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Trying to merge proofs...
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uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB
Uy u us
L | | |
> 1

ﬂ]:ulvFIFul
ﬂz:”zVFz"uz

TiugAuyAus AU Vvuyvuz) - 1
ﬂ3:u3VF3|_lJ3



Trying to merge proofs...

op ={x; <y} 6y ={x; < 32} 03 = {x3 < y3}
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Trying to merge proofs...

oy ={x; <y} 6y ={x; & y} o3 = {x3 < y3}

uy vV F u, vV F, u3 v F; Uy Vu,Vuz
I—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB [Heule, Hunt, Wezler ’15]
RAT: X{ V y; RAT: X, V y, RAT: X3V y3
ul u2 u3
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Trying to merge proofs...

op ={x; <y} 6y ={x; &y} 03 = {x3 < y3}
uy vV F u, vV F, u3 v F; Uy Vu,Vuz
[—(Very Smartest Distributed Solver }|——
u; v Fy u, v F, uz Vv F;
CDCL+SB CDCL+SB CDCL+SB [Jarvisalo, Heule, Biere ’12]
RAT: X{ V y; RAT: X, V y, RAT: X3V y3
ul u2 u3
L | | |
> 1
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ﬂ3:u3VF3|_u3
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what we need is this!
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... and failing because of interference

n . FE G provesthat foreach I F Fwehave mut(l) F F
mut is a sequence of operations likeif I F T,then I := I oo [RP,Suda’18]

each SR addition of C upon o introduces a new operation with T = C

71'1:uIVFll—(ulvFl)A(X_IVyl)l—ul I|=u1VF1$mut1(I)|=u1
71'2:uvazl_(uvaz)/\(x_szz)Fuz I|=u2VF2$mut2(I)|=u2

break the symmetries before splitting
This is not even sound in general!
allow nesting DRAT refutations
Arefutation (u; v F;) Au; F Lisalsoaproofu; v F; F u;
m requires solver to know conclusion in advance
m repeated work if multiple clauses are derived
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Accumulated formulas are not your friend

V(T :— o)) is I o cif I E T, or I otherwise.
ITEV(T ::-0).C iff V(T :— o)D) EC [RP, Suda ’18] [RP 23]

F F F
u, v F (by deletion)  u, V F, uy VvV F;
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Up Vi Vi

1 (by resolution)
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Compositionality is all you need: satisfiability

deleteC;byo; = {x— T}
delete C, by o, = {z — 1}
delete C;byo; = {y — L1}
Cy: XVyVvVz SATbyoys={x+— T,y L,z T}

I can transform models of F\ Cinto models of F
[Jarvisalo, Biere °10] [Jdrvisalo, Heule, Biere ’12]

| can transform models of T into models of F
[Philipp, RP ’16]

ok o4.Cy
F oy V(C;y i —03).(C3ACy)
F oy V(C;y i = 03) V(C, i — 0,).(C, AC3 ACy)
F oy V(C;y :—03)V(C, = 06,) V(C, = 061).(C;ACL, AC3 ACy)
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delete C;byo; = {x — T}
delete C,byo, = {z— 1}
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Compositionality is all you need: incremental solving

delete C;byo; = {x — T}

C,: yvz delete C, by o, = {z — L}

C3;: xVyvz delete C3by o3 = {y — L}

Cy: XVyVz SATbyoy={x+— T,y L,z T}

Cs: yvz insert Cs; =yvz (clean on oy, 65,03)

Ce: z SATbyos={x— T,y— L,z 1}
insert Cg = z (clean on oy, 63)
UNSAT
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this is really a matter of format engineering
if done right, comparable to DRAT/VeriPB

not if adequately restricted; distributed/parallelized checking is trivial
for RAT/SR-equivalent checks, same as DRAT/DSR

so many | stopped bothering giving them names



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.

maps variables to bits ~



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~

transforms a memory state into a memory state ~~



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments

IEeC iff for all Jsuch that



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments
ITEeC iff for all J such that

if FE Gthene.FE .G



Kripke semantics for Kripkean stuff

V(T :—o)I)isIocif I E T,or Iotherwise.
maps variables to bits ~
transforms a memory state into a memory state ~~

if we want to make this work for dominance, we must be even more general:
m programs may be (to allow while loops)
B programs may be (to encode preorders)

semantics given by a set of (satisfying) assignments

semantics given by a binary relation of (transitioning) assignments
ITEeC iff for all J such that

if FE Gthene.FE .G
right out of the bat: parametric lemmas!
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I heard you like programs

{c) assignments (set/clear/swap/flip bits)
E1 . Ep sequential composition
g U--Ueg, non-deterministic choice
T? assertion
£* non-deterministic repetition
OV . g1l &9) concurrency

[R] run a SAT solver

V(T : &, || gg) =(T?&)u(T?g)  (branching)
[T : &) =(T?%)*T?  (while loops)

0=1[1] (block)

& =[T] (nondet)

VWW=0V:&|1) (universal quantification)
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