Proof Logging for MaxSAT Preprocessing

Based on joint work with: Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström

WHOOPS May 24th 2024

Outline

- MaxSAT and Preprocessing
- Proof logging for MaxSAT preprocessing: Overview
- Proof logging for MaxSAT preprocessing: Practical examples

MaxSAT and Preprocessing

- Optimization variant of SAT, (*F*, *O*)
- $F = \{(x_1 \vee \bar{x}_2), (x_2 \vee \bar{x}_3), (x_3 \vee \bar{x}_1), (\bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4)\}$
- $O \equiv \bar{x}_1 + 2x_4$
- There are three solutions to (*F*, *O*):

•
$$\tau_1 = \{x_1 \to 1, x_2 \to 1, x_3 \to 1, x_4 \to 0\}$$

- ▶ $\tau_2 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 0\}$
- ▶ $\tau_3 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 1\}$
- $O(\tau_1) = 2$
- $O(\tau_2) = 1$
- $O(\tau_3) = 3$
- τ₂ is an optimal solution.

- Optimization variant of SAT, (F, O)
- $F = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1), (\bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4)\}$
- $O \equiv \bar{x}_1 + 2x_4$
- There are three solutions to (*F*, *O*):

►
$$\tau_1 = \{x_1 \to 1, x_2 \to 1, x_3 \to 1, x_4 \to 0\}$$

►
$$\tau_2 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 0\}$$

▶
$$\tau_3 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 1\}$$

$$O(\tau_1) = 2$$

- $O(\tau_2) = 1$
- $O(\tau_3) = 3$
- τ_2 is an optimal solution.

- Optimization variant of SAT, (F, O)
- $F = \{(x_1 \vee \bar{x}_2), (x_2 \vee \bar{x}_3), (x_3 \vee \bar{x}_1), (\bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4)\}$
- $O \equiv \bar{x}_1 + 2x_4$
- There are three solutions to (*F*, *O*):

▶
$$\tau_1 = \{x_1 \to 1, x_2 \to 1, x_3 \to 1, x_4 \to 0\}$$

▶ $\tau_2 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 0\}$

- $\tau_3 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 1\}$
- $O(\tau_1) = 2$
- $O(\tau_2) = 1$
- ► *O*(*τ*₃) = 3
- τ_2 is an optimal solution.

- Optimization variant of SAT, (F, O)
- $F = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1), (\bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4)\}$
- $O \equiv \bar{x}_1 + 2x_4$
- There are three solutions to (*F*, *O*):

▶
$$\tau_1 = \{x_1 \to 1, x_2 \to 1, x_3 \to 1, x_4 \to 0\}$$

▶ $\tau_2 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 0\}$

- $\tau_3 = \{x_1 \to 0, x_2 \to 0, x_3 \to 0, x_4 \to 1\}$
- $\bullet \quad O(\tau_1) = 2$
- $O(\tau_2) = 1$
- $O(\tau_3) = 3$
- τ_2 is an optimal solution.

"Satisfy all hard clauses, minimize the total weight of unsatisfied soft clauses"

• Example:

- $\blacktriangleright \mathcal{F} = (F_H, F_S)$
- $F_H = \{ (x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1) \}$
- $\models F_S = \{ \langle (x_1), 1 \rangle, \langle (\bar{x}_2 \lor \bar{x}_3), 2 \rangle \}$
- Conversion to objective-centric
 - $\blacktriangleright \mathcal{F}^b = (F^b_H, F^b_S)$
 - $\models \ F^b_{H} = \{ (x_1 \vee \bar{x}_2), (x_2 \vee \bar{x}_3), (x_3 \vee \bar{x}_1), (\bar{x}_2 \vee \bar{x}_3 \vee x_4) \}$
 - $\models F_S^b = \{ \langle (x_1), 1 \rangle, \langle (\bar{x}_4), 2 \rangle \}$

$\bigcirc \longrightarrow$

► $F = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1), (\bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4)\}$ ► $O \equiv \bar{x}_1 + 2x_4$

- "Satisfy all hard clauses, minimize the total weight of unsatisfied soft clauses"
- Example:
 - $\mathcal{F} = (F_H, F_S)$ • $F_H = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1)\}$ • $F_S = \{\langle (x_1), 1 \rangle, \langle (\bar{x}_2 \lor \bar{x}_3), 2 \rangle\}$
- Conversion to objective-centric
 - $\mathcal{F}^b = (F^b_H, F^b_S)$
 - $\models F_{H}^{b} = \{ (x_{1} \lor \bar{x}_{2}), (x_{2} \lor \bar{x}_{3}), (x_{3} \lor \bar{x}_{1}), (\bar{x}_{2} \lor \bar{x}_{3} \lor x_{4}) \}$
 - $\models F_S^b = \{ \langle (x_1), 1 \rangle, \langle (\bar{x}_4), 2 \rangle \}$

$\bigcirc \longrightarrow$

► $F = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1), (\bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4)\}$ ► $O \equiv \bar{x}_1 + 2x_4$

- "Satisfy all hard clauses, minimize the total weight of unsatisfied soft clauses"
- Example:
 - $F = (F_H, F_S)$ $F_H = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1)\}$ $F_S = \{\langle (x_1), 1 \rangle, \langle (\bar{x}_2 \lor \bar{x}_3), 2 \rangle\}$
- Conversion to objective-centric

- $\bigcirc \longrightarrow$
 - $F = \{ (x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1), (\bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4) \}$ $O \equiv \bar{x}_1 + 2x_4$

- "Satisfy all hard clauses, minimize the total weight of unsatisfied soft clauses"
- Example:

$$F = (F_H, F_S)$$

$$F_H = \{(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1)\}$$

$$F_S = \{\langle (x_1), 1 \rangle, \langle (\bar{x}_2 \lor \bar{x}_3), 2 \rangle\}$$

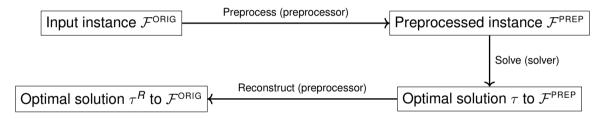
• Conversion to objective-centric

•
$$\mathcal{F}^{b} = (F_{H}^{b}, F_{S}^{b})$$

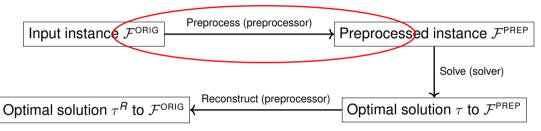
• $F_{H}^{b} = \{(x_{1} \lor \bar{x}_{2}), (x_{2} \lor \bar{x}_{3}), (x_{3} \lor \bar{x}_{1}), (\bar{x}_{2} \lor \bar{x}_{3} \lor x_{4})\}$
• $F_{S}^{b} = \{\langle(x_{1}), 1\rangle, \langle(\bar{x}_{4}), 2\rangle\}$

 $\bigcirc \quad \leadsto$

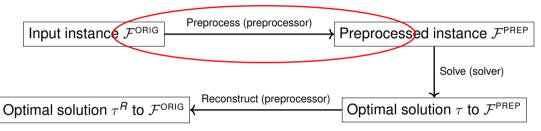
$$F = \{ (x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1), (\bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4) \} \\ F = O \equiv \bar{x}_1 + 2x_4$$



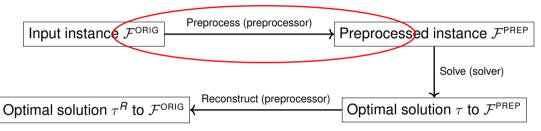
Proof logging for MaxSAT preprocessing: Overview



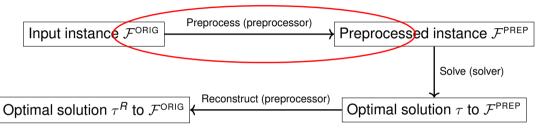
- What about reconstruction?
 - No proof logging for reconstruction
 - Verify that τ^R is a solution to \mathcal{F}^{ORIG} and that $\mathcal{O}^{ORIG}(\tau^R) = \mathcal{O}^{PREP}(\tau)$.



- What about reconstruction?
 - No proof logging for reconstruction
 - Verify that τ^R is a solution to $\mathcal{F}^{\text{ORIG}}$ and that $O^{\text{ORIG}}(\tau^R) = O^{\text{PREP}}(\tau)$.

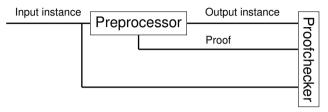


- What about reconstruction?
 - No proof logging for reconstruction
 - Verify that τ^R is a solution to $\mathcal{F}^{\text{ORIG}}$ and that $O^{\text{ORIG}}(\tau^R) = O^{\text{PREP}}(\tau)$.



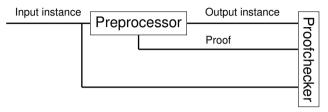
- What about reconstruction?
 - No proof logging for reconstruction
 - Verify that $\tau^{\vec{R}}$ is a solution to $\mathcal{F}^{\text{ORIG}}$ and that $O^{\text{ORIG}}(\tau^{R}) = O^{\text{PREP}}(\tau)$.

Proof logging MAXPRE



- MaxSAT to PBO in proofchecker-side
 - Convert to objective-centric
 - ASPB $(\bigvee_i \ell_i) = \sum_i \ell_i \ge 1$.
 - Formally verified conversion
- VERIPB output section
 - Given output instance F^{o} , $O^{o} = ASPB(\mathcal{F}^{PREP})$, check that $\mathcal{C} = F^{o}$, $O = O^{o}$

Proof logging MAXPRE



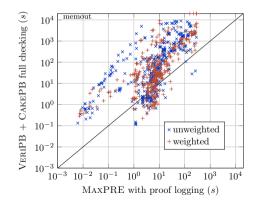
- MaxSAT to PBO in proofchecker-side
 - Convert to objective-centric
 - ASPB $(\bigvee_i \ell_i) = \sum_i \ell_i \ge 1.$
 - Formally verified conversion
- VERIPB output section
 - Given output instance F^o , $O^o = ASPB(\mathcal{F}^{PREP})$, check that $\mathcal{C} = F^o$, $O = O^o$

- No objective-improving constraints
- Mainly adding and removing core constraints
- Heavy use of redundance-based strengthening and checked deletion
- Changes to the objective function

- No objective-improving constraints
- Mainly adding and removing core constraints
- Heavy use of redundance-based strengthening and checked deletion
- Changes to the objective function

- No objective-improving constraints
- Mainly adding and removing core constraints
- Heavy use of redundance-based strengthening and checked deletion
- Changes to the objective function

- No objective-improving constraints
- Mainly adding and removing core constraints
- Heavy use of redundance-based strengthening and checked deletion
- Changes to the objective function



preprocessing (MaxSAT) proof (pseudo-Boolean)

2. Preprocessing on WCNF

 Conversion to objective-centric
 Preprocessing on objectivecentric
 Constant removal

preprocessing (MaxSAT) proof (pseudo-Boolean)

Initialization FORIG
 Preprocessing on WCNF
 Conversion to objective-centric
 Preprocessing on objective-centric
 Constant removal

ASPB(OBJMAXSAT(\mathcal{F}^{ORIG}))

	preprocessing (MaxSAT)	proof (pseudo-Boolean)
1. Initialization	\mathcal{F}^{ORIG}	$ASPB(OBJMAXSAT(\mathcal{F}^{ORIG}))$
2. Preprocessing on WCNF	$\mathcal{F}^1, extsf{LB}^1$	$(\mathcal{C}^1, \mathcal{O}^1)$
 Conversion to objective-centric Preprocessing on objective- centric Constant removal 		

	preprocessing (MaxSAT)	proof (pseudo-Boolean)
1. Initialization	\mathcal{F}^{ORIG}	$ASPB(OBJMAXSAT(\mathcal{F}^{ORIG}))$
2. Preprocessing on WCNF	$\mathcal{F}^1, \texttt{LB}^1$	$(\mathcal{C}^1, \mathcal{O}^1)$
 Conversion to objective-centric Preprocessing on objective- centric Constant removal 	(F ² , O ²)	(ASPB*(<i>F</i> ²), <i>O</i> ² *)

	preprocessing (MaxSAT)	proof (pseudo-Boolean)
1. Initialization	\mathcal{F}^{ORIG}	$ASPB(OBJMAXSAT(\mathcal{F}^{ORIG}))$
2. Preprocessing on WCNF	$\mathcal{F}^1, extsf{LB}^1$	$(\mathcal{C}^1, \mathcal{O}^1)$
3. Conversion to objective-centric	(F^2, O^2)	$(ASPB^*(F^2), O^{2*})$
4. Preprocessing on objective- centric 5. Constant removal	(F^3, O^3)	(ASPB*(<i>F</i> ³), <i>O</i> ^{3*})

	preprocessing (MaxSAT)	proof (pseudo-Boolean)
1. Initialization	\mathcal{F}^{ORIG}	$ASPB(OBJMAXSAT(\mathcal{F}^{ORIG}))$
2. Preprocessing on WCNF	\mathcal{F}^1, LB^1	$(\mathcal{C}^1, \mathcal{O}^1)$
3. Conversion to objective-centric	(F^2, O^2)	$(ASPB^*(F^2), O^{2*})$
4. Preprocessing on objective-	(F^3, O^3)	$(ASPB^*(F^3), O^{3*})$
centric 5. Constant removal	$(F^4, O^4) = \mathcal{F}^{PREP}$	$(ASPB(F^4), O^4) = ASPB(OBJMAXSAT(\mathcal{F}^{PREP}))$

Proof logging for MaxSAT preprocessing: Practical examples

Initialization

- Preprocessing on WCNF
- Onversion to objective-centric
- Preprocessing on objective centric
- Onstant removal + renaming variables

Input MaxSAT instance

Hard clauses: $(x_1 \lor x_2 \lor \bar{x}_3)$ $(\bar{x}_2 \lor x_3 \lor x_4)$ $(\bar{x}_1 \lor \bar{x}_2)$ $(\bar{x}_1 \lor x_2)$

Soft clauses: $\langle (\bar{x}_4), 2 \rangle$ $\langle (x_1, x_3), 4 \rangle$

Input MaxSAT instance

Hard clauses: $(x_1 \lor x_2 \lor \overline{x}_3)$ $(\overline{x}_2 \lor x_3 \lor x_4)$ $(\overline{x}_1 \lor \overline{x}_2)$ $(\overline{x}_1 \lor x_2)$

Soft clauses: $\langle (\bar{x}_4), 2 \rangle$ $\langle (x_1, x_3), 4 \rangle$

PBO instance (proof)

Constraints:

$$\begin{array}{l} 1: \ x_1 + x_2 + \bar{x}_3 \geq 1 \\ 2: \ \bar{x}_2 + x_3 + x_4 \geq 1 \\ 3: \ \bar{x}_1 + \bar{x}_2 \geq 1 \\ 4: \ \bar{x}_1 + x_2 \geq 1 \end{array}$$

Input MaxSAT instance

Hard clauses: $(x_1 \lor x_2 \lor \bar{x}_3)$ $(\bar{x}_2 \lor x_3 \lor x_4)$ $(\bar{x}_1 \lor \bar{x}_2)$ $(\bar{x}_1 \lor x_2)$

Soft clauses: $\langle (\bar{x}_4), 2 \rangle$ $\langle (x_1, x_3), 4 \rangle$

PBO instance (proof)

Constraints:

1:
$$x_1 + x_2 + \bar{x}_3 \ge 1$$

2: $\bar{x}_2 + x_3 + x_4 \ge 1$
3: $\bar{x}_1 + \bar{x}_2 \ge 1$
4: $\bar{x}_1 + x_2 \ge 1$

5:
$$x_1 + x_3 + b_5 \ge 1$$

Input MaxSAT instance

Hard clauses: $(x_1 \lor x_2 \lor \bar{x}_3)$ $(\bar{x}_2 \lor x_3 \lor x_4)$ $(\bar{x}_1 \lor \bar{x}_2)$ $(\bar{x}_1 \lor x_2)$

Soft clauses: $\langle (\bar{x}_4), 2 \rangle$ $\langle (x_1, x_3), 4 \rangle$

PBO instance (proof)

Constraints:

1:
$$x_1 + x_2 + \bar{x}_3 \ge 1$$

2: $\bar{x}_2 + x_3 + x_4 \ge 1$
3: $\bar{x}_1 + \bar{x}_2 \ge 1$
4: $\bar{x}_1 + x_2 \ge 1$

5:
$$x_1 + x_3 + b_5 \ge 1$$

minimize
$$O \equiv 2x_4 + 4b_5$$

Stage 2: Preprocessing on WCNF, removing duplicate clauses

MaxSAT instance (preprocessor)

Soft clauses:

 $\langle (x_1 \lor ar x_2), 2
angle \ \langle (x_1 \lor ar x_2), 3
angle$

. . .

Replace with a single soft clause ⟨(x₁ ∨ x ₂), 5⟩ Proof:

- ▶ Introduce constraints to encode *b*₁ = *b*₂
- Remove $x_1 + \bar{x}_2 + \bar{b}_2 \ge 1$ (RUP)
- Add $-3b_2 + 3b_1$ to O
- Remove constraints $b_1 + \overline{b}_2 \ge 1$ and $\overline{b}_1 + b_2 \ge 1$.

MaxSAT instance (preprocessor)

Soft clauses:

. . .

. . .

 $\langle (x_1 \lor ar{x}_2), 2
angle \ \langle (x_1 \lor ar{x}_2), 3
angle$

PBO instance (proof)

Minimize $O \equiv 2b_1 + 3b_2 + \dots$ s.t.

 $x_1 + \bar{x}_2 + b_1 \ge 1$ $x_1 + \bar{x}_2 + b_2 \ge 1$

Replace with a single soft clause ⟨(x₁ ∨ x ₂), 5⟩ Proof:

- Remove $x_1 + \bar{x}_2 + \bar{b}_2 > 1$ (RUP
- Add $-3b_2 + 3b_1$ to O
- Remove constraints $b_1 + \bar{b}_2 \ge 1$ and $\bar{b}_1 + b_2 \ge 1$.

MaxSAT instance (preprocessor)

Soft clauses:

. . .

. . .

 $\langle (x_1 \lor ar{x}_2), 2
angle \ \langle (x_1 \lor ar{x}_2), 3
angle$

PBO instance (proof)

Minimize $O \equiv 2b_1 + 3b_2 + \dots$ s.t.

 $\begin{array}{l} x_1 + \bar{x}_2 + b_1 \geq 1 \\ x_1 + \bar{x}_2 + b_2 \geq 1 \end{array}$

- Replace with a single soft clause ((x₁ ∨ x
 ₂), 5)
 Proof:
 - Introduce constraints to encode $b_1 = b_2$
 - ★ $\underline{b}_1 + \overline{b}_2 \ge 1, \omega = \{b_2 \rightarrow 0\}$
 - ★ $\bar{b}_1 + b_2 \ge 1, \omega = \{b_1 \to 0\}$
 - Remove $x_1 + \bar{x}_2 + \bar{b}_2 \ge 1$ (RUP)
 - Add $-3b_2 + 3b_1$ to *O*
 - Remove constraints $b_1 + \overline{b}_2 \ge 1$ and $\overline{b}_1 + b_2 \ge 1$.

MaxSAT instance (preprocessor)

Soft clauses:

. . .

. . .

 $\langle (x_1 \lor ar{x}_2), 2
angle \ \langle (x_1 \lor ar{x}_2), 3
angle$

PBO instance (proof)

Minimize $O \equiv 2b_1 + 3b_2 + \dots$ s.t.

 $x_1 + \bar{x}_2 + b_1 \ge 1$ $x_1 + \bar{x}_2 + b_2 \ge 1$

- Replace with a single soft clause ((x₁ ∨ x
 ₂), 5)
 Proof:
 - Introduce constraints to encode $b_1 = b_2$

$$\star \quad b_1 + \bar{b}_2 \ge 1, \omega = \{b_2 \to 0\}$$

- ★ $b_1 + b_2 \ge 1, \omega = \{b_1 \to 0\}$
- Remove $x_1 + \bar{x}_2 + \bar{b}_2 \ge 1$ (RUP)
- Add $-3b_2 + 3b_1$ to *O*
- Remove constraints $b_1 + \bar{b}_2 \ge 1$ and $\bar{b}_1 + b_2 \ge 1$.

MaxSAT instance (preprocessor)

Soft clauses:

 $\langle (x_1 \lor ar{x}_2), 2
angle \ \langle (x_1 \lor ar{x}_2), 3
angle$

PBO instance (proof)

Minimize $O \equiv 2b_1 + 3b_2 + \dots$ s.t.

 $x_1 + \bar{x}_2 + b_1 \ge 1$ $x_1 + \bar{x}_2 + b_2 \ge 1$

- Replace with a single soft clause $\langle (x_1 \lor \bar{x}_2), 5 \rangle$
- Proof:

. . .

. . .

$$b_1 + \bar{b}_2 \ge 1, \omega = \{b_2 \to 0\}$$

- ★ $b_1 + b_2 \ge 1, \omega = \{b_1 \to 0\}$ ► Remove $x_1 + \bar{x}_2 + \bar{b}_2 > 1$ (RUP)
- Add $-3b_2 + 3b_1$ to O
- Remove constraints $b_1 + \bar{b}_2 \ge 1$ and $\bar{b}_1 + b_2 \ge 1$.

MaxSAT instance (preprocessor)

Soft clauses:

 $\langle (x_1 \lor ar{x}_2), 2
angle \ \langle (x_1 \lor ar{x}_2), 3
angle$

PBO instance (proof)

Minimize $O \equiv 2b_1 + 3b_2 + \dots$ s.t.

 $x_1 + \bar{x}_2 + b_1 \ge 1$ $x_1 + \bar{x}_2 + b_2 \ge 1$

- Replace with a single soft clause $\langle (x_1 \lor \bar{x}_2), 5 \rangle$
- Proof:

. . .

. . .

★
$$b_1 + \overline{b}_2 \ge 1, \omega = \{b_2 \rightarrow 0\}$$

★ $\overline{b}_1 + b_2 \ge 1, \omega = \{b_1 \rightarrow 0\}$

- Remove $x_1 + \bar{x}_2 + \bar{b}_2 \ge 1$ (RUP)
- Add $-3b_2 + 3b_1$ to *O*
- Remove constraints $b_1 + \bar{b}_2 \ge 1$ and $\bar{b}_1 + b_2 \ge 1$.

MaxSAT instance (preprocessor)

Soft clauses:

 $\langle (x_1 \lor ar x_2), 2
angle \ \langle (x_1 \lor ar x_2), 3
angle$

PBO instance (proof)

Minimize $O \equiv 2b_1 + 3b_2 + \dots$ s.t.

 $x_1 + \bar{x}_2 + b_1 \ge 1$ $x_1 + \bar{x}_2 + b_2 \ge 1$

- Replace with a single soft clause $\langle (x_1 \lor \bar{x}_2), 5 \rangle$
- Proof:

. . .

★
$$b_1 + \overline{b}_2 \ge 1, \omega = \{b_2 \rightarrow 0\}$$

★ $\overline{b}_1 + b_2 \ge 1, \omega = \{b_1 \rightarrow 0\}$

- Remove $x_1 + \bar{x}_2 + \bar{b}_2 \ge 1$ (RUP)
- ► Add −3b₂ + 3b₁ to O
- Remove constraints $b_1 + \bar{b}_2 \ge 1$ and $\bar{b}_1 + b_2 \ge 1$.

• Case where proof is needed:

- Preprocessor has $\langle (x), w \rangle$
- ▶ PBO instance has $x + b \ge 1$, $O \equiv \cdots + wb + \cdots$
- We want to remove b
- ► Proof:
 - * Introduce constraint $\bar{x} + \bar{b} \ge 1$, $\omega = \{b \to 0\}$
 - * Add $w\bar{x} wb$ to O
 - ★ Remove $x + b \ge 1$ and $\bar{x} + \bar{b} \ge 1$

• Case where proof is needed:

- Preprocessor has $\langle (x), w \rangle$
- ▶ PBO instance has $x + b \ge 1$, $O \equiv \cdots + wb + \cdots$
- We want to remove b
- Proof:
 - ★ Introduce constraint $\bar{x} + \bar{b} \ge 1$, $\omega = \{b \rightarrow 0\}$
 - * Add $w\bar{x} wb$ to O
 - ***** Remove $x + b \ge 1$ and $\bar{x} + \bar{b} \ge 1$

- Case where proof is needed:
 - Preprocessor has $\langle (x), w \rangle$
 - ▶ PBO instance has $x + b \ge 1$, $O \equiv \cdots + wb + \cdots$
 - We want to remove b
 - Proof:
 - ★ Introduce constraint $\bar{x} + \bar{b} \ge 1$, $\omega = \{b \rightarrow 0\}$
 - * Add $w\bar{x} wb$ to C
 - ***** Remove $x + b \ge 1$ and $\bar{x} + \bar{b} \ge 1$

- Case where proof is needed:
 - Preprocessor has $\langle (x), w \rangle$
 - ▶ PBO instance has $x + b \ge 1$, $O \equiv \cdots + wb + \cdots$
 - We want to remove b
 - Proof:
 - * Introduce constraint $\bar{x} + \bar{b} \ge 1$, $\omega = \{b \rightarrow 0\}$
 - ***** Add $w\bar{x} wb$ to O
 - ***** Remove $x + b \ge 1$ and $\bar{x} + \bar{b} \ge 1$

- Case where proof is needed:
 - Preprocessor has $\langle (x), w \rangle$
 - ▶ PBO instance has $x + b \ge 1$, $O \equiv \cdots + wb + \cdots$
 - We want to remove b
 - Proof:
 - * Introduce constraint $\bar{x} + \bar{b} \ge 1$, $\omega = \{b \rightarrow 0\}$
 - ***** Add $w\bar{x} wb$ to O
 - ★ Remove $x + b \ge 1$ and $\bar{x} + \bar{b} \ge 1$

- Given two (non-objective) literals ℓ_1 and ℓ_2 s.t.
 - **1** {*C* | *C* \in *F*, $\ell_1 \in$ *C*} \supseteq {*C* | *C* \in *F*, $\ell_2 \in$ *C*} **2** {*C* | *C* \in *F*, $\bar{\ell_2} \in$ *C*} \supseteq {*C* | *C* \in *F*, $\bar{\ell_1} \in$ *C*}
- SLE fixes $\ell_1 = 1$, $\ell_2 = 0$

• Proof:

- ▶ Introduce $\ell_1 \ge 1$, $\overline{\ell}_2 \ge 1$, both with witness $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
- Simplify the constraint database (unit propagate)
- Delete $\ell_1 \ge 1$ and $\overline{\ell}_2 \ge 1$

- Given two (non-objective) literals ℓ_1 and ℓ_2 s.t.
 - **1** {*C* | *C* \in *F*, $\ell_1 \in C$ } \supseteq {*C* | *C* \in *F*, $\ell_2 \in C$ } **2** {*C* | *C* \in *F*, $\bar{\ell}_2 \in C$ } \supseteq {*C* | *C* \in *F*, $\bar{\ell}_1 \in C$ }
- SLE fixes $\ell_1 = 1$, $\ell_2 = 0$
- Proof:
 - ▶ Introduce $\ell_1 \ge 1$, $\bar{\ell}_2 \ge 1$, both with witness $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database (unit propagate)
 - Delete $\ell_1 \ge 1$ and $\bar{\ell}_2 \ge 1$

- Given two (non-objective) literals ℓ_1 and ℓ_2 s.t.
 - **1** {*C* | *C* \in *F*, $\ell_1 \in C$ } \supseteq {*C* | *C* \in *F*, $\ell_2 \in C$ } **2** {*C* | *C* \in *F*, $\bar{\ell}_2 \in C$ } \supseteq {*C* | *C* \in *F*, $\bar{\ell}_1 \in C$ }
- SLE fixes $\ell_1 = 1$, $\ell_2 = 0$
- Proof:
 - Introduce $\ell_1 \ge 1$, $\bar{\ell}_2 \ge 1$, both with witness $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database (unit propagate)
 - Delete $\ell_1 \geq 1$ and $\bar{\ell}_2 \geq 1$

- Given two (non-objective) literals ℓ_1 and ℓ_2 s.t.
 - **1** {*C* | *C* \in *F*, $\ell_1 \in C$ } \supseteq {*C* | *C* \in *F*, $\ell_2 \in C$ } **2** {*C* | *C* \in *F*, $\bar{\ell}_2 \in C$ } \supseteq {*C* | *C* \in *F*, $\bar{\ell}_1 \in C$ }
- SLE fixes $\ell_1 = 1$, $\ell_2 = 0$
- Proof:
 - Introduce $\ell_1 \ge 1$, $\bar{\ell}_2 \ge 1$, both with witness $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database (unit propagate)
 - Delete $\ell_1 \geq 1$ and $\bar{\ell}_2 \geq 1$

- Given two (non-objective) literals ℓ_1 and ℓ_2 s.t.
 - **1** { $C \mid C \in F, \ell_1 \in C$ } \supseteq { $C \mid C \in F, \ell_2 \in C$ } **2** { $C \mid C \in F, \bar{\ell_2} \in C$ } \supseteq { $C \mid C \in F, \bar{\ell_1} \in C$ }
- SLE fixes $\ell_1 = 1$, $\ell_2 = 0$
- Proof:
 - Introduce $\ell_1 \ge 1$, $\bar{\ell}_2 \ge 1$, both with witness $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database (unit propagate)
 - Delete $\ell_1 \ge 1$ and $\overline{\ell}_2 \ge 1$

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \\ \{C \mid C \in F, \ell_2 \in C\} \supseteq \{C \mid C \in F, \ell_1 \in C\} \\ \{O \mid C \in W_1, \ell_1 + W_2, \ell_2 + \dots, W_1 \leq W_2\}$$

- Fix $\ell_2 = 0$
- Proof:
 - Introduce $\overline{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database
 - Add − w₂ℓ₂ to O
 - ▶ Delete l₂ ≥ 1

• Given two literals
$$\ell_1$$
 and ℓ_2 s.t.

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \} \{O \equiv \dots W_1 \ell_1 + W_2 \ell_2 + \dots, W_1 < W_2 \}$$

• Fix
$$\ell_2 = 0$$

ℓ_1	ℓ_2	cost
0	0	0
0	1	<i>W</i> ₂
1	0	<i>W</i> ₁
1	1	$w_1 + w_2$

• Given two literals
$$\ell_1$$
 and ℓ_2 s.t.

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \} \{O \equiv \dots w_1 \ell_1 + w_2 \ell_2 + \dots, w_1 < w_2 \}$$

• Fix
$$\ell_2 = 0$$

Proof:

- Introduce $\bar{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
- Simplify the constraint database
- Add − w₂ℓ₂ to C
- Delete $\ell_2 \geq 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	<i>w</i> ₁ + <i>w</i> ₂

1 {*C* | *C* ∈ *F*,
$$\ell_1 \in C$$
} ⊇ {*C* | *C* ∈ *F*, $\ell_2 \in C$ }
2 {*C* | *C* ∈ *F*, $\bar{\ell_2} \in C$ } ⊇ {*C* | *C* ∈ *F*, $\bar{\ell_1} \in C$ }
3 *O* ≡ ... $w_1 \ell_1 + w_2 \ell_2 + ..., w_1 \leq w_2$

- Proof:
 - Introduce $\bar{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database
 - Add −w₂ℓ₂ to O
 - Delete $l_2 \ge 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	$w_1 + w_2$

1 {*C* | *C* ∈ *F*,
$$\ell_1 \in C$$
} ⊇ {*C* | *C* ∈ *F*, $\ell_2 \in C$ }
2 {*C* | *C* ∈ *F*, $\bar{\ell_2} \in C$ } ⊇ {*C* | *C* ∈ *F*, $\bar{\ell_1} \in C$ }
3 *O* ≡ ... *w*₁ ℓ_1 + *w*₂ ℓ_2 + ..., *w*₁ ≤ *w*₂

- Fix $\ell_2 = 0$
- Proof:
 - Introduce $\bar{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database
 - Add $-w_2\ell_2$ to O
 - Delete $\overline{\ell}_2 \geq 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	$w_1 + w_2$

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \} \{O \equiv \dots w_1 \ell_1 + w_2 \ell_2 + \dots, w_1 \le w_2$$

- Fix $\ell_2 = 0$
- Proof:
 - Introduce $\bar{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database
 - Add $-w_2\ell_2$ to O
 - Delete $\overline{\ell}_2 \geq 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	$w_1 + w_2$

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \} \{O \equiv \dots w_1 \ell_1 + w_2 \ell_2 + \dots, w_1 \le w_2$$

- Fix $\ell_2 = 0$
- Proof:
 - Introduce $\bar{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database
 - Add $-w_2\ell_2$ to O
 - Delete $\bar{\ell}_2 \geq 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	<i>w</i> ₁ + <i>w</i> ₂

• Given two literals
$$\ell_1$$
 and ℓ_2 s.t.

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \} \{O \equiv \dots w_1 \ell_1 + w_2 \ell_2 + \dots, w_1 \le w_2$$

- Fix $\ell_2 = 0$
- Proof:
 - Introduce $\bar{\ell}_2 \geq 1$, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$
 - Simplify the constraint database
 - Add $-w_2\ell_2$ to O
 - Delete $\overline{\ell}_2 \geq 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	<i>w</i> ₁ + <i>w</i> ₂

0

~

• Given two literals
$$\ell_1$$
 and ℓ_2 s.t.

$$\{C \mid C \in F, \ell_1 \in C\} \supseteq \{C \mid C \in F, \ell_2 \in C\} \{C \mid C \in F, \bar{\ell_2} \in C\} \supseteq \{C \mid C \in F, \bar{\ell_1} \in C\} \} \{O \equiv \dots w_1 \ell_1 + w_2 \ell_2 + \dots, w_1 \le w_2$$

• Fix
$$\ell_2 = 0$$

Proof:

• Introduce
$$\bar{\ell}_2 \geq 1$$
, $\omega = \{\ell_1 \rightarrow 1, \ell_2 \rightarrow 0\}$

- Simplify the constraint database
- Add $-w_2\ell_2$ to O
- Delete $\bar{\ell}_2 \ge 1$

ℓ_1	ℓ_2	cost
0	0	0
0	1	W 2
1	0	<i>W</i> ₁
1	1	$w_1 + w_2$

Stage 4: Preprocessing on Objective-Centric, 2/3: Hardening

Given

- τ s.t. $O(\tau) = UB$
- $b \text{ s.t. } O \equiv \cdots + wb + \ldots, w > UB$

• Fix *b* = 0

- In optimality proofs, objective improving constraints can be used
- We need something else
- Proof:
 - add $ar{b}_i \geq$ 1 with witness $\omega = au$

Stage 4: Preprocessing on Objective-Centric, 2/3: Hardening

Given

- *τ* s.t. *O*(*τ*) = UB
- $b \text{ s.t. } O \equiv \cdots + wb + \ldots, w > UB$
- Fix *b* = 0
- In optimality proofs, objective improving constraints can be used
- We need something else
- Proof:
 - add $ar{b}_l \geq$ 1 with witness $\omega = au$

Stage 4: Preprocessing on Objective-Centric, 2/3: Hardening

Given

- ▶ τ s.t. $O(\tau) = UB$
- $b \text{ s.t. } O \equiv \cdots + wb + \ldots, w > UB$
- Fix *b* = 0
- In optimality proofs, objective improving constraints can be used
- We need something else
- Proof:
 - add $\bar{b}_i \ge 1$ with witness $\omega = \tau$

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + w b_C + w b_D + \ldots$
 - O V D is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\hat{b}_C + \hat{b}_D \ge 1$, $\omega = \{ b_C \to \bar{\ell}, b_D \to \ell \}$
 - ▶ Introduce $b_{CD} = b_C + b_D$
 - Add wb_{CD} wb_C wb_D to O
 - ▶ Introduce $AsPB(C \lor b_{CD})$ and $AsPB(D \lor b_{CD})$ (RUP
 - ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding b_{CD} = b_C + b_D
 - Delete constraint $\bar{b}_C + \bar{b}_D \geq 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces D ∨ b_D with D ∨ b_{CD}

• Adds $wb_{CD} - wb_C - wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + w b_C + w b_D + \ldots$
 - O V D is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $ar{b}_C + ar{b}_D \geq$ 1, $\omega = \{ m{b}_C o ar{\ell}, m{b}_D o \ell \}$
 - lntroduce $b_{CD} = b_C + b_D$
 - Add wb_{CD} wb_C wb_D to O
 - Introduce AsPB(C∨b_{CD}) and AsPB(D∨b_{CD}) (RUP)
 - ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding b_{CD} = b_C + b_D
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses

• **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$

- ▶ Introduce $\bar{b}_{C} + \bar{b}_{D} \ge 1$, $\omega = \{ b_{C} \rightarrow \bar{\ell}, b_{D} \rightarrow \ell \}$
- Introduce $b_{CD} = b_C + b_D$
- Add $wb_{CD} wb_C wb_D$ to O
- ▶ Introduce $AsPB(C \lor b_{CD})$ and $AsPB(D \lor b_{CD})$ (RUP)
- ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
- Delete constraints encoding $b_{CD} = b_C + b_D$
- Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_{C} + \bar{b}_{D} \ge 1$, $\omega = \{ b_{C} \rightarrow \bar{\ell}, b_{D} \rightarrow \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add $wb_{CD} wb_C wb_D$ to O
 - ▶ Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_C + \bar{b}_D \ge 1$, $\omega = \{ b_C \to \bar{\ell}, b_D \to \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add wb_{CD} wb_C wb_D to O
 - ▶ Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_C + \bar{b}_D \ge 1$, $\omega = \{ b_C \to \bar{\ell}, b_D \to \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add $wb_{CD} wb_{C} wb_{D}$ to O
 - ▶ Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_{C} + \bar{b}_{D} \ge 1$, $\omega = \{ b_{C} \rightarrow \bar{\ell}, b_{D} \rightarrow \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add $wb_{CD} wb_{C} wb_{D}$ to O
 - ► Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ▶ Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_{C} + \bar{b}_{D} \ge 1$, $\omega = \{ b_{C} \rightarrow \bar{\ell}, b_{D} \rightarrow \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add $wb_{CD} wb_{C} wb_{D}$ to O
 - ► Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ► Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_{C} + \bar{b}_{D} \ge 1$, $\omega = \{ b_{C} \rightarrow \bar{\ell}, b_{D} \rightarrow \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add $wb_{CD} wb_{C} wb_{D}$ to O
 - ► Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ► Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Assume that
 - F has clauses $C \vee b_C$ and $D \vee b_D$
 - $O \equiv \cdots + wb_C + wb_D + \ldots$
 - \bigcirc $C \lor D$ is a tautology
 - b_C and b_D do not appear in other clauses
- **Proof**, w.l.o.g. assume $\ell \in C$ and $\overline{\ell} \in D$
 - Introduce $\bar{b}_{C} + \bar{b}_{D} \ge 1$, $\omega = \{ b_{C} \rightarrow \bar{\ell}, b_{D} \rightarrow \ell \}$
 - Introduce $b_{CD} = b_C + b_D$
 - Add $wb_{CD} wb_{C} wb_{D}$ to O
 - ► Introduce $ASPB(C \lor b_{CD})$ and $ASPB(D \lor b_{CD})$ (RUP)
 - ► Delete ASPB($C \lor b_C$) and ASPB($D \lor b_D$), $\omega = \{b_C \to \overline{\ell}, b_D \to \ell\}$
 - Delete constraints encoding $b_{CD} = b_C + b_D$
 - Delete constraint $\bar{b}_C + \bar{b}_D \ge 1$

- Label matching
 - Replaces $C \lor b_C$ with $C \lor b_{CD}$
 - Replaces $D \lor b_D$ with $D \lor b_{CD}$
 - Adds $wb_{CD} wb_C wb_D$ to O.

- Preprocessor produces a MaxSAT instance in WCNF
- VERIPB verifies that the output WNCF (converted to PBO) matches the database at the end of the proof
 - Remove the constant term from the objective function
 - ***** Hard clause (x_{LB}) , soft clause $\langle (\bar{x}_{LB}), LB \rangle$
 - Rename variables (if necessary)
 - ★ For each x_i , reify $t_{x_i} \leftrightarrow x_i$
 - Derive constraints with t-variables, remove the original constraints
 - * Repeat to get desired variable names

- Preprocessor produces a MaxSAT instance in WCNF
- VERIPB verifies that the output WNCF (converted to PBO) matches the database at the end of the proof
 - Remove the constant term from the objective function
 - ★ Hard clause (X_{LB}) , soft clause $\langle (\bar{X}_{LB}), LB \rangle$
 - Rename variables (if necessary)
 - ★ For each x_i , reify $t_{x_i} \leftrightarrow x_i$
 - * Derive constraints with t-variables, remove the original constraints
 - * Repeat to get desired variable names

- Preprocessor produces a MaxSAT instance in WCNF
- VERIPB verifies that the output WNCF (converted to PBO) matches the database at the end of the proof
 - Remove the constant term from the objective function
 - ★ Hard clause (x_{LB}), soft clause $\langle (\bar{x}_{LB}), LB \rangle$
 - Rename variables (if necessary)
 - ★ For each x_i , reify $t_{x_i} \leftrightarrow x_i$
 - * Derive constraints with t-variables, remove the original constraints
 - * Repeat to get desired variable names

- Preprocessor produces a MaxSAT instance in WCNF
- VERIPB verifies that the output WNCF (converted to PBO) matches the database at the end of the proof
 - Remove the constant term from the objective function
 - ★ Hard clause (x_{LB}), soft clause $\langle (\bar{x}_{LB}), LB \rangle$
 - Rename variables (if necessary)
 - ★ For each x_i , reify $t_{x_i} \leftrightarrow x_i$
 - Derive constraints with t-variables, remove the original constraints
 - ★ Repeat to get desired variable names

- Preprocessor produces a MaxSAT instance in WCNF
- VERIPB verifies that the output WNCF (converted to PBO) matches the database at the end of the proof
 - Remove the constant term from the objective function
 - ★ Hard clause (x_{LB}), soft clause $\langle (\bar{x}_{LB}), LB \rangle$
 - Rename variables (if necessary)
 - ★ For each x_i , reify $t_{x_i} \leftrightarrow x_i$
 - Derive constraints with t-variables, remove the original constraints
 - ★ Repeat to get desired variable names

Conclusion

- Proof-logging for stand-alone MaxSAT preprocessor with VERIPB
 - 15+ preprocessing techniques implemented in MAXPRE
- Seems to work well
- End-to-end formally verified proof logging with CAKEPB
- First practical tool for even verifying (two-way) equisatisfiability