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Introduction Proof Logging Certified Presolving Experiments Conclusion

0-1 Integer Linear Programming (ILP)

Input problem:

min 2x2 + 3x3

s.t. x1 + x2 + x3 ≥ 2

x2 + x3 + x4 ≥ 2

x1 − 2x2 − 2x3 + x4 ≥ 0

0-1 ILP Solver

Result:

SAT

Result:

optimal value 2

▶ Input: 0-1 integer linear program (or pseudo-Boolean formula)

▶ Integer linear objective function and collection of integer linear inequalities/constraints

▶ Variables with domain {0, 1}
▶ Output:

▶ Optimal value of objective subject to satisfying all inequalities

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 1/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

Grand Goal: Mixed-Integer (Linear) Programming (MIP)

Input problem:

min 2.4x2 + 1.2x3

s.t. x1 + x2 + x3 ≥ 2.6

x1 + 1.7x2 ≤ 1.5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

x1, x2 ∈ Z, x3 ∈ R

MIP Solver

Result:

SAT

Result:

optimal value 1.92

▶ Coefficients are real-valued

▶ Some variables are integer and some are real-valued

Is this relevant?

▶ Incredibly powerful paradigm

▶ Used daily to solve real-world problems in logistics, scheduling, ...

Why study 0-1 ILP?

▶ 0-1 ILP is very important special case
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0-1 ILP (or MIP) Solving in Practice

0-1 ILP 0-1 ILP Solver Result

▶ Instances are presolved before given to solver

▶ Presolving is also known as preprocessing in other communities
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Importance of Presolving?

▶ Performance analysis of presolve reductions in MIP [ABG
+

20]

default disabled presolving

bracket models timeout timeout faster slower times slower

all 3047 547 1035 255 1755 3.36

≥ 0 sec 2511 16 504 255 1755 4.52

≥ 1 sec 1944 16 504 210 1634 6.60

≥ 10 sec 1575 16 504 141 1380 9.05

≥ 100 sec 1099 16 504 86 983 12.36

≥ 1000 sec 692 16 504 34 643 19.48

Presolving is one of the most important heuristic in mixed-integer programming!
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Our Result

0-1 ILP

0-1 ILP

Presolver
0-1 ILP Solver Result

Presolved

0-1 ILP

Preliminary work:

▶ Proof logging for branch-and-cut MIP using VIPR [CGS17]

However...

▶ VIPR does not extend to presolving

Our contribution

▶ Proof logging for 0-1 ILP presolving

▶ Proofs verified using VeriPB

▶ End-to-end certification for state-of-the-art 0-1 ILP solving
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Basic Notation

▶ Boolean variable x : with domain 0 (false) and 1 (true)

▶ Literal ℓ: x or negation x = 1 − x
▶ Pseudo-Boolean (PB) constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

▶ Any 0-1 ILP constraint is PB constraint

▶ Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5

3x1 + 2x2 + 5x3 ≥ 5

3x1 + 2x2 + 5x3 ≤ 5
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Cutting Planes Proof System [CCT87]

▶ Literal axiom

x ≥ 0 x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 2.5
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Strengthening Rules for Cutting Planes (1/2)

▶ Sometimes we want to add or remove solutions

Redundance-based strengthening:

▶ Based on [BT19, GN21] and inspired by [JHB12]

▶ Requires substitution ω (mapping variables to truth values or literals)

▶ We can introduce C with respect to constraints F and objective f if

F ∪ {¬C} ⊨ {F ∪ C}↾ω ∪{f ≥ f ↾ω}

▶ ω has to be given explicitly

▶ Implication should be trivial to check

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 8/22
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Strengthening Rules for Cutting Planes (2/2)

Strengthening useful for:

▶ Symmetry breaking

▶ Without loss of generality reasoning

▶ Introducing extension variables

Additional strengthening rule:

▶ So-called dominance-based strengthening rule not needed for this talk

▶ See [BGMN23] for details
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Deletion

Problem:

▶ Deleting constraints arbitrarily is unsound

▶ Can introduce better than optimal solution

▶ Deletion needs to be restricted

Solution:

▶ Constraint C can only be deleted if

▶ C in derived set

▶ C rederivable by redundance-based strengthening from core set without C

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 10/22
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Objective Function Update

Effect:

▶ Changes objective function from fold to fnew

Check:

▶ Equality fold = fnew trivially implied by constraints

Update specification:

▶ Give new objective fnew
▶ Bad for big objectives and small changes

▶ Give difference between new and old objective fnew − fold

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 11/22
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Why Add an Objective Function Update Rule?

▶ Naturally represents reasoning in solvers and presolvers

▶ Substitutions for redundance-based strengthening become complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 = 3

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 = 3

▶ x2 ≥ 1 by redundance-based strengthening with substitution {x2 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ x1 + 1 has to be shown in subproof

▶ But this is not required if objective is updated

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 12/22
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In general: Certifying Presolving

How to certify presolving?

▶ Presolving can and will change solution space

▶ Soundness of proof system guarantees that optimal value does not change

▶ Check that derived 0-1 ILP in proof is equivalent to presolved 0-1 ILP

Guarantee:

▶ Original 0-1 ILP has same optimal value as presolved 0-1 ILP

▶ Except for logged solutions (especially optimal solutions)
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Example: Probing

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 + x3 ≥ 2

x1 + x2 + x3 + x4 + x5 ≥ 4

x1 + x2 + x3 + x4 + x5 ≥ 1

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x3 ≥ 1

▶ Detect that x3 = 1 by unit propagation

Certification:

▶ Add x3 ≥ 1 by reverse unit propagation

▶ Use addition (and literal axiom) to eliminate x3 in all constraints
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Example: Objective Function Update

min 1x1 + 2x2 + 3x3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x3 ≥ 1

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

▶ As x3 = 1, we can set x3 to 1 in the objective

▶ x3 ≥ 1 can be removed from the constraints

Certification:

▶ Objective update rule checking if 1x1 + 2x2 + 3x3 = 1x1 + 2x2 + 3 implied

▶ Deletion of x3 ≥ 1 justified by substitution {x3 7→ 1}
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Example: Dominated Variable

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

min 1x1 + 2x2 + 3

s.t. x1 + x2 ≥ 1

x1 + x2 ≥ 1

x1 + x2 + x4 + x5 ≥ 4

x1 + x2 + x4 + x5 ≥ 0

x1 + x2 ≥ 1

▶ W.l.o.g. x1 ≥ x2, as

▶ Coefficient of x1 is at least coefficient of x2 in all constraints

▶ Coefficient of x1 is at most coefficient of x2 in the objective

Certification:

▶ Add x1 + x2 ≥ 1 by redundance-based strengthening using {x1 7→ x2, x2 7→ x1}
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Experimental Setup

Tools:

▶ Added pseudo-Boolean proof logging to ILP presolver PaPILO
1

▶ Proof checked using proof checker VeriPB
2

Benchmarks:

▶ PB competition 2016 instances [Pse16]

▶ MIPLIB17 instances translated to OPB format [Dev20]

1https://github.com/scipopt/papilo
2https://gitlab.com/MIAOresearch/software/VeriPB

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 17/22
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Proof Logging Overhead in PaPILO

Test set size default w/proof log relative

PB16-dec 1398 0.050 0.077 1.54

MIPLIB01-dec 295 0.498 0.631 1.27

PB16-opt 532 0.439 0.565 1.29

MIPLIB01-opt 144 0.337 0.473 1.40
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Certificate Checking Performance (1/2)
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(a) PaPILO vs. VeriPB on PB16 instances.
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(b) PaPILO vs. VeriPB on MIPLIB01 instances.
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Certificate Checking Performance (2/2)

PaPILO time (in s) VeriPB relative time w.r.t.

Test set size verified w/proof log default time (in s) w/proof log default

PB16-dec 1398 1398 0.076 0.050 1.28 16.81 25.54

MIPLIB01-dec 293 261 0.55 0.42 17.36 31.78 41.37

PB16-opt 531 520 0.78 0.44 16.17 20.74 36.75

MIPLIB01-opt 140 133 1.38 0.27 10.40 7.53 38.32

▶ Most instances verified within 10 000s timeout

▶ Overhead can be explained by PaPILO having more context than VeriPB

▶ PaPILO parallelizes some tasks, VeriPB works only sequentially
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Certificate Checking Performance (2/2)

PaPILO time (in s) VeriPB relative time w.r.t.
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▶ Most instances verified within 10 000s timeout

▶ Overhead can be explained by PaPILO having more context than VeriPB

▶ PaPILO parallelizes some tasks, VeriPB works only sequentially

Andy Oertel Certifying Presolving for 0-1 Integer Linear Programs 20/22



Introduction Proof Logging Certified Presolving Experiments Conclusion

RUP vs. Cutting Planes

RUP:

▶ Just claim that constraint is implied, which is checked by unit propagation

▶ Shorthand for “simple” cutting planes derivation

For instances with at least 10 propagation reductions:

RUP cutting planes

test set size verified time [s] verified time [s] relative

PB-dec 284 284 2.21 284 2.14 0.968

MIPLIB-dec 35 31 153.23 31 148.88 0.972

PB-opt 153 142 28.43 142 28.22 0.993

MIPLIB-opt 16 14 147.11 14 127.83 0.869
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Conclusion & Future Work

▶ 0-1 ILP seems like a good first step towards proof logging for MIP

▶ Presolving is an integral part to MIP solving

▶ Our approach provides proof logging for

▶ 0-1 ILP presolving

▶ SAT solving (including advanced techniques) [GN21, BGMN23]

▶ MaxSAT solving [VDB22, BBN
+

23]

▶ Constraint Programming [EGMN20, GMN22, MM23]

▶ Subgraph problems [GMN20, GMM
+

20, GMM
+

24]

Future research directions:

▶ Compare RUP/cutting planes approach with new annotated RUP

▶ Planning, MIP [DEGH23], dynamic programming, and other combinatorial problems

▶ Generalize our approach to enumeration and counting problems

Thank you for your attention!
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