
Proof Logging MaxCDCL and MDD-encodings

Dieter Vandesande
Joint work with Bart Bogaerts and Jordi Coll

May 23, 2024

Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 1/37

Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 2/37

Introduction MaxSAT and how to certify it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3

Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A solution is an assignment for all variables such that:
I The formula F is satisfied
I No other satisfying assignment has lower objective value

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 3/37

Introduction MaxSAT and how to certify it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3

Solution: α = {x1 7→ 1, x2 7→ 0,x3 7→ 1}Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A solution is an assignment for all variables such that:
I The formula F is satisfied
I No other satisfying assignment has lower objective value

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 3/37

Introduction MaxSAT and how to certify it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 4/37

Introduction MaxSAT and how to certify it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 4/37

Introduction MaxSAT and how to certify it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 4/37

Introduction MaxSAT and how to certify it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 4/37

Introduction MaxSAT and how to certify it.

MAXSAT SOLVERS

Four main categories:
I Model-Improving

I SAT-based
I Use PB-to-CNF encodings to encode model-improving constraint

I Core-Guided

I SAT-based
I Use PB-to-CNF encodings to relax unsat cores

I Implicit Hitting Set

I SAT-based
I Use a closed-source MIP solver to guide search

I Branch-and-Bound

I Solves MaxSAT “natively”

Different reasoning techniques!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 5/37

Introduction MaxSAT and how to certify it.

MAXSAT SOLVERS

Four main categories:
I Model-Improving

I SAT-based

I Use PB-to-CNF encodings to encode model-improving constraint

I Core-Guided
I SAT-based

I Use PB-to-CNF encodings to relax unsat cores

I Implicit Hitting Set
I SAT-based

I Use a closed-source MIP solver to guide search

I Branch-and-Bound

I Solves MaxSAT “natively”

Different reasoning techniques!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 5/37

Introduction MaxSAT and how to certify it.

MAXSAT SOLVERS

Four main categories:
I Model-Improving

I SAT-based
I Use PB-to-CNF encodings to encode model-improving constraint

I Core-Guided
I SAT-based
I Use PB-to-CNF encodings to relax unsat cores

I Implicit Hitting Set
I SAT-based
I Use a closed-source MIP solver to guide search

I Branch-and-Bound

I Solves MaxSAT “natively”

Different reasoning techniques!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 5/37

Introduction MaxSAT and how to certify it.

MAXSAT SOLVERS

Four main categories:
I Model-Improving

I SAT-based
I Use PB-to-CNF encodings to encode model-improving constraint

I Core-Guided
I SAT-based
I Use PB-to-CNF encodings to relax unsat cores

I Implicit Hitting Set
I SAT-based
I Use a closed-source MIP solver to guide search

I Branch-and-Bound
I Solves MaxSAT “natively”

Different reasoning techniques!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 5/37

Introduction MaxSAT and how to certify it.

MAXSAT SOLVERS

Four main categories:
I Model-Improving

I SAT-based
I Use PB-to-CNF encodings to encode model-improving constraint

I Core-Guided
I SAT-based
I Use PB-to-CNF encodings to relax unsat cores

I Implicit Hitting Set
I SAT-based
I Use a closed-source MIP solver to guide search

I Branch-and-Bound
I Solves MaxSAT “natively”

Different reasoning techniques!
Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 5/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):

I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality

Idea (Does not work):

I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver

I Check solution to be satisfying assignment
Easy to check!

I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!

I Create formula F ′ = F ∧

CNF(

O < v∗

)
Requires proof logging – Not possible with state-of-the-art proof systems for SAT

I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!

I Create formula F ′ = F ∧

CNF(

O < v∗

)
Requires proof logging – Not possible with state-of-the-art proof systems for SAT

I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)
Requires proof logging – Not possible with state-of-the-art proof systems for SAT

I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧ CNF(O < v∗)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧ CNF(O < v∗)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead

Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):
I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧ CNF(O < v∗)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 6/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...
I Pacose (Coming Soon): Solution Improving Search Revisited

I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!

A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...
I Pacose (Coming Soon): Solution Improving Search Revisited

I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:

I QMaxSAT: Solution Improving Search [Van23, VDB22]
I Focus on certifying PB-to-CNF encodings

I RC2 and CGSS: Core-Guided Search [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...

I Pacose (Coming Soon): Solution Improving Search Revisited
I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings

I RC2 and CGSS: Core-Guided Search [BBN+23]
I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...

I Pacose (Coming Soon): Solution Improving Search Revisited
I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...

I Pacose (Coming Soon): Solution Improving Search Revisited
I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...
I Pacose (Coming Soon): Solution Improving Search Revisited

I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...
I Pacose (Coming Soon): Solution Improving Search Revisited

I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound

(and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...
I Pacose (Coming Soon): Solution Improving Search Revisited

I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 7/37

Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 9/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

BRANCH AND BOUND

Branch and Bound:
I Explore the search tree looking for optimal solutions
I Update Upper Bound UB when solution with better cost is found
I Underestimate LB of the cost at every node
I Prune branch when conflict found or when LB ≥ UB

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 10/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

MAXCDCL AS BRANCH AND BOUND

Branch and Bound in MaxCDCL:
I Explore the search tree (CDCL) looking for satisfiable assignments
I Update Upper Bound UB when solution with better cost is found
I Underestimate LB of the cost at every node using lookahead with UP
I Prune branch when conflict found or when LB ≥ UB and learn a clause

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 11/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

I Hard conflict:
I A clause is falsified

I Soft conflict:
I (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 12/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

I Hard conflict:
I A clause is falsified

I Soft conflict:
I (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 12/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

LOOKAHEAD: LB UNDERESTIMATION (UNWEIGHTED CASE)

Lookahead with UP for underestimating LB:

1. Assume unassigned objective literals false and apply UP until:
I A hard clause is falsified
I Or a not yet assigned objective literal is assigned 1

2. We have found a local unsatisfiable core

3. Since unweighted case: Each disjoint core increases the LB by 1

4. When LB ≥ UB, a soft conflict is found

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 13/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10

ya
2 x11

p ya
3 ya

4 xp
12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p

ya
3 ya

4 xp
12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3

ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)

xd
1 x2

p xp
3 x4

d xp
5 xp

6 xp
7 ya

1 ya
2 ya

3 ya
4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)

x2
p x4

d ya
1 ya

4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 14/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 + y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find next core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
2 ya

3 y5
p (Propagate y5 true)

x2
p xp

7 ya
2 ya

3 y5
p (Conflict analysis)

Local core:
x2 ∧ x7 ∧ y2 ∧ y3 ∧ y5 → �

x2 ∧ x7 → y2 ∨ y3 ∨ y5 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 15/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 + y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find next core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
2

ya
3 y5

p (Propagate y5 true)
x2

p xp
7 ya

2 ya
3 y5

p (Conflict analysis)

Local core:
x2 ∧ x7 ∧ y2 ∧ y3 ∧ y5 → �

x2 ∧ x7 → y2 ∨ y3 ∨ y5 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 15/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find next core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
2 ya

3 y5
p (Propagate y5 true)

x2
p xp

7 ya
2 ya

3 y5
p (Conflict analysis)

Local core:
x2 ∧ x7 ∧ y2 ∧ y3 ∧ y5 → �

x2 ∧ x7 → y2 ∨ y3 ∨ y5 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 15/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find next core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
2 ya

3 y5
p (Propagate y5 true)

x2
p xp

7 ya
2 ya

3 y5
p (Conflict analysis)

Local core:
x2 ∧ x7 ∧ y2 ∧ y3 ∧ y5 → �

x2 ∧ x7 → y2 ∨ y3 ∨ y5 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 15/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find next core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
2 ya

3 y5
p (Propagate y5 true)

x2
p xp

7 ya
2 ya

3 y5
p (Conflict analysis)

Local core:
x2 ∧ x7 ∧ y2 ∧ y3 ∧ y5 → �

x2 ∧ x7 → y2 ∨ y3 ∨ y5 (Reasons → Core)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 15/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7, Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 16/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)

x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7, Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 16/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7, Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 16/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7, Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 16/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = y1 + y2 + 1y3 + 1y4 + y5 + y6 + 1y7 + y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores

Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = 7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores

Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = 7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 5y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 5y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + 4y6 + 1y7 + 3y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 �5 �4 1y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 �5 �4 1�7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 �5 �4 1�7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 �5 �4 1�7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)
PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)
PB: 3x1 + 3y1 + 3y6 + 3y8 ≥ 3 �1

Multiplication by their weight and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1
Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 18/37

Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 19/37

Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 20/37

Optimisations in MaxCDCL Hardening

HARDENING

Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 3y6 + 1y7 + 3y8 UB = 5

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)

Conclusion: x2 ∧ x3 ∧ x4 ∧ y6 → LB = 6 ≥ 5 = UB

x2 ∧ x3 ∧ x4 → y6

Clauses Learned: x2 ∨ x3 ∨ x4 ∨ yi (i ∈ {1, 6, 8})

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 21/37

Optimisations in MaxCDCL Hardening

HARDENING

Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 3y6 + 1y7 + 3y8 UB = 5

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)

Conclusion: x2 ∧ x3 ∧ x4 ∧ y6 → LB = 6 ≥ 5 = UB

x2 ∧ x3 ∧ x4 → y6

Clauses Learned: x2 ∨ x3 ∨ x4 ∨ yi (i ∈ {1, 6, 8})

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 21/37

Optimisations in MaxCDCL Hardening

HARDENING

Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 3y6 + 1y7 + 3y8 UB = 5

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)

Conclusion: x2 ∧ x3 ∧ x4 ∧ y6 → LB = 6 ≥ 5 = UB

x2 ∧ x3 ∧ x4 → y6

Clauses Learned: x2 ∨ x3 ∨ x4 ∨ yi (i ∈ {1, 6, 8})

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 21/37

Optimisations in MaxCDCL Hardening

HARDENING

Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 3y6 + 1y7 + 3y8 UB = 5

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)

Conclusion: x2 ∧ x3 ∧ x4 ∧ y6 → LB = 6 ≥ 5 = UB

x2 ∧ x3 ∧ x4 → y6

Clauses Learned: x2 ∨ x3 ∨ x4 ∨ yi (i ∈ {1, 6, 8})

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 21/37

Optimisations in MaxCDCL Hardening

PROOF LOGGING HARDENING
To Derive: x2 ∨ x3 ∨ x4 ∨ y1

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)
PB:

1

x3 +

1

x4 +

1

y1 +

1

y6 +

1

y8 ≥ 1

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Multiplying cores by their weight and addition with Model-Improving Constraint:
2x2 + 1x3 + 3x4 + 4y1 + 1y3 + 1y4 + 1y5 + 3y6 + 1y7 + 2y8 ≥ 13 + 3− 3

Weakening all yi with i ∈ {1, 3, 4, 5, 7, 8}:
2x2 + 1x3 + 3x4 + 3y6 ≥ 3

Division by 3 and saturation: x2 + x3 + x4 + y6 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 22/37

Optimisations in MaxCDCL Hardening

PROOF LOGGING HARDENING
To Derive: x2 ∨ x3 ∨ x4 ∨ y1

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)
PB:

1

x3 +

1

x4 +

1

y1 +

1

y6 +

1

y8 ≥ 1

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Multiplying cores by their weight and addition with Model-Improving Constraint:
2x2 + 1x3 + 3x4 + 4y1 + 1y3 + 1y4 + 1y5 + 3y6 + 1y7 + 2y8 ≥ 13 + 3− 3

Weakening all yi with i ∈ {1, 3, 4, 5, 7, 8}:
2x2 + 1x3 + 3x4 + 3y6 ≥ 3

Division by 3 and saturation: x2 + x3 + x4 + y6 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 22/37

Optimisations in MaxCDCL Hardening

PROOF LOGGING HARDENING
To Derive: x2 ∨ x3 ∨ x4 ∨ y1

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)
PB: 1x3 + 1x4 + 1y1 + 1y6 + 1y8 ≥ 1

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Multiplying cores by their weight and addition with Model-Improving Constraint:
2x2 + 1x3 + 3x4 + 4y1 + 1y3 + 1y4 + 1y5 + 3y6 + 1y7 + 2y8 ≥ 13 + 3− 3

Weakening all yi with i ∈ {1, 3, 4, 5, 7, 8}:
2x2 + 1x3 + 3x4 + 3y6 ≥ 3

Division by 3 and saturation: x2 + x3 + x4 + y6 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 22/37

Optimisations in MaxCDCL Hardening

PROOF LOGGING HARDENING
To Derive: x2 ∨ x3 ∨ x4 ∨ y1

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)
PB: 1x3 + 1x4 + 1y1 + 1y6 + 1y8 ≥ 1

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Multiplying cores by their weight and addition with Model-Improving Constraint:
2x2 + 1x3 + 3x4 + 4y1 + 1y3 + 1y4 + 1y5 + 3y6 + 1y7 + 2y8 ≥ 13 + 3− 3

Weakening all yi with i ∈ {1, 3, 4, 5, 7, 8}:
2x2 + 1x3 + 3x4 + 3y6 ≥ 3

Division by 3 and saturation: x2 + x3 + x4 + y6 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 22/37

Optimisations in MaxCDCL Hardening

PROOF LOGGING HARDENING
To Derive: x2 ∨ x3 ∨ x4 ∨ y1

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

PB: 2x2 + 2x4 + 2y1 + 2y2 ≥ 2 �1

Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)
PB: 1x3 + 1x4 + 1y1 + 1y6 + 1y8 ≥ 1

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Multiplying cores by their weight and addition with Model-Improving Constraint:
2x2 + 1x3 + 3x4 + 4y1 + 1y3 + 1y4 + 1y5 + 3y6 + 1y7 + 2y8 ≥ 13 + 3− 3

Weakening all yi with i ∈ {1, 3, 4, 5, 7, 8}:
2x2 + 1x3 + 3x4 + 3y6 ≥ 3

Division by 3 and saturation: x2 + x3 + x4 + y6 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 22/37

Optimisations in MaxCDCL Hardening

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 23/37

Optimisations in MaxCDCL Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 24/37

Optimisations in MaxCDCL Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 24/37

Optimisations in MaxCDCL Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 24/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5

ya
9 yp

1 yp
3 ya

5 ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3

ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 + y5 + y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3

ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7

ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 + y2 +��y3 + y4 +��y5 +��y6 +��y7 + y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7

ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 + y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 + y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 + y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 + y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 ∧ y9 → y3 +��y5 +��y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 →��y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 ∧ y9 → y3 +��y5 +��y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 ∧ y5 + y6 → y1 +��y2 +��y4 + y7 +��y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 →��y9 +��y5 +��y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 + y4 +��y5 +��y6 +��y7 +��y8 +��y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5 ya

9 yp
1 yp

3 ya
5 ya

6 yp
7 ya

2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 ∧ y9 → y3 +��y5 +��y6 ≥ 1 “{y9} unlocks Core 1 on {y3}”
Core 2: x1 ∧ x2 ∧ y5 + y6 → y1 +��y2 +��y4 + y7 +��y8 ≥ 2 “{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 →��y9 +��y5 +��y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 25/37

Optimisations in MaxCDCL Literal Unlocking

CERTIFYING LITERAL UNLOCKING

Proposition
Let Li|1≤i≤k and L be pairwise disjoint sets of objective literals and bi|1≤i≤k natural numbers.
Assume Ui ⊆ Li with |Ui| = bi for each i and write Ri for Li \ Ui. From the constraints

Li ≥ bi (∀1 ≤ i ≤ k), L +
∑
j<i

Rj + ` ≥ 1 (∀1 ≤ i ≤ k, ` ∈ Ui), L +
∑

j

Rj ≥ 1

there is a cutting planes derivation that derives

L +
∑
j≥i

Uj +
∑

j

Rj ≥ 1 +
∑
j≥i

bj (1)

for each i ∈ {1, . . . , k + 1}.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 26/37

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 27/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.

Binary Decision Diagram:

I Every node corresponds with part of
the original PB constraint and,

I Every node propagates based on one
decision literal.

I If vF node is propagated true, then
constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.

Binary Decision Diagram:
I Every node corresponds with part of

the original PB constraint and,

I Every node propagates based on one
decision literal.

I If vF node is propagated true, then
constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.

Binary Decision Diagram:
I Every node corresponds with part of

the original PB constraint and,
I Every node propagates based on one

decision literal.

I If vF node is propagated true, then
constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.

Binary Decision Diagram:
I Every node corresponds with part of

the original PB constraint and,
I Every node propagates based on one

decision literal.
I If vF node is propagated true, then

constraint in root is falsified.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.
Introducing reification variables for each
node:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6

I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.
Introducing reification variables for each
node:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7

I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.
Introducing reification variables for each
node:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.
Introducing reification variables for each
node:
I E.g., v2,2 ↔ 4x2 + 5x3 ≤ 6
I But also v2,2 ↔ 4x2 + 5x3 ≤ 7
I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

After introducing the reification variables,
clauses are added to the solver.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF
Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 28/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

HOW TO CERTIFY BDDS?

Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 29/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

HOW TO CERTIFY BDDS?

Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

by introducing
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8 (only in proof)
and deriving
I v′

2,2 → v2,2

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 29/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

HOW TO CERTIFY BDDS?
Step 1: Derive reification of node
variables. E.g.,
I v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]

I v2,2 → 4x2 + 5x3 ≤ 5
I v2,2 ← 4x2 + 5x3 ≤ 8

by introducing
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8 (only in proof)
and deriving
I v′

2,2 → v2,2

Step 2: Derive clauses.
I Straight-forward cutting planes

derivation.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 29/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if and only if there
exists a substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 30/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if and only if there
exists a substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 30/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

We want to derive the constraint ∑
i

bili ≥ B

Following completeness of Cutting Planes: Should be possible.

Unfortunately, we don’t know how to do this using cutting planes derivation [BN21].

Luckily, possible by proof by contradiction [Van23].

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 31/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

We want to derive the constraint ∑
i

bili ≥ B

Following completeness of Cutting Planes: Should be possible.

Unfortunately, we don’t know how to do this using cutting planes derivation [BN21].

Luckily, possible by proof by contradiction [Van23].

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 31/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

We want to derive the constraint ∑
i

bili ≥ B

Following completeness of Cutting Planes: Should be possible.

Unfortunately, we don’t know how to do this using cutting planes derivation [BN21].

Luckily, possible by proof by contradiction [Van23].

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 31/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

We want to derive the constraint ∑
i

bili ≥ B

Following completeness of Cutting Planes: Should be possible.

Unfortunately, we don’t know how to do this using cutting planes derivation [BN21].

Luckily, possible by proof by contradiction [Van23].

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 31/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

We have
I v2,2 → 4x2 + 5x3 ≤ 5
I v′

2,2 ← 4x2 + 5x3 ≤ 8
and we want to derive
I v′

2,2 → v2,2

If we can prove
I x2 + v′

2,2 + v2,2 ≥ 1
I x2 + v′

2,2 + v2,2 ≥ 1
then by case splitting v′

2,2 + v2,2 ≥ 1
follows.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

.

v1

vTvF

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 32/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES

To derive:
I x2 + v′

2,2 + v2,2 ≥ 1
We have for node v2,2:
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8
For node v3:
I v3 → 5x3 ≤ 0
I v3 ← 5x3 ≤ 4

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 33/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 34/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 34/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 34/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 34/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction.

Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 34/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 34/37

BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MULTI-VALUED DECISION DIAGRAM (MDD)

10

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 0
x2 = 1

x3 = 1

x3 = 0

x3 = 0

x3 = 1

x4 = 0x4 = 1

x1 + x2 ≤ 1

x3 + x4 ≤ 1

0 1

x2 = 1 x1 = 1, else

x4 = 1
x3 = 1, else

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 35/37

Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 36/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?
I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?
I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers

I Certified track in MaxSAT competition?
I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?

I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?
I Other fields of combinatorial solving

— Interesting things happening!

Thank you for your attention!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?
I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?
I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!
Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 37/37

Conclusions & Future Work

REFERENCES

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided
MaxSAT solving. In Brigitte Pientka and Cesare Tinelli, editors, Automated Deduction - CADE 29 - 29th
International Conference on Automated Deduction, Rome, Italy, July 1-4, 2023, Proceedings, volume 14132 of
Lecture Notes in Computer Science, pages 1–22. Springer, 2023.

[BJ19] Jeremias Berg and Matti Järvisalo. Unifying reasoning and core-guided search for maximum satisfiability. In
Francesco Calimeri, Nicola Leone, and Marco Manna, editors, Logics in Artificial Intelligence - 16th European
Conference, JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes in
Computer Science, pages 287–303. Springer, 2019.

[BLM06] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. A complete calculus for max-sat. In Armin Biere and
Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006, 9th International
Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer
Science, pages 240–251. Springer, 2006.

[BLM07] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for max-sat. Artif. Intell., 171(8-9):606–618, 2007.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 38/37

Conclusions & Future Work

REFERENCES

[BMM13] Anton Belov, António Morgado, and João Marques-Silva. Sat-based preprocessing for maxsat. In Kenneth L.
McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 96–111. Springer, 2013.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere, Marijn J. H. Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 336 of Frontiers in Artificial
Intelligence and Applications, chapter 7, pages 233–350. IOS Press, 2nd edition, February 2021.

[HL06] Federico Heras and Javier Larrosa. New inference rules for efficient max-sat solving. In Proceedings, The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages 68–73. AAAI Press,
2006.

[IBJ22] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Clause redundancy and preprocessing in maximum
satisfiability. In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated Reasoning - 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of
Lecture Notes in Computer Science, pages 75–94. Springer, 2022.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 39/37

Conclusions & Future Work

REFERENCES

[LCH+22] Shoulin Li, Jordi Coll, Djamal Habet, Chu-Min Li, and Felip Manyà. A tableau calculus for maxsat based on
resolution. In Atia Cortés, Francisco Grimaldo, and Tommaso Flaminio, editors, Artificial Intelligence Research
and Development - Proceedings of the 24th International Conference of the Catalan Association for Artificial
Intelligence, CCIA 2022, Sitges, Spain, 19-21 October 2022, volume 356 of Frontiers in Artificial Intelligence
and Applications, pages 35–44. IOS Press, 2022.

[LH05] Javier Larrosa and Federico Heras. Resolution in max-sat and its relation to local consistency in weighted
csps. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005,
pages 193–198. Professional Book Center, 2005.

[LM22] Chu Min Li and Felip Manyà. Inference in maxsat and minsat. In Wolfgang Ahrendt, Bernhard Beckert,
Richard Bubel, and Einar Broch Johnsen, editors, The Logic of Software. A Tasting Menu of Formal Methods
- Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday, volume 13360 of Lecture Notes in
Computer Science, pages 350–369. Springer, 2022.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 40/37

Conclusions & Future Work

REFERENCES

[LMS16] Chu Min Li, Felip Manyà, and Joan Ramon Soler. A clause tableau calculus for minsat. In Àngela Nebot,
Xavier Binefa, and Ramón López de Mántaras, editors, Artificial Intelligence Research and Development -
Proceedings of the 19th International Conference of the Catalan Association for Artificial Intelligence,
Barcelona, Catalonia, Spain, October 19-21, 2016, volume 288 of Frontiers in Artificial Intelligence and
Applications, pages 88–97. IOS Press, 2016.

[LNOR11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. A framework for certified
Boolean branch-and-bound optimization. J. Autom. Reason., 46(1):81–102, 2011.

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof builder for max-sat. In Chu-Min Li and Felip
Manyà, editors, Theory and Applications of Satisfiability Testing - SAT 2021 - 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages
488–498. Springer, 2021.

[PCH22] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs and certificates for max-sat. J. Artif. Intell.
Res., 75:1373–1400, 2022.

[Van23] Dieter Vandesande. Towards certified MaxSAT solving: Certified MaxSAT solving with SAT oracles and
encodings of pseudo-Boolean constraints. Master’s thesis, Vrije Universiteit Brussel (VUB), 2023.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 41/37

Conclusions & Future Work

REFERENCES

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Georg
Gottlob, Daniela Inclezan, and Marco Maratea, editors, Logic Programming and Nonmonotonic Reasoning -
16th International Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022, Proceedings, volume 13416
of Lecture Notes in Computer Science, pages 429–442. Springer, 2022.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 42/37

Appendix Literal Unlocking

HOW TO FIND SUCH CORES?

Definition
Let (b, L) be a cardinality constraint, U (L, and L′ a set of objective literals disjoint from L.
L′ unlocks (b, L) on U if |U | ≥ b and F ∧ α ∧

∧
`∈L′ ` |= `′ for each `′ ∈ U .

Notation: (b, L) represents the cardinality constraint
∑

`∈L l ≥ b.
Example:
O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10
Local Core: y1 + y2 + y3 + y4 + y5 + y6 ≥ 3

If assigning y7 = y8 = 0 propagates literals y1 ∧ y3 ∧ y6,
then L′ = {y6, y7} unlocks y1 + y2 + y3 + y4 + y5 + y6 ≥ 3 on U = {y1, y3, y6}.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 43/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

Proposition
Let Li|1≤i≤k and L be pairwise disjoint sets of objective literals and bi|1≤i≤k natural numbers.
Assume Ui ⊆ Li with |Ui| = bi for each i and write Ri for Li \ Ui. From the constraints

Li ≥ bi (∀1 ≤ i ≤ k), L +
∑
j<i

Rj + ` ≥ 1 (∀1 ≤ i ≤ k, ` ∈ Ui), L +
∑

j

Rj ≥ 1

there is a cutting planes derivation that derives

L +
∑
j≥i

Uj +
∑

j

Rj ≥ 1 +
∑
j≥i

bj (2)

for each i ∈ {1, . . . , k + 1}.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 44/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj .

By induction on i.

For i between 1 and k (assuming already derived for i + 1):

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i = k + 1 : L +
∑

j Rj ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 1. Addition of L +

∑
j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 1. Addition of L +

∑
j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Step 2. Addition with IH gives:

((bi+1 + 1) · L +
∑
j≥i

Uj + (bi+1 + 1)
∑
j<i

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j≥i

bj

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 2. Addition with IH gives:

((bi+1 + 1) · L +
∑
j≥i

Uj + (bi+1 + 1)
∑
j<i

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j≥i

bj

Step 3. Multiplying all constraints Lj ≥ bj for j ≥ i with bi+1 gives:

bi+1
∑
j≥i

Uj + bi+1
∑
j≥i

Rj ≥ bi+1
∑
j≥i

bj

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 2. Addition with IH gives:

((bi+1 + 1) · L +
∑
j≥i

Uj + (bi+1 + 1)
∑
j<i

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j≥i

bj

Step 3. Multiplying all constraints Lj ≥ bj for j ≥ i with bi+1 gives:

bi+1
∑
j≥i

Uj + bi+1
∑
j≥i

Rj ≥ bi+1
∑
j≥i

bj

Step 4. Addition of constraints from Step 2 and Step 3:

(bi+1 + 1) · L + (bi+1 + 1)
∑

j

Rj + (bi+1 + 1)
∑
j≥i

Rj ≥ 1 + (bi+1 + 1)
∑
j>i

bj

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 4. Addition of constraints from Step 2 and Step 3:

(bi+1 + 1) · L + (bi+1 + 1)
∑

j

Rj + (bi+1 + 1)
∑
j≥i

Rj ≥ 1 + (bi+1 + 1)
∑
j>i

bj

Step 5. Dividing this by bi+1 + 1 (and rounding the righthand-side up) yields

L +
∑

j

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j>i

bj

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 45/37

Appendix Proof by Case Splitting

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 46/37

Appendix Proof by Case Splitting

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 46/37

Appendix Proof by Case Splitting

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 46/37

Appendix Proof by Case Splitting

INTERMEZZO: PROOF BY CASE SPLITTING

To show:
(a · x +

∑
i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Addition of (a · x +
∑

i bili ≥ B) with (
∑

i bili ≥
∑

i bi −B + 1) gives
a · x +

∑
i

bili +
∑

i

bili ≥ B +
∑

i

bi −B + 1

which is equal to
a · x ≥ 1

After saturation: x ≥ 1.
Similarly, addition of (a · x +

∑
i bili ≥ B) and (

∑
i bili ≥

∑
i bi −B + 1) and saturation gives

x ≥ 1
which is clearly contradiction with x ≥ 1.

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 47/37

	
	
	Presentation Outline
	Presentation Outline

	Introduction
	MaxSAT and how to certify it.

	
	
	Presentation Outline

	Proof Logging MaxCDCL
	Certifying a combination of Branch-and-Bound and CDCL

	
	Presentation Outline

	Optimisations in MaxCDCL
	Hardening
	Literal Unlocking

	
	

	BDD PB-to-CNF encoding
	Encoding the model-improving constraint in a CNF formula

	
	Presentation Outline

	
	Conclusions & Future Work

	Appendix
	Literal Unlocking
	Proof by Case Splitting

