
Speeding Up Pseudo-Boolean Propagation

1st International Workshop on
Solving Linear Optimization Problems for Pseudo-Booleans and Yonder

Lund, Sweden

November 7, 2024

Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-Carbonell, Rui Zhao

Technical University of Catalonia

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 1 / 32

Speeding Up Pseudo-Boolean Propagation

1 Preliminaries
Conflict-Driven PB Solving
Unit Propagation Mechanisms

2 Precise Evaluation Methodology

3 Improvements to Pseudo-Boolean Propagation
Constraint Loads
Garbage Collection Frequency
Watchlists Elements Deletion
Circular Search

4 Hybrid Approach Evaluation
A Hybrid Approach
Improvements in Overall Runtime

5 Conclusions and Future Work

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 2 / 32

Speeding Up Pseudo-Boolean Propagation

1 Preliminaries
Conflict-Driven PB Solving
Unit Propagation Mechanisms

2 Precise Evaluation Methodology

3 Improvements to Pseudo-Boolean Propagation
Constraint Loads
Garbage Collection Frequency
Watchlists Elements Deletion
Circular Search

4 Hybrid Approach Evaluation
A Hybrid Approach
Improvements in Overall Runtime

5 Conclusions and Future Work

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 3 / 32

Conflict-Driven PB Solving

SAT technology has huge impact in diverse areas, but has some limits:

1 No polynomial proofs for some well-known problems.
2 No natural encoding of some constraints.

Pseudo-Boolean(PB) solving is a remarkable alternative to SAT with:

1 Exponentially stronger underlying proof system.
2 More involved reasoning procedures.

The dominant algorithm for PB solving is Conflict-Driven
Pseudo-Boolean solving, where unit propagation is very time
consuming.

GOAL OF THIS PAPER: improve the performance of unit propagation
by a more careful implementation (essentially no novel algorithms).

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 4 / 32

Propagation of Clauses

Two-watched literal scheme:
If two non-false literals exist, no conflict or propagation is possible.

Assignment (trail) ρ: p̄

F U U U U

p q̄ r s̄ t
↑ ↑

p ∨ q̄ ∨ r ∨ s̄ ∨ t

Watch List (`): a list of clauses where ` is being watched.

Whenever ` becomes false, traverse its watch list checking for propagation.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 5 / 32

Propagation of Clauses

Two-watched literal scheme:
If two non-false literals exists, no conflict or propagation is possible.

Assignment (trail) ρ: p̄ q

F F U U U

p q̄ r s̄ t
↑ ↑

p ∨ q̄ ∨ r ∨ s̄ ∨ t

Watch List (`): a list of clauses where ` is being watched.

Whenever ` becomes false, traverse its watch list checking for propagation.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 5 / 32

Propagation of Clauses

Two-watched literal scheme:
If two non-false literals exists, no conflict or propagation is possible.

Assignment (trail) ρ: p̄ q r̄

F F F U U

p q̄ r s̄ t
↑ ↑

p ∨ q̄ ∨ r ∨ s̄ ∨ t

Watch List (`): a list of clauses where ` is being watched.

Whenever ` becomes false, traverse its watch list checking for propagation.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 5 / 32

Propagation of Clauses

Two-watched literal scheme:
If two non-false literals exists, no conflict or propagation is possible.

Assignment (trail) ρ: p̄ q r̄ t̄

F F F U F

p q̄ r s̄ t
↑ ↑

Cannot find literals to watch⇒ propagation of s̄

p ∨ q̄ ∨ r ∨ s̄ ∨ t

Watch List (`): a list of clauses where ` is being watched.

Whenever ` becomes false, traverse its watch list checking for propagation.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 5 / 32

Propagation of Cardinality Constraints

For a constraint of the form `1 + `2 + · · ·+ `n ≥ k , we have to watch k + 1
non-false literals.

Assignment (trail) ρ: s t̄

p + q̄ + r + s̄ + t ≥ 3 → propagation not detected !!

As for clauses:

If watched r is assigned false, solver tries to watch a replacement.

Unwatched literals cause no work.

Possible propagation when not enough watches.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 6 / 32

Propagation of PB Constraints

4p + 3q̄ + 2r + 2s̄ + t ≥ 10

For a constraint of the form C =
∑

i ci`i ≥ d ,

The slack is the maximum number we can obtain from the (lhs − rhs).

slack(C, ρ) = (
∑

`i not falsified byρ

ci)− d

Conflict found iff slack < 0.

Undefined ci`i will be propagated iff slack − ci < 0.

C is neither conflicting nor propagating if slack ≥ maxUndefCoeff (C).

To avoid updating maxUndefCoeff (C), we use
slack ≥ maxCoeff (C).

This is less precise, but more efficient.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 7 / 32

Propagation Example

slack(C, ρ) = (
∑

`i not falsified byρ

ci)− d

4p + 3q̄ + 2r + 2s̄ + t ≥ 10

trail (ρ) slack results

ρ = ∅ 2 p, q̄ are propagated (more than one!)
...

ρ = p, q̄, s, t̄ −1 conflicting (even if some lits are undefined)

For keeping slack up to date, we need to watch all literals in every constraint:
counter-based propagation

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 8 / 32

RoundingSat PB Solver

RoundingSat is probably the fastest PB solver [Dev20]:

Rigorous experimental evaluations of propagation mechanisms.

Strong evidence of design decision.

Proposal of a hybrid approach.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 9 / 32

Counter-based Unit Propagation
Counter-based propagation in RoundingSat:

Function Counter-Propagation-in-RoundingSat(Watch w):
// <ctrPtr,idx>

Constraint ctr := w .ctrPtr

if ctr.isDeleted then return // always executed
if ctr.type 6= PB-counter then return // always executed

slack := ctr .slack
slack -= ctr[w.idx].coef // decrease slack

if slack < 0 then return CONFLICT

if slack < ctr.maxCoef then // possible propagation

i := 0
while i < ctr.size and slack < ctr[i].coef do

if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
i := i + 1

return OK

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 10 / 32

Watched-based Propagation of PB Constraints

As for clauses, the goal is to watch a hopefully small set of non-false lits that
guarantee that no propagation/conflict exists.

For a constraint of the form C =
∑

i ci`i ≥ d ,

The watchslack is: the number we can obtain from the watches(C)− rhs.

watchslack(C, ρ) = (
∑

`i not falsified byρ,
`i∈watches(C)

ci)− d

C is neither conflicting nor propagating if
watchslack >= maxUndefCoeff (C) (or maxCoeff (C) for simplicity)

Only when not enough watches:

Conflict found iff watchslack < 0.

Undefined ci`i will be propagated iff watchslack − ci < 0.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 11 / 32

Watched-based Unit Propagation

Function Watched-Propagation-in-RoundingSat(Watch w):
Constraint ctr := w .ctrPtr
if ctr.isDeleted or ctr.isNot-PBWatched then return

wslack := ctr .wslack
wslack -= ctr[w.idx].coef // decrease watchslack

i := 0
while i < ctr.size and wslack < ctr.maxCoef do

Lit lit := ctr [i].lit
if (lit is not False and not watched) then

watch ith lit() // watch more literals
i := i + 1

if wslack ≥ ctr .maxCoef then
unwatch w.idxth lit() // unwatch current literal
return OK

if wslack < 0 then return CONFLICT
i := 0 and check for propagation() // possible propag.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 12 / 32

Speeding Up Pseudo-Boolean Propagation

1 Preliminaries
Conflict-Driven PB Solving
Unit Propagation Mechanisms

2 Precise Evaluation Methodology

3 Improvements to Pseudo-Boolean Propagation
Constraint Loads
Garbage Collection Frequency
Watchlists Elements Deletion
Circular Search

4 Hybrid Approach Evaluation
A Hybrid Approach
Improvements in Overall Runtime

5 Conclusions and Future Work

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 13 / 32

Precise Evaluation Methodology
Problem: even subtle changes in unit propagation have huge impact on
search space traversal

This might blur the improvements on unit propagation implementation.
Seed Time(s) Decs Confs

0 174.3 3.7 M 314 K
1 247.6 2.1 M 473 K
2 166.5 3.9 M 300 K
3 162.9 2.6 M 271 K

Seed Time(s) Decs Confs
4 182.2 1.4 M 270 K
5 224.7 2.5 M 423 K
6 248.5 2.6 M 463 K
7 148.7 1.8 M 230 K

Solution: force solvers to explore the same search space by providing
additional information in a log file, containing

Decision literals.
Lemmas to be learned.
Next cleanup/restart time, among others.

Experimental setting: run RoundingSat solver on logs for around 100
benchmarks selected from OPT-SMALLINT-LIN category in the PB
Competition 2016.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 14 / 32

Speeding Up Pseudo-Boolean Propagation

1 Preliminaries
Conflict-Driven PB Solving
Unit Propagation Mechanisms

2 Precise Evaluation Methodology

3 Improvements to Pseudo-Boolean Propagation
Constraint Loads
Garbage Collection Frequency
Watchlists Elements Deletion
Circular Search

4 Hybrid Approach Evaluation
A Hybrid Approach
Improvements in Overall Runtime

5 Conclusions and Future Work

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 15 / 32

(1) Minimizing the Number of Constraint Loads
CaDiCaL: ”the cache line with the clause data is forced to be loaded here
and thus this first memory access below is the real hot-spot of the solver”.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 16 / 32

Counter-based Unit Propagation

Function Counter-Propagation-in-RoundingSat(Watch w):
// <ctrPtr,idx>

Constraint ctr := w .ctrPtr

if ctr.isDeleted then return // always executed
if ctr.type 6= PB-counter then return // always executed

slack := ctr .slack
slack -= ctr[w.idx].coef // decrease slack

if slack < 0 then return CONFLICT

if slack < ctr.maxCoef then // possible propagation

i := 0
while i < ctr.size and slack < ctr[i].coef do

if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
i := i + 1

return OK

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 17 / 32

(1) Minimizing the Number of Constraint Loads

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 18 / 32

Improved Counter-based Propagation

Function Improved-Counter-based-Propagation(Watch w):
id := w .identifier()
if slackMM[id].isDeleted then return
if w.type() 6= PB-counter then return
slackMC := slackMM[id].slack
slackMC -= w.coef // decrease slack

if slackMC < 0 then // possible propagation
Constraint ctr := constraints[id] // loading constraint
slack = slackMC + ctr.maxCoef

if slack < 0 then return CONFLICT
i := 0
while i < ctr.size and slack < ctr[i].coef do

if isUndef(ctr[i].lit) then propagate(ctr [i].lit)
i := i + 1

return OK

For counters, the % of watch list elements that require loading the constraint
is on average (6.29%), and median (1.26%). (less impact for watch.)

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 19 / 32

Impact of Constraint Loads

Step 1: Constraint loads vs. original procedure.

Caption is in the form of ”Enhancement vs. Baseline”.

Ratio is obained by ”large time / small time”.

Positive: (enhancement is better), Negative: (baseline is better).

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 20 / 32

(2) Garbage Collection Frequency

Cleanup phase in RoundingSat:

1 Some constraints are marked as deleted, but they are not yet removed
from the constraints database or the watch lists.

2 Apply garbage collection only if the wasted memory is large enough:

Constraints reallocation.
Rebuilding watch lists.

Suggestion: apply garbage collection in every cleanup phase.

More compact constraint database and watch lists.

No need the 1-bit for deletion in slackMM vector.

No need to check deletion in propagation procedure.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 21 / 32

Impact of Garbage Collection Frequency
Note that we accumulate the improvements in our implementation.

That is, we now compare constr. load vs constr. load + garbage collection.

Step 2: Garbage fixed vs. constraint loads.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 22 / 32

(3) Watchlists Elements Deletion

Watch list elem. removal in RoundingSat done by moving last element.
(needed for counter, due to the co-existence of clauses, cardinalities.)

Far locations, only one write.
better for watch

In state-of-art SAT solvers (e.g. CaDiCaL, Kissat, MiniSAT), two pointers
are kept, representing the reading and writing position, respectively.

Close locations, but more writes.
better for counter

Table: Watch list length

Scheme Average Median

Counter 2365 564

Watched 203 71

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 23 / 32

Impact of WL Element Deletion

Step 3: WL element deletion vs. garbage fixed.

Compared with bad points for watch, the improvement for counter is
more.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 24 / 32

(4) Circular Search For Watched Literals

When a watched literal becomes false, we may need to watch more
literals to guarantee watchslack ≥ maxCoef .

Watching an inactive literal (rarely becomes false), saves a lot of work
in propagation.

Always searching for watched literals from the beginning makes it
difficult for inactive literals at the end of a constraint to be watched.

A solution is to search in a circular way, storing the last position tried and
searching from the next position in the next time.
(A 2nd search is required only if there is a backjump in between.)

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 25 / 32

Impact of Circular Search

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 26 / 32

Improved System vs. Original System

In the end, the two approaches are very competitive, mainly because the
number of constraints to be loaded is super similar.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 27 / 32

Speeding Up Pseudo-Boolean Propagation

1 Preliminaries
Conflict-Driven PB Solving
Unit Propagation Mechanisms

2 Precise Evaluation Methodology

3 Improvements to Pseudo-Boolean Propagation
Constraint Loads
Garbage Collection Frequency
Watchlists Elements Deletion
Circular Search

4 Hybrid Approach Evaluation
A Hybrid Approach
Improvements in Overall Runtime

5 Conclusions and Future Work

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 28 / 32

A Hybrid Approach
Idea: Decide whether to use counter/watches for each constraint.

A set of lits is watched to guarantee watchslack ≥ maxCoef

A threshold α ∈ [0...1] is set. If the % of watched lits is smaller than α,
we use watches (otherwise counters).

Our results:
1 Best threshold: 0.2 (original), 0.1 (improved).
2 Median of % watched constraints: 72% (original), 56% (improved).

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 29 / 32

Improvements in Overall Runtime
Experiments: do not use logs. Run RoundingSat on 1600 benchmarks in
the category OPT-SMALLINT-LIN. (time limit: 3600s)

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 30 / 32

Speeding Up Pseudo-Boolean Propagation

1 Preliminaries
Conflict-Driven PB Solving
Unit Propagation Mechanisms

2 Precise Evaluation Methodology

3 Improvements to Pseudo-Boolean Propagation
Constraint Loads
Garbage Collection Frequency
Watchlists Elements Deletion
Circular Search

4 Hybrid Approach Evaluation
A Hybrid Approach
Improvements in Overall Runtime

5 Conclusions and Future Work

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 31 / 32

Conclusions and Future Work

Conclusions:

The novel methodology allow to precisely evaluate the propagation
mechanisms.

A more careful implementation has improved the propagation
procedures used in RoundingSat.

Future work:

Precisely analyze the impact of maintaining (an upper bound on) the
maximum coefficient of undefined literals.

Compute slacks with respect to the whole assignment. (Instead of only
the current propagated trail)

Enhance the hybrid method by dynamically analyzing the literal activities
in a constraint.

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 32 / 32

Questions!

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 32 / 32

Improvements Step by Step

SLOPPY ’24 Workshop (Lund, Sweden) Speeding Up Pseudo-Boolean Propagation November 7, 2024 32 / 32

	Preliminaries
	Conflict-Driven PB Solving
	Unit Propagation Mechanisms

	Precise Evaluation Methodology
	Improvements to Pseudo-Boolean Propagation
	Constraint Loads
	Garbage Collection Frequency
	Watchlists Elements Deletion
	Circular Search

	Hybrid Approach Evaluation
	A Hybrid Approach
	Improvements in Overall Runtime

	Conclusions and Future Work

