
Certifying MIP-based Presolve Reductions

for 0-1 Integer Linear Programs

Andy Oertel

Lund University & University of Copenhagen

WHOOPS 2024

May 24, 2024

Based on work together with Ambros Gleixner, Alexander Hoen, and Jakob Nordström

to appear at CPAIOR 2024



Introduction Proof Logging Certified Presolving Experiments Conclusion

0-1 Integer Linear Programming (ILP)

Input problem:

min 2x2 + 3x3

s.t. x1 + x2 + x3 ≥ 2

x2 + x3 + x4 ≥ 2

x1 − 2x2 − 2x3 + x4 ≥ 0

0-1 ILP Solver

Result:

SAT

Result:

optimal value 2

▶ Input: 0-1 integer linear program (or pseudo-Boolean formula)

▶ Integer linear objective function and collection of integer linear inequalities/constraints

▶ Variables with domain {0, 1}
▶ Output:

▶ Optimal value of objective subject to satisfying all inequalities

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 1/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Grand Goal: Mixed-Integer (Linear) Programming (MIP)

Input problem:

min 2.4x2 + 1.2x3

s.t. x1 + x2 + x3 ≥ 2.6

x1 + 1.7x2 ≤ 1.5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

x1, x2 ∈ Z, x3 ∈ R

MIP Solver

Result:

SAT

Result:

optimal value 1.92

▶ Coefficients are real-valued

▶ Some variables are integer and some are real-valued

Is this relevant?

▶ Incredibly powerful paradigm

▶ Used daily to solve real-world problems in logistics, scheduling, ...

Why study 0-1 ILP?

▶ 0-1 ILP is very important special case

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 2/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Grand Goal: Mixed-Integer (Linear) Programming (MIP)

Input problem:

min 2.4x2 + 1.2x3

s.t. x1 + x2 + x3 ≥ 2.6

x1 + 1.7x2 ≤ 1.5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

x1, x2 ∈ Z, x3 ∈ R

MIP Solver

Result:

SAT

Result:

optimal value 1.92

▶ Coefficients are real-valued

▶ Some variables are integer and some are real-valued

Is this relevant?

▶ Incredibly powerful paradigm

▶ Used daily to solve real-world problems in logistics, scheduling, ...

Why study 0-1 ILP?

▶ 0-1 ILP is very important special case

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 2/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Grand Goal: Mixed-Integer (Linear) Programming (MIP)

Input problem:

min 2.4x2 + 1.2x3

s.t. x1 + x2 + x3 ≥ 2.6

x1 + 1.7x2 ≤ 1.5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

x1, x2 ∈ Z, x3 ∈ R

MIP Solver

Result:

SAT

Result:

optimal value 1.92

▶ Coefficients are real-valued

▶ Some variables are integer and some are real-valued

Is this relevant?

▶ Incredibly powerful paradigm

▶ Used daily to solve real-world problems in logistics, scheduling, ...

Why study 0-1 ILP?

▶ 0-1 ILP is very important special case

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 2/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

0-1 ILP (or MIP) Solving in Practice

0-1 ILP 0-1 ILP Solver Result

▶ Instances are presolved before given to solver

▶ Presolving is also known as preprocessing in other communities

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 3/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

0-1 ILP (or MIP) Solving in Practice

0-1 ILP

0-1 ILP

Presolver
0-1 ILP Solver Result

Presolved

0-1 ILP

▶ Instances are presolved before given to solver

▶ Presolving is also known as preprocessing in other communities

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 3/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Importance of Presolving?

▶ Performance analysis of presolve reductions in MIP [ABG
+

20]

default disabled presolving

bracket models timeout timeout faster slower times slower

all 3047 547 1035 255 1755 3.36

≥ 0 sec 2511 16 504 255 1755 4.52

≥ 1 sec 1944 16 504 210 1634 6.60

≥ 10 sec 1575 16 504 141 1380 9.05

≥ 100 sec 1099 16 504 86 983 12.36

≥ 1000 sec 692 16 504 34 643 19.48

Presolving is one of the most important heuristic in mixed-integer programming!

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 4/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Importance of Presolving?

▶ Performance analysis of presolve reductions in MIP [ABG
+

20]

default disabled presolving

bracket models timeout timeout faster slower times slower

all 3047 547 1035 255 1755 3.36

≥ 0 sec 2511 16 504 255 1755 4.52

≥ 1 sec 1944 16 504 210 1634 6.60

≥ 10 sec 1575 16 504 141 1380 9.05

≥ 100 sec 1099 16 504 86 983 12.36

≥ 1000 sec 692 16 504 34 643 19.48

Presolving is one of the most important heuristic in mixed-integer programming!

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 4/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Our Result

0-1 ILP

0-1 ILP

Presolver
0-1 ILP Solver Result

Presolved

0-1 ILP

Preliminary work:

▶ Proof logging for branch-and-cut MIP using VIPR [CGS17]

However...

▶ VIPR does not extend to presolving

Our contribution

▶ Proof logging for 0-1 ILP presolving

▶ Proofs verified using VeriPB

▶ End-to-end certification for state-of-the-art 0-1 ILP solving

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 5/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Our Result

0-1 ILP

0-1 ILP

Presolver
0-1 ILP Solver Result

Presolved

0-1 ILP

Preliminary work:

▶ Proof logging for branch-and-cut MIP using VIPR [CGS17]

However...

▶ VIPR does not extend to presolving

Our contribution

▶ Proof logging for 0-1 ILP presolving

▶ Proofs verified using VeriPB

▶ End-to-end certification for state-of-the-art 0-1 ILP solving

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 5/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Our Result

0-1 ILP

0-1 ILP

Presolver
0-1 ILP Solver Result

Presolved

0-1 ILP

Preliminary work:

▶ Proof logging for branch-and-cut MIP using VIPR [CGS17]

However...

▶ VIPR does not extend to presolving

Our contribution

▶ Proof logging for 0-1 ILP presolving

▶ Proofs verified using VeriPB

▶ End-to-end certification for state-of-the-art 0-1 ILP solving

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 5/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Basic Notation

▶ Boolean variable x : with domain 0 (false) and 1 (true)

▶ Literal ℓ: x or negation x = 1 − x
▶ Pseudo-Boolean (PB) constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

▶ Any 0-1 ILP constraint is PB constraint

▶ Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5

3x1 + 2x2 + 5x3 ≥ 5

3x1 + 2x2 + 5x3 ≤ 5

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 6/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Basic Notation

▶ Boolean variable x : with domain 0 (false) and 1 (true)

▶ Literal ℓ: x or negation x = 1 − x
▶ Pseudo-Boolean (PB) constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

▶ Any 0-1 ILP constraint is PB constraint

▶ Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5

3x1 + 2x2 + 5x3 ≥ 5

3x1 + 2x2 + 5x3 ≤ 5

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 6/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Cutting Planes Proof System [CCT87]

▶ Literal axiom

x ≥ 0 x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 2.5

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 7/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Cutting Planes Proof System [CCT87]

▶ Literal axiom

x ≥ 0 x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 2.5

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 7/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Cutting Planes Proof System [CCT87]

▶ Literal axiom

x ≥ 0 x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 2.5

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 7/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Cutting Planes Proof System [CCT87]

▶ Literal axiom

x ≥ 0 x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 2.5

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 7/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Cutting Planes Proof System [CCT87]

▶ Literal axiom

x ≥ 0 x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 3

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 7/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Strengthening Rules for Cutting Planes (1/2)

▶ Sometimes we want to add or remove solutions

Redundance-based strengthening:

▶ Based on [BT19, GN21] and inspired by [JHB12]

▶ Requires substitution ω (mapping variables to truth values or literals)

▶ We can introduce C with respect to constraints F and objective f if

F ∪ {¬C} ⊨ {F ∪ C}↾ω ∪{f ≥ f ↾ω}

▶ ω has to be given explicitly

▶ Implication should be trivial to check

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 8/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Strengthening Rules for Cutting Planes (1/2)

▶ Sometimes we want to add or remove solutions

Redundance-based strengthening:

▶ Based on [BT19, GN21] and inspired by [JHB12]

▶ Requires substitution ω (mapping variables to truth values or literals)

▶ We can introduce C with respect to constraints F and objective f if

F ∪ {¬C} ⊨ {F ∪ C}↾ω ∪{f ≥ f ↾ω}

▶ ω has to be given explicitly

▶ Implication should be trivial to check

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 8/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Strengthening Rules for Cutting Planes (2/2)

Strengthening useful for:

▶ Symmetry breaking

▶ Without loss of generality reasoning

▶ Introducing extension variables

Additional strengthening rule:

▶ So-called dominance-based strengthening rule not needed for this talk

▶ See [BGMN23] for details

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 9/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Strengthening Rules for Cutting Planes (2/2)

Strengthening useful for:

▶ Symmetry breaking

▶ Without loss of generality reasoning

▶ Introducing extension variables

Additional strengthening rule:

▶ So-called dominance-based strengthening rule not needed for this talk

▶ See [BGMN23] for details

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 9/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Deletion

Problem:

▶ Deleting constraints arbitrarily is unsound

▶ Can introduce better than optimal solution

▶ Deletion needs to be restricted

Solution:

▶ Constraint C can only be deleted if

▶ C in derived set

▶ C rederivable by redundance-based strengthening from core set without C

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 10/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Deletion

Problem:

▶ Deleting constraints arbitrarily is unsound

▶ Can introduce better than optimal solution

▶ Deletion needs to be restricted

Solution:

▶ Constraint C can only be deleted if

▶ C in derived set

▶ C rederivable by redundance-based strengthening from core set without C

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 10/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Objective Function Update

Effect:

▶ Changes objective function from fold to fnew

Check:

▶ Equality fold = fnew trivially implied by constraints

Update specification:

▶ Give new objective fnew
▶ Bad for big objectives and small changes

▶ Give difference between new and old objective fnew − fold

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 11/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Objective Function Update

Effect:

▶ Changes objective function from fold to fnew

Check:

▶ Equality fold = fnew trivially implied by constraints

Update specification:

▶ Give new objective fnew
▶ Bad for big objectives and small changes

▶ Give difference between new and old objective fnew − fold

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 11/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Why Add an Objective Function Update Rule?

▶ Naturally represents reasoning in solvers and presolvers

▶ Substitutions for redundance-based strengthening become complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 = 3

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 = 3

▶ x2 ≥ 1 by redundance-based strengthening with substitution {x2 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ x1 + 1 has to be shown in subproof

▶ But this is not required if objective is updated

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 12/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Why Add an Objective Function Update Rule?

▶ Naturally represents reasoning in solvers and presolvers

▶ Substitutions for redundance-based strengthening become complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 = 3

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 = 3

▶ x2 ≥ 1 by redundance-based strengthening with substitution {x2 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ x1 + 1 has to be shown in subproof

▶ But this is not required if objective is updated

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 12/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Why Add an Objective Function Update Rule?

▶ Naturally represents reasoning in solvers and presolvers

▶ Substitutions for redundance-based strengthening become complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 = 3

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 = 3

▶ x2 ≥ 1 by redundance-based strengthening with substitution {x2 7→ 1}

▶ If objective unchanged, then x1 + x2 ≥ x1 + 1 has to be shown in subproof

▶ But this is not required if objective is updated

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 12/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Why Add an Objective Function Update Rule?

▶ Naturally represents reasoning in solvers and presolvers

▶ Substitutions for redundance-based strengthening become complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 = 3

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 = 3

▶ x2 ≥ 1 by redundance-based strengthening with substitution {x2 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ x1 + 1 has to be shown in subproof

▶ But this is not required if objective is updated

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 12/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

In general: Certifying Presolving

How to certify presolving?

▶ Presolving can and will change solution space

▶ Soundness of proof system guarantees that optimal value does not change

▶ Check that derived 0-1 ILP in proof is equivalent to presolved 0-1 ILP

Guarantee:

▶ Original 0-1 ILP has same optimal value as presolved 0-1 ILP

▶ Except for logged solutions (especially optimal solutions)

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 13/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

In general: Certifying Presolving

How to certify presolving?

▶ Presolving can and will change solution space

▶ Soundness of proof system guarantees that optimal value does not change

▶ Check that derived 0-1 ILP in proof is equivalent to presolved 0-1 ILP

Guarantee:

▶ Original 0-1 ILP has same optimal value as presolved 0-1 ILP

▶ Except for logged solutions (especially optimal solutions)

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 13/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Example: Probing

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 + x3 ≥ 2

x1 + x2 + x3 + x4 + x5 ≥ 4

x1 + x2 + x3 + x4 + x5 ≥ 1

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x3 ≥ 1

▶ Detect that x3 = 1 by unit propagation

Certification:

▶ Add x3 ≥ 1 by reverse unit propagation

▶ Use addition (and literal axiom) to eliminate x3 in all constraints

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 14/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Example: Probing

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 + x3 ≥ 2

x1 + x2 + x3 + x4 + x5 ≥ 4

x1 + x2 + x3 + x4 + x5 ≥ 1

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x3 ≥ 1

▶ Detect that x3 = 1 by unit propagation

Certification:

▶ Add x3 ≥ 1 by reverse unit propagation

▶ Use addition (and literal axiom) to eliminate x3 in all constraints

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 14/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Example: Objective Function Update

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x3 ≥ 1

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

▶ As x3 = 1, we can set x3 to 1 in the objective

▶ x3 ≥ 1 can be removed from the constraints

Certification:

▶ Objective update rule checking if 1x1 + 2x2 + 3x3 = 1x1 + 2x2 + 3 implied

▶ Deletion of x3 ≥ 1 justified by substitution {x3 7→ 1}

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 15/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Example: Objective Function Update

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x3 ≥ 1

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

▶ As x3 = 1, we can set x3 to 1 in the objective

▶ x3 ≥ 1 can be removed from the constraints

Certification:

▶ Objective update rule checking if 1x1 + 2x2 + 3x3 = 1x1 + 2x2 + 3 implied

▶ Deletion of x3 ≥ 1 justified by substitution {x3 7→ 1}
Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 15/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Example: Dominated Variable

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x1 + x2 ≥ 1

▶ W.l.o.g. x1 ≥ x2, as

▶ Coefficient of x1 is at least coefficient of x2 in all constraints

▶ Coefficient of x1 is at most coefficient of x2 in the objective

Certification:

▶ Add x1 + x2 ≥ 1 by redundance-based strengthening using {x1 7→ x2, x2 7→ x1}

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 16/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Example: Dominated Variable

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x1 + x2 ≥ 1

▶ W.l.o.g. x1 ≥ x2, as

▶ Coefficient of x1 is at least coefficient of x2 in all constraints

▶ Coefficient of x1 is at most coefficient of x2 in the objective

Certification:

▶ Add x1 + x2 ≥ 1 by redundance-based strengthening using {x1 7→ x2, x2 7→ x1}
Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 16/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Experimental Setup

Tools:

▶ Added pseudo-Boolean proof logging to ILP presolver PaPILO
1

▶ Proof checked using proof checker VeriPB
2

Benchmarks:

▶ PB competition 2016 instances [Pse16]

▶ MIPLIB17 instances translated to OPB format [Dev20]

1https://github.com/scipopt/papilo
2https://gitlab.com/MIAOresearch/software/VeriPB

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 17/22

https://github.com/scipopt/papilo
https://gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging Certified Presolving Experiments Conclusion

Experimental Setup

Tools:

▶ Added pseudo-Boolean proof logging to ILP presolver PaPILO
1

▶ Proof checked using proof checker VeriPB
2

Benchmarks:

▶ PB competition 2016 instances [Pse16]

▶ MIPLIB17 instances translated to OPB format [Dev20]

1https://github.com/scipopt/papilo
2https://gitlab.com/MIAOresearch/software/VeriPB

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 17/22

https://github.com/scipopt/papilo
https://gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging Certified Presolving Experiments Conclusion

Proof Logging Overhead in PaPILO

Test set size default w/proof log relative

PB16-dec 1398 0.050 0.077 1.54

MIPLIB01-dec 295 0.498 0.631 1.27

PB16-opt 532 0.439 0.565 1.29

MIPLIB01-opt 144 0.337 0.473 1.40

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 18/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Certificate Checking Performance (1/2)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

timelimit

PaPILO (time in seconds)

V
e
r
i
P
B

(
t
i
m

e
i
n

s
e
c
o
n

d
s
)

(a) PaPILO vs. VeriPB on PB16 instances.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

timelimit

PaPILO (time in seconds)

V
e
r
i
P
B

(
t
i
m

e
i
n

s
e
c
o
n

d
s
)

(b) PaPILO vs. VeriPB on MIPLIB01 instances.

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 19/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Certificate Checking Performance (2/2)

PaPILO time (in s) VeriPB relative time w.r.t.

Test set size verified w/proof log default time (in s) w/proof log default

PB16-dec 1398 1398 0.076 0.050 1.28 16.81 25.54

MIPLIB01-dec 293 261 0.55 0.42 17.36 31.78 41.37

PB16-opt 531 520 0.78 0.44 16.17 20.74 36.75

MIPLIB01-opt 140 133 1.38 0.27 10.40 7.53 38.32

▶ Most instances verified within 10 000s timeout

▶ Overhead can be explained by PaPILO having more context than VeriPB

▶ PaPILO parallelizes some tasks, VeriPB works only sequentially

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 20/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Certificate Checking Performance (2/2)

PaPILO time (in s) VeriPB relative time w.r.t.

Test set size verified w/proof log default time (in s) w/proof log default

PB16-dec 1398 1398 0.076 0.050 1.28 16.81 25.54

MIPLIB01-dec 293 261 0.55 0.42 17.36 31.78 41.37

PB16-opt 531 520 0.78 0.44 16.17 20.74 36.75

MIPLIB01-opt 140 133 1.38 0.27 10.40 7.53 38.32

▶ Most instances verified within 10 000s timeout

▶ Overhead can be explained by PaPILO having more context than VeriPB

▶ PaPILO parallelizes some tasks, VeriPB works only sequentially

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 20/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

RUP vs. Cutting Planes

RUP:

▶ Just claim that constraint is implied, which is checked by unit propagation

▶ Shorthand for “simple” cutting planes derivation

For instances with at least 10 propagation reductions:

RUP cutting planes

test set size verified time [s] verified time [s] relative

PB-dec 284 284 2.21 284 2.14 0.968

MIPLIB-dec 35 31 153.23 31 148.88 0.972

PB-opt 153 142 28.43 142 28.22 0.993

MIPLIB-opt 16 14 147.11 14 127.83 0.869

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 21/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

RUP vs. Cutting Planes

RUP:

▶ Just claim that constraint is implied, which is checked by unit propagation

▶ Shorthand for “simple” cutting planes derivation

For instances with at least 10 propagation reductions:

RUP cutting planes

test set size verified time [s] verified time [s] relative

PB-dec 284 284 2.21 284 2.14 0.968

MIPLIB-dec 35 31 153.23 31 148.88 0.972

PB-opt 153 142 28.43 142 28.22 0.993

MIPLIB-opt 16 14 147.11 14 127.83 0.869

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 21/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Conclusion & Future Work

▶ 0-1 ILP seems like a good first step towards proof logging for MIP

▶ Presolving is an integral part to MIP solving

▶ Our approach provides proof logging for

▶ 0-1 ILP presolving

▶ SAT solving (including advanced techniques) [GN21, BGMN23]

▶ MaxSAT solving [VDB22, BBN
+

23]

▶ Constraint Programming [EGMN20, GMN22, MM23]

▶ Subgraph problems [GMN20, GMM
+

20, GMM
+

24]

Future research directions:

▶ Compare RUP/cutting planes approach with new annotated RUP

▶ Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems

▶ Generalize our approach to enumeration and counting problems

Thank you for your attention!

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 22/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Conclusion & Future Work

▶ 0-1 ILP seems like a good first step towards proof logging for MIP

▶ Presolving is an integral part to MIP solving

▶ Our approach provides proof logging for

▶ 0-1 ILP presolving

▶ SAT solving (including advanced techniques) [GN21, BGMN23]

▶ MaxSAT solving [VDB22, BBN
+

23]

▶ Constraint Programming [EGMN20, GMN22, MM23]

▶ Subgraph problems [GMN20, GMM
+

20, GMM
+

24]

Future research directions:

▶ Compare RUP/cutting planes approach with new annotated RUP

▶ Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems

▶ Generalize our approach to enumeration and counting problems

Thank you for your attention!

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 22/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Conclusion & Future Work

▶ 0-1 ILP seems like a good first step towards proof logging for MIP

▶ Presolving is an integral part to MIP solving

▶ Our approach provides proof logging for

▶ 0-1 ILP presolving

▶ SAT solving (including advanced techniques) [GN21, BGMN23]

▶ MaxSAT solving [VDB22, BBN
+

23]

▶ Constraint Programming [EGMN20, GMN22, MM23]

▶ Subgraph problems [GMN20, GMM
+

20, GMM
+

24]

Future research directions:

▶ Compare RUP/cutting planes approach with new annotated RUP

▶ Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems

▶ Generalize our approach to enumeration and counting problems

Thank you for your attention!

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 22/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Conclusion & Future Work

▶ 0-1 ILP seems like a good first step towards proof logging for MIP

▶ Presolving is an integral part to MIP solving

▶ Our approach provides proof logging for

▶ 0-1 ILP presolving

▶ SAT solving (including advanced techniques) [GN21, BGMN23]

▶ MaxSAT solving [VDB22, BBN
+

23]

▶ Constraint Programming [EGMN20, GMN22, MM23]

▶ Subgraph problems [GMN20, GMM
+

20, GMM
+

24]

Future research directions:

▶ Compare RUP/cutting planes approach with new annotated RUP

▶ Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems

▶ Generalize our approach to enumeration and counting problems

Thank you for your attention!

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 22/22



References I

[ABG
+

20] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger.

Presolve reductions in mixed integer programming.

INFORMS Journal on Computing, 32(2):473–506, 2020.

[BBN
+

23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.

Certified core-guided MaxSAT solving.

In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of

Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Certified dominance and symmetry breaking for combinatorial optimisation.

Journal of Artificial Intelligence Research, 77:1539–1589, August 2023.

Preliminary version in AAAI ’22.

[BT19] Samuel R. Buss and Neil Thapen.

DRAT proofs, propagation redundancy, and extended resolution.

In Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing (SAT ’19),
volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 1/5



References II

[CCT87] William Cook, Collette Rene Coullard, and György Turán.

On the complexity of cutting-plane proofs.

Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy.

Verifying integer programming results.

In Proceedings of the 19th International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’17), volume 10328 of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny.

A proof system for certifying symmetry and optimality reasoning in integer programming.

Technical Report 2311.03877, arXiv.org, November 2023.

[Dev20] Jo Devriendt.

Miplib 0-1 instances in opb format, May 2020.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Justifying all differences using pseudo-Boolean reasoning.

In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February 2020.

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 2/5



References III

[GMM
+

20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.

Certifying solvers for clique and maximum common (connected) subgraph problems.

In Proceedings of the 26th International Conference on Principles and Practice of Constraint Programming
(CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMM
+

24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.

End-to-end verification for subgraph solving.

In Proceedings of the 368h AAAI Conference on Artificial Intelligence (AAAI ’24), February 2024.

To appear.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Subgraph isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140,

July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

An auditable constraint programming solver.

In Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming
(CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August 2022.

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 3/5



References IV

[GN21] Stephan Gocht and Jakob Nordström.

Certifying parity reasoning efficiently using pseudo-Boolean proofs.

In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere.

Inprocessing rules.

In Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of

Lecture Notes in Computer Science, pages 355–370. Springer, June 2012.

[MM23] Matthew McIlree and Ciaran McCreesh.

Proof logging for smart extensional constraints.

In Proceedings of the 29th International Conference on Principles and Practice of Constraint Programming
(CP ’23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[Pse16] Pseudo-Boolean competition 2016.

https://www.cril.univ-artois.fr/PB16/, July 2016.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts.

QMaxSATpb: A certified MaxSAT solver.

In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 4/5

https://www.cril.univ-artois.fr/PB16/


References V

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 5/5


	Introduction
	Proof Logging
	Certified Presolving
	Experiments
	Conclusion
	Appendix

