Certifying MIP-based Presolve Reductions for 0-1 Integer Linear Programs

Andy Oertel Lund University & University of Copenhagen

WHOOPS 2024

May 24, 2024

Based on work together with Ambros Gleixner, Alexander Hoen, and Jakob Nordström to appear at CPAIOR 2024

0-1 Integer Linear Programming (ILP)

Input: 0-1 integer linear program (or pseudo-Boolean formula)

- Integer linear objective function and collection of integer linear inequalities/constraints
- Variables with domain {0, 1}
- Output:
 - Optimal value of objective subject to satisfying all inequalities

- Coefficients are real-valued
- Some variables are integer and some are real-valued

- Coefficients are real-valued
- Some variables are integer and some are real-valued

Is this relevant?

- Incredibly powerful paradigm
- Used daily to solve real-world problems in logistics, scheduling, ...

- Coefficients are real-valued
- Some variables are integer and some are real-valued

Is this relevant?

- Incredibly powerful paradigm
- Used daily to solve real-world problems in logistics, scheduling, ...

Why study 0-1 ILP?

0-1 ILP is very important special case

Andy Oertel

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00●00	0000000	0000	00000	O

0-1 ILP (or MIP) Solving in Practice

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00●00	0000000	0000	00000	O

0-1 ILP (or MIP) Solving in Practice

- Instances are presolved before given to solver
- Presolving is also known as preprocessing in other communities

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
000●0	0000000	0000	00000	O

Importance of Presolving?

Performance analysis of presolve reductions in MIP [ABG⁺20]

		default	disabled presolving			g
bracket	models	timeout	timeout	faster	slower	times slower
all	3047	547	1035	255	1755	3.36
\geq 0 sec	2511	16	504	255	1755	4.52
\geq 1 sec	1944	16	504	210	1634	6.60
\geq 10 sec	1575	16	504	141	1380	9.05
\geq 100 sec	1099	16	504	86	983	12.36
\geq 1000 sec	692	16	504	34	643	19.48

Importance of Presolving?

Performance analysis of presolve reductions in MIP [ABG⁺20]

		default	disabled presolving			g
bracket	models	timeout	timeout	faster	slower	times slower
all	3047	547	1035	255	1755	3.36
\geq 0 sec	2511	16	504	255	1755	4.52
\geq 1 sec	1944	16	504	210	1634	6.60
\geq 10 sec	1575	16	504	141	1380	9.05
\geq 100 sec	1099	16	504	86	983	12.36
\geq 1000 sec	692	16	504	34	643	19.48

Presolving is one of the most important heuristic in mixed-integer programming!

Preliminary work:

Proof logging for branch-and-cut MIP using VIPR [CGS17]

Preliminary work:

Proof logging for branch-and-cut MIP using VIPR [CGS17]

However...

VIPR does not extend to presolving

Preliminary work:

Proof logging for branch-and-cut MIP using VIPR [CGS17]

However...

VIPR does not extend to presolving

Our contribution

- Proof logging for 0-1 ILP presolving
- Proofs verified using VERIPB
- End-to-end certification for state-of-the-art 0-1 ILP solving

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	●000000	0000	00000	O

Basic Notation

- Boolean variable x: with domain 0 (false) and 1 (true)
- Literal ℓ : *x* or negation $\overline{x} = 1 x$
- Pseudo-Boolean (PB) constraint: integer linear inequality over literals

$$3x_1 + 2x_2 + 5\overline{x}_3 \ge 5$$

Any 0-1 ILP constraint is PB constraint

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	●000000	0000	00000	O

Basic Notation

- Boolean variable x: with domain 0 (false) and 1 (true)
- Literal ℓ : *x* or negation $\overline{x} = 1 x$
- Pseudo-Boolean (PB) constraint: integer linear inequality over literals

$$3x_1 + 2x_2 + 5\overline{x}_3 \ge 5$$

- Any 0-1 ILP constraint is PB constraint
- Equality constraint: syntactic sugar for 2 inequalities

$$3x_1 + 2x_2 + 5\overline{x}_3 = 5 \longrightarrow 3x_1 + 2x_2 + 5\overline{x}_3 \ge 5$$

 $3x_1 + 2x_2 + 5\overline{x}_3 \le 5$

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	○●○○○○○	0000	00000	O

Literal axiom

 $x \ge 0$ $\overline{x} \ge 0$

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	○●○○○○○	0000	00000	O

► Literal axiom

$$x \ge 0$$
 $\overline{x} \ge 0$

► Addition

Addition
$$\frac{x_1 + 2\bar{x}_2 + 2\bar{x}_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4} \quad \overline{x}_2 + 3x_3 \ge 3$$

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	○●○○○○○	0000	00000	O

► Literal axiom

$$x \ge 0$$
 $\overline{x} \ge 0$

► Addition

Addition
$$\frac{x_1 + 2\bar{x}_2 + 2\bar{x}_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4} \frac{\bar{x}_2 + 3x_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4}$$

Multiplication

Multiply by 2
$$\frac{x_1 + 2\overline{x}_2 \ge 3}{2x_1 + 4\overline{x}_2 \ge 6}$$

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	○●○○○○○	0000	00000	O

Literal axiom

$$x \ge 0$$
 $\overline{x} \ge 0$

► Addition

Addition
$$\frac{x_1 + 2\bar{x}_2 + 2\bar{x}_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4} \frac{\bar{x}_2 + 3x_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4}$$

Multiplication

Multiply by 2
$$\frac{x_1 + 2\overline{x}_2 \ge 3}{2x_1 + 4\overline{x}_2 \ge 6}$$

Division (and rounding up)

Divide by 2
$$\frac{2x_1 + 2\overline{x}_2 + 4x_3 \ge 5}{x_1 + \overline{x}_2 + 2x_3 \ge 2.5}$$

Andy Oertel

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	○●○○○○○	0000	00000	O

Literal axiom

$$x \ge 0$$
 $\overline{x} \ge 0$

► Addition

Addition
$$\frac{x_1 + 2\bar{x}_2 + 2\bar{x}_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4} \frac{\bar{x}_2 + 3x_3 \ge 3}{x_1 + 3\bar{x}_2 + x_3 \ge 4}$$

Multiplication

Multiply by 2
$$\frac{x_1 + 2\overline{x}_2 \ge 3}{2x_1 + 4\overline{x}_2 \ge 6}$$

Division (and rounding up)

Divide by 2
$$\frac{2x_1 + 2\overline{x}_2 + 4x_3 \ge 5}{x_1 + \overline{x}_2 + 2x_3 \ge 3}$$

Andy Oertel

Strengthening Rules for Cutting Planes (1/2)

Sometimes we want to add or remove solutions

Strengthening Rules for Cutting Planes (1/2)

Sometimes we want to add or remove solutions

Redundance-based strengthening:

- Based on [BT19, GN21] and inspired by [JHB12]
- Requires substitution ω (mapping variables to truth values or literals)
- ▶ We can introduce *C* with respect to constraints *F* and objective *f* if

$$F \cup \{\neg C\} \vDash \{F \cup C\} \upharpoonright_{\omega} \cup \{f \ge f \upharpoonright_{\omega}\}$$

- \blacktriangleright ω has to be given explicitly
- Implication should be trivial to check

Strengthening Rules for Cutting Planes (2/2)

Strengthening useful for:

- Symmetry breaking
- Without loss of generality reasoning
- Introducing extension variables

Strengthening Rules for Cutting Planes (2/2)

Strengthening useful for:

- Symmetry breaking
- Without loss of generality reasoning
- Introducing extension variables

Additional strengthening rule:

- So-called dominance-based strengthening rule not needed for this talk
- See [BGMN23] for details

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	0000●00	0000	00000	O

Deletion

Problem:

- Deleting constraints arbitrarily is unsound
- Can introduce better than optimal solution
- Deletion needs to be restricted

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	0000●00	0000	00000	O

Deletion

Problem:

- Deleting constraints arbitrarily is unsound
- Can introduce better than optimal solution
- Deletion needs to be restricted

Solution:

- Constraint *C* can only be deleted if
 - C in derived set
 - C rederivable by redundance-based strengthening from core set without C

Objective Function Update

Effect:

Changes objective function from *f*_{old} to *f*_{new}

Check:

• Equality $f_{old} = f_{new}$ trivially implied by constraints

Objective Function Update

Effect:

Changes objective function from fold to fnew

Check:

• Equality $f_{old} = f_{new}$ trivially implied by constraints

Update specification:

- ► Give new objective *f*_{new}
 - Bad for big objectives and small changes
- Give difference between new and old objective $f_{new} f_{old}$

- Naturally represents reasoning in solvers and presolvers
- Substitutions for redundance-based strengthening become complicated to impossible

- Naturally represents reasoning in solvers and presolvers
- Substitutions for redundance-based strengthening become complicated to impossible

Example:

$$\begin{array}{ccc} \min & x_1 + x_2 \\ \text{s.t.} & x_1 + x_2 + \overline{x}_3 + \overline{x}_4 = 3 \end{array} \longrightarrow \begin{array}{ccc} \min & x_3 + x_4 + 1 \\ \text{s.t.} & x_1 + x_2 + \overline{x}_3 + \overline{x}_4 = 3 \end{array}$$

- Naturally represents reasoning in solvers and presolvers
- Substitutions for redundance-based strengthening become complicated to impossible

Example:

▶ $x_2 \ge 1$ by redundance-based strengthening with substitution $\{x_2 \mapsto 1\}$

- Naturally represents reasoning in solvers and presolvers
- Substitutions for redundance-based strengthening become complicated to impossible

Example:

- $x_2 \ge 1$ by redundance-based strengthening with substitution $\{x_2 \mapsto 1\}$
- For the second second
- But this is not required if objective is updated

In general: Certifying Presolving

How to certify presolving?

- Presolving can and will change solution space
- Soundness of proof system guarantees that optimal value does not change
- Check that derived 0-1 ILP in proof is equivalent to presolved 0-1 ILP

In general: Certifying Presolving

How to certify presolving?

- Presolving can and will change solution space
- Soundness of proof system guarantees that optimal value does not change
- Check that derived 0-1 ILP in proof is equivalent to presolved 0-1 ILP

Guarantee:

- Original 0-1 ILP has same optimal value as presolved 0-1 ILP
- Except for logged solutions (especially optimal solutions)

Introduction 00000	Proof Logging 0000000	Certified Presolving 0●00	Experiments 00000	Conclusion O
Example: Pr	obing			
min	$1x_1 + 2x_2 + 3x_3$			
s.t.	$x_1 + x_2 \ge 1$			
	$\overline{x}_1 + \overline{x}_2 + x_3 \ge 2$			
	$x_1 + x_2 + \overline{x}_3 + \overline{x}_4 + \overline{x}_5 \geq$	4		
	$\overline{x}_1 + \overline{x}_2 + x_3 + x_4 + x_5 \geq$	1		

Introduction 00000	Proof Logging 0000000	Certified Presolving 0●00		Experiments 00000	Conclusion O
Example: Pr	obing				
min	$1x_1 + 2x_2 + 3x_3$	n	nin	$1x_1 + 2x_2 + 3x_3$	
s.t.	$x_1 + x_2 \ge 1$	s	s.t.	$x_1 + x_2 \ge 1$	
	$\overline{x}_1 + \overline{x}_2 + x_3 \geq 2$			$\overline{x}_1 + \overline{x}_2 \ge 1$	
	$x_1 + x_2 + \overline{x}_3 + \overline{x}_4 + \overline{x}_5 \ge$	$4 \longrightarrow$		$x_1 + x_2 + \overline{x}_4 + \overline{x}_5 \geq 4$	
	$\overline{x}_1 + \overline{x}_2 + x_3 + x_4 + x_5 \geq$	1		$\overline{x}_1+\overline{x}_2+x_4+x_5\geq 0$	
				$x_3 \ge 1$	

• Detect that $x_3 = 1$ by unit propagation

Certification:

- Add $x_3 \ge 1$ by reverse unit propagation
- ▶ Use addition (and literal axiom) to eliminate *x*₃ in all constraints

Introduction Proof Logging Certified Presolving Experiments C 00000 00000 00000 00000 0	
---	--

Example: Objective Function Update

nin
$$1x_1 + 2x_2 + 3x_3$$

s.t. $x_1 + x_2 \ge 1$
 $\overline{x}_1 + \overline{x}_2 \ge 1$
 $x_1 + x_2 + \overline{x}_4 + \overline{x}_5 \ge 4$
 $\overline{x}_1 + \overline{x}_2 + x_4 + x_5 \ge 0$
 $x_3 \ge 1$

As x₃ = 1, we can set x₃ to 1 in the objective
x₃ ≥ 1 can be removed from the constraints

Introduction 00000	Proof Logging 000000	Certified Presolving 00●0		Experiments 00000	Conclusion O
Example: Ob	ojective Function Up	date			
min	$1x_1 + 2x_2 + 3x_3$	I	min	$1x_1 + 2x_2 + 3$	
s.t.	$x_1 + x_2 \ge 1$		s.t.	$x_1 + x_2 \ge 1$	
	$\overline{x}_1 + \overline{x}_2 \ge 1$			$\overline{x}_1 + \overline{x}_2 \ge 1$	
	$x_1 + x_2 + \overline{x}_4 + \overline{x}_5 \geq 4$	\longrightarrow		$x_1+x_2+\overline{x}_4+\overline{x}_5\geq 4$	
	$\overline{x}_1 + \overline{x}_2 + x_4 + x_5 \geq 0$			$\overline{x}_1+\overline{x}_2+x_4+x_5\geq 0$	
	$x_3 > 1$				

- As $x_3 = 1$, we can set x_3 to 1 in the objective
- $x_3 \ge 1$ can be removed from the constraints

Certification:

- Objective update rule checking if $1x_1 + 2x_2 + 3x_3 = 1x_1 + 2x_2 + 3$ implied
- Deletion of $x_3 \ge 1$ justified by substitution $\{x_3 \mapsto 1\}$

Andy Oertel

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	0000000	000●	00000	O

Example: Dominated Variable

$$\begin{array}{ll} \min & 1x_1 + 2x_2 + 3\\ \text{s.t.} & x_1 + x_2 \ge 1\\ & \overline{x}_1 + \overline{x}_2 \ge 1\\ & x_1 + x_2 + \overline{x}_4 + \overline{x}_5 \ge 4\\ & \overline{x}_1 + \overline{x}_2 + x_4 + x_5 \ge 0 \end{array}$$

▶ W.l.o.g. $x_1 \ge x_2$, as

- Coefficient of x_1 is at least coefficient of x_2 in all constraints
- Coefficient of x_1 is at most coefficient of x_2 in the objective

Introduction 00000		Proof Logging 0000000	Certified Presolving		Experiments 00000	Conclusion O
Example: I	Don	ninated Variable				
rr	nin	$1x_1 + 2x_2 + 3$		min	$1x_1 + 2x_2 + 3$	
S	s.t.	$x_1 + x_2 \ge 1$		s.t.	$x_1 + x_2 \ge 1$	
		$\overline{x}_1 + \overline{x}_2 \ge 1$			$\overline{x}_1 + \overline{x}_2 \ge 1$	
		$x_1 + x_2 + \overline{x}_4 + \overline{x}_5 \geq 4$	\longrightarrow		$x_1 + x_2 + \overline{x}_4 + \overline{x}_5 \geq 4$	
		$\overline{x}_1 + \overline{x}_2 + x_4 + x_5 \ge 0$			$\overline{x}_1 + \overline{x}_2 + x_4 + x_5 \geq 0$	
					$x_1 + \overline{x}_2 \ge 1$	

▶ W.l.o.g. $x_1 \ge x_2$, as

- Coefficient of x₁ is at least coefficient of x₂ in all constraints
- Coefficient of x_1 is at most coefficient of x_2 in the objective

Certification:

▶ Add $x_1 + \overline{x}_2 \ge 1$ by redundance-based strengthening using $\{x_1 \mapsto x_2, x_2 \mapsto x_1\}$

Experimental Setup

Tools:

- Added pseudo-Boolean proof logging to ILP presolver PAPILO¹
- Proof checked using proof checker VERIPB²

²https://gitlab.com/MIAOresearch/software/VeriPB

¹https://github.com/scipopt/papilo

Experimental Setup

Tools:

- Added pseudo-Boolean proof logging to ILP presolver PAPILO¹
- Proof checked using proof checker VERIPB²

Benchmarks:

- PB competition 2016 instances [Pse16]
- MIPLIB17 instances translated to OPB format [Dev20]

²https://gitlab.com/MIAOresearch/software/VeriPB

¹https://github.com/scipopt/papilo

Proof Logging Overhead in PAPILO

Test set	size	default	w/proof log	relative
PB16-dec	1398	0.050	0.077	1.54
MIPLIB01-dec	295	0.498	0.631	1.27
PB16-opt	532	0.439	0.565	1.29
MIPLIB01-opt	144	0.337	0.473	1.40

Certificate Checking Performance (1/2)

(a) PAPILO vs. VERIPB on PB16 instances.

(b) PAPILO vs. VERIPB on MIPLIB01 instances.

Certificate Checking Performance (2/2)

			PAPILO time (in s)		VeriPB	relative time w.r.t.	
Test set	size	verified	w/proof log	default	time (in s)	w/proof log	default
PB16-dec MIPLIB01-dec PB16-opt MIPLIB01-opt	1398 293 531 140	1398 261 520 133	0.076 0.55 0.78 1.38	0.050 0.42 0.44 0.27	1.28 17.36 16.17 10.40	16.81 31.78 20.74 7.53	25.54 41.37 36.75 38.32

Certificate Checking Performance (2/2)

			PAPILO time (in s)		VeriPB	relative tim	e w.r.t.
Test set	size	verified	w/proof log	default	time (in s)	w/proof log	default
PB16-dec MIPLIB01-dec PB16-opt MIPLIB01-opt	1398 293 531 140	1398 261 520 133	0.076 0.55 0.78 1.38	0.050 0.42 0.44 0.27	1.28 17.36 16.17 10.40	16.81 31.78 20.74 7.53	25.54 41.37 36.75 38.32

Most instances verified within 10 000s timeout

- Overhead can be explained by PAPILO having more context than VERIPB
- ► PAPILO parallelizes some tasks, VERIPB works only sequentially

Introduction	Proof Logging	Certified Presolving	Experiments	Conclusion
00000	0000000	0000	0000●	O

RUP vs. Cutting Planes

RUP:

▶ Just claim that constraint is implied, which is checked by unit propagation

Shorthand for "simple" cutting planes derivation

RUP vs. Cutting Planes

RUP:

- ▶ Just claim that constraint is implied, which is checked by unit propagation
- Shorthand for "simple" cutting planes derivation

For instances with at least 10 propagation reductions:

		R	RUP		cutting planes	
test set	size	verified	time [s]	verified	time [s]	relative
PB-dec	284	284	2.21	284	2.14	0.968
MIPLIB-dec	35	31	153.23	31	148.88	0.972
PB-opt	153	142	28.43	142	28.22	0.993
MIPLIB-opt	16	14	147.11	14	127.83	0.869

- 0-1 ILP seems like a good first step towards proof logging for MIP
- Presolving is an integral part to MIP solving
- Our approach provides proof logging for
 - 0-1 ILP presolving

- 0-1 ILP seems like a good first step towards proof logging for MIP
- Presolving is an integral part to MIP solving
- Our approach provides proof logging for
 - 0-1 ILP presolving
 - SAT solving (including advanced techniques) [GN21, BGMN23]
 - MaxSAT solving [VDB22, BBN⁺23]
 - Constraint Programming [EGMN20, GMN22, MM23]
 - Subgraph problems [GMN20, GMM⁺20, GMM⁺24]

- 0-1 ILP seems like a good first step towards proof logging for MIP
- Presolving is an integral part to MIP solving
- Our approach provides proof logging for
 - 0-1 ILP presolving
 - SAT solving (including advanced techniques) [GN21, BGMN23]
 - MaxSAT solving [VDB22, BBN⁺23]
 - Constraint Programming [EGMN20, GMN22, MM23]
 - Subgraph problems [GMN20, GMM⁺20, GMM⁺24]

Future research directions:

- Compare RUP/cutting planes approach with new annotated RUP
- Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems
- Generalize our approach to enumeration and counting problems

- 0-1 ILP seems like a good first step towards proof logging for MIP
- Presolving is an integral part to MIP solving
- Our approach provides proof logging for
 - 0-1 ILP presolving
 - SAT solving (including advanced techniques) [GN21, BGMN23]
 - MaxSAT solving [VDB22, BBN⁺23]
 - Constraint Programming [EGMN20, GMN22, MM23]
 - Subgraph problems [GMN20, GMM⁺20, GMM⁺24]

Future research directions:

- Compare RUP/cutting planes approach with new annotated RUP
- Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems
- Generalize our approach to enumeration and counting problems

Thank you for your attention!

References I

- [ABG⁺20] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. Presolve reductions in mixed integer programming. INFORMS Journal on Computing, 32(2):473–506, 2020.
- [BBN⁺23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.
- [BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August 2023. Preliminary version in AAAI '22.
- [BT19]
 Samuel R. Buss and Neil Thapen.

 DRAT proofs, propagation redundancy, and extended resolution.
 In Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing (SAT '19), volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

References II

- [CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.
 [CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming results. In Proceedings of the 19th International Conference on Integer Programming and Combinatorial Optimization (IPCO '17), volume 10328 of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.
 [DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny.
- [DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny. A proof system for certifying symmetry and optimality reasoning in integer programming. Technical Report 2311.03877, arXiv.org, November 2023.
- [Dev20] Jo Devriendt. Miplib 0-1 instances in opb format, May 2020.
- [EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI '20), pages 1486–1494, February 2020.

References III

 [GMM⁺20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
 Certifying solvers for clique and maximum common (connected) subgraph problems.
 In Proceedings of the 26th International Conference on Principles and Practice of Constraint Programming (CP '20), volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMM⁺24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan. End-to-end verification for subgraph solving.

In *Proceedings of the 368h AAAI Conference on Artificial Intelligence (AAAI '24)*, February 2024. To appear.

 [GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
 Subgraph isomorphism meets cutting planes: Solving with certified solutions.
 In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI '20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver.

In Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming (CP '22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August 2022.

References IV

[GN21]	Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI '21), pages 3768–3777, February 2021.
[JHB12]	Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR '12), volume 7364 of Lecture Notes in Computer Science, pages 355–370. Springer, June 2012.
[MM23]	Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of the 29th International Conference on Principles and Practice of Constraint Programming (CP '23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.
[Pse16]	Pseudo-Boolean competition 2016. https://www.cril.univ-artois.fr/PB16/, July 2016.
[VDB22]	Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR '22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.

References V