
Branch-and-Bound MaxSAT Solving with MaxCDCL

Jordi Coll
Universitat de Girona

Djamal Habet, Kun He, Chu-Min Li, Shuolin Li, Felip Manyà, Zhenxing Xu

Lund, November 6, 2024

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 1 / 32

(Weighted) (Partial) MaxSAT

MaxSAT

Given:

H: set of hard clauses

S : a multiset of weighted soft clauses

Find an assignment ρ that:

Satisfies all clauses in H

Minimizes the sum of the weights of unsatisfied clauses in S

Example:

H: (x ∨ y), (x ∨ z), (y ∨ z) S : (x , 3), (y , 4), (z , 5), (x ∨ z , 2)

ρ : x = 1, y = 1, z = 0, (or x y z)

cost(ρ) = 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 2 / 32

2021: State-of-the-art in MaxSAT Solving

State-of-the-art solvers are SAT-based:

Problem translated to a series of satisfiability calls

hitting set, model-based, core-based

Branch and Bound:

Lack of clause learning

Well-suited for random and some crafted

Poor performance on industrial

Not in MaxSAT evaluations since 2017

MaxCDCL:

BnB MaxSAT solver with clause learning

Make BnB MaxSAT competitive for industrial MaxSAT

Solvers in
MSE19-20 H

S

m
o
d
el

co
re

B
n
B

EvalMaxSAT X
MaxHS X
Pacose X
UWrMaxSAT X X
RC2 X
Open-WBO X
maxino X
QMaxSAT X
smax X

ahmaxsat (MSE16) X

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 3 / 32

2021: State-of-the-art in MaxSAT Solving

State-of-the-art solvers are SAT-based:

Problem translated to a series of satisfiability calls

hitting set, model-based, core-based

Branch and Bound:

Lack of clause learning

Well-suited for random and some crafted

Poor performance on industrial

Not in MaxSAT evaluations since 2017

MaxCDCL:

BnB MaxSAT solver with clause learning

Make BnB MaxSAT competitive for industrial MaxSAT

Solvers in
MSE19-20 H

S

m
o
d
el

co
re

B
n
B

EvalMaxSAT X
MaxHS X
Pacose X
UWrMaxSAT X X
RC2 X
Open-WBO X
maxino X
QMaxSAT X
smax X

ahmaxsat (MSE16) X

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 3 / 32

MaxSAT in MaxCDCL

Normalization: express soft clauses as soft literals (blocking literals)

Convert:

H: (x ∨ y), (x ∨ z), (y ∨ z)

S : (x , 3), (y , 4), (z , 5), (x ∨ z , 2)

To:

H: (x ∨ y), (x ∨ z), (y ∨ z), p ↔ (x ∨ z)

S : (x , 3), (y , 4), (z , 5), (p, 2)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 4 / 32

MaxSAT

MaxSAT

Given:

H: set of hard clauses

S : a set of weighted soft literals

Find an assignment v that:

Satisfies all clauses in H

Minimizes the sum of the weights of unsatisfied literals in S

Example:

H: (x ∨ y), (x ∨ z), (y ∨ z), p ↔ (x ∨ z) S : (x , 3), (y , 4), (z , 5), (p, 2)

minimize 3x + 4y + 5z + 2p

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 5 / 32

Branch and Bound

Branch and Bound: [Abramé and Habet, 2014]

Explore the search tree looking for optimal solutions

Update Upper Bound UB when solution with better cost is found

Prune branch when LB ≥ UB

Lookahead: underestimate LB of the cost at every node

SAT

UB = 10

X LB = 10 ≥ UB

SAT

UB = 8

X LB = 8 ≥ UB

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 6 / 32

MaxCDCL as Branch and Bound

Branch and Bound in MaxCDCL: [Li et. al, 2021, 2022]

Explore the search tree (CDCL) looking for satisfiable assignments

Update Upper Bound UB when solution with better cost is found

Prune branch when LB ≥ UB and learn a clause

Lookahead: underestimate LB of the cost at some nodes using UP and core reasoning

SAT

UB = 10

X LB = 10 ≥ UB

SAT

UB = 8

X LB = 8 ≥ UB

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 7 / 32

MaxCDCL as CDCL generalization

MaxCDCL execution: sequence of trails / assignments (ρ) that end with conflict

Hard conflict:
A hard clause is falsified

Soft conflict:
Check cost(ρ)
Maybe, underestimate LB of the cost
If LB≥UB, an implicit hard clause is falsified

In both cases we do conflict analysis.

xd1 x2
p xp3 x4

d xp5 xp6 xp7 Conflict x5 ∨ x7 (hard or soft conflict)

xd1 x2
p xp3 x5

p . . . Conflict analysis, Learn x3 ∨ x5, Backjump and UP

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 8 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ =

xd1 xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ =

xd1 xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ = xd1

xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ = xd1 xp4

xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ = xd1 xp4 xd2

xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ = xd1 xp4 xd2 xp3

xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ = xd1 xp4 xd2 xp3 xp5

confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

CDCL algorithm

CDCL: Given hard clauses H, satisfy H

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP(H, ρ);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (SAT,ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
x3 ∨ x5

ρ = xd1 xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 9 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ =

xd1 xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ =

xd1 xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ = xd1

xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4

xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4 xd2

xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4 xd2 xp3

xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4 xd2 xp3 xp5

confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
x2 ∨ x4 ∨ x5
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4 xd2 xp3 xp5 confl = (x3 ∨ x5)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 10 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8

ρ =

xd1 xp4 xd2 xp3 xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8

ρ =

xd1 xp4 xd2 xp3 xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8

ρ = xd1

xp4 xd2 xp3 xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4

xd2 xp3 xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4 xd2

xp3 xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8

ρ = xd1 xp4 xd2 xp3

xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB

ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden(H, S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Annotated assignment (trail):
ld : decision
lp: unit propagation

Example CNF + UB constraint:
x1 ∨ x2 ∨ x3
x1 ∨ x4
2x1 + 4x3 + 4x5 < 8
x3 ∨ x5

ρ = xd1 xp4 xd2 xp3 xp5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 11 / 32

MaxCDCL algorithm

MaxCDCL: Given hard clauses H,soft literals S , upper bound UB, satisfy H and cost(ρ) < UB
ρ← {}; /* Assignment */
while true do

(confl , ρ)← UP UB Harden Lookahead(H,S , ρ,UB);
if confl is a conflicting clause then

if decisionLevel(ρ) = 0 then
return UNSAT;

else
learntClause ← analyze(confl);
H ← H ∪ {learntClause};
dl ← 2nd highest decision level in learntClause;
ρ← backtrackTo(dl , ρ);

else
if all variables are assigned in ρ then

return (cost(ρ), ρ);
else

l ← pickBranchLit();
ρ← ρ ∪ {l}; /* Make a decision */

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 12 / 32

Lookahead: LB underestimation, unweighted

Lookahead by UP for underestimating LB. At some nodes of the search:

1 Assume (ya) unassigned soft literals and apply UP until:

A hard clause is falsified
Or a soft literal is falsified

2 We have found a local unsatisfiable core

3 Each disjoint core increases the LB by

4 Repeat the process until LB ≥ UB, o no more disjoint cores are found

5 When LB ≥ UB, a soft conflict is found

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 13 / 32

Soft conflict detection: full example

UB = 3 Soft literals: y1 y2 y3 y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified clause):

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 xp9 xp10 ya2 x11
p ya3 ya4 xp12 (Falsify x12 ∨ x11)

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 ya2 ya3 ya4 (Assumptions suffice)

x2
p x4

d ya1 ya4 (Conflict analysis)

Local core:

x2 ∧ x4 ∧ y1 ∧ y4 ⊢ UP⊥
x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 14 / 32

Soft conflict detection: full example

UB = 3 Soft literals: y1 y2 y3 y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified clause):

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 xp9 xp10 ya2 x11
p ya3 ya4 xp12 (Falsify x12 ∨ x11)

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 ya2 ya3 ya4 (Assumptions suffice)

x2
p x4

d ya1 ya4 (Conflict analysis)

Local core:

x2 ∧ x4 ∧ y1 ∧ y4 ⊢ UP⊥
x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 14 / 32

Soft conflict detection: full example

UB = 3 Soft literals: y1 y2 y3 y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified clause):

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 xp9 xp10 ya2 x11
p ya3 ya4 xp12 (Falsify x12 ∨ x11)

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 ya2 ya3 ya4 (Assumptions suffice)

x2
p x4

d ya1 ya4 (Conflict analysis)

Local core:

x2 ∧ x4 ∧ y1 ∧ y4 ⊢ UP⊥
x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 14 / 32

Soft conflict detection: full example

UB = 3 Soft literals: y1 y2 y3 y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified clause):

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 xp9 xp10 ya2 x11
p ya3 ya4 xp12 (Falsify x12 ∨ x11)

xd1 x2
p xp3 x4

d xp5 xp6 xp7 ya1 ya2 ya3 ya4 (Assumptions suffice)

x2
p x4

d ya1 ya4 (Conflict analysis)

Local core:

x2 ∧ x4 ∧ y1 ∧ y4 ⊢ UP⊥
x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 14 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 y2 y3 ��y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified soft literal):
xd1 x2

p xp3 x4
d xp5 xp6 xp7 ya2 ya3 y5

p (Falsify y5)

x2
p xp7 ya2 ya3 y5

p (Conflict analysis)

Found disjoint cores:

x2 ∧ x7 ∧ y2 ∧ y3 ⊢UP y5

x2 ∧ x7 → y2 ∨ y3 ∨ y5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 15 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 y2 y3 ��y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified soft literal):
xd1 x2

p xp3 x4
d xp5 xp6 xp7 ya2 ya3 y5

p (Falsify y5)

x2
p xp7 ya2 ya3 y5

p (Conflict analysis)

Found disjoint cores:

x2 ∧ x7 ∧ y2 ∧ y3 ⊢UP y5

x2 ∧ x7 → y2 ∨ y3 ∨ y5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 15 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 y2 y3 ��y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified soft literal):
xd1 x2

p xp3 x4
d xp5 xp6 xp7 ya2 ya3 y5

p (Falsify y5)

x2
p xp7 ya2 ya3 y5

p (Conflict analysis)

Found disjoint cores:

x2 ∧ x7 ∧ y2 ∧ y3 ⊢UP y5

x2 ∧ x7 → y2 ∨ y3 ∨ y5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 15 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 y2 y3 ��y4 y5 y6 y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Find a core (by falsified soft literal):
xd1 x2

p xp3 x4
d xp5 xp6 xp7 ya2 ya3 y5

p (Falsify y5)

x2
p xp7 ya2 ya3 y5

p (Conflict analysis)

Found disjoint cores:

x2 ∧ x7 ∧ y2 ∧ y3 ⊢UP y5

x2 ∧ x7 → y2 ∨ y3 ∨ y5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 15 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Found disjoint cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 = UB

Soft conflict:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 , Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 16 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Found disjoint cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 = UB

Soft conflict:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 , Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 16 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Found disjoint cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 = UB

Soft conflict:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 , Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 16 / 32

Soft conflict detection: full example

UB = 3 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Initial trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

Found disjoint cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 = UB

Soft conflict:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 , Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 16 / 32

Hardening

When LB = UB − 1, all unassigned soft literals not in cores must be true.

UB = 4 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 ∧ y8 → LB = 4 = UB

x1 ∧ x2 ∧ x4 ∧ x7 → y8 ≡ x1 ∨ x2 ∨ x4 ∨ x7 ∨ y8

Harden by UP:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 yp8

CDCL invariant:
every assigned literal is decided (xd) or unit-propagated (xp)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 17 / 32

Hardening

When LB = UB − 1, all unassigned soft literals not in cores must be true.

UB = 4 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 ∧ y8 → LB = 4 = UB

x1 ∧ x2 ∧ x4 ∧ x7 → y8 ≡ x1 ∨ x2 ∨ x4 ∨ x7 ∨ y8

Harden by UP:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 yp8

CDCL invariant:
every assigned literal is decided (xd) or unit-propagated (xp)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 17 / 32

Hardening

When LB = UB − 1, all unassigned soft literals not in cores must be true.

UB = 4 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 ∧ y8 → LB = 4 = UB

x1 ∧ x2 ∧ x4 ∧ x7 → y8 ≡ x1 ∨ x2 ∨ x4 ∨ x7 ∨ y8

Harden by UP:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 yp8

CDCL invariant:
every assigned literal is decided (xd) or unit-propagated (xp)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 17 / 32

Hardening

When LB = UB − 1, all unassigned soft literals not in cores must be true.

UB = 4 Soft literals: ��y1 ��y2 ��y3 ��y4 ��y5 ��y6 ��y7 y8

Trail: xd1 x2
p xp3 x4

d xp5 xp6 xp7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 ∧ y8 → LB = 4 = UB

x1 ∧ x2 ∧ x4 ∧ x7 → y8 ≡ x1 ∨ x2 ∨ x4 ∨ x7 ∨ y8

Harden by UP:

xd1 x2
p xp3 x4

d xp5 xp6 xp7 yp8

CDCL invariant:
every assigned literal is decided (xd) or unit-propagated (xp)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 17 / 32

Weighted MaxCDCL

Weighted MaxCDCL

Soft literals are weighted

Cores are weighted

Each soft literal can contribute to many cores

The total contribution of a literal cannot exceed its weight

Some cores can be removed in a postprocess

UB = 4
Soft literals: 3y1 2y2 1y3 1y4 1y5 2y6 1y7 2y8

Found “disjoint” cores

Core 1: x2 ∧ x4 → y1 ∨ y4 (2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (1)
Core 3: x1 → y6 ∨ y8 (2)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 18 / 32

Weighted MaxCDCL

Weighted MaxCDCL

Soft literals are weighted

Cores are weighted

Each soft literal can contribute to many cores

The total contribution of a literal cannot exceed its weight

Some cores can be removed in a postprocess

UB = 4
Soft literals: �3 1y1 �2 0y2 1y3 1y4 1y5 2y6 1y7 2y8

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y4 (2)

Core 2: x3 ∧ x4 → y1 ∨ y5 (1)
Core 3: x1 → y6 ∨ y8 (2)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 18 / 32

Weighted MaxCDCL

Weighted MaxCDCL

Soft literals are weighted

Cores are weighted

Each soft literal can contribute to many cores

The total contribution of a literal cannot exceed its weight

Some cores can be removed in a postprocess

UB = 4
Soft literals: �3 �1 0y1 �2 0y2 1y3 1y4 �1 0y5 2y6 1y7 2y8

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y4 (2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (1)

Core 3: x1 → y6 ∨ y8 (2)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 18 / 32

Weighted MaxCDCL

Weighted MaxCDCL

Soft literals are weighted

Cores are weighted

Each soft literal can contribute to many cores

The total contribution of a literal cannot exceed its weight

Some cores can be removed in a postprocess

UB = 4
Soft literals: �3 �1 0y1 �2 0y2 1y3 1y4 �1 0y5 �2 0y6 1y7 �2 0y8

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y4 (2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (1)
Core 3: x1 → y6 ∨ y8 (2)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 18 / 32

Weighted MaxCDCL

Weighted MaxCDCL

Soft literals are weighted

Cores are weighted

Each soft literal can contribute to many cores

The total contribution of a literal cannot exceed its weight

Some cores can be removed in a postprocess

UB = 4
Soft literals: �3 �1 0y1 �2 0y2 1y3 1y4 �1 0y5 �2 0y6 1y7 �2 0y8

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y4 (2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (1)
Core 3: x1 → y6 ∨ y8 (2)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 18 / 32

Weighted MaxCDCL

Hardening happens with different LB ≤ UB (no necessarily LB = UB)

unweighted : x1 + x2 + x3 + x4 + x5 + x6 < 4

weighted : x1 + x2 + x3 + x4 + x5 + 2x6 < 5

UP and hardening feed back each other

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 19 / 32

Effective bounding

Lookahead potential drawbacks:

Running lookahead at each node is time-consuming

Not every lookahead detects a soft conflict

Our bounding procedure:

With probability 0.01, run lookahead for probing

Record average and standard deviation of LB increase in successful lookaheads

Let k=UB−cost(ρ): extra cost needed for soft conflict

Do not run lookahead when k > avg + coef · stddev
We dynamically adjust coef to get success rate between 0.6 and 0.75

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 20 / 32

Results: experimental setting

Considered sets:

MSE19∪20: 1000 instances.
Union of all instances from MaxSAT Evaluations 2019 and 2020

MC (Master Collection): 3614 instances.
Subset of the master collection of instances from Evaluations, ≤ 100 instances per family

MaxSAT evaluations cutoff: 3600 seconds

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 21 / 32

Results: analysis of components

Table: Comparison of MaxCDCL with its variants

MSE19∪20
#solv avg

MaxCDCL without lookahead 505 255s
MaxCDCL without hardening 664 281s
MaxCDCL always lookahead 681 249s
MaxCDCL lexicographic order lookahead 704 268s
MaxCDCL 734 256s

MC
#solv avg
2183 194s
2878 194s
2962 193s
2963 168s
3022 156s

Other implementation details:

Lookahead assumptions: prioritize literals recently involved in cores

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 22 / 32

Results: pairwise-combinations of solvers

Table: Combined execution of two solvers (1800 seconds for each)

mhs eval uwr rc2 owbo mcdcl
mhs 747 777 777 770 763 785
eval 777 745 760 751 760 786
uwr 777 760 730 745 746 774
rc2 770 751 745 713 745 778
owbo 763 760 746 745 675 746
mcdcl 785 786 774 778 746 711

3600s 769 759 745 728 695 734

mhs eval uwr rc2 owbo mcdcl

3009 3068 3073 3056 3049 3130
3068 2972 3019 2986 3013 3126
3073 3019 2951 3000 2998 3098
3056 2986 3000 2921 2981 3105
3049 3013 2998 2981 2865 3076
3130 3126 3098 3105 3076 2992

3037 3002 2969 2948 2906 3022

MSE19∪MSE20 Master Collection

 0

 600

 1200

 1800

 2400

 3000

 3600

 700 720 740 760 780 800

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances solved

eval
mhs

mhs-uwr
mhs-eval

mhs-mcdcl
eval-mcdcl

 2800 2850 2900 2950 3000 3050 3100

Number of instances solved

mcdcl
mhs

mhs-eval
mhs-uwr

eval-mcdcl
mhs-mcdcl

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 23 / 32

MSE 2022

MSE22 Exact track, unweighted (left), weighted (right)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 24 / 32

MSE 2023

MSE23 Exact track, unweighted (left), weighted (right)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 25 / 32

Beyond disjoint local cores

Disjoint cores:

Literals can only belong to one core (accepting weight splitting)

LB easily computable

Every round of assumptions increases the LB

Non-disjoint:

Avoid repeated cores when making assumptions

LB computation is a hitting set problem, NP-Hard

No guarantee that a round of assumptions increases the LB

Disjoint cardinality constraints:

Literals can only belong to one cardinality constraint, must be unlocked before adding

LB easily computable

Every round of assumptions increases the LB

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 26 / 32

Beyond disjoint local cores

Disjoint cores:

Literals can only belong to one core (accepting weight splitting)

LB easily computable

Every round of assumptions increases the LB

Non-disjoint:

Avoid repeated cores when making assumptions

LB computation is a hitting set problem, NP-Hard

No guarantee that a round of assumptions increases the LB

Disjoint cardinality constraints:

Literals can only belong to one cardinality constraint, must be unlocked before adding

LB easily computable

Every round of assumptions increases the LB

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 26 / 32

Beyond disjoint local cores

Disjoint cores:

Literals can only belong to one core (accepting weight splitting)

LB easily computable

Every round of assumptions increases the LB

Non-disjoint:

Avoid repeated cores when making assumptions

LB computation is a hitting set problem, NP-Hard

No guarantee that a round of assumptions increases the LB

Disjoint cardinality constraints:

Literals can only belong to one cardinality constraint, must be unlocked before adding

LB easily computable

Every round of assumptions increases the LB

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 26 / 32

Literal unlocking

Trail: . . .

ya4 yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: R1 → y1 ∨ y2 ∨ y3

y1 unlocks y2 and y3 from Core 1: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . .

ya4 yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4

yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4 yp1

ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1

: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4 yp1 ya2

ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1

: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4 yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1

: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4 yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1

: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4 yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1: y4 + y1 ≥ 1

Core 2: y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: . . . ya4 yp1 ya2 ya3 Conflict

Initial disjoint cardinality constraints
Core 1: R1 → y1 + y2 + y3 ≥ 1

y1 unlocks y2 and y3 from Core 1: Ru → y4 + y1 ≥ 1

Core 2: R2 → y4 + y2 + y3 ≥ 1

Final disjoint cardinality constraints
Core 1: R1 ∧ R2 ∧ Ru → y1 + y2 + y3 + y4 ≥ 2

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 27 / 32

Literal unlocking

Trail: ya7 ya8 yp1 yp2 ya3 yp4 yp5 ya6 Conflict

Initial disjoint cardinality constraints
Core 1: y1 + y2 + y3 ≥ 2
Core 2: y4 + y5 + y6 ≥ 2

Unlockings:
y7 + y8 + y1 ≥ 1
y7 + y8 + y2 ≥ 1
y7 + y8 + y3 + y4 ≥ 1
y7 + y8 + y3 + y5 ≥ 1

Core 3: y7 + y8 + y6 ≥ 1

Final disjoint cardinality constraints
Core 1: y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 ≥ 5

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 28 / 32

Literal unlocking: general case

A cardinality Ci ≥ Ki is unlocked if Ki of its literals are propagated to false.

Initial disjoint cardinality constraints
R1 → C1 ≥ K1, . . . , Rn → Cn ≥ Kn

Unlockings:
R1,1 → C1,1 ≥ 1, . . . , R1,K1 → C1,K1 ≥ 1
. . .
Rn,1 → Cn,1 ≥ 1, . . . , Rn,Kn → Cn,Kn ≥ 1

New constraint: Rn+1 → Cn+1 ≥ 1

Final disjoint cardinality constraints
The union of all reasons → the sum of all soft literals ≥ K1 + · · ·+ Kn + 1

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 29 / 32

Conclusions and future work

MaxCDCL: combining BnB and clause learning

Potential to solve new kinds of instances

Somehow, shares features from model-based, core-based and implicit hitting set solvers

Can we achieve a smart combination of these techniques?

Can we get stronger but still fast lookahead reasoning?

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 30 / 32

References

André Abramé and Djamal Habet
Ahmaxsat: Description and evaluation of a branch and bound Max-SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation, 9:89–128, 2014

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, Kun He
Combining Clause Learning and Branch and Bound for MaxSAT
27th International Conference on Principles and Practice of Constraint Programming (CP 2021), pp. 38:1-38:18, 2021

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, Kun He
Boosting branch-and-bound MaxSAT solvers with clause learning
AI Communications 35(2): 131-151 (2022)

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 31 / 32

Branch-and-Bound MaxSAT Solving with MaxCDCL

Jordi Coll
Universitat de Girona

Djamal Habet, Kun He, Chu-Min Li, Shuolin Li, Felip Manyà, Zhenxing Xu

Lund, November 6, 2024

Jordi Coll Branch-and-Bound MaxSAT Solving with MaxCDCL 15/11/2023 32 / 32

