
Symmetry Breaking in the Subgraph
Isomorphism Problem
WHOOPS Workshop 2024

Joseph Loughney

# jpl9@st-andrews.ac.uk

mailto:jpl9@st-andrews.ac.uk


Graph Isomorphism

Graphs G and H are isomorphic if there exists a bijection between
their vertex sets that preserves adjacency.

a b

c

d

e

Figure: The graph G.

α δ

β

γ

ϵ

Figure: The (isomorphic) graph H.



Subgraph Isomorphism Problem (SIP)

Given a pattern graph P and a (larger) target graph T, does there
exist a graph isomorphism between P and a subgraph of T?

a b

c

Figure: The pattern graph P.

0 1

2

3

4

Figure: The target graph T.



Subgraph Isomorphism Problem (SIP)

Given a pattern graph P and a (larger) target graph T, does there
exist a graph isomorphism between P and a subgraph of T?

a b

c

Figure: The pattern graph P.

0 1

2

3

4

Figure: The target graph T.



Subgraph Isomorphism Problem (SIP)

How many such solutions exist?

a b

c

Figure: The pattern graph P.

0 1

2

3

4

Figure: The target graph T.



Subgraph Isomorphism Problem (SIP)

How many such solutions exist?

a b

c

Figure: The pattern graph P.

0 1

2

3

4

0 1

2

3

4

0 1

2

3

4



A Larger Example

Is this graph planar?



A Larger Example

No! We’ve found K3,3 as a SIP solution, so G is non-planar (by
Kuratowski’s Theorem).



Symmetry Breaking

a b

c

0 1

2

3

4

Solutions
(a → 2, b → 3, c → 4), (a → 2, b → 4, c → 3),
(a → 3, b → 2, c → 4), (a → 3, b → 4, c → 2),
(a → 4, b → 2, c → 3), (a → 4, b → 3, c → 2)

How do we avoid wasting time finding symmetrical solutions?



Pattern Symmetries

An isomorphism of a graph onto itself is called an automorphism.

Lemma
If an automorphism maps pattern vertex p1 → p2 , and a solution ex-
ists that maps p1 to target vertex t, then an equivalent solution exists
for p2 → t.

The set of all vertices {p1, · · · , pj} such that p maps to all pi under
automorphism is called the orbit of p, denoted orb(p).



Pattern Symmetries

Example
ϕ(a) = b, Solution 1 = (a → 2, b → 3, c → 4) =⇒ ∃ Solution 2 =
(b → 2, · · · )

a b

c

b a

c

ϕ

0 1

2

3

4

Solution 2
(b → 2, a → 3, c → 4)



Pattern Symmetries

Consider the symmetries of the pattern graph, and the constraints
we generate from them:

a b

c

b a

c

a < b

c b

a

a < c

a c

b

b < c



Pattern Constraints

Question
What does the pattern constraint a < b mean?

Answer
“The value assigned to variable a must be less* than the value as-
signed to variable b.”
*More on this later...



Pattern Symmetries

Now using the variable constraints a < b, a < c, b < c:

a b

c

0 1

2

3

4

Solutions
(a → 2, b → 3, c → 4),(a → 2, b → 4, c → 3),
(a → 3, b → 2, c → 4), (a → 3, b → 4, c → 2),
(a → 4, b → 2, c → 3), (a → 4, b → 3, c → 2)



Target Symmetries

Similarly to pattern symmetries:

Lemma
If there exists an automorphism which maps target vertex t1 → t2,
and a solution mapping p → t1, an equivalent solution exists map-
ping p → t2.



Target Symmetries

Consider the symmetries of the target:

0 1

2

3

4

1 0

4

3

2

0 < 1 or 2 < 4



Pattern Constraints

Question
What does the target constraint 5 < 3 mean?

Answer
“The value 5 must be assigned to a smaller variable than the value 3,
if the value 3 is assigned to a variable.”



Target Symmetries

Now using the value constraints 2 < 4:

a b

c

0 1

2

3

4

Solutions
(a → 2, b → 3, c → 4)(a → 2, b → 4, c → 3),
(a → 3, b → 2, c → 4),(a → 3, b → 4, c → 2),
(a → 4, b → 2, c → 3), (a → 4, b → 3, c → 2)



Target Symmetries

Note: Subgraph isomorphism is non-surjective on the target graph,
so target constraints picked at random at the top of search may be
ignored.

If we had picked 0 < 1 instead of 2 < 4, we wouldn’t have filtered
any solutions.



Generating Symmetry Constraints

1. Compute generators for Aut(G), the permutation group
consisting of all automorphisms of the graph G.

2. For each generator g:
a. Pick a base point β to stabilise, recording its orbit.
b. Check which points still permute under g without moving β.
c. Repeat steps a and b with one such point, if one exists.

3. For all non-trivial base points β1, · · · ,βn, add symmetry
constraints βi < γ ∀ γ ∈ orb(βi).



Example

a b

c

Aut(G) =< (a b c), (a b) >

a b

c
β1 = a, orb(a) = {a, b, c}

=⇒ a < b, a < c

a b

c

β2 = b, orb(b)|β1=a = {b, c}
=⇒ b < c

a b

c

orb(c)|β1=a∧β2=b = {c}



Flexible Ordering

Generating constraints before search may waste effort.

a b

c

0 1

2 3
4

n

. . .

Using the fixed-order constraints generated at the top of search, we
might propagate a list of constraints {3 < n, 4 < n, · · · , n − 1 < n}
after each assignment that is never relevant to search.



Flexible Ordering

How do we combat this?
Fixed-order symmetry breaking picks a base at random before
search. It could be unlucky, and pick one not relevant to the solu-
tion.

We can construct the base during search, adding constraints as
we go. When we encounter a vertex not already in the base, we add
it to the base. The "smallest" element in each orbit is simply the
element we encounter first in the search tree.



Flexible Ordering

Suppose we have variable constraint a < b and value constraint
4 < 2, and find a solution with (a → 4, b → 2, · · · ).

We want to accept this solution.

By constructing a flexible value ordering from the value constraints
(such as [1, 2, 3, 4, 5, · · · ] → [1, 4, 2, 3, 5, · · · ] in this case), we can
avoid accidentally adding conflicting variable-value constraint
pairs.



Experimental Set-up

Experiments are run on the Benchmarks for the Subgraph
Isomorphism Problem dataset found at

https://perso.liris.cnrs.fr/christine.solnon/
SIP.html

Solver output is recorded, including: solution count, run-time,
number of search nodes, and number of propagations.

https://perso.liris.cnrs.fr/christine.solnon/SIP.html
https://perso.liris.cnrs.fr/christine.solnon/SIP.html


Initial Results (Variable and Value Symmetry Breaking)

Figure: Fixed order symmetry breaking vs. No symmetry breaking



Initial Results (Variable and Value Symmetry Breaking)

Figure: Flexible order symmetry breaking vs. No symmetry breaking



Initial Results (Variable and Value Symmetry Breaking)

Number of previously timed-out cases now solved, and vice versa

Of 17006 instances: Fixed Ordering Flexible Ordering
Now solved 178 213
Now timed-out 94 10

Average run-time relative to the solver with no symmetry breaking

Threshold (ms) Fixed Ordering Flexible Ordering
100 12.79 1.46
500 3.21 1.25

1000 2.00 1.10
5000 1.10 0.83

10000 1.07 0.84
50000 0.89 0.85



Initial Results (Variable and Value Symmetry Breaking)

Average relative run-time (unsatisfiable cases)

Threshold (ms) Fixed Ordering Flexible Ordering
100 22.37 1.96
500 18.10 4.25

1000 11.97 3.78
5000 3.93 1.03

10000 3.79 1.08
50000 1.35 0.87

Average relative run-time (satisfiable cases)

Threshold (ms) Fixed Ordering Flexible Ordering
100 0.53 0.57
500 0.47 0.33

1000 0.46 0.32
5000 0.46 0.26

10000 0.43 0.24
50000 0.34 0.20



Any questions?


	Introduction

