \overline{x_{4}}^{d} x_{5}^{p} x_{6}^{p} x_{7}^{p} y_{1}^{a} x_{9}^{p} x_{10}^{p} y_{2}^{a} \overline{x_{11}}^{p} y_{3}^{a} y_{4}^{a} x_{12}^{p}$ (Falsify $\overline{x_{12}} \lor x_{11}$) $x_{1}^{d} \overline{x_{2}}^{p} x_{3}^{p} \overline{x_{4}}^{d} x_{5}^{p} x_{6}^{p} x_{7}^{p} y_{1}^{a} y_{2}^{a} y_{3}^{a} y_{4}^{a}$ (Assumptions suffice) $\overline{x_{2}}^{p} \overline{x_{4}}^{d} y_{1}^{a} y_{4}^{a}$ (Conflict analysis)

UB = 3 Soft literals: y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 Initial trail: $x_1^d \overline{x_2}^p x_3^p \overline{x_4}^d x_5^p x_6^p x_7^p$

Find a core (by falsified clause): $x_{1}^{d} \overline{x_{2}}^{p} x_{3}^{p} \overline{x_{4}}^{d} x_{5}^{p} x_{6}^{p} x_{7}^{p} y_{1}^{a} x_{9}^{p} x_{10}^{p} y_{2}^{a} \overline{x_{11}}^{p} y_{3}^{a} y_{4}^{a} x_{12}^{p}$ (Falsify $\overline{x_{12}} \lor x_{11}$) $x_{1}^{d} \overline{x_{2}}^{p} x_{3}^{p} \overline{x_{4}}^{d} x_{5}^{p} x_{6}^{p} x_{7}^{p} y_{1}^{a} y_{2}^{a} y_{3}^{a} y_{4}^{a}$ (Assumptions suffice) $\overline{x_{2}}^{p} \overline{x_{4}}^{d} y_{1}^{a} y_{4}^{a}$ (Conflict analysis)

Local core:

 $\overline{x_2} \land \overline{x_4} \land y_1 \land y_4 \vdash UP \bot$ $\overline{x_2} \land \overline{x_4} \to \overline{y_1} \lor \overline{y_4} \text{ (Reasons } \to \text{Core)}$

15/11/2023 15 / 32

Find a core (by falsified soft literal): $x_1^d \overline{x_2}^p x_3^p \overline{x_4}^d x_5^p x_6^p x_7^p y_2^a y_3^a \overline{y_5}^p$ (Falsify y_5)

UB = 3 Soft literals: $y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8$ Initial trail: $x_1^d \overline{x_2}^p x_3^p \overline{x_4}^d x_5^p x_6^p x_7^p$

Found disjoint cores:

 $\overline{x_2} \land x_7 \land y_2 \land y_3 \vdash_{UP} \overline{y_5}$ $\overline{x_2} \land x_7 \rightarrow \overline{y_2} \lor \overline{y_3} \lor \overline{y_5}$

Found disjoint cores Core 1: $\overline{x_2} \land \overline{x_4} \rightarrow \overline{y}_1 \lor \overline{y}_4$ Core 2: $\overline{x_2} \land x_7 \rightarrow \overline{y_2} \lor \overline{y_3} \lor \overline{y_5}$ Core 3: $x_1 \land \overline{x_4} \land x_7 \rightarrow \overline{y_6} \lor \overline{y_7}$

Found disjoint cores Core 1: $\overline{x_2} \land \overline{x_4} \to \overline{y_1} \lor \overline{y_4}$ Core 2: $\overline{x_2} \land x_7 \to \overline{y_2} \lor \overline{y_3} \lor \overline{y_5}$ Core 3: $x_1 \land \overline{x_4} \land x_7 \to \overline{y_6} \lor \overline{y_7}$

 $x_1 \land \overline{x_2} \land \overline{x_4} \land x_7 \to (\overline{y}_1 \lor \overline{y}_4) \land (\overline{y_2} \lor \overline{y_3} \lor \overline{y_5}) \land (\overline{y_6} \lor \overline{y_7})$

Found disjoint cores Core 1: $\overline{x_2} \land \overline{x_4} \to \overline{y_1} \lor \overline{y_4}$ Core 2: $\overline{x_2} \land x_7 \to \overline{y_2} \lor \overline{y_3} \lor \overline{y_5}$ Core 3: $x_1 \land \overline{x_4} \land x_7 \to \overline{y_6} \lor \overline{y_7}$

 $\begin{array}{l} x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow (\overline{y}_1 \vee \overline{y}_4) \wedge (\overline{y_2} \vee \overline{y_3} \vee \overline{y_5}) \wedge (\overline{y_6} \vee \overline{y_7}) \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow LB = 3 = UB \end{array}$

Found disjoint cores Core 1: $\overline{x_2} \land \overline{x_4} \rightarrow \overline{y_1} \lor \overline{y_4}$ Core 2: $\overline{x_2} \land x_7 \rightarrow \overline{y_2} \lor \overline{y_3} \lor \overline{y_5}$ Core 3: $x_1 \land \overline{x_4} \land x_7 \rightarrow \overline{y_6} \lor \overline{y_7}$

 $\begin{array}{l} x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow (\overline{y}_1 \vee \overline{y}_4) \wedge (\overline{y_2} \vee \overline{y_3} \vee \overline{y_5}) \wedge (\overline{y_6} \vee \overline{y_7}) \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow LB = 3 = UB \end{array}$

Soft conflict:

 $x_1^d \ \overline{x_2}^p \ x_3^p \ \overline{x_4}^d \ x_5^p \ x_6^p \ x_7^p$, Conflict $\overline{x_1} \lor x_2 \lor x_4 \lor \overline{x_7}$ (soft conflict)

 $x_1 \land \overline{x_2} \land \overline{x_4} \land x_7 \to (\overline{y}_1 \lor \overline{y}_4) \land (\overline{y_2} \lor \overline{y_3} \lor \overline{y_5}) \land (\overline{y_6} \lor \overline{y_7})$

 $\begin{array}{l} x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow (\overline{y}_1 \vee \overline{y}_4) \wedge (\overline{y_2} \vee \overline{y_3} \vee \overline{y_5}) \wedge (\overline{y_6} \vee \overline{y_7}) \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \wedge \overline{y_8} \rightarrow LB = 4 = UB \end{array}$

 $\begin{array}{l} x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow \left(\overline{y}_1 \vee \overline{y}_4\right) \wedge \left(\overline{y_2} \vee \overline{y_3} \vee \overline{y_5}\right) \wedge \left(\overline{y_6} \vee \overline{y_7}\right) \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \wedge \overline{y_8} \rightarrow LB = 4 = UB \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow y_8 \equiv \overline{x_1} \vee x_2 \vee x_4 \vee \overline{x_7} \vee y_8 \end{array}$

 $\begin{array}{l} x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow (\overline{y}_1 \vee \overline{y}_4) \wedge (\overline{y_2} \vee \overline{y_3} \vee \overline{y_5}) \wedge (\overline{y_6} \vee \overline{y_7}) \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \wedge \overline{y_8} \rightarrow LB = 4 = UB \\ x_1 \wedge \overline{x_2} \wedge \overline{x_4} \wedge x_7 \rightarrow y_8 \equiv \overline{x_1} \vee x_2 \vee x_4 \vee \overline{x_7} \vee y_8 \end{array}$

Harden by UP: $x_1^d \ \overline{x_2}^p \ x_3^p \ \overline{x_4}^d \ x_5^p \ x_6^p \ x_7^p \ y_8^p$

CDCL invariant: every assigned literal is decided (x^d) or unit-propagated (x^p)

- Soft literals are weighted
- Cores are weighted
- Each soft literal can contribute to many cores
- The total contribution of a literal cannot exceed its weight

UB = 4 **Soft literals:** $3y_1 \quad 2y_2 \quad 1y_3 \quad 1y_4 \quad 1y_5 \quad 2y_6 \quad 1y_7 \quad 2y_8$

Found "disjoint" cores

- Soft literals are weighted
- Cores are weighted
- Each soft literal can contribute to many cores
- The total contribution of a literal cannot exceed its weight

UB = 4 **Soft literals:** $\nexists 1y_1 \ \nexists 0y_2 \ 1y_3 \ 1y_4 \ 1y_5 \ 2y_6 \ 1y_7 \ 2y_8$ **Found "disjoint" cores** Core 1: $\overline{x_2} \land \overline{x_4} \rightarrow \overline{y_1} \lor \overline{y_4}$ (2)

- Soft literals are weighted
- Cores are weighted
- Each soft literal can contribute to many cores
- The total contribution of a literal cannot exceed its weight

```
UB = 4

Soft literals: \nexists \not 1 \ 0y_1 \ \not 2 \ 0y_2 \ 1y_3 \ 1y_4 \ \not 1 \ 0y_5 \ 2y_6 \ 1y_7 \ 2y_8

Found "disjoint" cores

Core 1: \overline{x_2} \land \overline{x_4} \rightarrow \overline{y_1} \lor \overline{y_4} (2)

Core 2: x_3 \land \overline{x_4} \rightarrow \overline{y_1} \lor \overline{y_5} (1)
```

- Soft literals are weighted
- Cores are weighted
- Each soft literal can contribute to many cores
- The total contribution of a literal cannot exceed its weight

Found "disjoint" cores Core 1: $\overline{x_2} \land \overline{x_4} \rightarrow \overline{y}_1 \lor \overline{y}_4$ (2) Core 2: $x_3 \land \overline{x_4} \rightarrow \overline{y}_1 \lor \overline{y}_5$ (1) Core 3: $x_1 \rightarrow \overline{y}_6 \lor \overline{y}_8$ (2)

- Soft literals are weighted
- Cores are weighted
- Each soft literal can contribute to many cores
- The total contribution of a literal cannot exceed its weight
- Some cores can be removed in a postprocess

Found "disjoint" cores

Core 1: $\overline{x_2} \land \overline{x_4} \rightarrow \overline{y}_1 \lor \overline{y}_4$ (2) -Core 2: $x_3 \land \overline{x_4} \rightarrow \overline{y}_1 \lor \overline{y}_5$ (1)-Core 3: $x_1 \rightarrow \overline{y}_6 \lor \overline{y}_8$ (2) • Hardening happens with different $LB \leq UB$ (no necessarily LB = UB)

unweighted : $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 < 4$

weighted : $x_1 + x_2 + x_3 + x_4 + x_5 + 2x_6 < 5$

• UP and hardening feed back each other

Lookahead potential drawbacks:

- Running lookahead at each node is time-consuming
- Not every lookahead detects a soft conflict

Our bounding procedure:

- With probability 0.01, run lookahead for probing
 - Record average and standard deviation of LB increase in successful lookaheads
- Let $k=UB-cost(\rho)$: extra cost needed for soft conflict
- Do not run lookahead when $k > avg + coef \cdot stddev$
- We dynamically adjust *coef* to get success rate between 0.6 and 0.75

Considered sets:

- MSE19U20: 1000 instances. Union of all instances from MaxSAT Evaluations 2019 and 2020
- MC (Master Collection): 3614 instances.

Subset of the master collection of instances from Evaluations, \leq 100 instances per family

MaxSAT evaluations cutoff: 3600 seconds

Table: Comparison of MaxCDCL with its variants

	MSE19∪20		MC	
	#solv	avg	#solv	avg
MaxCDCL without lookahead	505	255s	2183	194s
MaxCDCL without hardening	664	281s	2878	194s
MaxCDCL always lookahead	681	249s	2962	193s
MaxCDCL lexicographic order lookahead	704	268s	2963	168s
MaxCDCL	734	256s	3022	156s

Other implementation details:

• Lookahead assumptions: prioritize literals recently involved in cores

Results: pairwise-combinations of solvers

Table: Combined execution of two solvers (1800 seconds for each)

	mhs	eval	uwr	rc2	owbo	mcdcl
mhs	747	777	777	770	763	785
eval	777	745	760	751	760	786
uwr	777	760	730	745	746	774
rc2	770	751	745	713	745	778
owbo	763	760	746	745	675	746
mcde	d 785	786	774	778	746	711
3600	s 769	759	745	728	695	734

	mhs	eval	uwr	rc2	owbo	mcdcl
Ì	3009	3068	3073	3056	3049	3130
	3068	2972	3019	2986	3013	3126
	3073	3019	2951	3000	2998	3098
	3056	2986	3000	2921	2981	3105
	3049	3013	2998	2981	2865	3076
	3130	3126	3098	3105	3076	2992
	3037	3002	2969	2948	2906	3022

MSE19UMSE20

Branch-and-Bound MaxSAT Solving with MaxCDCL

MSE22 Exact track, unweighted (left), weighted (right)

Solver	#Solved	Time(avg)
CASHWMaxSAT-CorePlus	438	285.59
CASHWMaxSAT-Plus	433	293.92
UWrMaxSat-SCIP	432	308.53
MaxHS	430	284.05
EvalMaxSAT	424	230.59
MaxCDCL	415	240.15
UWrMaxSat	407	185.77
CGSS	404	264.29
Open-WBO-Mergesat	377	211.7
Open-WBO-Glucose	375	158.8
Exact	296	246.45

Solver	#Solved	Time(avg)
CASHWMaxSAT-CorePlus	438	304.82
CASHWMaxSAT-Plus	435	303.16
UWrMaxSat-SCIP	427	305.7
MaxHS	426	349.93
WMaxCDCL	422	392.01
WMaxCDCL-bandall	416	366.43
UWrMaxSat	407	228.15
EvalMaxSAT	395	246.23
CGSS	391	264.22
Exact	310	249.43

イロト イヨト イヨト イヨ

MSE 2023

MSE23 Exact track, unweighted (left), weighted (right)

Solver	#Solved	Time(avg)
EvalMaxSAT-SCIP	433	326.11
MaxCDCL-S6-HS9	430	244.12
MaxCDCL-S6-HS12	430	252.4
CASHWMAXSAT-CorePlus	428	401.84
WMaxCDCL-S6-HS12	427	247.12
WMaxCDCL-S9-HS9	427	280.45
CASHWMAXSAT-CorePlus-m	427	403.8
EvalMaxSAT	425	239.75
CGSS2-SCIP	409	193.65
MaxCDCL	406	135.26
WMaxCDCL	399	160.24
CGSS2	394	107.32
Open-WBO-RES	387	172.26
Open-WBO-OLL	366	143.26

Solver	#Solved	Time(avg)
WMaxCDCL-S6-HS12	446	276.74
WMaxCDCL-S9-HS9	446	342.86
EvalMaxSAT-SCIP	442	405.04
CASHWMAXSAT-CorePlus	432	128.04
CASHWMAXSAT-CorePlus-m	431	402.39
EvalMaxSAT	429	330.39
CGSS2-SCIP	420	203.89
CGSS2	419	97.6
WMaxCDCL	389	120.85
Pacose	372	255.94
Pacose-MaxPre2	350	185.71

イロト イロト イヨト イヨト

Beyond disjoint local cores

Disjoint cores:

- Literals can only belong to one core (accepting weight splitting)
- LB easily computable
- Every round of assumptions increases the LB

Beyond disjoint local cores

Disjoint cores:

- Literals can only belong to one core (accepting weight splitting)
- LB easily computable
- Every round of assumptions increases the LB

Non-disjoint:

- Avoid repeated cores when making assumptions
- LB computation is a hitting set problem, NP-Hard
- No guarantee that a round of assumptions increases the LB

Beyond disjoint local cores

Disjoint cores:

- Literals can only belong to one core (accepting weight splitting)
- LB easily computable
- Every round of assumptions increases the LB

Non-disjoint:

- Avoid repeated cores when making assumptions
- LB computation is a hitting set problem, NP-Hard
- No guarantee that a round of assumptions increases the LB

Disjoint cardinality constraints:

- Literals can only belong to one cardinality constraint, must be unlocked before adding
- LB easily computable
- Every round of assumptions increases the LB

Trail: . . .

Initial disjoint cardinality constraints Core 1: $R_1 \rightarrow \overline{y}_1 \lor \overline{y}_2 \lor \overline{y}_3$

Trail: . . .

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

Trail: $\dots y_4^a$

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

Trail: $\dots y_4^a \overline{y}_1^p$

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

 \overline{y}_1 unlocks y_2 and y_3 from Core 1

Trail: $\dots y_4^a \overline{y}_1^p y_2^a$

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

 \overline{y}_1 unlocks y_2 and y_3 from Core 1

Trail: ... $y_4^a \ \overline{y}_1^p \ y_2^a \ y_3^a$ Conflict

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

 \overline{y}_1 unlocks y_2 and y_3 from Core 1

Core 2: $\overline{y}_4 + \overline{y}_2 + \overline{y}_3 \ge 1$

Trail: ... $y_4^a \ \overline{y}_1^p \ y_2^a \ y_3^a$ Conflict

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

 \overline{y}_1 unlocks y_2 and y_3 from Core 1

Core 2: $\overline{y}_4 + \overline{y}_2 + \overline{y}_3 \ge 1$

Final disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 + \overline{y}_4 > 2$
Literal unlocking

Trail: ... $y_4^a \ \overline{y}_1^p \ y_2^a \ y_3^a$ Conflict

Initial disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 \ge 1$

 \overline{y}_1 unlocks y_2 and y_3 from Core 1: $\overline{y}_4 + \overline{y}_1 \ge 1$

Core 2: $\overline{y}_4 + \overline{y}_2 + \overline{y}_3 \ge 1$

Final disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 + \overline{y}_4 \ge 2$

Literal unlocking

Trail: ... $y_4^a \ \overline{y}_1^p \ y_2^a \ y_3^a$ Conflict

 \overline{y}_1 unlocks y_2 and y_3 from Core 1: $R_u \to \overline{y}_4 + \overline{y}_1 \ge 1$

Core 2: $R_2 \rightarrow \overline{y}_4 + \overline{y}_2 + \overline{y}_3 \ge 1$

Final disjoint cardinality constraints Core 1: $R_1 \wedge R_2 \wedge R_u \rightarrow \overline{y}_1 + \overline{y}_2 + \overline{y}_3 + \overline{y}_4 \ge 2$

Literal unlocking

Trail: $y_7^a y_8^a \overline{y}_1^p \overline{y}_2^p y_3^a \overline{y}_4^p \overline{y}_5^p y_6^a$ Conflict

Initial disjoint cardinality constraints

 $\begin{array}{l} \text{Core 1: } \overline{y}_1 + \overline{y}_2 + \overline{y}_3 \geq 2 \\ \text{Core 2: } \overline{y}_4 + \overline{y}_5 + \overline{y}_6 \geq 2 \end{array}$

Unlockings:

$$\begin{split} \overline{y}_7 + \overline{y}_8 + \overline{y}_1 &\geq 1 \\ \overline{y}_7 + \overline{y}_8 + \overline{y}_2 &\geq 1 \\ \overline{y}_7 + \overline{y}_8 + \overline{y}_3 + \overline{y}_4 &\geq 1 \\ \overline{y}_7 + \overline{y}_8 + \overline{y}_3 + \overline{y}_5 &\geq 1 \end{split}$$

Core 3: $\overline{y}_7 + \overline{y}_8 + \overline{y}_6 \ge 1$

Final disjoint cardinality constraints Core 1: $\overline{y}_1 + \overline{y}_2 + \overline{y}_3 + \overline{y}_4 + \overline{y}_5 + \overline{y}_6 + \overline{y}_7 + \overline{y}_8 \ge 5$

Literal unlocking: general case

A cardinality $C_i \ge K_i$ is unlocked if K_i of its literals are propagated to false.

Initial disjoint cardinality constraints $R_1 \rightarrow C_1 > K_1, \ldots, R_n \rightarrow C_n > K_n$

Unlockings:

$$R_{1,1} \rightarrow C_{1,1} \ge 1, \dots, R_{1,K_1} \rightarrow C_{1,K_1} \ge 1$$

 \dots
 $R_{n,1} \rightarrow C_{n,1} \ge 1, \dots, R_{n,K_n} \rightarrow C_{n,K_n} \ge 1$

New constraint: $R_{n+1} \rightarrow C_{n+1} \geq 1$

Final disjoint cardinality constraints

The union of all reasons \rightarrow the sum of all soft literals $\geq K_1 + \cdots + K_n + 1$

- MaxCDCL: combining BnB and clause learning
- Potential to solve new kinds of instances
- Somehow, shares features from model-based, core-based and implicit hitting set solvers
- Can we achieve a smart combination of these techniques?
- Can we get stronger but still fast lookahead reasoning?

André Abramé and Djamal Habet Ahmaxsat: Description and evaluation of a branch and bound Max-SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 9:89–128, 2014

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, Kun He Combining Clause Learning and Branch and Bound for MaxSAT 27th International Conference on Principles and Practice of Constraint Programming (CP 2021), pp. 38:1-38:18, 2021

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, Kun He Boosting branch-and-bound MaxSAT solvers with clause learning *AI Communications 35(2): 131-151 (2022)*

Jordi Coll

Branch-and-Bound MaxSAT Solving with MaxCDCL

15/11/2023 31 / 32

ヘロト 人間 ト く ヨ ト く ヨ ト

Branch-and-Bound MaxSAT Solving with MaxCDCL

Jordi Coll

Universitat de Girona

Djamal Habet, Kun He, Chu-Min Li, Shuolin Li, Felip Manyà, Zhenxing Xu

Lund, November 6, 2024

Branch-and-Bound MaxSAT Solving with MaxCDCL

15/11/2023

32 / 32