
Proof Logging for Preprocessing/Presolving

in MaxSAT and 0-1 Integer Linear Programming

Andy Oertel

Lund University & University of Copenhagen

WHOOPS ’25

September 13, 2025

Based on work together with Jeremias Berg, Ambros Gleixner, Alexander Hoen, Hannes Ihalainen,

Matti Järvisalo, Magnus O. Myreen, Jakob Nordström, and Yong Kiam Tan



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

0-1 Integer Linear Programming (0-1 ILP)

Input problem:

min 2x2 + 3x3

s.t. x1 + x2 + x3 ≥ 2

x2 + x3 + x4 ≥ 2

x1 − 2x2 − 2x3 + x4 ≥ 0

0-1 ILP Solver

Result:

SAT

Result:

optimal value 2

▶ Specialization of mixed integer programming (MIP)

▶ Input: 0-1 integer linear program (or pseudo-Boolean formula)

▶ Integer linear objective function and collection of integer linear inequalities/constraints

▶ Variables with domain {0, 1}
▶ Output:

▶ Optimal value of objective subject to satisfying all inequalities

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 1/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Maximum Satisfiability (MaxSAT)

Input problem:

min 2x2 + 3x3

s.t. x1 + x2 + x3 ≥ 1

x2 + x3 + x4 ≥ 1

x1 + x2 + x3 + x4 ≥ 1

min 2x2 + 3x3

s.t. x1 ∨ x2 ∨ x3

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x3 ∨ x4

MaxSAT Solver

Result:

SAT

Result:

optimal value 2

▶ Optimization variant of SAT problem

▶ Input: MaxSAT problem

▶ Integer linear objective function and collection of clauses

▶ Variables with domain {0, 1}
▶ Output:

▶ Optimal value of objective subject to satisfying all clauses

▶ Specialization of 0-1 ILP

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 2/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Maximum Satisfiability (MaxSAT)

Input problem:

min 2x2 + 3x3

s.t. x1 + x2 + x3 ≥ 1

x2 + x3 + x4 ≥ 1

x1 + x2 + x3 + x4 ≥ 1

MaxSAT Solver

Result:

SAT

Result:

optimal value 2

▶ Optimization variant of SAT problem

▶ Input: MaxSAT problem

▶ Integer linear objective function and collection of clauses

▶ Variables with domain {0, 1}
▶ Output:

▶ Optimal value of objective subject to satisfying all clauses

▶ Specialization of 0-1 ILP

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 2/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Idea of Presolving/Preprocessing

Problem Solver Result

So far:

▶ Problem directly given to solver

Typical workflow:

▶ Problem reformulated before it is given to core solver

▶ Known as presolving in the MIP community

▶ Known as preprocessing in the MaxSAT community

▶ Can be tightly integrated with solver or independent tool

Important for state-of-the-art performance!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 3/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Idea of Presolving/Preprocessing

Problem

Presolver/

Preprocessor
Solver Result

Reformulated

Problem

So far:

▶ Problem directly given to solver

Typical workflow:

▶ Problem reformulated before it is given to core solver

▶ Known as presolving in the MIP community

▶ Known as preprocessing in the MaxSAT community

▶ Can be tightly integrated with solver or independent tool

Important for state-of-the-art performance!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 3/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Idea of Presolving/Preprocessing

Problem

Presolver/

Preprocessor
Solver Result

Reformulated

Problem

So far:

▶ Problem directly given to solver

Typical workflow:

▶ Problem reformulated before it is given to core solver

▶ Known as presolving in the MIP community

▶ Known as preprocessing in the MaxSAT community

▶ Can be tightly integrated with solver or independent tool

Important for state-of-the-art performance!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 3/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Importance of Presolving in MIP

▶ Performance analysis of presolve reductions in MIP [ABG
+

20]

default disabled presolving

bracket #instances #timeout #timeout #faster #slower ×slower

all 3047 547 1035 255 1755 3.36

≥ 0 sec 2511 16 504 255 1755 4.52

≥ 1 sec 1944 16 504 210 1634 6.60

≥ 10 sec 1575 16 504 141 1380 9.05

≥ 100 sec 1099 16 504 86 983 12.36

≥ 1000 sec 692 16 504 34 643 19.48

Presolving is one of the most important techniques in mixed-integer programming!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 4/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Importance of Preprocessing in MaxSAT

▶ Performance analysis for

MaxSAT preprocessing

with MaxPre [IBJ22]

Preprocessing improves

performance significantly for

many MaxSAT solvers!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 5/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Logging for Workflow Using Problem Reformulation

Problem

Presolver/

Preprocessor
Solver Result

Reformulated

Problem

Goal:

▶ Certification for whole solving workflow

Good news:

▶ Certification for some MIP solving algorithms using VIPR [CGS17]

▶ Certification for MaxSAT using VeriPB [VDB22, Van23, BBN
+

23, BBN
+

24]

Problem:

▶ Also need to certify problem reformulations in presolver/preprocessor

This talk:

▶ Certification of 0-1 ILP presolving and MaxSAT preprocessing

▶ Formally verified end-to-end verification framework for problem reformulations

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 6/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Logging for Workflow Using Problem Reformulation

Problem

Presolver/

Preprocessor
Solver Result

Reformulated

Problem

Goal:

▶ Certification for whole solving workflow

Good news:

▶ Certification for some MIP solving algorithms using VIPR [CGS17]

▶ Certification for MaxSAT using VeriPB [VDB22, Van23, BBN
+

23, BBN
+

24]

Problem:

▶ Also need to certify problem reformulations in presolver/preprocessor

This talk:

▶ Certification of 0-1 ILP presolving and MaxSAT preprocessing

▶ Formally verified end-to-end verification framework for problem reformulations

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 6/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Logging for Workflow Using Problem Reformulation

Problem

Presolver/

Preprocessor
Solver Result

Reformulated

Problem

Goal:

▶ Certification for whole solving workflow

Good news:

▶ Certification for some MIP solving algorithms using VIPR [CGS17]

▶ Certification for MaxSAT using VeriPB [VDB22, Van23, BBN
+

23, BBN
+

24]

Problem:

▶ Also need to certify problem reformulations in presolver/preprocessor

This talk:

▶ Certification of 0-1 ILP presolving and MaxSAT preprocessing

▶ Formally verified end-to-end verification framework for problem reformulations

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 6/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Logging for Workflow Using Problem Reformulation

Problem

Presolver/

Preprocessor
Solver Result

Reformulated

Problem

Goal:

▶ Certification for whole solving workflow

Good news:

▶ Certification for some MIP solving algorithms using VIPR [CGS17]

▶ Certification for MaxSAT using VeriPB [VDB22, Van23, BBN
+

23, BBN
+

24]

Problem:

▶ Also need to certify problem reformulations in presolver/preprocessor

This talk:

▶ Certification of 0-1 ILP presolving and MaxSAT preprocessing

▶ Formally verified end-to-end verification framework for problem reformulations

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 6/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Outline

1. Proof Logging for Preprocessing/Presolving

2. Example

3. Formal Verification

4. Experiments

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 7/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Preliminaries

▶ Boolean variable x : with domain 0 (false) and 1 (true)

▶ Literal ℓ: x or negation x = 1 − x
▶ Pseudo-Boolean (PB) constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

▶ 0-1 integer linear constraint is same as PB constraint

▶ Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5

3x1 + 2x2 + 5x3 ≥ 5

3x1 + 2x2 + 5x3 ≤ 5

▶ Clause: disjunction of literals / at-least-one constraint

x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1

▶ MaxSAT is special case of 0-1 ILP

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 8/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Invariants

Input Problem Presolver/Preprocessor Reformulated Problem

Proof

Checker ✔ or ✘

▶ Step-by-step modify optimization problem preserving optimal value

Two sets of constraints needed:

▶ Core set C guarantee:

▶ Current problem (min f ′, s.t. C) has same optimal value as input problem (min f , s.t. F )

▶ Derived set D of constraints are all constraints derived by rules

▶ Any solution to C can be extended to a solution of C ∪ D
▶ Constraints can be moved from derived to core set

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 9/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Invariants

Input Problem Presolver/Preprocessor Reformulated Problem

Proof

Checker ✔ or ✘

▶ Step-by-step modify optimization problem preserving optimal value

Two sets of constraints needed:

▶ Core set C guarantee:

▶ Current problem (min f ′, s.t. C) has same optimal value as input problem (min f , s.t. F )

▶ Derived set D of constraints are all constraints derived by rules

▶ Any solution to C can be extended to a solution of C ∪ D
▶ Constraints can be moved from derived to core set

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 9/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Certifying Problem Reformulations

Input Problem Presolver/Preprocessor Reformulated Problem

Proof

Checker ✔ or ✘

How to certify presolving/preprocessing?

▶ Represent each reformulation using proof steps

▶ Soundness of proof system guarantees that optimal value does not change

▶ Check that core set and objective at end of proof match output problem

Guarantee:

▶ Input problem has same optimal value as output problem of presolver/preprocessor

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 10/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Certifying Problem Reformulations

Input Problem Presolver/Preprocessor Reformulated Problem

Proof

Checker ✔ or ✘

How to certify presolving/preprocessing?

▶ Represent each reformulation using proof steps

▶ Soundness of proof system guarantees that optimal value does not change

▶ Check that core set and objective at end of proof match output problem

Guarantee:

▶ Input problem has same optimal value as output problem of presolver/preprocessor

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 10/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Cutting Planes Proof System [CCT87]

Rules that preserve set of solutions:

▶ Literal axiom

Literal x x ≥ 0
Literal x x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ ⌈2.5⌉

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 11/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Cutting Planes Proof System [CCT87]

Rules that preserve set of solutions:

▶ Literal axiom

Literal x x ≥ 0
Literal x x ≥ 0

▶ Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3

Addition x1 + 3x2 + x3 ≥ 4

▶ Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

▶ Division (and rounding up)

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 3

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 11/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Cutting Planes: Example

min x1 + x2

s.t. 3x1 + 2x2 + 3x3 ≥ 3 (42)

min x1 + x2

s.t. 3x1 + 2x2 + 3x3 ≥ 3 (42)

x1 + x3 ≥ 1 (43)

Proof tree:

Literal x2 x2 ≥ 0
Multiply by 2

2x2 ≥ 0 3x1 + 2x2 + 3x3 ≥ 3

Addition

3x1 + 3x3 ≥ 1
Divide by 3

x1 + x3 ≥ 1

VeriPB syntax:

pol ~x2 2 * 42 + 3 d ;

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 12/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Redundance-Based Strengthening

▶ Cutting planes rules preserve set of solutions

▶ Also want to add or remove solutions

Redundance-based strengthening [BT19, GN21]

▶ Requires substitution ω (mapping variables to truth values or literals)

▶ We can introduce C with respect to constraints C ∪ D and objective f if

C ∪ D ∪ {¬C} ⊢ C ∪ D ∪ C↾ω ∪ {f ≥ f ↾ω}

▶ ω has to be given explicitly

▶ Implication should be efficiently checkable:

▶ Obvious to proof checker

▶ Or explicitly by cutting planes proof

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 13/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Redundance-Based Strengthening

▶ Cutting planes rules preserve set of solutions

▶ Also want to add or remove solutions

Redundance-based strengthening [BT19, GN21]

▶ Requires substitution ω (mapping variables to truth values or literals)

▶ We can introduce C with respect to constraints C ∪ D and objective f if

C ∪ D ∪ {¬C} ⊢ C ∪ D ∪ C↾ω ∪ {f ≥ f ↾ω}

▶ ω has to be given explicitly

▶ Implication should be efficiently checkable:

▶ Obvious to proof checker

▶ Or explicitly by cutting planes proof

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 13/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Redundance-Based Strengthening: Example

min x1 + x2

s.t. x1 + 2x2 + 3x3 ≥ 3 (42)

min x1 + x2

s.t. x1 + 2x2 + 3x3 ≥ 3 (42)

x3 ≥ 1 (43)

VeriPB syntax:

red 1 ~x3 >= 1 : x3 -> 0 ;

▶ x3 ≥ 1 derived by redundance-based strengthening with {x3 7→ 0}

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ C)↾ω ∪ {f ≥ f ↾ω}
▶ All implications are trivial:

▶ For constraint (42), (x1 + 2x2 + 3x3 ≥ 3)↾ω is x1 + 2x2 ≥ 0

▶ For derived constraint, (x3 ≥ 1)↾ω is 0 ≥ 0

▶ For objective condition f ≥ f ↾ω , x1 + x2 ≥ (x1 + x2)↾ω is x1 + x2 ≥ x1 + x2

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 14/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Redundance-Based Strengthening: Example

min x1 + x2

s.t. x1 + 2x2 + 3x3 ≥ 3 (42)

min x1 + x2

s.t. x1 + 2x2 + 3x3 ≥ 3 (42)

x3 ≥ 1 (43)

VeriPB syntax:

red 1 ~x3 >= 1 : x3 -> 0 ;

▶ x3 ≥ 1 derived by redundance-based strengthening with {x3 7→ 0}

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ C)↾ω ∪ {f ≥ f ↾ω}
▶ All implications are trivial:

▶ For constraint (42), (x1 + 2x2 + 3x3 ≥ 3)↾ω is x1 + 2x2 ≥ 0

▶ For derived constraint, (x3 ≥ 1)↾ω is 0 ≥ 0

▶ For objective condition f ≥ f ↾ω , x1 + x2 ≥ (x1 + x2)↾ω is x1 + x2 ≥ x1 + x2

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 14/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Usage of Strengthening Rules

Strengthening useful for:

▶ Basic symmetry breaking

▶ Without-loss-of-generality reasoning

▶ Introducing extension variables

Additional strengthening rule:

▶ So-called dominance-based strengthening rule for advanced symmetry breaking

▶ See [BGMN23] for details

▶ ... or next talk by Markus Anders about “Proof logging for symmetry breaking”

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 15/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Usage of Strengthening Rules

Strengthening useful for:

▶ Basic symmetry breaking

▶ Without-loss-of-generality reasoning

▶ Introducing extension variables

Additional strengthening rule:

▶ So-called dominance-based strengthening rule for advanced symmetry breaking

▶ See [BGMN23] for details

▶ ... or next talk by Markus Anders about “Proof logging for symmetry breaking”

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 15/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Usage of Strengthening Rules

Strengthening useful for:

▶ Basic symmetry breaking

▶ Without-loss-of-generality reasoning

▶ Introducing extension variables

Additional strengthening rule:

▶ So-called dominance-based strengthening rule for advanced symmetry breaking

▶ See [BGMN23] for details

▶ ... or next talk by Markus Anders about “Proof logging for symmetry breaking”

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 15/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Deletion

Problem:

▶ Deleting constraints arbitrarily is unsound, as

▶ Introduce better than optimal solutions

▶ Even remove all solutions (when combined with dominance-based strengthening)

▶ Deletion needs to be restricted

Solution:

▶ Constraint C can only be deleted if

▶ C in derived set D
▶ C rederivable by redundance-based strengthening from core set C without using C

(C \ {C}) ∪ {¬C} ⊢ ((C \ {C}) ∪ C)↾ω ∪ {f ≥ f ↾ω}

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 16/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Deletion

Problem:

▶ Deleting constraints arbitrarily is unsound, as

▶ Introduce better than optimal solutions

▶ Even remove all solutions (when combined with dominance-based strengthening)

▶ Deletion needs to be restricted

Solution:

▶ Constraint C can only be deleted if

▶ C in derived set D
▶ C rederivable by redundance-based strengthening from core set C without using C

(C \ {C}) ∪ {¬C} ⊢ ((C \ {C}) ∪ C)↾ω ∪ {f ≥ f ↾ω}

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 16/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Deletion: Example

min x1 + x2

s.t. x1 + 2x2 + 3x3 ≥ 3 (42)

x3 ≥ 1 (43)

min x1 + x2

s.t. x3 ≥ 1 (43)

del id 42 ;

▶ Deletion of constraint 42 with empty substitution

▶ Deleted constraint implied by propagation

(C \ {C}) ∪ {¬C} ⊢ ((C \ {C}) ∪ C) ∪ {f ≥ f }

▶ Also with explicit subproof (proof by contradiction)

del id 42 : : subproof Add negated constraint x1 + 2x2 + 3x3 ≥ 4

pol -1 43 3 * + ; Cutting planes proof resulting in x1 + 2x2 ≥ 4

qed : -1 ; Previous constraint is contradiction

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 17/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Deletion: Example

min x1 + x2

s.t. x1 + 2x2 + 3x3 ≥ 3 (42)

x3 ≥ 1 (43)

min x1 + x2

s.t. x3 ≥ 1 (43)

del id 42 ;

▶ Deletion of constraint 42 with empty substitution

▶ Deleted constraint implied by propagation

(C \ {C}) ∪ {¬C} ⊢ ((C \ {C}) ∪ C) ∪ {f ≥ f }

▶ Also with explicit subproof (proof by contradiction)

del id 42 : : subproof Add negated constraint x1 + 2x2 + 3x3 ≥ 4

pol -1 43 3 * + ; Cutting planes proof resulting in x1 + 2x2 ≥ 4

qed : -1 ; Previous constraint is contradiction

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 17/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule

Effect:

▶ Allows objective function change from fold to fnew
▶ Required by many reformulation techniques

Check:

▶ Equality fold = fnew trivial or explicit cutting planes proof

▶ Only core constraints can be used for this check

▶ Deriving fold ≤ fnew from the derived set can introduce better than optimal solutions

Objective update specification options:

1. Specify new objective fnew
▶ Good if change is large or new objective small

2. Specify difference between new and old objective fnew − fold
▶ Good for small objective changes

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 18/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule

Effect:

▶ Allows objective function change from fold to fnew
▶ Required by many reformulation techniques

Check:

▶ Equality fold = fnew trivial or explicit cutting planes proof

▶ Only core constraints can be used for this check

▶ Deriving fold ≤ fnew from the derived set can introduce better than optimal solutions

Objective update specification options:

1. Specify new objective fnew
▶ Good if change is large or new objective small

2. Specify difference between new and old objective fnew − fold
▶ Good for small objective changes

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 18/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule

Effect:

▶ Allows objective function change from fold to fnew
▶ Required by many reformulation techniques

Check:

▶ Equality fold = fnew trivial or explicit cutting planes proof

▶ Only core constraints can be used for this check

▶ Deriving fold ≤ fnew from the derived set can introduce better than optimal solutions

Objective update specification options:

1. Specify new objective fnew
▶ Good if change is large or new objective small

2. Specify difference between new and old objective fnew − fold
▶ Good for small objective changes

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 18/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule Necessary?

Without objective update:

▶ Redundance-based strengthening becomes more complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 2

x1 + x2 + x3 + x4 ≤ 2

x3 + x4 ≥ 1

min x3 + x4

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

▶ Deletion of x1 + x2 + x3 + x4 ≥ 2 with substitution {x1 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ 1 + x2 (f ≥ f ↾ω) has to be shown

▶ This is not required if objective is updated, as x3 + x4 ≥ x3 + x4 (f ≥ f ↾ω) is trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 19/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule Necessary?

Without objective update:

▶ Redundance-based strengthening becomes more complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 2

x1 + x2 + x3 + x4 ≤ 2

x3 + x4 ≥ 1

min x3 + x4

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

▶ Deletion of x1 + x2 + x3 + x4 ≥ 2 with substitution {x1 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ 1 + x2 (f ≥ f ↾ω) has to be shown

▶ This is not required if objective is updated, as x3 + x4 ≥ x3 + x4 (f ≥ f ↾ω) is trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 19/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule Necessary?

Without objective update:

▶ Redundance-based strengthening becomes more complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 2

x1 + x2 + x3 + x4 ≤ 2

x3 + x4 ≥ 1

min x1 + x2

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

min x3 + x4

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

▶ Deletion of x1 + x2 + x3 + x4 ≥ 2 with substitution {x1 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ 1 + x2 (f ≥ f ↾ω) has to be shown

▶ This is not required if objective is updated, as x3 + x4 ≥ x3 + x4 (f ≥ f ↾ω) is trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 19/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule Necessary?

Without objective update:

▶ Redundance-based strengthening becomes more complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 2

x1 + x2 + x3 + x4 ≤ 2

x3 + x4 ≥ 1

min x1 + x2

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

min x3 + x4

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

▶ Deletion of x1 + x2 + x3 + x4 ≥ 2 with substitution {x1 7→ 1}

▶ If objective unchanged, then x1 + x2 ≥ 1 + x2 (f ≥ f ↾ω) has to be shown

▶ This is not required if objective is updated, as x3 + x4 ≥ x3 + x4 (f ≥ f ↾ω) is trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 19/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update Rule Necessary?

Without objective update:

▶ Redundance-based strengthening becomes more complicated to impossible

Example:

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 2

x1 + x2 + x3 + x4 ≤ 2

x3 + x4 ≥ 1

min x1 + x2

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

min x3 + x4

s.t. x1 + x2 = x3 + x4

x3 + x4 ≥ 1

▶ Deletion of x1 + x2 + x3 + x4 ≥ 2 with substitution {x1 7→ 1}
▶ If objective unchanged, then x1 + x2 ≥ 1 + x2 (f ≥ f ↾ω) has to be shown

▶ This is not required if objective is updated, as x3 + x4 ≥ x3 + x4 (f ≥ f ↾ω) is trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 19/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Objective Update: Example

min 2x1 + 3x2

s.t. 3x2 + 2x3 ≥ 3 (1)

3x2 + 2x3 ≥ 2 (2)

min 2x1 + 2x3 + 1

s.t. 3x2 + 2x3 ≥ 3 (1)

3x2 + 2x3 ≥ 2 (2)

▶ Constraint (1) says 3x2 ≥ 2x3 + 1

▶ Constraint (2) says 3x2 ≤ 2x3 + 1

Updating to a new objective:

obju new 2 x1 2 x3 1 ;

▶ Change objective to 2x1 + 2x3 + 1

obju diff -3 ~x2 2 x3 1 ;

▶ Change objective with difference fnew−fold = 2x3 + 1−3x2

▶ New objective is fnew = fold + 2x3 + 1 − 3x2

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 20/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example: Start of Proof

Proof starts with a header specifying the format version:

pseudo-Boolean proof version 3.0

Input problem is loaded, e.g., from OPB file, and IDs assigned to initial constraints:

min: 1 x1 1 x2 ; min x1 + x2

1 x1 1 x2 1 ~x3 1 ~x4 >= 3 ; s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

1 ~x1 1 ~x2 1 x3 1 x4 >= 1 ; x1 + x2 + x3 + x4 ≥ 1 (2)

1 ~x1 1 x5 >= 1 ; x1 + x5 ≥ 1 (3)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 21/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example: Start of Proof

Proof starts with a header specifying the format version:

pseudo-Boolean proof version 3.0

Input problem is loaded, e.g., from OPB file, and IDs assigned to initial constraints:

min: 1 x1 1 x2 ; min x1 + x2

1 x1 1 x2 1 ~x3 1 ~x4 >= 3 ; s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

1 ~x1 1 ~x2 1 x3 1 x4 >= 1 ; x1 + x2 + x3 + x4 ≥ 1 (2)

1 ~x1 1 x5 >= 1 ; x1 + x5 ≥ 1 (3)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 21/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (1/4): Substitution

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x1 + x5 ≥ 1 (3)

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Constraints (1) and (2) say that x1 = x2 + x3 + x4

▶ Substitute x1 in constraint (3) using this equality

Certification:

pol 1 3 + ; Add up constraints (1) and (3) to derive (4)

core id 4 ; Move constraint (4) to core set

del id 3 : : subproof Add negation of constraint (3) to get x1 + x5 ≥ 2

pol -1 2 + ; Add (2) to previous constraint to get x2 + x3 + x4 + x5 ≥ 2

pol -1 4 + ; Add (4) to previous constraint to get 0 ≥ 1

qed : -1 ; End subproof to delete constraint (3)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 22/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (1/4): Substitution

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x1 + x5 ≥ 1 (3)

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Constraints (1) and (2) say that x1 = x2 + x3 + x4

▶ Substitute x1 in constraint (3) using this equality

Certification:

pol 1 3 + ; Add up constraints (1) and (3) to derive (4)

core id 4 ; Move constraint (4) to core set

del id 3 : : subproof Add negation of constraint (3) to get x1 + x5 ≥ 2

pol -1 2 + ; Add (2) to previous constraint to get x2 + x3 + x4 + x5 ≥ 2

pol -1 4 + ; Add (4) to previous constraint to get 0 ≥ 1

qed : -1 ; End subproof to delete constraint (3)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 22/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (1/4): Substitution

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x1 + x5 ≥ 1 (3)

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Constraints (1) and (2) say that x1 = x2 + x3 + x4

▶ Substitute x1 in constraint (3) using this equality

Certification:

pol 1 3 + ; Add up constraints (1) and (3) to derive (4)

core id 4 ; Move constraint (4) to core set

del id 3 : : subproof Add negation of constraint (3) to get x1 + x5 ≥ 2

pol -1 2 + ; Add (2) to previous constraint to get x2 + x3 + x4 + x5 ≥ 2

pol -1 4 + ; Add (4) to previous constraint to get 0 ≥ 1

qed : -1 ; End subproof to delete constraint (3)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 22/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (2/4): Objective Function Update

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Change objective from x1 + x2 to x3 + x4 + 1 using constraints (1) and (2)

▶ Constraint (1) says x1 + x2 ≥ x3 + x4 + 1

▶ Constraint (2) says x1 + x2 ≤ x3 + x4 + 1

Certification:

obju new 1 x3 1 x4 1 ; Change objective to x3 + x4 + 1 using (1) and (2)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 23/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (2/4): Objective Function Update

min x1 + x2

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Change objective from x1 + x2 to x3 + x4 + 1 using constraints (1) and (2)

▶ Constraint (1) says x1 + x2 ≥ x3 + x4 + 1

▶ Constraint (2) says x1 + x2 ≤ x3 + x4 + 1

Certification:

obju new 1 x3 1 x4 1 ; Change objective to x3 + x4 + 1 using (1) and (2)

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 23/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (3/4): Delete Substitution Constraints (1/2)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Constraints (1) and (2) can be deleted, as they define x1 = x2 + x3 + x4

Certification:

del id 1 : x1 -> 1 ; Negation of (1) is x1 + x2 + x3 + x4 ≥ 2, hence:

For (1), x2 + x3 + x4 ≥ 2 is implied by (4);

For (2), x2 + x3 + x4 ≥ 1 is implied by negated constraint;

For (4), substitution does not change the constraint;

For f ≥ f ↾{x1 7→1}, is trivial, since x1 not in objective

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 24/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (3/4): Delete Substitution Constraints (1/2)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 3 (1)

x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Constraints (1) and (2) can be deleted, as they define x1 = x2 + x3 + x4

Certification:

del id 1 : x1 -> 1 ; Negation of (1) is x1 + x2 + x3 + x4 ≥ 2, hence:

For (1), x2 + x3 + x4 ≥ 2 is implied by (4);

For (2), x2 + x3 + x4 ≥ 1 is implied by negated constraint;

For (4), substitution does not change the constraint;

For f ≥ f ↾{x1 7→1}, is trivial, since x1 not in objective

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 24/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (3/4): Delete Substitution Constraints (2/2)

min x3 + x4 + 1

s.t. x1 + x2 + x3 + x4 ≥ 1 (2)

x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. x2 + x3 + x4 + x5 ≥ 3 (4)

▶ Now also delete constraint (2)

Certification:

del id 2 : x1 -> 0 ; Delete (2) using substitution {x1 7→ 0}:

For (2), x2 + x3 + x4 ≥ 0 is trivial;

(4) and f ≥ f ↾{x1 7→0} are again trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 25/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (4/4): Duality-Based Fixing

min x3 + x4 + 1

s.t. x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. ∅

▶ W.l.o.g. x2/x5 can be fixed to 1, as

▶ x2/x5 only appear positive in constraints with non-negative coefficient

▶ objective coefficients for x2/x5 are 0

▶ W.l.o.g. x3/x4 can be fixed to 0, as

▶ x3/x4 only appear negative in constraints with non-negative coefficient

▶ x3/x4 only appear positive in the objective with non-negative coefficient

Certification:

del id 4 : x2 -> 1 x3 -> 0 Delete (4) using

x4 -> 0 x5 -> 1 ; ω = {x2 7→ 1, x3 7→ 0, x4 7→ 0, x5 7→ 1},

as (x2 + x3 + x4 + x5 ≥ 3)↾ω is 0 ≥ −1 and

f ≥ f ↾ω is x3 + x4 ≥ −1, which are both trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 26/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example (4/4): Duality-Based Fixing

min x3 + x4 + 1

s.t. x2 + x3 + x4 + x5 ≥ 3 (4)

min x3 + x4 + 1

s.t. ∅

▶ W.l.o.g. x2/x5 can be fixed to 1, as

▶ x2/x5 only appear positive in constraints with non-negative coefficient

▶ objective coefficients for x2/x5 are 0

▶ W.l.o.g. x3/x4 can be fixed to 0, as

▶ x3/x4 only appear negative in constraints with non-negative coefficient

▶ x3/x4 only appear positive in the objective with non-negative coefficient

Certification:

del id 4 : x2 -> 1 x3 -> 0 Delete (4) using

x4 -> 0 x5 -> 1 ; ω = {x2 7→ 1, x3 7→ 0, x4 7→ 0, x5 7→ 1},

as (x2 + x3 + x4 + x5 ≥ 3)↾ω is 0 ≥ −1 and

f ≥ f ↾ω is x3 + x4 ≥ −1, which are both trivial

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 26/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example: Concluding Proof

We claim at the end of the proof that resulting formula has same optimal value:

output EQUIOPTIMAL FILE ;

▶ Check that core set and objective is syntactically equivalent to reformulated problem

▶ FILE means that reformulated problem is given in additional file

There is no conclusion regarding solving the instance:

conclusion NONE ;

End the proof:

end pseudo-Boolean proof ;

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 27/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example: Concluding Proof

We claim at the end of the proof that resulting formula has same optimal value:

output EQUIOPTIMAL FILE ;

▶ Check that core set and objective is syntactically equivalent to reformulated problem

▶ FILE means that reformulated problem is given in additional file

There is no conclusion regarding solving the instance:

conclusion NONE ;

End the proof:

end pseudo-Boolean proof ;

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 27/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example: Concluding Proof

We claim at the end of the proof that resulting formula has same optimal value:

output EQUIOPTIMAL FILE ;

▶ Check that core set and objective is syntactically equivalent to reformulated problem

▶ FILE means that reformulated problem is given in additional file

There is no conclusion regarding solving the instance:

conclusion NONE ;

End the proof:

end pseudo-Boolean proof ;

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 27/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Example: Full Proof

reformulation.proof

pseudo-Boolean proof version 3.0
pol 1 3 + ;
core id 4 ;
del id 3 : : subproof

pol -1 2 + ;
pol -1 4 + ;

qed : -1 ;
obju new 1 x3 1 x4 1 ;
del id 1 : x1 -> 1 ;
del id 2 : x1 -> 0 ;
del id 4 : x2 -> 1 x3 -> 0 x4 -> 0 x5 -> 1 ;
output EQUIOPTIMAL FILE ;
conclusion NONE ;
end pseudo-Boolean proof ;

input.opb

min: 1 x1 1 x2 ;
1 x1 1 x2 1 ~x3 1 ~x4 >= 3 ;
1 ~x1 1 ~x2 1 x3 1 x4 >= 1 ;
1 ~x1 1 x5 >= 1 ;

output.opb

min: 1 x3 1 x4 1 ;

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 28/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Formally Verified Proof Checking

Problem Tool Result

Proof

Unverified Checker

(Elaborator)
✔ or ✘???

Verified

Checker

Verified

✔ or ✘

How can we trust the checker?

1. Tool generates proof, which contains syntactic sugar for easy logging

2. Unverified proof checker elaborates syntactic sugar to simpler elaborated proof

3. Elaborated proof checked by formally verified checker

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 29/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Formally Verified Proof Checking

Problem Tool Result

Proof

Unverified Checker

(Elaborator)

Elaborated

Proof

Verified

Checker

Verified

✔ or ✘

How can we trust the checker?

1. Tool generates proof, which contains syntactic sugar for easy logging

2. Unverified proof checker elaborates syntactic sugar to simpler elaborated proof

3. Elaborated proof checked by formally verified checker

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 29/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Formally Verified Proof Checking

Problem Tool Result

Proof

Unverified Checker

(Elaborator)

Elaborated

Proof

Verified

Checker

Verified

✔ or ✘

How can we trust the checker?

1. Tool generates proof, which contains syntactic sugar for easy logging

2. Unverified proof checker elaborates syntactic sugar to simpler elaborated proof

3. Elaborated proof checked by formally verified checker

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 29/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Formal Verification Trust Base

What we have to trust:

▶ Higher-order logic (HOL) definitions of parser and problems

▶ kept as simple as possible, easy to check

▶ HOL model of CakeML environment and correspondence to real system

▶ has been validated extensively

▶ HOL4 theorem prover, including its logic, implementation, and execution

environment

▶ separated and trustworthy kernel checks every logical inference

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 30/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Framework for Formally Verified Reformulation Checkers

Input MaxSAT

Problem

Reformulation

Proof

Elaborated Refor-

mulation Proof

Elaborator

(VeriPB)

Output MaxSAT

Problem

MaxSAT-to-PB

Encoder

MaxSAT-to-PB

Encoder

✓ Problems

Equioptimal

PB-to-MaxSAT

Translator

Input PB

Encoding

PB Verdict

PB Proof

Checker

Reformulation

Checker

Output PB

Encoding

Backend (CakePB)Frontend (CakePBwcnf)

▶ Example workflow for checking MaxSAT preprocessing proofs

▶ But easy to adapt checker to new problem domain, e.g., 0-1 ILP, graph problems, ...

▶ Talk on CakePB tomorrow 9:00 by Yong Kiam Tan

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 31/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Framework for Formally Verified Reformulation Checkers

Input MaxSAT

Problem

Reformulation

Proof

Elaborated Refor-

mulation Proof

Elaborator

(VeriPB)

Output MaxSAT

Problem

MaxSAT-to-PB

Encoder

MaxSAT-to-PB

Encoder

✓ Problems

Equioptimal

PB-to-MaxSAT

Translator

Input PB

Encoding

PB Verdict

PB Proof

Checker

Reformulation

Checker

Output PB

Encoding

Backend (CakePB)Frontend (CakePBwcnf)

▶ Example workflow for checking MaxSAT preprocessing proofs

▶ But easy to adapt checker to new problem domain, e.g., 0-1 ILP, graph problems, ...

▶ Talk on CakePB tomorrow 9:00 by Yong Kiam Tan

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 31/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Experimental Setup 0-1 ILP Presolving [HOGN24]

Tools:

▶ Added pseudo-Boolean proof logging to presolver PaPILO
1

▶ All presolve reductions applied to 0-1 ILPs in PaPILO covered

▶ Proof checked using proof checker VeriPB
2

Benchmarks:

▶ PB competition 2016 instances [Pse16]

▶ MIPLIB17 instances translated to OPB format [Dev20]

1https://github.com/scipopt/papilo
2https://gitlab.com/MIAOresearch/software/VeriPB

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 32/38

https://github.com/scipopt/papilo
https://gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Experimental Setup 0-1 ILP Presolving [HOGN24]

Tools:

▶ Added pseudo-Boolean proof logging to presolver PaPILO
1

▶ All presolve reductions applied to 0-1 ILPs in PaPILO covered

▶ Proof checked using proof checker VeriPB
2

Benchmarks:

▶ PB competition 2016 instances [Pse16]

▶ MIPLIB17 instances translated to OPB format [Dev20]

1https://github.com/scipopt/papilo
2https://gitlab.com/MIAOresearch/software/VeriPB

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 32/38

https://github.com/scipopt/papilo
https://gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Logging Overhead in PaPILO

Test set size default [s] w/proof log [s] relative

PB16-dec 1397 0.06 0.06 1.00

MIPLIB01-dec 291 0.42 0.43 1.02

PB16-opt 531 0.65 0.66 1.02

MIPLIB01-opt 142 0.33 0.35 1.06

▶ Additional time required to write proof is very small

▶ For 99% of instances less than 0.001s per reduction for certification

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 33/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Certificate Checking Performance

PaPILO time [s] VeriPB relative time w.r.t.

test set size verified default w/proof log time [s] default w/proof log

PB-dec 1397 1397 0.06 0.06 0.88 14.67 14.67

MIPLIB-dec 291 267 0.42 0.43 9.64 22.85 22.42

PB-opt 531 520 0.65 0.66 10.44 16.06 15.82

MIPLIB-opt 142 139 0.33 0.35 5.25 15.91 15.00

▶ Most instances verified within 10 000s timeout

▶ Overhead can be explained by PaPILO having more context than VeriPB

▶ PaPILO parallelizes some tasks, VeriPB works only sequentially

▶ Old version of VeriPB used, as new version
3

does not yet support required features

3https://gitlab.com/MIAOresearch/software/pboxide
Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 34/38

https://gitlab.com/MIAOresearch/software/pboxide


Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Experimental Setup MaxSAT Preprocessing [IOT
+

24]

Tools:

▶ Added pseudo-Boolean proof logging to MaxSAT preprocessor MaxPre
4

▶ All techniques in MaxPre covered

▶ Proofs elaborated by VeriPB
2

▶ Elaborated proofs checked by formally verified checker CakePB
5

Benchmarks:

▶ MaxSAT evaluation 2023 instances [Max23]

4https://bitbucket.org/coreo-group/maxpre2
2https://gitlab.com/MIAOresearch/software/VeriPB
5https://gitlab.com/MIAOresearch/software/cakepb

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 35/38

https://bitbucket.org/coreo-group/maxpre2
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/cakepb


Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Experimental Setup MaxSAT Preprocessing [IOT
+

24]

Tools:

▶ Added pseudo-Boolean proof logging to MaxSAT preprocessor MaxPre
4

▶ All techniques in MaxPre covered

▶ Proofs elaborated by VeriPB
2

▶ Elaborated proofs checked by formally verified checker CakePB
5

Benchmarks:

▶ MaxSAT evaluation 2023 instances [Max23]

4https://bitbucket.org/coreo-group/maxpre2
2https://gitlab.com/MIAOresearch/software/VeriPB
5https://gitlab.com/MIAOresearch/software/cakepb

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 35/38

https://bitbucket.org/coreo-group/maxpre2
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/cakepb


Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Proof Logging Overhead in MaxPre

MaxPre with and without proof logging:

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

timelimit

memout

tim
elim

it

m
em

o
u
t

MaxPRE without proof logging (s)

M
a
x
P
R
E

w
it
h
p
ro
o
f
lo
g
gi
n
g
(s
)

unweighted
weighted

▶ 46% slower with proof logging

▶ Larger overhead than for 0-1 ILP

presolving

▶ Bottleneck: Renaming of variables

required for MaxSAT file format

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 36/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Certificate Checking Performance

MaxPre vs. formally verified checking:

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104
memout

MaxPRE with proof logging (s)

V
e
r
iP

B
+

C
a
k
e
P
B

ch
ec
k
in
g
(s
)

unweighted
weighted

▶ 92% of instances checked

▶ Renaming of variables also bottleneck

▶ Elaboration with VeriPB 6.7× slower

than CakePB

▶ Old version of VeriPB used

▶ New VeriPB version should improve

performance significantly

▶ CakePB has been also been improved

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 37/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Conclusion & Future Directions

Summary:

▶ Proof logging for reformulating optimization problems is possible with VeriPB

▶ Can justify preprocessing/presolving techniques

▶ Rules preserve optimal value

▶ Deleting constraints requires care

▶ Also special rule for updating objectives required

▶ Proof logging for standalone reformulation tools

▶ Formally verified end-to-end verification for problem reformulations

Future research directions:

▶ Proof logging for MIP presolving (integer variables, rational coefficients) [DEGH23]

▶ Generalize reformulation proofs to enumeration and counting problems

Thank you for your attention!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 38/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Conclusion & Future Directions

Summary:

▶ Proof logging for reformulating optimization problems is possible with VeriPB

▶ Can justify preprocessing/presolving techniques

▶ Rules preserve optimal value

▶ Deleting constraints requires care

▶ Also special rule for updating objectives required

▶ Proof logging for standalone reformulation tools

▶ Formally verified end-to-end verification for problem reformulations

Future research directions:

▶ Proof logging for MIP presolving (integer variables, rational coefficients) [DEGH23]

▶ Generalize reformulation proofs to enumeration and counting problems

Thank you for your attention!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 38/38



Introduction Proof Logging for Preprocessing/Presolving Example Formal Verification Experiments Conclusion

Conclusion & Future Directions

Summary:

▶ Proof logging for reformulating optimization problems is possible with VeriPB

▶ Can justify preprocessing/presolving techniques

▶ Rules preserve optimal value

▶ Deleting constraints requires care

▶ Also special rule for updating objectives required

▶ Proof logging for standalone reformulation tools

▶ Formally verified end-to-end verification for problem reformulations

Future research directions:

▶ Proof logging for MIP presolving (integer variables, rational coefficients) [DEGH23]

▶ Generalize reformulation proofs to enumeration and counting problems

Thank you for your attention!

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 38/38



References I

[ABG
+

20] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger.

Presolve reductions in mixed integer programming.

INFORMS Journal on Computing, 32(2):473–506, 2020.

[BBN
+

23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.

Certified core-guided MaxSAT solving.

In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture
Notes in Computer Science, pages 1–22. Springer, July 2023.

[BBN
+

24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.

Certifying without loss of generality reasoning in solution-improving maximum satisfiability.

In Proceedings of the 30th International Conference on Principles and Practice of Constraint Programming (CP ’24),
volume 307 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:28, September 2024.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Certified dominance and symmetry breaking for combinatorial optimisation.

Journal of Artificial Intelligence Research, 77:1539–1589, August 2023.

Preliminary version in AAAI ’22.

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 1/4



References II

[BT19] Samuel R. Buss and Neil Thapen.

DRAT proofs, propagation redundancy, and extended resolution.

In Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing (SAT ’19),
volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán.

On the complexity of cutting-plane proofs.

Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy.

Verifying integer programming results.

In Proceedings of the 19th International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’17), volume 10328 of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny.

A proof system for certifying symmetry and optimality reasoning in integer programming.

Technical Report 2311.03877, arXiv.org, November 2023.

[Dev20] Jo Devriendt.

Miplib 0-1 instances in opb format, May 2020.

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 2/4



References III

[GN21] Stephan Gocht and Jakob Nordström.

Certifying parity reasoning efficiently using pseudo-Boolean proofs.

In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström.

Certifying MIP-based presolve reductions for 0–1 integer linear programs.

In Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’24), volume 14742 of Lecture Notes in Computer Science, pages

310–328. Springer, May 2024.

[IBJ22] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo.

Clause redundancy and preprocessing in maximum satisfiability.

In Proceedings of the 11th International Joint Conference on Automated Reasoning (IJCAR ’22), volume 13385 of

Lecture Notes in Computer Science, pages 75–94. Springer, August 2022.

[IOT
+

24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and Jakob

Nordström.

Certified MaxSAT preprocessing.

In Proceedings of the 12th International Joint Conference on Automated Reasoning (IJCAR ’24), volume 14739 of

Lecture Notes in Computer Science, pages 396–418. Springer, July 2024.

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 3/4



References IV

[Max23] MaxSAT evaluation 2023.

https://maxsat-evaluations.github.io/2023/, July 2023.

[Pse16] Pseudo-Boolean competition 2016.

https://www.cril.univ-artois.fr/PB16/, July 2016.

[Van23] Dieter Vandesande.

Towards certified MaxSAT solving: Certified MaxSAT solving with SAT oracles and encodings of

pseudo-Boolean constraints.

Master’s thesis, Vrije Universiteit Brussel (VUB), 2023.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts.

QMaxSATpb: A certified MaxSAT solver.

In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.

Andy Oertel Proof Logging Preprocessing/Presolving in MaxSAT/0-1 ILP 4/4

https://maxsat-evaluations.github.io/2023/
https://www.cril.univ-artois.fr/PB16/

	Introduction
	Proof Logging for Preprocessing/Presolving
	Example
	Formal Verification
	Experiments
	Conclusion
	Appendix

