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... and failing because of interference

What are DRAT proofs really doing?
𝝅 ∶ 𝑭 ⊢ 𝑮 proves that for each 𝑰 ⊨ 𝑭we havemut(𝑰) ⊨ 𝑭

mut is a sequence of operations like if 𝑰 ⊨ 𝑻, then 𝑰 ≔ 𝑰 ∘ 𝝈 [RP, Suda ’18]
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𝒖𝟐

𝑭
𝒖𝟑 ∨ 𝑭𝟑
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∇(𝑩𝟐 ∶− 𝝈𝟑). 𝒖𝟑
𝒖𝟑
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⊥

(by some arcane magic)

this is a premise!

(by resolution)

why can’t we just do this?

3



Accumulated formulas are not your friend

Themutation operator ∇(𝑻 ∶− 𝝈)(𝑰) is 𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑻, or 𝑰 otherwise.

𝑰 ⊨ ∇(𝑻 ∶− 𝝈).𝑪 iff ∇(𝑻 ∶− 𝝈)(𝑰) ⊨ 𝑪 [RP, Suda ’18] [RP ’23]

𝑭
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(by SR)

[Buss, Thapen ’19]

(by SR)

(by resolution)

(by cleanliness)
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Accumulated formulas are not your friend
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3



Accumulated formulas are not your friend

Themutation operator ∇(𝑻 ∶− 𝝈)(𝑰) is 𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑻, or 𝑰 otherwise.

𝑰 ⊨ ∇(𝑻 ∶− 𝝈).𝑪 iff ∇(𝑻 ∶− 𝝈)(𝑰) ⊨ 𝑪 [RP, Suda ’18] [RP ’23]

𝑭
𝒖𝟏 ∨ 𝑭𝟏

∇(𝑩𝟏 ∶− 𝝈𝟏). 𝒖𝟏 ∨ 𝑭𝟏

∇(𝑩𝟏 ∶− 𝝈𝟏). 𝑩𝟏

∇(𝑩𝟏 ∶− 𝝈𝟏). 𝒖𝟏
𝒖𝟏

(by deletion)

(by SR)

[Buss, Thapen ’19]

(by SR)

(by resolution)

(by cleanliness)

[Fazekas, Biere, Scholl ’19] [Fazekas, Pollitt, Fleury, Biere ’24]

𝑭
𝒖𝟐 ∨ 𝑭𝟐

∇(𝑩𝟐 ∶− 𝝈𝟐). 𝒖𝟐 ∨ 𝑭𝟐
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𝑭
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∇(𝑩𝟐 ∶− 𝝈𝟑). 𝒖𝟑
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⊥

(by some arcane magic)

this is a premise!

(by resolution)

why can’t we just do this?

3



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭

⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩

⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩

⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥

{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥

∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥ ∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏

𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥ ∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏

𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥ ∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏

𝑪𝟐
unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥ ∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐

unsat
core!

4



Compositionality is all you need: trimming

𝑭 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑}

𝑭 ⊢ ∇(𝑩 ∶− 𝝈). 𝑭 ∧ 𝑩 ⊢ ∇(𝑩 ∶− 𝝈).⊥

{𝑪𝟏, 𝑩} ⊢ 𝑪𝟏||𝝈
{𝑪𝟐, 𝑩} ⊢ 𝑪𝟐||𝝈
{𝑪𝟏, 𝑪𝟑, 𝑩} ⊢ 𝑪𝟑||𝝈
{𝑪𝟏, 𝑪𝟐, 𝑩} ⊢ 𝑩|𝝈

{𝑪𝟏, 𝑩} ⊢ ⊥{𝑪𝟏} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟏

{𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟐

{𝑪𝟏, 𝑪𝟑} ⊢ ∇(𝑩 ∶− 𝝈).𝑪𝟑

{𝑪𝟏, 𝑪𝟐} ⊢ ∇(𝑩 ∶− 𝝈).𝑩

marked:

[Heule, Hunt, Wetzler ’13]

∇(𝑩 ∶− 𝝈).⊥ ∇(𝑩 ∶− 𝝈).𝑩 ∇(𝑩 ∶− 𝝈).𝑪𝟏 𝑪𝟏 𝑪𝟐
unsat
core!

4



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}

delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}

SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒

⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)

5



Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)

⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
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Compositionality is all you need: satisfiability

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}

[Järvisalo, Heule, Biere ’12]

delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

Redundant clause deletion I can transformmodels of 𝑭 \ 𝑪 into models of 𝑭
[Järvisalo, Biere ’10] [Järvisalo, Heule, Biere ’12]

Satisfiability I can transformmodels of⊤ into models of 𝑭
[Philipp, RP ’16]

∅ ⊢ 𝝈𝟒. 𝑪𝟒
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑). (𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐). (𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
⊢ 𝝈𝟒 ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
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Compositionality is all you need: incremental solving

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
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SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}

insert𝑪𝟓 = 𝒚 ∨ 𝒛 (clean on 𝝈𝟏, 𝝈𝟐, 𝝈𝟑)

[Fazekas, Biere, Scholl ’19]

[Fazekas, Pollitt, Fleury, Biere ’24]

SAT by 𝝈𝟓 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊥}
insert𝑪𝟔 = 𝒛 (clean on 𝝈𝟏, 𝝈𝟑)
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𝑪𝟓 ⊢ ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). 𝑪𝟓

∅ ⊢ 𝝈𝟓. (𝑪𝟒 ∧ 𝑪𝟓)

𝑪𝟔 ⊢ ∇(𝑪𝟏 ∶− 𝝈𝟏). 𝑪𝟔

𝑪𝟐 ∧⋯ ∧ 𝑪𝟔 ⊢ ⊥

6



Compositionality is all you need: incremental solving

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
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𝒙 ∨ 𝒚 ∨ 𝒛
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𝑪𝟓 ∶ 𝒚 ∨ 𝒛
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delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
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𝑪𝟒 ⊢ ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
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∅ ⊢ 𝝈𝟓. (𝑪𝟒 ∧ 𝑪𝟓)

𝑪𝟔 ⊢ ∇(𝑪𝟏 ∶− 𝝈𝟏). 𝑪𝟔
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𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

𝑪𝟓 ∶ 𝒚 ∨ 𝒛

𝑪𝟔 ∶ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}
delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}
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insert𝑪𝟔 = 𝒛 (clean on 𝝈𝟏, 𝝈𝟑)
UNSAT

𝑪𝟒 ⊢ ∇(𝑪𝟑 ∶− 𝝈𝟑) ∇(𝑪𝟐 ∶− 𝝈𝟐) ∇(𝑪𝟏 ∶− 𝝈𝟏). (𝑪𝟏 ∧ 𝑪𝟐 ∧ 𝑪𝟑 ∧ 𝑪𝟒)
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𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

𝑪𝟓 ∶ 𝒚 ∨ 𝒛
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SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}
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UNSAT
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𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

𝑪𝟓 ∶ 𝒚 ∨ 𝒛

𝑪𝟔 ∶ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}
delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}
insert𝑪𝟓 = 𝒚 ∨ 𝒛 (clean on 𝝈𝟏, 𝝈𝟐, 𝝈𝟑)
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[Fazekas, Pollitt, Fleury, Biere ’24]
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insert𝑪𝟔 = 𝒛 (clean on 𝝈𝟏, 𝝈𝟑)
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Compositionality is all you need: incremental solving

𝑪𝟏 ∶
𝑪𝟐 ∶
𝑪𝟑 ∶
𝑪𝟒 ∶

𝒙 ∨ 𝒚 ∨ 𝒛
𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛
𝒙 ∨ 𝒚 ∨ 𝒛

𝑪𝟓 ∶ 𝒚 ∨ 𝒛
𝑪𝟔 ∶ 𝒛

delete𝑪𝟏 by 𝝈𝟏 = {𝒙 ↦ ⊤}
delete𝑪𝟐 by 𝝈𝟐 = {𝒛 ↦ ⊥}
delete𝑪𝟑 by 𝝈𝟑 = {𝒚 ↦ ⊥}
SAT by 𝝈𝟒 = {𝒙 ↦ ⊤, 𝒚 ↦ ⊥, 𝒛 ↦ ⊤}
insert𝑪𝟓 = 𝒚 ∨ 𝒛 (clean on 𝝈𝟏, 𝝈𝟐, 𝝈𝟑)

[Fazekas, Biere, Scholl ’19]

[Fazekas, Pollitt, Fleury, Biere ’24]
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What’s in the box?

What about dominance?
this requires a huge detour throughmodal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]

TL;DR:∇ is really a box modality in PDL, dominance corresponds to the Kleene star

What about deletion in unsat proofs?
They now know their place (non-semantic performance annotations)

But howmany rules do you need?
not that many: RUP can be (carefully) extended to (much of) PDL

Wouldn’t proofs be very long?
this is really a matter of format engineering

if done right, comparable to DRAT/VeriPB

Wouldn’t the checks be too complex?
not if adequately restricted; distributed/parallelized checking is trivial

for RAT/SR-equivalent checks, same as DRAT/DSR

Does this yield new redundance rules?
somany I stopped bothering giving them names
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Kripke semantics for Kripkean stuff

∇(𝑻 ∶− 𝝈)(𝑰) is 𝑰 ∘ 𝝈 if 𝑰 ⊨ 𝑻, or 𝑰 otherwise.

𝑰 maps variables to bits  memory states

∇(𝑻 ∶− 𝝈) transforms amemory state into amemory state  programs

if we want to make this work for dominance, wemust be evenmore general:
programsmay be partial maps (to allowwhile loops)
programsmay be non-deterministic (to encode preorders)

Constraints semantics given by a set of (satisfying) assignments

Programs semantics given by a binary relation of (transitioning) assignments

𝑰 ⊨ 𝜺.𝑪 iff 𝑱 ⊨ 𝑪 for all 𝑱 such that 𝑰 ⊗ 𝑱 ⊨ 𝜺

Theorem (necessitation) if 𝑭 ⊨ 𝑮 then 𝜺.𝑭 ⊨ 𝜺.𝑮

right out of the bat: parametric lemmas!
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I heard you like programs

⟨𝝈⟩ assignments (set/clear/swap/flip bits)

𝜺𝟏…𝜺𝒏 sequential composition
𝜺𝟏 ⊔⋯ ⊔ 𝜺𝒏 non-deterministic choice

𝑻 ? assertion
𝜺∗ non-deterministic repetition

♦(𝑽 ∶ 𝜺𝟏 ∥ 𝜺𝟎) concurrency
[𝑹] run a SAT solver

Constructing new programs
∇(𝑻 ∶ 𝜺𝟏 ∥ 𝜺𝟎) = (𝑻 ? 𝜺𝟏) ⊔ (𝑻 ? 𝜺𝟎) (branching)

�(𝑻 ∶ 𝜺) = (𝑻 ?𝜺)∗ 𝑻 ? (while loops)

𝟎 = [⊥] (block)

♣ = [⊤] (nondet)

∀𝑽 = ♦(𝑽 ∶ ♣ ∥ 𝟏) (universal quantification)
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Dynamic proofs

Proving unsatisfiability 𝑭 is unsatisfiable if 𝑭 ⊢ 𝜺.⊥ and 𝜺.⊥ ⊢ ⊥

Proving satisfiability 𝑭 is satisfiable if⊤ ⊢ 𝜺.𝑭 and 𝜺.⊥ ⊢ ⊥

Proving a safety property 𝑷 always holds assumming𝑨 if𝑨 ⊢ 𝜺∗.𝑷

Proving a liveness property 𝑷 eventually holds assumming𝑨 if𝑨 ∧ 𝜺∗.𝑷 ⊢ ⊥

So where are we at themoment?
An interference-free logical framework where trimming, distribution
and incrementality work out of the box by design
An interference-free, fully composable proof systemwith autoproving
(of complexity similar to DSR) with assignment, choice and test,
covering all of DRAT/DPR/DSR/WSR (SYNASC 2025)
Proof rules to handle VeriPB-like dominance without interference or
accumulated formulas; autoproving is only partially possible (but
includes the VeriPB case)
Still ironing some kinks out for dominance with full generality, beyond
VeriPB-like dominance
Nothing implemented yet!
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