Proof logging for RoundingSat

Marc Vinyals

Waipapa Taumata Rau – University of Auckland

with Wietze Koops, Jakob Nordström, Andy Oertel

RoundingSat

Native pseudoBoolean reasoning

Decision problems

- Conflict-driven learning
- Linear programming

Optimisation problems

- Linear
- Core-guided

Conflict analysis

- Conflict: $Ax \ge a$
- **Reason:** $Bx \ge b$

- Weaken reason
- Divide
- Add to conflict

Example

pol 1 2 ~x1 3 * + x2 + 3 / 2 * +

Weaken away $3x_1$ and $\neg x_2$ from C_2 , divide by 3, multiply by 2, and add to C_1

Fractional Infeasibility

Infeasible LP

- Extract Farkas multipliers
- Add

Example pol 1 * 4 2 * 2 + 3 * 5 + Add C_1, C_2, C_3 with multipliers 4, 2, 5

MIR Cuts

- Added if feasible LP but not IP
- Create linear combination
- Apply MIR cut

- VeriPB does not support MIR natively
- Simulate via redundance rule
- Not implemented in RoundingSat

Solution Improving Optimisation

- Find solution α with $f(\alpha) = u$
- ► Objective improving constraint *f* < *u*

Example

soli x1 x2 ~x3 Found solution $x_1 = 1, x_2 = 1, x_3 = 0$

Solution Improving Optimisation

- Find solution α with $f(\alpha) = u$
- ▶ Objective improving constraint *f* < *u*

Example

soli x1 x2 ~x3 Found solution $x_1 = 1, x_2 = 1, x_3 = 0$

- Find contradiction
- Last solution was optimal
- Standard logging

Core-guided Optimisation: Core Extraction

A sloppy take on Certified Core-Guided MaxSAT Solving

Core: constraint falsified by assumptions

- Obtain through conflict analysis
- Standard logging

- Round to cardinality
- Weaken and divide

Core-guided Optimisation: Objective Reformulation

• Have core lower bound $X_S \ge d$

♀Conceptually

- Add new variables $y_b \leftrightarrow \llbracket X_S \ge b \rrbracket$
- ▶ Reformulate objective to $f_r = f_o + w\Delta_K$ where $\Delta_K = Y_{>d} X_S + d$
- Observe that $\Delta_K = 0$, hence $f_o = f_r$

Core-guided Optimisation: Objective Reformulation

• Have core lower bound $X_S \ge d$

O Conceptually

- Add new variables $y_b \leftrightarrow \llbracket X_S \ge b \rrbracket$
- ▶ Reformulate objective to $f_r = f_o + w\Delta_K$ where $\Delta_K = Y_{>d} X_S + d$
- Observe that $\Delta_K = 0$, hence $f_o = f_r$

🔑 In Practice

- Add variables lazily, starting with y_{d+1}
- $\Delta_{K}^{(i)} = Y_{[d+1,d+i]} X_{S} + d$
- Observe that $\Delta_K^{(i)} \leq 0$, hence $f_o \geq f_r$
- Global reformulation constraint $\Delta = \sum_{K} w_{K} \Delta_{K}^{(i_{K})} \leq 0$ (We'll see how to log Δ later)

Core-guided Optimisation: Core Upper Bound

- Trivial core upper bound $X_S \leq |S|$
- Better(?) bound from objective improving constraint

Core-guided Optimisation: Core Upper Bound

- Trivial core upper bound $X_S \leq |S|$
- Better(?) bound from objective improving constraint

- ► Suppose $f_o \le u$
- ▶ **Derive** $f_r := f_o + \Delta \le u$
- Weaken variables outside S
- Round to a cardinality constraint
- Upper bound on the core of the form $X_S \leq u'$
- Standard logging

- Semantics: $[X_S \ge d+1] \rightarrow y_{d+1}$
- ► LTF: $R^{(1)\leftarrow} := \xi y_{d+1} \ge X_S d$, with ξ large enough
- $\triangleright \xi = \min(u', |S|) d$

Semantics: [[X_S ≥ d + 1]] → y_{d+1}
LTF: R^{(1)←} := ξy_{d+1} ≥ X_S − d, with ξ large enough
ξ = min(u', |S|) − d

Redundance rule: Infer *C* if we can prove $F \land \neg C \vDash (F \land C) \upharpoonright_{\omega}$ for some substitution ω

► Log $\xi y_{d+1} - X_S \ge -d$ with redundance rule and substitution $y_{d+1} = 1$ Example red +2 y2 +1 ~x1 +1 ~x2 +1 ~x3 >= 2 ; y2 -> 1

Semantics: [[X_S ≥ d + 1]] → y_{d+1}
LTF: R^{(1)←} := ξy_{d+1} ≥ X_S − d, with ξ large enough
ξ = min(u', |S|) − d

Redundance rule: Infer C if we can prove $F \land \neg C \vDash (F \land C) \upharpoonright_{\omega}$ for some substitution ω

► Log $\xi y_{d+1} - X_S \ge -d$ with redundance rule and substitution $y_{d+1} = 1$ Example red +2 y2 +1 ~x1 +1 ~x2 +1 ~x3 >= 2 ; y2 -> 1

Constraints already in the DB syntactically untouched by substitution do not need proving

►
$$R^{(1)\leftarrow}|_{y_{d+1}=1}$$
 becomes $-X_S \ge -d-\xi$

• Trivial for $\xi = |S| - d$

Syntactically identical to the core upper bound otherwise

- Semantics: $y_{d+1} \rightarrow [X_S \ge d+1]$
- ► LTF: $y_{d+1} \le X_S d$

- Semantics: $y_{d+1} \rightarrow [X_S \ge d+1]$
- ► LTF: $y_{d+1} \le X_S d$

Redundance rule: Infer *C* if we can prove $F \land \neg C \vDash (F \land C) \upharpoonright_{\omega}$ for some substitution ω

► Log
$$R^{(1)\rightarrow} := X_S - y_{d+1} \ge d$$
 with redundance rule and substitution $y_{d+1} = 0$
Example
red +2 v2 +1 ~x1 +1 ~x2 +1 ~x3 >= 2 ; v2 -> 1

red +1 y^2 +1 x1 +1 x2 +1 x3 >= 2 ; y2 -> 0

- Semantics: $y_{d+1} \rightarrow [\![X_S \ge d+1]\!]$
- ► LTF: $y_{d+1} \le X_S d$

Redundance rule: Infer *C* if we can prove $F \land \neg C \vDash (F \land C) \upharpoonright_{\omega}$ for some substitution ω

► Log
$$R^{(1) \rightarrow} := X_S - y_{d+1} \ge d$$
 with redundance rule and substitution $y_{d+1} = 0$
Example
red +2 y2 +1 ~x1 +1 ~x2 +1 ~x3 >= 2 ; y2 -> 1
red +1 ~y2 +1 x1 +1 x2 +1 x3 >= 2 ; y2 -> 0

Constraints in the DB still untouched

$$R^{(1)\leftarrow} |_{y_{d+1}=0} \text{ becomes } -X_S \ge -d$$

▶ implied by $\neg R^{(1) \rightarrow} := -X_S + y_{d+1} \ge -d + 1$ (weaken y_{d+1})

$$R^{(1) \to} \upharpoonright_{y_{d+1=0}} \mathsf{becomes} X_S \ge d$$

syntactically identical to the core lower bound

- Semantics: $y_{d+1} \rightarrow \llbracket X_S \ge d+1 \rrbracket$
- ► LTF: $y_{d+1} \le X_S d$

Redundance rule: Infer *C* if we can prove $F \land \neg C \vDash (F \land C) \upharpoonright_{\omega}$ for some substitution ω

► Log
$$R^{(1) \rightarrow} := X_S - y_{d+1} \ge d$$
 with redundance rule and substitution $y_{d+1} = 0$
Example
red +2 y2 +1 ~x1 +1 ~x2 +1 ~x3 >= 2 ; y2 -> 1
red +1 ~y2 +1 x1 +1 x2 +1 x3 >= 2 ; y2 -> 0

Constraints in the DB still untouched

$$R^{(1)} \leftarrow |_{y_{d+1}=0} \text{ becomes } -X_S \ge -d$$

▶ implied by $\neg R^{(1) \rightarrow} := -X_S + y_{d+1} \ge -d + 1$ (weaken y_{d+1})

$$R^{(1)} \to \upharpoonright_{y_{d+1=0}} \text{becomes} X_S \ge d$$

syntactically identical to the core lower bound

• $\Delta^{(1)}$ syntactically identical to $R^{(1)}$

Core-guided Optimisation: Lazy Variable Expansion

▶ $\text{Log}y_{d+i} \leftrightarrow [X_S \ge d+i]$ with redundance rule

- $\blacktriangleright \ \Delta^{(i)} = \left(\Delta^{(i-1)} + (i-1)R^{(i)} \right) / i$
- ▶ Rebuild global △ from scratch
- Smarter data structure? Likely overkill

Update core upper bounds?

Core-guided Optimisation: Hardening

- Suppose wx appears in the (reformulated) objective
- **Suppose** $u \ge f_o \ge f_r \ge l$
- If w + l > u, then x = 0

Core-guided Optimisation: Hardening

- Suppose wx appears in the (reformulated) objective
- **Suppose** $u \ge f_o \ge f_r \ge l$
- If w + l > u, then x = 0

- Log using RUP rule
- ▶ x = 1 immediately contradicts $f_r := \Delta + f_o \le u$

Example rup ~x1

Take Home

Done

- Conflict analysis
- LP infeasibility
- Solution-improving optimisation
- Core-guided optimisation

Take Home

Done

- Conflict analysis
- LP infeasibility
- Solution-improving optimisation
- Core-guided optimisation

To Do

- LP integrality cuts
- Complete core-guided optimisation
- Complete deletion

Take Home

Done

- Conflict analysis
- LP infeasibility
- Solution-improving optimisation
- Core-guided optimisation

To Do

- LP integrality cuts
- Complete core-guided optimisation
- Complete deletion

Thanks!