
Pseudo-Boolean Proof Logging for Problems that are
not Pseudo-Boolean

Ciaran McCreesh

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Proof Logging

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Solver also prints out a proof as part of its output.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 1 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Proof Logging

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Solver also prints out a proof as part of its output.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 1 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Proof Logging

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Solver also prints out a proof as part of its output.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 1 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Proof Logging

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Solver also prints out a proof as part of its output.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 1 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

So Far. . .

Pseudo-Boolean problems are a superset of SAT / CNF.

Cutting planes is a superset of resolution.

Decoupling solver language from proof language: easier or more efficient proofs if we can use a
richer proof language, even if the solver isn’t searching for proofs in that language.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 2 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

The Rest of This Talk

Lots of more general algorithms that aren’t thought of as doing “proof search”.

Extended cutting planes is still a good language for justifying their inferences.

We can deal with non-Boolean variables.

We can go beyond backtracking search and clause learning.

Key point: can still take existing algorithms and techniques, and add print statements (albeit with
more thinking and book-keeping required).

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 3 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 4 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 4 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Maximum Clique Solvers

There are a lot of dedicated solvers for clique problems.

But there are issues:

“State-of-the-art” solvers have been buggy.

Often undetected: error rate of around 0.1%.

Often used inside other solvers:

An off-by-one result can cause much larger errors.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 5 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Brief and Incomplete Guide to Clique Solving (1/4)

Recursive maximum clique algorithm:

Pick a vertex v.

Either v is in the clique. . .

Throw away every vertex not adjacent to v.
If vertices remain, recurse.

. . . or v is not in the clique, so

Throw v away and pick another vertex.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 6 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Brief and Incomplete Guide to Clique Solving (2/4)

Key data structures:

Growing clique C.

Shrinking set of potential vertices P .

All the vertices we haven’t thrown away yet.
Every v ∈ P is adjacent to every w ∈ C.

Branch and bound:

Remember the biggest clique C⋆ found so far.

If |C|+ |P | ≤ |C⋆|, no need to keep going.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 7 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Brief and Incomplete Guide to Clique Solving (2/4)

Key data structures:

Growing clique C.

Shrinking set of potential vertices P .

All the vertices we haven’t thrown away yet.
Every v ∈ P is adjacent to every w ∈ C.

Branch and bound:

Remember the biggest clique C⋆ found so far.

If |C|+ |P | ≤ |C⋆|, no need to keep going.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 7 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Brief and Incomplete Guide to Clique Solving (3/4)

1

39

2

4

7 5
6

10

8

11
12

Given a k-colouring of a subgraph, that subgraph cannot have a clique of more than k vertices.

We can use |C|+#colours(P) as a bound, for any colouring.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 8 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Brief and Incomplete Guide to Clique Solving (4/4)

This brings us to 1997.

Many improvements since then:

better bound functions,
clever vertex selection heuristics,
efficient data structures,
local search,
. . .

But key ideas for proof logging can be explained without worrying about such things.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 9 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Making a Proof Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem.

Clique problems have several standard file formats.

2 Make the solver log its search tree:

Output a small header.
Output something on every backtrack.
Output something every time a solution is found.
Output a small footer.

3 Figure out how to log the bound function.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 10 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Slightly Different Workflow

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

Pseudo-Boolean Encoding of Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 11 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Slightly Different Workflow

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

Pseudo-Boolean Encoding of Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 11 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Slightly Different Workflow

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

Pseudo-Boolean Encoding of Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 11 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Slightly Different Workflow

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

Pseudo-Boolean Encoding of Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 11 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Slightly Different Workflow

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

Pseudo-Boolean Encoding of Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 11 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6
7

9

10

11
12

1

2

5

8

* #variable= 12 #constraint= 41

min: -1 x1 -1 x2 -1 x3 -1 x4 ...and so on... -1 x11 -1 x12 ;

1 ~x3 1 ~x1 >= 1 ;

1 ~x3 1 ~x2 >= 1 ;

1 ~x4 1 ~x1 >= 1 ;

* ...and a further 38 similar lines for the remaining non-edges

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 12 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Start with a header
Load the 41 problem axioms

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch accepting 12
Throw away non-adjacent vertices

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch also accepting 7
Throw away non-adjacent vertices

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch also accepting 9
Throw away non-adjacent vertices

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

We branched on 12, 7, 9
Found a new incumbent
Now looking for a ≥ 4 vertex clique

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Backtrack from 12, 7
9 explored already, only 6 feasible
No ≥ 4 vertex clique possible
Effectively this deletes the 7–12 edge

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Backtrack from 12
Only 1, 6 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Effectively this deletes vertex 12

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Branch on 11 then 10
Only 1, 3 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Backtrack, deleting the edge

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Backtrack from 11
2-colourable, so no ≥ 4 clique
Delete the vertex

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Branch on 8, 5, 1, 2
Find a new incumbent
Now looking for a ≥ 5 vertex clique

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Backtrack from 8, 5
Only 4 vertices; can’t have a ≥ 5 clique
Delete the edge

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Backtrack from 8
Still not enough vertices
Delete the vertex

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

9

10

Remaining graph is 3-colourable
Backtrack from root node

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

First Attempt at a Proof

1

2

3

4

5
6

7

9

10

Finish with what we’ve concluded
We specify a lower and an upper bound
Remember we’re minimising

∑
v −1× v, so a 4-clique

has an objective value of −4

pseudo-Boolean proof version 2.0

f 41

soli x7 x9 x12

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 13 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb

Verification failed.

Failed in proof file line 6.

Hint: Failed to show ’1 ~x10 1 ~x11 >= 1’ by reverse unit propagation.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 14 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb

Verification failed.

Failed in proof file line 6.

Hint: Failed to show ’1 ~x10 1 ~x11 >= 1’ by reverse unit propagation.

1

2

3

4

5
6

7

8

9

10

11

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 14 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Verifying This Proof (Or Not. . .)

$ veripb --trace clique.opb clique-attempt-one.veripb

line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1

ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...

ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: soli x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11

ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: rup 1 ~x12 1 ~x7 >= 1 ;

ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: rup 1 ~x12 >= 1 ;

ConstraintId 044: 1 ~x12 >= 1

line 006: rup 1 ~x11 1 ~x10 >= 1 ;

Verification failed.

Failed in proof file line 6.

Hint: Failed to show ’1 ~x10 1 ~x11 >= 1’ by reverse unit propagation.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 14 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(x1 + x6 ≥ 1)

+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises to colour classes of any size v.

Each non-edge is used exactly once, v(v − 1) additions

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cutting planes to write this derivation to proof log.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 15 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(x1 + x6 ≥ 1)

+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises to colour classes of any size v.

Each non-edge is used exactly once, v(v − 1) additions

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cutting planes to write this derivation to proof log.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 15 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Dealing With Colourings

The colour bound doesn’t follow by RUP. . .

But we can lazily recover at-most-one constraints for each colour class!

(x1 + x6 ≥ 1)

+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises to colour classes of any size v.

Each non-edge is used exactly once, v(v − 1) additions

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cutting planes to write this derivation to proof log.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 15 / 63

What This Looks Like in the Proof Log

pseudo-Boolean proof version 2.0

f 41

soli x12 x7 x9

rup 1 ~x12 1 ~x7 >= 1 ;

* bound, colour classes [x1 x6 x9]

pol 71 ̸∼6 191 ̸∼9 + 246 ̸∼9 + 2 d

pol 42obj -1 +

rup 1 ~x12 >= 1 ;

* bound, colour classes [x1 x3 x9]

pol 11 ̸∼3 191 ̸∼9 + 213 ̸∼9 + 2 d

pol 42obj -1 +

rup 1 ~x11 1 ~x10 >= 1 ;

* bound, colour classes [x1 x3 x7]

* [x9]

pol 11 ̸∼3 101 ̸∼7 + 123 ̸∼7 + 2 d

pol 42obj -1 +

rup 1 ~x11 >= 1 ;

soli x8 x5 x2 x1

rup 1 ~x8 1 ~x5 >= 1 ;

* bound, colour classes [x1 x9] [x2]

pol 53obj 191 ̸∼9 +

rup 1 ~x8 >= 1 ;

* bound, colour classes [x1 x3 x7]

* [x2 x4 x9] [x5 x6 x10]

pol 11 ̸∼3 101 ̸∼7 + 123 ̸∼7 + 2 d

pol 53obj -1 +

pol 42 ̸∼4 202 ̸∼9 + 224 ̸∼9 + 2 d

pol 53obj -3 + -1 +

pol 95 ̸∼6 265 ̸∼10 + 276̸∼10 + 2 d

pol 53obj -5 + -3 + -1 +

rup >= 1 ;

output NONE

conclusion BOUNDS -4 -4

end pseudo-Boolean proof

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb

line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1

...

ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: soli x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11

ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

...

ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2

line 028: pol 53 57 + 59 + 61 +

ConstraintId 062: 1 x8 1 x11 1 x12 >= 2

line 029: rup >= 1 ;

ConstraintId 063: >= 1

line 030: output NONE

line 031: conclusion BOUNDS -4 -4

line 032: end pseudo-Boolean proof

=== end trace ===

Verification succeeded.
Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 17 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022

Different Clique Algorithms

Different search orders?

✓ Irrelevant for proof logging.

Using local search to initialise?

✓ Just log the incumbent.

Different bound functions?

Is cutting planes strong enough to justify every useful bound function ever invented?

So far, seems like it. . .

Weighted cliques?

✓ Multiply a colour class by its largest weight.

✓ Also works for vertices “split between colour classes”.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 18 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 19 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t, then p’s neighbours must be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)

xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 20 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t, then p’s neighbours must be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)

xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 20 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t, then p’s neighbours must be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)

xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 20 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Degree Reasoning in Cutting Planes

Pattern vertex p of degree deg(p) can never be mapped to target vertex t of degree < deg(p) in any
subgraph isomorphism.

Observe N(p) = {q, r, s} and N(t) = {u, v}.

We wish to derive xp,t ≥ 1.

o

p

q

r

s

t

u

v

x

y

z

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 21 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Degree Reasoning in Cutting Planes

Adjacency: xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Injectivity: −xo,u +−xp,u +−xq,u +−xr,u +−xs,u ≥ −1

−xo,v +−xp,v +−xq,v +−xr,v +−xs,v ≥ −1

Literal axioms: xo,u ≥ 0

xo,v ≥ 0

xp,u ≥ 0

xp,v ≥ 0

Add these together . . .

3 · xp,t ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 22 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Degree Reasoning in Cutting Planes

Adjacency: xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Injectivity: −xo,u +−xp,u +−xq,u +−xr,u +−xs,u ≥ −1

−xo,v +−xp,v +−xq,v +−xr,v +−xs,v ≥ −1

Literal axioms: xo,u ≥ 0

xo,v ≥ 0

xp,u ≥ 0

xp,v ≥ 0

Add these together and divide by 3 to get

xp,t ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 22 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Degree Reasoning in VeriPB

pol 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints

12inj(u) + 13inj(v) + * sum injectivity constraints

xo u + xo v + * cancel stray xo *

xp u + xp v + * cancel stray xp *

3 d * divide, and we’re done

Or we can ask VeriPB to do the last bit of simplification automatically:

pol 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints

12inj(u) + 13inj(v) + * sum injectivity constraints

ia -1 : 1 ~xp t >= 1 ; * desired conclusion is implied

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 23 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

Injectivity reasoning and filtering,

Distance filtering,

Neighbourhood degree sequences,

Path filtering,

Supplemental graphs.

Proof steps are “efficient” using cutting planes:

Length of proof ≈ time complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 24 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

Injectivity reasoning and filtering,

Distance filtering,

Neighbourhood degree sequences,

Path filtering,

Supplemental graphs.

Proof steps are “efficient” using cutting planes:

Length of proof ≈ time complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 24 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Code

https://github.com/ciaranm/glasgow-subgraph-solver

Released under MIT Licence.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 25 / 63

https://github.com/ciaranm/glasgow-subgraph-solver

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

Reducing the Trust Base

Solver

Checker

Verified
Checker

added print statements

Answer

Proof

✓ or ✗

Trusted
Answer

✓ or ✗

Trusted
Answer
in Graph
Language

Input

Answer

Kernel
Proof

✓ or ✗

Encoded Input

Verified Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 26 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

Reducing the Trust Base

Solver

Elaborator

Verified
Checker

added print statements

Answer

Proof

✓ or ✗

Trusted
Answer

✓ or ✗

Trusted
Answer
in Graph
Language

Input

Answer

Kernel
Proof

✓ or ✗

Encoded Input

Verified Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 26 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

Reducing the Trust Base

Solver

Elaborator

Verified
Checker

added print statements

Answer

Proof

✓ or ✗

Trusted
Answer

✓ or ✗

Trusted
Answer
in Graph
Language

Input

Answer

Kernel
Proof

✓ or ✗

Encoded Input

Verified Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 26 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

Reducing the Trust Base

Solver

Elaborator

Verified
Checker

added print statements

Answer

Proof

✓ or ✗

Trusted
Answer

✓ or ✗

Trusted
Answer
in Graph
Language

Input

Answer

Kernel
Proof

✓ or ✗

Encoded Input

Verified Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 26 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

End-to-End Verification of Subgraph-Finding
$ glasgow_clique_solver brock200_4.clq --prove brock200_4 --proof-names --recover-proof-enc

omega = 17

clique = 12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192

$ veripb proof.opb proof.pbp

Verification succeeded.

$ grep conclusion proof.pbp

conclusion BOUNDS 183 183

$ cake_pb_clique brock200_4.clq > brock200_4.verifiedopb

$ veripb proof.verifiedopb proof.pbp --proofOutput proof.corepb

Verification succeeded.

$ cake_pb_clique brock200_4.clq proof.corepb

s VERIFIED MAX CLIQUE SIZE |CLIQUE| = 17

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 27 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

What Exactly are we Verifying?

is clique vs (v ,e)
def
=

vs ⊆ { 0,1,...,v−1 } ∧
∀ x y . x ∈ vs ∧ y ∈ vs ∧ x ̸= y ⇒ is edge e x y

max clique size g
def
= maxset { card vs | is clique vs g }

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 28 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

What Exactly are we Verifying?

clique eq str n
def
= "s VERIFIED MAX CLIQUE SIZE |CLIQUE| = " ˆ toString n ˆ "\n"

clique bound str l u
def
=

"s VERIFIED MAX CLIQUE SIZE BOUND " ˆ toString l ˆ " <= |CLIQUE| <= " ˆ toString u ˆ "\n"

⊢ cake pb clique run cl fs mc ms ⇒
machine sem mc (basis ffi cl fs) ms ⊆
extend with resource limit { Terminate Success (cake pb clique io events cl fs) } ∧

∃ out err .
extract fs fs (cake pb clique io events cl fs) = Some (add stdout (add stderr fs err) out) ∧
(out ̸= "" ⇒
∃ g . get graph dimacs fs (el 1 cl) = Some g ∧

(length cl = 2 ∧ out = concat (print pbf (full encode g)) ∨
length cl = 3 ∧

(out = clique eq str (max clique size g) ∨
∃ l u.out = clique bound str l u ∧ (∀ vs. is clique vs g ⇒ card vs ≤ u) ∧

∃ vs. is clique vs g ∧ l ≤ card vs)))

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 28 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

What’s Left to Trust?

Still have to trust:

The HOL4 theorem prover.

That the formal HOL model of the CakeML environment corresponds to the hardware on which it
is run.

HOL definition of what it means to be a maximum clique or a subgraph isomorphism.

Input parsing and output formatting.

No need to trust, or even know about:

How the solver works.

What pseudo-Boolean means.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 29 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

Code

https://github.com/ciaranm/glasgow-subgraph-solver

https://gitlab.com/MIAOresearch/software/VeriPB

https://gitlab.com/MIAOresearch/software/CakePB

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 30 / 63

https://github.com/ciaranm/glasgow-subgraph-solver
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/CakePB

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

What About Constraint Programming?

Non-Boolean variables?

Constraints?

Encoding constraints in pseudo-Boolean form?

Justifying inferences?

Reformulations?

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 31 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (1/2)

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and

16aneg +−1ab0 +−2ab1 +−4ab2 +−8ab3 ≥ −9

This doesn’t propagate much, but that isn’t a problem for proof logging.

Convention in what follows:

Upper-case A,B,C are CP variables;

Lower-case a, b, c are corresponding Boolean variables in PB encoding.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 32 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (1/2)

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and

16aneg +−1ab0 +−2ab1 +−4ab2 +−8ab3 ≥ −9

This doesn’t propagate much, but that isn’t a problem for proof logging.

Convention in what follows:

Upper-case A,B,C are CP variables;

Lower-case a, b, c are corresponding Boolean variables in PB encoding.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 32 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (1/2)

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and

16aneg +−1ab0 +−2ab1 +−4ab2 +−8ab3 ≥ −9

This doesn’t propagate much, but that isn’t a problem for proof logging.

Convention in what follows:

Upper-case A,B,C are CP variables;

Lower-case a, b, c are corresponding Boolean variables in PB encoding.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 32 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (1/2)

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .

We could use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and

16aneg +−1ab0 +−2ab1 +−4ab2 +−8ab3 ≥ −9

This doesn’t propagate much, but that isn’t a problem for proof logging.

Convention in what follows:

Upper-case A,B,C are CP variables;

Lower-case a, b, c are corresponding Boolean variables in PB encoding.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 32 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4

a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5

a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist.

We can do this:

Inside the pseudo-Boolean model, where needed;

Otherwise lazily during proof logging.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 33 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4

a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5

a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist.

We can do this:

Inside the pseudo-Boolean model, where needed;

Otherwise lazily during proof logging.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 33 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling CP Variables (2/2)

We can mix binary and an order encoding! Where needed, define:

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4

a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5

a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist.

We can do this:

Inside the pseudo-Boolean model, where needed;

Otherwise lazily during proof logging.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 33 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling Constraints

Also need to compile every constraint to pseudo-Boolean form.

Doesn’t need to be a propagating encoding.

Can use additional variables.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 34 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling Linear Inequalities

Given inequality
2A+ 3B + 4C ≥ 42

where A,B,C ∈ {−3 . . . 9},

Encode in pseudo-Boolean form as

−32aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3

+− 48bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3

+− 64cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 ≥ 42

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 35 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling Linear Inequalities

Given inequality
2A+ 3B + 4C ≥ 42

where A,B,C ∈ {−3 . . . 9},

Encode in pseudo-Boolean form as

−32aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3

+− 48bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3

+− 64cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 ≥ 42

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 35 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table.
Variable assignments must match some row in table.

Given table constraint
(A,B,C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e. t1 ⇒ (a=1 ∧ b=2 ∧ c=3)

3t2 + a=1 + b=4 + c=4 ≥ 3 i.e. t2 ⇒ (a=1 ∧ b=4 ∧ c=4)

3t3 + a=2 + b=2 + c=5 ≥ 3 i.e. t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 36 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Compiling Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table.
Variable assignments must match some row in table.

Given table constraint
(A,B,C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e. t1 ⇒ (a=1 ∧ b=2 ∧ c=3)

3t2 + a=1 + b=4 + c=4 ≥ 3 i.e. t2 ⇒ (a=1 ∧ b=4 ∧ c=4)

3t3 + a=2 + b=2 + c=5 ≥ 3 i.e. t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 36 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Encoding Constraint Definitions

Already know how to do it for any constraint with a sane encoding using some combination of

CNF,

Integer linear inequalities,

Table constraints,

Auxiliary variables.

Simplicity is important, propagation strength isn’t.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 37 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Justifying Search

Mostly this works as in earlier examples.

Restarts are easy.

No need to justify guesses or decisions, only backtracking.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 38 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log.

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way.

A few need explicit cutting planes justifications written to the proof log:

Linear inequalities just need to multiply and add.

All-different needs a bit more.

Might need the help of a good PhD student for some propagators.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 39 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log.

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way.

A few need explicit cutting planes justifications written to the proof log:

Linear inequalities just need to multiply and add.

All-different needs a bit more.

Might need the help of a good PhD student for some propagators.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 39 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Justifying Inference

Key idea

Anything the constraint programming solver knows must follow from unit propagation of guessed
assignments on constraints in proof log.

If it follows from unit propagation on the encoding, nothing needed

Some propagators and encodings need RUP steps for inferences

A lot of propagators are effectively “doing a little bit of lookahead” but in an efficient way.

A few need explicit cutting planes justifications written to the proof log:

Linear inequalities just need to multiply and add.

All-different needs a bit more.

Might need the help of a good PhD student for some propagators.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 39 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 }

[W takes some value]

X ∈ { 2 3 }

[X takes some value]

Y ∈ { 1 3 }

[Y takes some value]

Z ∈ { 1 3 }

[Z takes some value]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 }

[W takes some value]

X ∈ { 2 3 }

[X takes some value]

Y ∈ { 1 3 }

[Y takes some value]

Z ∈ { 1 3 }

[Z takes some value]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1 [W takes some value]
X ∈ { 2 3 }

[X takes some value]

Y ∈ { 1 3 }

[Y takes some value]

Z ∈ { 1 3 }

[Z takes some value]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1 [W takes some value]
X ∈ { 2 3 } x=2 + x=3 ≥ 1 [X takes some value]
Y ∈ { 1 3 } y=1 + y=3 ≥ 1 [Y takes some value]
Z ∈ { 1 3 } z=1 + z=3 ≥ 1 [Z takes some value]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1 [W takes some value]
X ∈ { 2 3 } x=2 + x=3 ≥ 1 [X takes some value]
Y ∈ { 1 3 } y=1 + y=3 ≥ 1 [Y takes some value]
Z ∈ { 1 3 } z=1 + z=3 ≥ 1 [Z takes some value]

→ −v=1 +−w=1 + −y=1 +−z=1 ≥ −1 [At most one variable = 1]
→ −w=2 +−x=2 ≥ −1 [At most one variable = 2]

→ −w=3 +−x=3 +−y=3 +−z=3 ≥ −1 [At most one variable = 3]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1 [W takes some value]
X ∈ { 2 3 } x=2 + x=3 ≥ 1 [X takes some value]
Y ∈ { 1 3 } y=1 + y=3 ≥ 1 [Y takes some value]
Z ∈ { 1 3 } z=1 + z=3 ≥ 1 [Z takes some value]

→ −v=1 +−w=1 + −y=1 +−z=1 ≥ −1 [At most one variable = 1]
→ −w=2 +−x=2 ≥ −1 [At most one variable = 2]

→ −w=3 +−x=3 +−y=3 +−z=3 ≥ −1 [At most one variable = 3]

−v=1 ≥ 1 [Sum all constraints so far]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1 [W takes some value]
X ∈ { 2 3 } x=2 + x=3 ≥ 1 [X takes some value]
Y ∈ { 1 3 } y=1 + y=3 ≥ 1 [Y takes some value]
Z ∈ { 1 3 } z=1 + z=3 ≥ 1 [Z takes some value]

→ −v=1 +−w=1 + −y=1 +−z=1 ≥ −1 [At most one variable = 1]
→ −w=2 +−x=2 ≥ −1 [At most one variable = 2]

→ −w=3 +−x=3 +−y=3 +−z=3 ≥ −1 [At most one variable = 3]

−v=1 ≥ 1 [Sum all constraints so far]
v=1 ≥ 0 [Variable v=1 non-negative]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Justifying All-Different Failures

V ∈ { 1 4 5}
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1 [W takes some value]
X ∈ { 2 3 } x=2 + x=3 ≥ 1 [X takes some value]
Y ∈ { 1 3 } y=1 + y=3 ≥ 1 [Y takes some value]
Z ∈ { 1 3 } z=1 + z=3 ≥ 1 [Z takes some value]

→ −v=1 +−w=1 + −y=1 +−z=1 ≥ −1 [At most one variable = 1]
→ −w=2 +−x=2 ≥ −1 [At most one variable = 2]

→ −w=3 +−x=3 +−y=3 +−z=3 ≥ −1 [At most one variable = 3]

−v=1 ≥ 1 [Sum all constraints so far]
v=1 ≥ 0 [Variable v=1 non-negative]

0 ≥ 1 [Sum above two constraints]

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 40 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: CP 2022; McIlree, McCreesh: CP 2023; McIlree, McCreesh, Nordström: CPAIOR 2024

Code

https://github.com/ciaranm/glasgow-constraint-solver

Released under MIT Licence.

Partial MiniZinc support, more soon. A growing collection of global constraints:

Absolute value.

All-different.

Circuit (check, prevent, SCC).

Count.

Element.

Inverse.

Knapsack.

Minumum and Maximum.

n Value.

Parity.

(Reified) integer linear (in)equalities (with
large domains, and GAC reformulation).

Regular (and hence Stretch, Geost, DiffN).

Smart Table (and hence Lex, At Most One,
Not All Equal).

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 41 / 63

https://github.com/ciaranm/glasgow-constraint-solver

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Knapsack Problems

xi ∈ {0, 1} whether or not we take item i∑
i

wixi ≤ W total weight of items taken not too heavy

maximise
∑
i

pixi yay capitalism

For our running example,

w = [2, 5, 2, 3, 2, 3] and

p = [2, 4, 2, 5, 4, 3] with

W ≤ 7

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 42 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Dynamic Programming for Knapsack

To decide whether we’re taking the ith item, with w weight available to spend,

P (i, w) = max(

P (i− 1, w),

P (i− 1, w −wi) + pi if wi ≤ w

)

P (0, w) = 0

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 43 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Sparse Dynamic Programming

Key ideas:

“Maximum” selects between partial sums on the same items with the same combined weights but
different profits.

Don’t calculate the same state more than once.

Only calculate partial sums of weights and profits that can actually be achieved.

Algorithmic details matter a lot for performance, but end up being more or less the same for proof
logging.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 44 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Merging More States

The “maximum” means, if we could reach states

ℓ∑
i=1

wi = w and
ℓ∑

i=1

pi = p or
ℓ∑

i=1

wi = w and
ℓ∑

i=1

pi = p′

with p > p′ then we only need to consider the state with profit p.

More generally, if we have two states

ℓ∑
i=1

wi = w and
ℓ∑

i=1

pi = p or
ℓ∑

i=1

wi = w′ and
ℓ∑

i=1

pi = p′

with p ≥ p′ and w ≤ w′ then we need only consider the former.

Whether or not this can be detected efficiently depends upon how the algorithm is implemented.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 45 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Merging More States

The “maximum” means, if we could reach states

ℓ∑
i=1

wi = w and
ℓ∑

i=1

pi = p or
ℓ∑

i=1

wi = w and
ℓ∑

i=1

pi = p′

with p > p′ then we only need to consider the state with profit p.

More generally, if we have two states

ℓ∑
i=1

wi = w and
ℓ∑

i=1

pi = p or
ℓ∑

i=1

wi = w′ and
ℓ∑

i=1

pi = p′

with p ≥ p′ and w ≤ w′ then we need only consider the former.

Whether or not this can be detected efficiently depends upon how the algorithm is implemented.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 45 / 63

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Viewing Dynamic Programming as a Decision Diagram

N0
0,0

N1
0,0

N2
0,0 N3

0,0

N4
0,0

N5
0,0 N6

0,0

N6
3,3

N5
2,4

N6
2,4

N6
5,7

N4
3,5 N5

3,5

N6
3,5

N6
6,8

N5
5,9

N6
5,9

N6
8,12

N3
2,2

N4
2,2

N5
2,2

N5
4,6

N6
4,6

N6
7,9

N4
5,7

N5
5,7

N5
7,11

N6
7,11

N6
10,14

N2
5,4

N3
5,4

N3
7,6

N4
7,6

N4
10,11

reject

N1
2,2

N2
2,2

N3
4,4

N4
4,4

N4
7,9

N5
7,9

N5
9,12

N2
7,6

N3
9,8

ac
ce
pt

Constraints:
W ≤ 7

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Is This Correct?

Do you trust the theory?

Do you trust your PhD student to implement
it correctly?

Would you trust this inside a larger solver,
where side constraints could apply?

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 47 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Is This Correct?

Do you trust the theory?

Do you trust your PhD student to implement
it correctly?

Would you trust this inside a larger solver,
where side constraints could apply?

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 47 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Is This Correct?

Do you trust the theory?

Do you trust your PhD student to implement
it correctly?

Would you trust this inside a larger solver,
where side constraints could apply?

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 47 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Is This Correct?

Do you trust the theory?

Do you trust your PhD student to implement
it correctly?

Would you trust this inside a larger solver,
where side constraints could apply?

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 47 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Knapsack as a Pseudo-Boolean Problem

2x1 + 5x2 + 2x3 + 3x4 + 2x5 + 3x6 ≤ 7

maximise 2x1 + 4x2 + 2x3 + 5x4 + 4x5 + 3x6

We must describe knapsack in pseudo-Boolean terms, but our solver can do whatever it likes.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 48 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Proofs for Dynamic Programming Algorithms for Knapsack

For backtracking search, we constructed a proof tree out of RUP steps.

For dynamic programming:

Use extension variables to describe states.
Prove implications between states to create a decision diagram.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 49 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Extension Variables for States

For each state (or entry in the matrix) on layer ℓ, create extension variables

W ℓ
w ⇔

ℓ∑
i=1

wixi ≥ w

P ℓ
p ⇔

ℓ∑
i=1

pixi ≤ p

N ℓ
w,p ⇔ W ℓ

w + P ℓ
p ≥ 2

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 50 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Transitioning Between States

We don’t have to take an item
on layer ℓ, so need to prove:

W ℓ−1
w ∧ xℓ ⇒ W ℓ

w

P ℓ−1
p ∧ xℓ ⇒ P ℓ

p

N ℓ−1
w,p ∧ xℓ ⇒ N ℓ

w,p

If we can’t take item on layer ℓ,
need to prove:

W ℓ−1
w ⇒ xℓ

N ℓ−1
w,p ⇒ xℓ

N ℓ−1
w,p ⇒ N ℓ

w,p

If we can take item on layer ℓ, we
need to prove:

W ℓ−1
w ∧ xℓ ⇒ W ℓ

w′

P ℓ−1
p ∧ xℓ ⇒ P ℓ

p′

N ℓ−1
w,p ∧ xℓ ⇒ N ℓ

w′,p′

N ℓ−1
w,p ⇒ N ℓ

w,p +N ℓ
w′,p′ ≥ 1

where

(w′, p′) = (w +wℓ, p+ pℓ)

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 51 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Transitioning Between States

We don’t have to take an item
on layer ℓ, so need to prove:

W ℓ−1
w ∧ xℓ ⇒ W ℓ

w

P ℓ−1
p ∧ xℓ ⇒ P ℓ

p

N ℓ−1
w,p ∧ xℓ ⇒ N ℓ

w,p

If we can’t take item on layer ℓ,
need to prove:

W ℓ−1
w ⇒ xℓ

N ℓ−1
w,p ⇒ xℓ

N ℓ−1
w,p ⇒ N ℓ

w,p

If we can take item on layer ℓ, we
need to prove:

W ℓ−1
w ∧ xℓ ⇒ W ℓ

w′

P ℓ−1
p ∧ xℓ ⇒ P ℓ

p′

N ℓ−1
w,p ∧ xℓ ⇒ N ℓ

w′,p′

N ℓ−1
w,p ⇒ N ℓ

w,p +N ℓ
w′,p′ ≥ 1

where

(w′, p′) = (w +wℓ, p+ pℓ)

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 51 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Transitioning Between States

We don’t have to take an item
on layer ℓ, so need to prove:

W ℓ−1
w ∧ xℓ ⇒ W ℓ

w

P ℓ−1
p ∧ xℓ ⇒ P ℓ

p

N ℓ−1
w,p ∧ xℓ ⇒ N ℓ

w,p

If we can’t take item on layer ℓ,
need to prove:

W ℓ−1
w ⇒ xℓ

N ℓ−1
w,p ⇒ xℓ

N ℓ−1
w,p ⇒ N ℓ

w,p

If we can take item on layer ℓ, we
need to prove:

W ℓ−1
w ∧ xℓ ⇒ W ℓ

w′

P ℓ−1
p ∧ xℓ ⇒ P ℓ

p′

N ℓ−1
w,p ∧ xℓ ⇒ N ℓ

w′,p′

N ℓ−1
w,p ⇒ N ℓ

w,p +N ℓ
w′,p′ ≥ 1

where

(w′, p′) = (w +wℓ, p+ pℓ)

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 51 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Merged States

For each N ℓ
w,p that is dominated by some other N ℓ

w′,p′ , we prove N ℓ
w,p ⇒ N ℓ

w′,p′ .

We can do this by unwrapping the conjunction, proving

W ℓ
w ⇒ W ℓ

w′ i.e. (

ℓ∑
i=1

wixi ≥ w) ⇒ (

ℓ∑
i=1

wixi ≥ w′) for some w′ ≤ w

P ℓ
p ⇒ P ℓ

p′ i.e. (

ℓ∑
i=1

pixi ≥ p) ⇒ (

ℓ∑
i=1

pixi ≥ p′) for some p′ ≥ p

“If there is an assignment to the first ℓ xi variables where the weight sums to at least 7 and the profit to
no more than 4, then there is an assignment where the weight sums to at least 6 and the profit to no
more than 5”.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 52 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Establishing Completeness

Must show that we have to be in one of the states on this layer,∑
(w,p) on layer ℓ

N ℓ
w,p ≥ 1

We can use the at-least-one constraint ∑
(w,p) on layer ℓ−1

N ℓ−1
w,p ≥ 1

from the previous layer, and resolve on each

N ℓ−1
w,p ⇒ N ℓ

w,p +N ℓ
w′,p′ ≥ 1 or N ℓ−1

w,p ⇒ N ℓ
w,p

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 53 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Reading Off a Conclusion

We can log an optimal solution, and get a solution-improving constraint.

We have an at-least-one constraint over feasible states on the final layer, which we can unwrap to only
talk about profits.

The solution-improving constraint contradicts each entry in the at-least-one constraint.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 54 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Autotabulation

Sometimes advantageous to replace several constraints over the same variables with a single table
constraint.

Can be done by a skilled modeller, or by a solver automatically.

But what if the modeller or solver makes a mistake?

We can do this inside the proof, rather than inside the model.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 55 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022

Autotabulation Proofs

Run a search over a restricted subset of variables.

Whenever we find a solution, create an extension variable

ti ⇔ (x=1 ∧ y=2 ∧ z=4)

For the remainder of the proof, add ti as a guess.

End up deriving ∧iti ⇒ ⊥, which is ∨iti or
∑

i ti ≥ 1.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 56 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Knapsack as a Constraint

xi ∈ {0, 1,maybe other non-negative values}
W,P ∈ {some domain of non-negative values}

W =
∑
i

wixi

P =
∑
i

pixi

Now we can have lower and upper bounds on both W and P , and maybe we can reason that some
items must or must not be taken.

Effectively we’re solving two (or one, or more?) non-negative integer linear equations simultaneously.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 57 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Decision Diagrams are Table Constraints but Better

Can often represent the solution set compactly as a decision diagram.

Decision diagrams are like tables, but with bits of the table merged together.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 58 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

A Change of States

For each state (or entry in the matrix) on layer ℓ, define

W↑ℓw ⇔
ℓ∑

i=1

wixi ≥ w and W↓ℓw ⇔
ℓ∑

i=1

wixi ≤ w

P↑ℓp ⇔
ℓ∑

i=1

pixi ≥ p and P↓ℓp ⇔
ℓ∑

i=1

pixi ≤ p

N ℓ
w,p ⇔ W↑ℓw +W↓ℓw + P↑ℓp + P↓ℓp ≥ 4

So now our states represent exact weights and profits.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 59 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

A Change of Merge Rules

We can no longer merge non-identical states!

Reassuringly, the proofs won’t work if you try this. . .

End up trying to prove “if there is an assignment to the first ℓ xi variables where the weight sums to
exactly 7 and the profit to exactly 4, then there is an assignment where the weight sums to exactly 6
and the profit to exactly 5.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 60 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

Establishing Arc Consistency

We can read off all possible values for P and W from the final layer.

Easy to use this and resolution with the at-least-one constraint to eliminate all other values.

If we used weaker state reification variables, we could merge more states but would get weaker
consistency on the variables.

But what about the xi variables?

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 61 / 63

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Forced and Forbidden Items

N0
0,0

N1
0,0

N2
0,0

N3
0,0

N4
0,0 N5

0,0 N6
0,0

N5
2,4 N6

2,4

N4
3,5 N5

3,5 N6
3,5

N5
5,9 N6

5,9

N3
2,2

N4
2,2 N5

2,2 N6
2,2

N5
4,6 N6

4,6

N4
5,7 N5

5,7 N6
5,7

N5
7,11

N2
5,4

N3
5,4 N4

5,4 N5
5,4 N6

5,4

N5
7,8 N6

7,8
N4

8,9

N3
7,6 N4

7,6 N5
7,6 N6

7,6

N5
9,10

N4
10,11

N1
2,2

N2
2,2

N3
4,4

N4
4,4 N5

4,4 N6
4,4

N5
6,8 N6

6,8

N4
7,9 N5

7,9 N6
7,9

N5
9,13

N2
7,6

N3
9,8

w1=2,p1=2 w2=5,p2=4 w3=2,p3=2 w4=3,p4=5 w5=2,p5=4 w6=3,p6=3

x2 = 0 x4 = 1

Side constraints:
P ∈ {7, 9},
W ∈ {5, 6, 7},
x6 = 0

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Solving and Justification Languages are Different

Traditional SAT view: solvers are searching for proofs, and there is a proof system that is “natural”
for the description of the problem.

A huge coincidence due to CDCL and the proof that SAT solvers can’t count.
Not really what’s happening: there are resolution proofs that SAT solvers can’t find.

We need a stronger input language and proof system to justify modern SAT solving techniques.

A simpler input language and proof system is fine for justifying modern CP and graph solving
techniques.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 63 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Solving and Justification Languages are Different

Traditional SAT view: solvers are searching for proofs, and there is a proof system that is “natural”
for the description of the problem.

A huge coincidence due to CDCL and the proof that SAT solvers can’t count.
Not really what’s happening: there are resolution proofs that SAT solvers can’t find.

We need a stronger input language and proof system to justify modern SAT solving techniques.

A simpler input language and proof system is fine for justifying modern CP and graph solving
techniques.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 63 / 63

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Solving and Justification Languages are Different

Traditional SAT view: solvers are searching for proofs, and there is a proof system that is “natural”
for the description of the problem.

A huge coincidence due to CDCL and the proof that SAT solvers can’t count.
Not really what’s happening: there are resolution proofs that SAT solvers can’t find.

We need a stronger input language and proof system to justify modern SAT solving techniques.

A simpler input language and proof system is fine for justifying modern CP and graph solving
techniques.

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 63 / 63

https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

	Recap
	Graph Problems
	Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2022
	Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

	End-to-End Verification
	Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

	Constraint Programming
	Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022
	Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020
	Gocht, McCreesh, Nordström: CP 2022; McIlree, McCreesh: CP 2023; McIlree, McCreesh, Nordström: CPAIOR 2024

	Dynamic Programming
	Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

	Cool Things I Will Not Have Time For
	Gocht, McCreesh, Nordström: An Auditable Constraint Programming Solver, CP 2022
	Demirović, McCreesh, McIlree, Nordström, Oertel, Sidorov: Unpublished

	Conclusion

