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Introduction MaxSAT and how to certify it.

THE MAXIMUM SATISFIABILITY PROBLEM
Example:

F = {x1 ∨ x2, x2 ∨ x3, x1 ∨ x2 ∨ x3}
O = x1 + x2 + x3

Optimization variant of Satisfiability Problem.

A MaxSAT-instance is a tuple (F,O) with:
I F a propositional formula
I O an integer linear objective over Boolean variables

A solution is an assignment for all variables such that:
I The formula F is satisfied
I No other satisfying assignment has lower objective value
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Introduction MaxSAT and how to certify it.

PROOF SYSTEMS FOR MAXSAT REASONING

Proof systems for MaxSAT are studied theoretically for proof complexity
I MaxSAT resolution [LH05, HL06, BLM06, BLM07]
I Tableaux reasoning [LMS16, LCH+22, LM22]
I Cost-aware redundancy notions [BMM13, BJ19, IBJ22]

Solvers specifically designed for emitting proofs
I MaxSAT resolution [PCH21, PCH22]
I Cost Resolution [LNOR11]

No certified state-of-the-art MaxSAT solver using native proof system!
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Introduction MaxSAT and how to certify it.

MAXSAT SOLVERS

Four main categories:
I Model-Improving

I SAT-based
I Use PB-to-CNF encodings to encode model-improving constraint

I Core-Guided

I SAT-based
I Use PB-to-CNF encodings to relax unsat cores

I Implicit Hitting Set

I SAT-based
I Use a closed-source MIP solver to guide search

I Branch-and-Bound

I Solves MaxSAT “natively”

Different reasoning techniques!
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Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea (Does not work):
I Utilize one of SAT’s proof systems

Inherently not able to reason about optimality
Idea (Does not work):

I Obtain solution α with O(α) = v∗ for (F,O) by running MaxSAT solver
I Check solution to be satisfying assignment

Easy to check!
I Create formula F ′ = F ∧

CNF(

O < v∗

)

Requires proof logging – Not possible with state-of-the-art proof systems for SAT
I Run SAT solver with standard proof logging to obtain certificate of UNSAT for F ′

Causes serious overhead
Only proves answer correct, not reasoning within solver!
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Introduction MaxSAT and how to certify it.

CERTIFIED MAXSAT SOLVERS

Idea:
I Express the solver’s reasoning in a more general proof system

VeriPB!
A small and recent history of VeriPB MaxSAT proof logging:
I QMaxSAT: Solution Improving Search [Van23, VDB22]

I Focus on certifying PB-to-CNF encodings
I RC2 and CGSS: Core-Guided Search [BBN+23]

I Including techniques such as stratification, hardening, intrinsic-at-most-ones constraints, ...
I Pacose (Coming Soon): Solution Improving Search Revisited

I Challenge: Intricate without-loss-of-generality reasoning in the DPW encoding

This talk:
I Branch-and-Bound (and a little bit of Solution-Improving Search)
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

BRANCH AND BOUND

Branch and Bound:
I Explore the search tree looking for optimal solutions
I Update Upper Bound UB when solution with better cost is found
I Underestimate LB of the cost at every node
I Prune branch when conflict found or when LB ≥ UB

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 10/37



Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

MAXCDCL AS BRANCH AND BOUND

Branch and Bound in MaxCDCL:
I Explore the search tree (CDCL) looking for satisfiable assignments
I Update Upper Bound UB when solution with better cost is found
I Underestimate LB of the cost at every node using lookahead with UP
I Prune branch when conflict found or when LB ≥ UB and learn a clause

SAT
UB = 10

X LB = 10 ≥ UB

SAT
UB = 8

X LB = 8 ≥ UB
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

I Hard conflict:
I A clause is falsified

I Soft conflict:
I (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 12/37
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

LOOKAHEAD: LB UNDERESTIMATION (UNWEIGHTED CASE)

Lookahead with UP for underestimating LB:

1. Assume unassigned objective literals false and apply UP until:
I A hard clause is falsified
I Or a not yet assigned objective literal is assigned 1

2. We have found a local unsatisfiable core

3. Since unweighted case: Each disjoint core increases the LB by 1

4. When LB ≥ UB, a soft conflict is found
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

Ot = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Find one core:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 xp

9 xp
10 ya

2 x11
p ya

3 ya
4 xp

12 (x12 ∨ x11 ∈ F falsified)
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7 ya
1 ya

2 ya
3 ya

4 (Assumptions suffice)
x2

p x4
d ya

1 ya
4 (Conflict analysis)

Local core:
x2 ∧ x4 ∧ y1 ∧ y4 → �

x2 ∧ x4 → y1 ∨ y4 (Reasons → Core)
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 UB = 3
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found disjoint local cores
Core 1: x2 ∧ x4 → y1 ∨ y4

Core 2: x2 ∧ x7 → y2 ∨ y3 ∨ y5

Core 3: x1 ∧ x4 ∧ x7 → y6 ∨ y7

x1 ∧ x2 ∧ x4 ∧ x7 → (y1 ∨ y4) ∧ (y2 ∨ y3 ∨ y5) ∧ (y6 ∨ y7)
x1 ∧ x2 ∧ x4 ∧ x7 → LB = 3 ≥ 3 = UB

Soft conflict:
xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7, Conflict x1 ∨ x2 ∨ x4 ∨ x7 (soft conflict)
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = y1 + y2 + 1y3 + 1y4 + y5 + y6 + 1y7 + y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores

Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 (weight 1)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4
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I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight

Ot = �7 �5 �4 1�7 �5 2y1 + �2 0y2 + 1y3 + 1y4 + 1y5 + �4 1y6 + 1y7 + �3 0y8 UB = 4
Trail: xd

1 x2
p xp

3 x4
d xp

5 xp
6 xp

7

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)

Core 3: x1 → y1 ∨ y6 ∨ y8 (weight 3)
Conclusion: x1 ∧ x2 ∧ x4 → LB = 5 ≥ 4 = UB Soft Conflict clause: x1 ∨ x2 ∨ x4

Dieter Vandesande Proof Logging MaxCDCL and MDD-encodings May 23, 2024 17/37



Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL
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I Weight of Local Core K = smallest weight of objective literals in K
I Each objective literal can contribute to many cores
I The total contribution of a literal cannot exceed its weight
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Trail: xd
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7
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Proof Logging MaxCDCL Certifying a combination of Branch-and-Bound and CDCL

PROOF LOGGING SOFT CONFLICTS

To Derive: x1 + x2 + x4 ≥ 1 UB = 4

Found “disjoint” cores

(RUP)

Core 1: x2 ∧ x4 → y1 ∨ y2 (2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x1 → y1 ∨ y6 ∨ y8 (3)

PB:

3

x1 +

3

y1 +

3

y6 +

3

y8 ≥ 1

Multiplication by their weight

and addition:
3x1+2x2+2x4+5y1+2y2+3y6+3y8 ≥ 5

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Weakening:
5y1 + 2y2 + 3y6 + 3y8 ≥ 13− 3

Addition:
3x1 + 2x2 + 2x4 + 5y1 + 5y1 + 2y2 + 2y2 + 3y6 + 3y6 + 3y8 + 3y8 ≥ 13 + 5− 3

Division by 5− 3 and Saturation: x1 + x2 + x4 ≥ 1
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Optimisations in MaxCDCL Hardening

HARDENING

Ot = �7 �5 4y1 + �2 0y2 + 1y3 + 1y4 + �1 0y5 + �4 3y6 + 1y7 + 3y8 UB = 5

Found local cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)
Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)

Conclusion: x2 ∧ x3 ∧ x4 ∧ y6 → LB = 6 ≥ 5 = UB

x2 ∧ x3 ∧ x4 → y6

Clauses Learned: x2 ∨ x3 ∨ x4 ∨ yi (i ∈ {1, 6, 8})
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Optimisations in MaxCDCL Hardening

PROOF LOGGING HARDENING
To Derive: x2 ∨ x3 ∨ x4 ∨ y1

Found “disjoint” cores
Core 1: x2 ∧ x4 → y1 ∨ y2 (weight 2)

PB:

2

x2 +

2

x4 +

2

y1 +

2

y2 ≥ 1

Core 2: x3 ∧ x4 → y1 ∨ y5 ∨ y6 (weight 1)
PB:

1

x3 +

1

x4 +

1

y1 +

1

y6 +

1

y8 ≥ 1

Model improving constraint

7y1 + 2y2 + 1y3 + 1y4 + 1y5 + 4y6 + 1y7 + 3y8 ≤ 3

In normalized form:
7y1+2y2+1y3+1y4+1y5+4y6+1y7+3y8 ≥ 20−3

Multiplying cores by their weight and addition with Model-Improving Constraint:
2x2 + 1x3 + 3x4 + 4y1 + 1y3 + 1y4 + 1y5 + 3y6 + 1y7 + 2y8 ≥ 13 + 3− 3

Weakening all yi with i ∈ {1, 3, 4, 5, 7, 8}:
2x2 + 1x3 + 3x4 + 3y6 ≥ 3

Division by 3 and saturation: x2 + x3 + x4 + y6 ≥ 1
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Optimisations in MaxCDCL Literal Unlocking

UNWEIGHTED MAXCDCL REVISITED

Unweighted MaxCDCL searches for set L of tuples (b, L) such that
1. Each L is a set of objective literals
2. For each (b, L) in L, it holds that F ∧ α |=

∑
`∈L ` ≥ b.

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.
4. The total weight exceeds the current upper bound:

∑
(b,L)∈L b ≥ UB.

O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + ... UB = 4

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y1 + y3 + y5 + y8 ≥ 3
Core 2: x4 ∧ x7 ∧ x9 → y2 + y4 + y6 ≥ 2

x2 ∧ x4 ∧ x7 ∧ x9 → LB = 5 ≥ 4 = UB Soft conflict clause: x2 ∨ x4 ∨ x7 ∨ x9
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Optimisations in MaxCDCL Literal Unlocking

LOOKAHEAD WITH LITERAL UNLOCKING (BY EXAMPLE)

Ot = ��y1 +��y2 +��y3 +��y4 +��y5 +��y6 +��y7 +��y8 + y9 + ...

Trail: xd
1 x2

d xp
3 x4

d xp
5

ya
9 yp

1 yp
3 ya

5 ya
6 yp

7 ya
2 ⊥

Found disjoint local “cores”
Core 1: x2 ∧ x4 → y3 + y5 + y6 ≥ 1

“{y9} unlocks Core 1 on {y3}”

Core 2: x1 ∧ x2 → y1 + y2 + y4 + y7 + y8 ≥ 2

“{y9, y5, y6} unlocks Core 2 on {y1, y7}”

New core: x1 ∧ x4 → y9 + y5 + y6 + y2 ≥ 1

Addition of cores: x1 ∧ x2 ∧ x4 → y1 + 2y2 + y3 + y4 + 2y5 + 2y6 + y7 + y8 + y9 ≥ 4

Conclusion x1 ∧ x2 ∧ x4 →
∑9

i=1 yi ≥ 4 ?
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Optimisations in MaxCDCL Literal Unlocking

CERTIFYING LITERAL UNLOCKING

Proposition
Let Li|1≤i≤k and L be pairwise disjoint sets of objective literals and bi|1≤i≤k natural numbers.
Assume Ui ⊆ Li with |Ui| = bi for each i and write Ri for Li \ Ui. From the constraints

Li ≥ bi (∀1 ≤ i ≤ k), L +
∑
j<i

Rj + ` ≥ 1 (∀1 ≤ i ≤ k, ` ∈ Ui), L +
∑

j

Rj ≥ 1

there is a cutting planes derivation that derives

L +
∑
j≥i

Uj +
∑

j

Rj ≥ 1 +
∑
j≥i

bj (1)

for each i ∈ {1, . . . , k + 1}.
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OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions
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BDD PB-to-CNF encoding Encoding the model-improving constraint in a CNF formula

MAXCDCL’S USAGE OF BDDS

MaxCDCL ∪ Solution-Improving: MaxCDCL encodes model-improving constraint to enhance
propagation.

3x1 + 4x2 + 5x3 ≤ 6v1,1

4x2 + 5x3 ≤ 3v2,1 4x2 + 5x3 ≤ 6 v2,2

5x3 ≤ 3/2 v3

(1) : 0 ≤ 3/2/1 vT(0) : 0 ≤ −1vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0
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I Hence, v2,2 ↔ 4x2 + 5x3 ≤ [5, 8]
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INTERMEZZO: PROOF BY CONTRADICTION
Remember definition of Redundance-Based Strengthening:

Definition
A constraint C is redundant with respect to the pseudo-Boolean formula F if and only if there
exists a substitution ω, called a witness, such that

F ∧ ¬C |= F |ω ∧ C|ω

Proof by contradiction — Take empty witness.

Condition to prove RBS becomes:
F ∧ ¬C |= F ∧ C

Only one non-trivial proof goal:
F ∧ ¬C ∧ ¬C ` 0 ≥ 1
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INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

We want to derive the constraint ∑
i

bili ≥ B

Following completeness of Cutting Planes: Should be possible.

Unfortunately, we don’t know how to do this using cutting planes derivation [BN21].

Luckily, possible by proof by contradiction [Van23].
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PROVING REIFICATION OF NODE VARIABLES

We have
I v2,2 → 4x2 + 5x3 ≤ 5
I v′

2,2 ← 4x2 + 5x3 ≤ 8
and we want to derive
I v′

2,2 → v2,2

If we can prove
I x2 + v′

2,2 + v2,2 ≥ 1
I x2 + v′

2,2 + v2,2 ≥ 1
then by case splitting v′

2,2 + v2,2 ≥ 1
follows.

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

v2,1 ∧ x1 → v1,1 . . .

vF ∧ x2 → v2,1

. . .

vT → v2,2

. . .

. . .. . .

v1

vTvF
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PROVING REIFICATION OF NODE VARIABLES

To derive:
I x2 + v′

2,2 + v2,2 ≥ 1
We have for node v2,2:
I v2,2 ↔ 4x2 + 5x3 ≤ 5
I v′

2,2 ↔ 4x2 + 5x3 ≤ 8
For node v3:
I v3 → 5x3 ≤ 0
I v3 ← 5x3 ≤ 4

3x1 + 4x2 + 5x3 ≤ [5, 6]v1,1

4x2 + 5x3 ≤ [0, 3]v2,1 4x2 + 5x3 ≤ [5, 8] v2,2

5x3 ≤ [0, 4] v3

(1) : 0 ≤ [0,∞) vT(0) : 0 ≤ (−∞,−1]vF

x1 = 1 x1 = 0

x2 = 1

x2 = 0

x2 = 0

x2 = 1

x3 = 1x3 = 0
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PROVING REIFICATION OF NODE VARIABLES (BY CONTRADICTION)

To Derive: x2 + v′
2,2 + v2,2 ≥ 1. We assume the negation, i.e.,

x2 ≥ 1, v′
2,2 ≥ 1, v2,2 ≥ 1

Constraints already derived:
v2,2 ↔ 4x2 + 5x3 ≤ 5 v′

2,2 ↔ 4x2 + 5x3 ≤ 8
v3 → 5x3 ≤ 0 v3 ← 5x3 ≤ 4

From v′
2,2 ≥ 1: 4x2 + 5x3 ≤ 8

Using x2 ≥ 1: 5x3 ≤ 4

Using definition of v3: v3 ≥ 1

From v2,2 ≥ 1: 4x2 + 5x3 ≥ 5 + 1

Weakening x2: 5x3 ≥ 2

Using definition of v3: v3 ≥ 1

Contradiction. Same reasoning to obtain x2 + v′
2,2 + v2,2 ≥ 1.
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MULTI-VALUED DECISION DIAGRAM (MDD)

10

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 0
x2 = 1

x3 = 1

x3 = 0

x3 = 0

x3 = 1

x4 = 0x4 = 1

x1 + x2 ≤ 1

x3 + x4 ≤ 1

0 1

x2 = 1 x1 = 1, else

x4 = 1
x3 = 1, else
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Presentation Outline

OUTLINE OF THIS PRESENTATION

I What is MaxSAT and how to certify it?
I Proof logging the B&B solver MaxCDCL
I Proof logging additional techniques in MaxCDCL

I Hardening
I Literal Unlocking

I Proof logging BDD PB-to-CNF encoding
I Future work & Conclusions
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Conclusions & Future Work

WRAPPING UP

This talk:
I MaxCDCL

I MaxSAT solving by combining Branch-and-Bound and CDCL
I Encoding the model-improving constraint using MDD encoding

I Proof logging is possible with VeriPB!!
I Work in progress paper submitted to Pragmatics of SAT

Future work:
I Implementation & Experiments
I Implicit Hitting Set solvers
I Certified track in MaxSAT competition?
I Other fields of combinatorial solving — Interesting things happening!

Thank you for your attention!
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Appendix Literal Unlocking

HOW TO FIND SUCH CORES?

Definition
Let (b, L) be a cardinality constraint, U ( L, and L′ a set of objective literals disjoint from L.
L′ unlocks (b, L) on U if |U | ≥ b and F ∧ α ∧

∧
`∈L′ ` |= `′ for each `′ ∈ U .

Notation: (b, L) represents the cardinality constraint
∑

`∈L l ≥ b.
Example:
O = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10
Local Core: y1 + y2 + y3 + y4 + y5 + y6 ≥ 3

If assigning y7 = y8 = 0 propagates literals y1 ∧ y3 ∧ y6,
then L′ = {y6, y7} unlocks y1 + y2 + y3 + y4 + y5 + y6 ≥ 3 on U = {y1, y3, y6}.
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Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

Proposition
Let Li|1≤i≤k and L be pairwise disjoint sets of objective literals and bi|1≤i≤k natural numbers.
Assume Ui ⊆ Li with |Ui| = bi for each i and write Ri for Li \ Ui. From the constraints

Li ≥ bi (∀1 ≤ i ≤ k), L +
∑
j<i

Rj + ` ≥ 1 (∀1 ≤ i ≤ k, ` ∈ Ui), L +
∑

j

Rj ≥ 1

there is a cutting planes derivation that derives

L +
∑
j≥i

Uj +
∑

j

Rj ≥ 1 +
∑
j≥i

bj (2)

for each i ∈ {1, . . . , k + 1}.
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Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj .

By induction on i.

For i between 1 and k (assuming already derived for i + 1):
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CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i = k + 1 : L +
∑

j Rj ≥ 1.
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Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 1. Addition of L +

∑
j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi
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Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 1. Addition of L +

∑
j<i Rj + ` ≥ 1 for every ` ∈ Ui results in

biL + bi

∑
j<i

Rj + Ui ≥ bi

Step 2. Addition with IH gives:

((bi+1 + 1) · L +
∑
j≥i

Uj + (bi+1 + 1)
∑
j<i

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j≥i

bj
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To Derive: L +
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j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 2. Addition with IH gives:

((bi+1 + 1) · L +
∑
j≥i

Uj + (bi+1 + 1)
∑
j<i

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j≥i

bj

Step 3. Multiplying all constraints Lj ≥ bj for j ≥ i with bi+1 gives:

bi+1
∑
j≥i

Uj + bi+1
∑
j≥i

Rj ≥ bi+1
∑
j≥i

bj
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bj

Step 3. Multiplying all constraints Lj ≥ bj for j ≥ i with bi+1 gives:

bi+1
∑
j≥i

Uj + bi+1
∑
j≥i

Rj ≥ bi+1
∑
j≥i

bj

Step 4. Addition of constraints from Step 2 and Step 3:

(bi+1 + 1) · L + (bi+1 + 1)
∑

j

Rj + (bi+1 + 1)
∑
j≥i

Rj ≥ 1 + (bi+1 + 1)
∑
j>i

bj
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Appendix Literal Unlocking

CERTIFYING LITERAL UNLOCKING

To Derive: L +
∑

j≥i Uj +
∑

j Rj ≥ 1 +
∑

j≥i bj . By induction on i.

For i between 1 and k (assuming already derived for i + 1):
Step 4. Addition of constraints from Step 2 and Step 3:

(bi+1 + 1) · L + (bi+1 + 1)
∑

j

Rj + (bi+1 + 1)
∑
j≥i

Rj ≥ 1 + (bi+1 + 1)
∑
j>i

bj

Step 5. Dividing this by bi+1 + 1 (and rounding the righthand-side up) yields

L +
∑

j

Rj +
∑
j≥i

Rj ≥ 1 +
∑
j>i

bj
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Appendix Proof by Case Splitting

INTERMEZZO: PROOF BY CASE SPLITTING

Suppose we have derived two constraints:

a · x +
∑

i

bili ≥ B a · x +
∑

i

bili ≥ B

And we want to derive the constraint ∑
i

bili ≥ B

By contradiction. Needed: CP derivation that shows

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ ¬(
∑

i

bili ≥ B) ` 0 ≥ 1

After normalization:

(a · x +
∑

i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1
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Appendix Proof by Case Splitting

INTERMEZZO: PROOF BY CASE SPLITTING

To show:
(a · x +

∑
i

bili ≥ B) ∧ (a · x +
∑

i

bili ≥ B) ∧ (
∑

i

bili ≥
∑

i

bi −B + 1) ` 0 ≥ 1

Addition of (a · x +
∑

i bili ≥ B) with (
∑

i bili ≥
∑

i bi −B + 1) gives
a · x +

∑
i

bili +
∑

i

bili ≥ B +
∑

i

bi −B + 1

which is equal to
a · x ≥ 1

After saturation: x ≥ 1.
Similarly, addition of (a · x +

∑
i bili ≥ B) and (

∑
i bili ≥

∑
i bi −B + 1) and saturation gives

x ≥ 1
which is clearly contradiction with x ≥ 1.
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