TECHNISCHE ' ¥ U
UNIVERSITAT

WIEN JOHANNES KEPLER
UNIVERSITY LINZ

Short proofs without interference

Adrian Rebola-Pardo
TU Wien, JKU Linz

Orsay, France
14 September 2022

Supported by FWF 10.55776/COE12

Trying to merge proofs...

all unsat, over the same variables

Fy F, F;

Trying to merge proofs...

ulvFl uZVFZ u3VF3

Trying to merge proofs...

still unsat!

uy vV F u, vV F, u3 v F; Uy Vu,Vuz

Trying to merge proofs...

uy vV F u, vV F, u3 v F; Uy Vu,Vuz

I—(Very Smartest Distributed Solver)

u; v Fy u, v F, uz Vv F;

Trying to merge proofs...

uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver)
u; v Fy u, v F, uz Vv F;

uq /%) us

Trying to merge proofs...

uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
uq /%) us
L | | |
> 1

Trying to merge proofs...

MIVFI lleFz

u3VF3 u_lvu_zvu_3

I—(Very Smartest Distributed Solver }|——

u; v Fy u, v F,

uy u

L |

U3VF3

[Goldberg, Novikov 03]

usz

ﬂ]:ulvFIFul
ﬂz:”zVFz"uz
ﬂ3:u3VF3|_lJ3

Trying to merge proofs...

uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
uq /%) us
L | | |
> 1

ﬂ]:ulvFIFul
ﬂz:”zVFz"uz

TiugAuyAus AU Vvuyvuz) - 1
ﬂ3:u3VF3|_lJ3

Trying to merge proofs...

uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB
Uy u us
L | | |
> 1

ﬂ]:ulvFIFul
ﬂz:”zVFz"uz

TiugAuyAus AU Vvuyvuz) - 1
ﬂ3:u3VF3|_lJ3

Trying to merge proofs...

op ={x; <y} 6y ={x; < 32} 03 = {x3 < y3}
uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB
Uy u us
L | | |
> 1

ﬂ]:ulvFIFul
ﬂz:”zVFz"uz erulAuzAu3A(u_1Vu_2Vu_3)l—J.
ﬂ3:u3VF3|_lJ3

Trying to merge proofs...

oy ={x; <y} 6y ={x; & y} o3 = {x3 < y3}

uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB [Heule, Hunt, Wezler ’15]
RAT: X{ V y; RAT: X, V y, RAT: X3V y3
ul u2 u3
L | | |
> 1

ﬂ]:ulvFIFul
ﬂz:”zVFz"uz

TiugAuyAus AU Vvuyvuz) - 1
ﬂ3:u3VF3|_lJ3

Trying to merge proofs...

op ={x; <y} 6y ={x; &y} 03 = {x3 < y3}
uy vV F u, vV F, u3 v F; Uy Vu,Vuz
[—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB [Jarvisalo, Heule, Biere ’12]
RAT: X{ V y; RAT: X, V y, RAT: X3V y3
ul u2 u3
L | | |
> 1

ﬂ]:ulvFIFul

ﬂz:”zVFz"uz ﬂ:ull\'ﬂvu_s)l_l

ﬂ3:u3VF3|_u3

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

myptugVEE @ VE)AGY) Fuy

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

Ty . uIVFll—(ulvFl)/\(x_IVyl)l—ul I|=u1VF1$mut1(I)|=u1

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

Ty . uIVFl I—(ulvFl)/\(x_IVyl)l—ul IE uIVFl #mutl(l) |=u1
mut, is“if T E x; Ay thenI:=To{x; & y}”

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

71'1IuIVFll—(ulvFl)/\(x_IVyl)l—ul I|=u1VF1$mut1(I)|=u1
7[2:uvazl_(uvaz)/\(x_szz)l_uz Ihuvazﬁmutz(Dhuz

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

71'1IuIVFll—(ulvFl)/\(x_IVyl)l—ul I'=u1VF1$ I|=u1
7[2:uvazl_(uvaz)/\(x_szz)l_uz I|=u2VF2$ I|=u2

what we need is this!

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

71'1IuIVFll—(ulvFl)/\(x_IVyl)l—ul I|=u1VF1$mut1(I)|=u1
7[2:uvazl_(uvaz)/\(x_szz)Fuz Ihuvazﬁmutz(Dhuz

break the symmetries before splitting
This is not even sound in general!

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F

mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

71'1IuIVFll—(ulvFl)/\(x_IVyl)l—ul I|=u1VF1$mut1(I)|=u1
7[2:uvazl_(uvaz)/\(x_szz)Fuz Ihuvazﬁmutz(Dhuz

break the symmetries before splitting
This is not even sound in general!

allow nesting DRAT refutations

Arefutation (u; v F;) Au; F Lisalsoaproofu; v F; F u;

... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F
mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

71'1:uIVFll—(ulvFl)A(X_IVyl)l—ul I|=u1VF1$mut1(I)|=u1
71'2:uvazl_(uvaz)/\(x_szz)Fuz I|=u2VF2$mut2(I)|=u2

break the symmetries before splitting
This is not even sound in general!
allow nesting DRAT refutations
Arefutation (u; v F;) Au; F Lisalsoaproofu; v F; F u;
m requires solver to know conclusion in advance
m repeated work if multiple clauses are derived

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

u, v F (by deletion)

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F
u, v F (by deletion)
V(B, :— o6)).u; vV F, (bySR)

[Buss, Thapen ’19]

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F
u, v F (by deletion)
V(B, :—0,).u; V F, (bySR)
V(B, :— 0,). B, (by SR)

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F
u, v F (by deletion)
V(B, :—0,).u; V F, (bySR)
V(B, :— 0,). B, (by SR)

V(f1 =0y (by resolution)

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F

u, v F (by deletion)
V(B, :—0,).u; V F, (bySR)

V(B, :— 0,). B, (by SR)

V(f1 =0y (by resolution)
u, (by cleanliness)

[Fazekas, Biere, Scholl ’19] [Fazekas, Pollitt, Fleury, Biere "24]

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F F F
u, v F (by deletion) u, V F, uy VvV F;

V(B, :— o6)).u; vV F, (bySR) V(B, :— 0,).u,V F, V(B, :— 03).u, v F,
V(E :— o). B, (by SR) v@ :—06,).B, V(E :— 03). B,
V(B, :— o).y, (by resolution) V(B, :— 0,).u, V(B, :— 03).u;

u, (by cleanliness) u, us

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F F F

u, v F (by deletion) u, V F, uy VvV F;

V(B, :— o6)).u; vV F, (bySR) V(B, :— 0,).u,V F, V(B, :— 03).u, v F,
V(B, :— 0,). B, (by SR) V(B, :— 5,).B, V(B, :— 0,). B,
V(f1 =0 uy (by resolution) V(f2 1= 0y).U, V(BT2 i— 03).uy

u, (by cleanliness) u, us

u; Vu,Vuy (bysomearcane magic)

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F F F

u, v F (by deletion) u, V F, uy VvV F;

V(B, :— o6)).u; vV F, (bySR) V(B, :— 0,).u,V F, V(B, :— 03).u, v F,
V(B, :— 0,). B, (by SR) V(B, :— 5,).B, V(B, :— 0,). B,
V(f1 =0 uy (by resolution) V(f2 1= 0y).U, V(BT2 i— 03).uy

u, (by cleanliness) u, us

u; Vu,Vuy (bysomearcane magic)

1 (by resolution)

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F F F

u, v F (by deletion) u, V F, uy VvV F;

V(B, :— o6)).u; vV F, (bySR) V(B, :— 0,).u,V F, V(B, :— 03).u, v F,
V(B, :— 0,). B, (by SR) V(B, :— 5,).B, V(B, :— 0,). B,
V(f1 =0 uy (by resolution) V(f2 1= 0y).U, V(BT2 i— 03).uy

u, (by cleanliness) u, us

u; Vu,Vuy (bysomearcane magic)

1 (by resolution)

Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F F F
u, v F (by deletion) u, V F, uy VvV F;
V(B, :— o6)).u; vV F, (bySR) V(B, :— 0,).u,V F, V(B, :— 03).u, v F,
V(B, :— 0,). B, (by SR) V(B, :— 5,).B, V(B, :— 0,). B,
V(f1 =0 uy (by resolution) V(f2 1= 0y).U, V(BT2 i— 03).uy
u, (by cleanliness) u, us

Up Vi Vi

1 (by resolution)

Compositionality is all you need: trimming

F= {Cla CZ’ C3}

Compositionality is all you need: trimming

F= {Cla CZ’ C3}

F + V(B:—0).FAB

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

/ - V(B:—o0).FAB
{Ci, BYF Gy,
{C), B} - G,
{C1,C3, B} F G5
{C15C2’§} F Blo‘

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

/ F V(B:—0).FAB + V(B:—o).l
{Ci, BYF Gy,
{C), B} - G,
{C1,C3, B} F G5
{C15C2’§} F Blo‘

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

/ F V(B:—-0).FAB + V(B:—o).l
{C,BYF Gy, {C, B} F L
{C), B} - G,
{C1,C3, B} F G5
{C15C2’§} F Blo‘

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

/ F V(B:—0).FAB + V(B:—o).l
{C, B} G| {Ci}F V(B :-0).Cy {C,B}F L
{C), B} - G,
{C1,C3, B} F G5
{C15C2’§} F Blo‘

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

F + VB:—0).FAB F+ V(B:-—o).1l
{C, B} G| {Ci}F V(B :-0).Cy {C, B} L
{C,, B} F C2|6 {C,} F V(B :— 6).Cy
{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;
{C;,Cy, B} B|, {C;,Cy} V(B :—o0).B

Compositionality is all you need: trimming

F= {Cls CZ’ C3}
F - VB:—-06.FAB + V(B:-o0).1

{C, B} G| {Ci}F V(B :-0).Cy {C,B}F L
(CBIF G| {C} V(B :-0).G

{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;

{C;,Cy, B} B|, {C;,Cy} V(B :—o0).B

marked: V(_B :— o).l

[Heule, Hunt, Wetzler ’13]

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

F - VB:—-06.FAB + V(B:-o0).1
{C, B} G| {Ci}F V(B :-0).Cy {C,,B}F L
(CBIF G| {C} V(B :-0).G
{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;
{C;,Cy, B} B|, {C;,Cy} V(B :—o0).B

marked: V(B :—o0).L V(B :—6).B V(B :— 0).C;

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

F + VB:—0).FAB F+ V(B:-—o).1l
{C, BV G| {Ci} F V(B :—0).C {C,,B}F L
{C,, B} F C2|6 {C,} F V(B :— 6).Cy
{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;
{C;,Cy, B} B|, {C;,Cy} V(B :—o0).B

marked: V(B :—o0).L V(B :—06).B V(B :—0).C,

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

F + V(B:—-06).FAB + V(B:—o).l
{C, B} G| {Ci}F V(B :-0).Cy {C,B}F L
(CBIF G| {C} V(B :-0).G
{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;
{C,Cy, B} B|, {C,C5}F V(B :—0).B

marked: V(B :—o0).L V(B :—06).B V(B :—0).C; C

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

F + VB:—0).FAB F+ V(B:-—o).1l
{C, B} G| {Ci}F V(B :-0).Cy {C, B} L
{C,, B} F C2|6 {C,} F V(B :— 6).Cy
{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;
{C;,Cy, B} B|, {C;,Cy} V(B :—o0).B

marked: V(B :—o0).L V(B :—06).B V(B :—0).C; C; C,

Compositionality is all you need: trimming

F= {Cls CZ’ C3}

F + VB:—0).FAB F+ V(B:-—o).1l
{C, B} G| {Ci}F V(B :-0).Cy {C, B} L
{C,, B} F C2|6 {C,} F V(B :— 6).Cy
{C1,C3, By F G5| {Cy,C3} F V(B = 06).C;
{C;,Cy, B} B|, {C;,Cy} V(B :—o0).B

marked: V(B :—0).L V(B :-0).B V(B :—0).C; C; G, ligi:t

Compositionality is all you need: satisfiability

Ci: xvyvz
C,: yvz

C3: xVyvz
Cy: XVyVvVz

Compositionality is all you need: satisfiability

Ci: xvyvz deleteC;byo; = {x— T}
C,: yvz
C3: xVyvz [Jarvisalo, Heule, Biere ’12]

Cy: XVyVz

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
C,: yvz delete C, by o, = {z — L}
C3: xVyvz
Cy: XVyVvVz

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}

delete C, by o, = {z — 1}
C3: xVyvz delete C3 by o3 = {y— 1}
Cy: XVyVvVz

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
SATbyo,={x— T,y 1L,z T}

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
Cy: XVyVvVz SATbyoys={x+— T,y L,z T}

I can transform models of F\ Cinto models of F
[Jdrvisalo, Biere ’10] [Jdrvisalo, Heule, Biere ’12]

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
Cy: XVyVvVz SATbyoys={x+— T,y L,z T}

I can transform models of F\ Cinto models of F
[Jdrvisalo, Biere ’10] [Jdrvisalo, Heule, Biere ’12]

| can transform models of T into models of F
[Philipp, RP’16]

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
Cy: XVyVvVz SATbyoys={x+— T,y L,z T}

I can transform models of F\ Cinto models of F
[Jdrvisalo, Biere ’10] [Jdrvisalo, Heule, Biere ’12]

| can transform models of T into models of F
[Philipp, RP’16]

Q |_ 0'4. C4

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
Cy: XVyVvVz SATbyoys={x+— T,y L,z T}

I can transform models of F\ Cinto models of F
[Jdrvisalo, Biere ’10] [Jdrvisalo, Heule, Biere ’12]

| can transform models of T into models of F
[Philipp, RP’16]

Q |_ 0'4. C4
F Oy V(C3 = 0'3). (C3 A C4)

Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
Cy: XVyVvVz SATbyoys={x+— T,y L,z T}

I can transform models of F\ Cinto models of F
[Jarvisalo, Biere °10] [Jdrvisalo, Heule, Biere ’12]

| can transform models of T into models of F
[Philipp, RP ’16]

ok o4.Cy
F oy V(C;y i —03).(C3ACy)
F oy V(C;y i = 03) V(C, i — 0,).(C, AC3 ACy)
F oy V(C;y :—03)V(C, = 06,) V(C, = 061).(C;ACL, AC3 ACy)

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
Cy: XVyVz SATbyoy={x+— T,y L,z T}

C4 - V(C3 L= 0'3) V(CZ = 62) V(Cl L= O'l). (Cl A C2 A C3 A C4)

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
Cy: XVyVz SATbyoy={x+— T,y L,z T}
insert Cs; =yvz (clean on oy, 65, 03)

[Fazekas, Biere, Scholl ’19]
[Fazekas, Pollitt, Fleury, Biere ’24]

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
Cy: XVyVz SATbyoy={x+— T,y L,z T}
insert Cs; =yvz (clean on oy, 65, 03)

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)
Cs F V(C;3 1= 63)V(C, = 6,) V(C; :— 67).Cs

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
yvz SATbyoy={x+— T,y L,z T}
z insert Cs; =yvz (clean on oy, 65, 03)

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)
Cs F V(C;3 1= 63)V(C, = 6,) V(C; :— 67).Cs

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
yvz SATbyoy={x+— T,y L,z T}
z insert Cs; =yvz (clean on oy, 65, 03)
SATbyos={x— T,y— L,z 1}

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)
Cs F V(C;3 1= 63)V(C, = 6,) V(C; :— 67).Cs

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
yvz SATbyoy={x+— T,y L,z T}
z insert Cs; =yvz (clean on oy, 65, 03)
SATbyos={x— T,y— L,z 1}

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)
Cs F V(C;3 1= 63)V(C, = 6,) V(C; :— 67).Cs
@ F 65.(C4 A Cs)

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}

Cy: XVyVz SATbyoy={x+— T,y L,z T}

Cs: yvz insert Cs; =yvz (clean on oy, 65, 03)
SATbyos={x— T,y— L,z 1}
insert Cg = z (clean on oy, 63)

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)
Cs F V(C;3 1= 63)V(C, = 6,) V(C; :— 67).Cs
@ F 65.(C4 A Cs)

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}

Cy: XVyVz SATbyoy={x+— T,y L,z T}

Cs: yvz insert Cs; =yvz (clean on oy, 65, 03)
SATbyos={x— T,y— L,z 1}
insert Cg = z (clean on oy, 63)

CyF V(C; 1= 63)V(C, i— 6y) V(Cy :— 61).(Cy ACy A C3 A Cy)
Cs F V(C; 1= 63) V(C, :— 6) V(Cy :— 67).Cs

@ F 65.(Cy A Cs)

C F V(Cy 1 6)).Cq

Compositionality is all you need: incremental solving

C,: yvz
C3;: xVyvz
Cy: XVyVz
Cs: yvz

delete C;byo; = {x — T}
delete C,byo, = {z— 1}
delete C;byo; = {y — L}
SATbyoy={x+— T,y L,z T}

insert Cs; =yvz (clean on oy, 65, 03)
SATbyos={x— T,y— L,z 1}
insert Cg = z (clean on oy, 63)

C4 - V(C3 .= 0'3) V(CZ = 62) V(Cl = O'l). (Cl A C2 A C3 A C4)

Cs F V(C; :— 63) V(C, :— 6,) V(Cy :— 6).Cs

@ F 65.(C4 A Cs)
C6 l_ V(Cl .= O-l)'Cﬁ

Compositionality is all you need: incremental solving

delete C;byo; = {x — T}

C,: yvz delete C, by o, = {z — L}

C3;: xVyvz delete C3by o3 = {y — L}

Cy: XVyVz SATbyoy={x+— T,y L,z T}

Cs: yvz insert Cs; =yvz (clean on oy, 65,03)

Ce: z SATbyos={x— T,y— L,z 1}
insert Cg = z (clean on oy, 63)
UNSAT

Cy F V(C; :— 63) V(C, i — 6,) V(Cy :— 67).(C; A Cy A C3 A Cy)
Cs F V(C; :— 63) V(C, :— 06,) V(C; :— 67).Cs
@ F 65.(Cy A Cs)
Cs F V(Cy 1= 6,).Cq

CoAN-ANCgH L

What’s in the box?

this requires a huge detour through modal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]
TL;DR: V is really a box modality in PDL, dominance corresponds to the Kleene star

What’s in the box?

this requires a huge detour through modal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]
TL;DR: V is really a box modality in PDL, dominance corresponds to the Kleene star

They now know their place (non-semantic performance annotations)

What’s in the box?

this requires a huge detour through modal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]
TL;DR: V is really a box modality in PDL, dominance corresponds to the Kleene star

They now know their place (non-semantic performance annotations)

not that many: RUP can be (carefully) extended to (much of) PDL

What’s in the box?

this requires a huge detour through modal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]
TL;DR: V is really a box modality in PDL, dominance corresponds to the Kleene star

They now know their place (non-semantic performance annotations)
not that many: RUP can be (carefully) extended to (much of) PDL

this is really a matter of format engineering
if done right, comparable to DRAT/VeriPB

What’s in the box?

this requires a huge detour through modal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]
TL;DR: V is really a box modality in PDL, dominance corresponds to the Kleene star

They now know their place (non-semantic performance annotations)
not that many: RUP can be (carefully) extended to (much of) PDL

this is really a matter of format engineering
if done right, comparable to DRAT/VeriPB

not if adequately restricted; distributed/parallelized checking is trivial
for RAT/SR-equivalent checks, same as DRAT/DSR

What’s in the box?

this requires a huge detour through modal logic
[Fischer, Ladner ’79] [Babiani, Herzig, Troquard ’13]
TL;DR: V is really a box modality in PDL, dominance corresponds to the Kleene star

They now know their place (non-semantic performance annotations)
not that many: RUP can be (carefully) extended to (much of) PDL

this is really a matter of format engineering
if done right, comparable to DRAT/VeriPB

not if adequately restricted; distributed/parallelized checking is trivial
for RAT/SR-equivalent checks, same as DRAT/DSR

so many | stopped bothering giving them names

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.

maps variables to bits ~

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~

transforms a memory state into a memory state ~~

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments

IEeC iff for all Jsuch that

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments
ITEeC iff for all J such that

if FE Gthene.FE .G

Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments
ITEeC iff for all J such that

if FE Gthene.FE .G
right out of the bat: parametric lemmas!

I heard you like programs

{c) assignments (set/clear/swap/flip bits)

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
non-deterministic choice

€1 IJ---IJE,,

I heard you like programs

61 L] e

Ef eee

(o)

€n

Ue,
T?

assignments (set/clear/swap/flip bits)
sequential composition
non-deterministic choice

assertion

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition

g U UEg, non-deterministic choice

T? assertion

£* non-deterministic repetition

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
Ed

£ non-deterministic repetition
OV . g1l &9) concurrency

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

V(T : &, || £9) = (T?&;) U (T? &) (branching)

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

V(T : &, || £9) = (T?&;) U (T? &) (branching)
(T : €)= (T?)* T? (while loops)

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

V(T : &, || £9) = (T?&;) U (T? &) (branching)
(T : €)= (T?)* T? (while loops)
0=1[1] (block)

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

V(T : &, || gg) =(T?&)u(T?g) (branching)
[T : &) =(T?%)*T? (while loops)

0=1[1] (block)

& =[T] (nondet)

I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

V(T : &, || gg) =(T?&)u(T?g) (branching)
[T : &) =(T?%)*T? (while loops)

0=1[1] (block)

& =[T] (nondet)

VWW=0V:&|1) (universal quantification)

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1

Fis satisfiableif T - e.Fande. L - L

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T - e.Fande. L - L

Palways holds assumming Aif A - £*.P

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T F e.Fande. L F L
Palways holds assumming Aif A - £*.P

Peventually holds assumming A if A A e*.PF+ L

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T F e.Fande. L F L
Palways holds assumming Aif A - £*.P

Peventually holds assumming A if A A e*.PF+ L

E An logical framework where trimming, distribution
and incrementality work out of the box

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T F e.Fande. L F L
Palways holds assumming Aif A - £*.P

Peventually holds assumming A if A A e*.PF+ L

E An logical framework where trimming, distribution
and incrementality work out of the box

m An , fully composable proof system with
(of complexity similar to DSR) with assignment, choice and test,
covering all of (SYNASC 2025)

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T F e.Fande. L F L
Palways holds assumming Aif A - £*.P

Peventually holds assumming A if A A e*.PF+ L

E An logical framework where trimming, distribution
and incrementality work out of the box

m An , fully composable proof system with
(of complexity similar to DSR) with assignment, choice and test,
covering all of (SYNASC 2025)

m Proof rules to handle without interference or
accumulated formulas; autoproving is only possible (but
includes the VeriPB case)

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T F e.Fande. L F L
Palways holds assumming Aif A - £*.P

Peventually holds assumming A if A A e*.PF+ L

E An logical framework where trimming, distribution
and incrementality work out of the box

m An , fully composable proof system with
(of complexity similar to DSR) with assignment, choice and test,
covering all of (SYNASC 2025)

m Proof rules to handle without interference or
accumulated formulas; autoproving is only possible (but
includes the VeriPB case)

m Still ironing some kinks out for , beyond
VeriPB-like dominance

10

Dynamic proofs

Fis unsatisfiableif FFe.Lande. L F 1
Fis satisfiableif T F e.Fande. L F L
Palways holds assumming Aif A - £*.P

Peventually holds assumming A if A A e*.PF+ L

E An logical framework where trimming, distribution
and incrementality work out of the box

m An , fully composable proof system with
(of complexity similar to DSR) with assignment, choice and test,
covering all of (SYNASC 2025)

m Proof rules to handle without interference or
accumulated formulas; autoproving is only possible (but
includes the VeriPB case)

m Still ironing some kinks out for , beyond
VeriPB-like dominance

10

