A VARIETY OF TRIMMING TECHNIQUES FOR
PSEUDO-BOOLEAN PROOF LOGS

Arthur GONTIER et al

September 13, 2025

Glasgow

© INTRODUCTION

© TRIMMING FOR FASTER PROOF CHECKS
© TRIMMING FOR SMALLER PROOFS

@ ConNcLUusION

1/17

F
F
F
Fa

2/17

> Cl

2/17

2/17

2/17

2/17

pol F3*C +s

3/17

pol F3*C +s

Antecedents: F1, G

3/17

pol F3*C +s rup ax + by +cz>r

Antecedents: F1, G

3/17

pol F3*C +s rup ax + by +cz>r

Antecedents: F1, G Antecedents: All ctrs used in
rup check

3/17

Introduction
0000

Trimming for faster proof checks
000

LOOKING FOR ANTECEDENTS

pO|F13*C1+S

Antecedents: Fi, G

rup ax + by +cz>r

Antecedents: All ctrs used in
rup check

Conclusion

Trimming for smaller proofs
000000000 000
red ax + by > r : x 0 : subproof

proofgoal C;
pol G; F5 + s
rup0>1
ged : -1
proofgoal G
p0| CG R +s
rup0>1
ged : -1
ged red

3/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
0000 000 000000000 000

LOOKING FOR ANTECEDENTS

red ax + by > r : x 0 : subproof

rup ax + by +cz>r
proofgoal C;

pO|F13*C1+S

Antecedents: Fi, G Antecedents: All ctrs used in pol G; F5 + s
rup check rup0>1
ged : -1
proofgoal G
p0| CG R +s
rup0>1
ged : -1
ged red

Antecedents: If proofgoal is marked then
subproof antecedants are.

3/17

PRECISE DELETION

A W NN =

4/17

PRECISE DELETION

(S N S

del id 1

4/17

PRECISE DELETION

(S N S

delid 1
6

4/17

PRECISE DELETION

(S N S

del id 1
6
7

4/17

Introduction Trimming for faster proof checks
0000 000

PRECISE DELETION

Trimming for smaller proofs
000000000

1
2
3
4
5

del id 1

6

7

8
delid237

Conclusion

[e]e]e}

4/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
000 000 000000000 000

CONE-FIRST RuP

Algorithm 1: rup

1 while no contradiction do
2 L propagate()

5/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
000e 000

000000000 [e]e]e}

CONE-FIRST RuP

Algorithm 3: Cone-first rup

1 only_marked < true
Algorithm 2: rup 2 whilt.a no contradiction do
3 if only_marked then
‘ only_marked « try_propagate_marked()
else
propagate_one()
only_marked < true

1 while no contradiction do
2 L propagate()

~ o o »

5/17

© INTRODUCTION

e TRIMMING FOR FASTER PROOF CHECKS
‘)'TRIMRHNG FOR SMALLER PROOFS

@ CONCLUSION

5/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 (o] To} 000000000 000

TRIMMER FOR FASTER PROOF CHECKS

1) Decoration :
@ Produce decorated proofs
@ Forward pass on the proof
@ Compute pol lines
°

Add ctrs on deletions

6/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 (o] To} 000000000 000

TRIMMER FOR FASTER PROOF CHECKS

1) Decoration :
@ Produce decorated proofs
@ Forward pass on the proof
@ Compute pol lines
°

Add ctrs on deletions

Example :

p0| F3*C +s
eax+by+cz>r
ecz>r

del F

6/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 (o] To} 000000000 000

TRIMMER FOR FASTER PROOF CHECKS

1) Decoration : 2) Backward trimming :

@ Produce decorated proofs @ Backward pass from the

Forward pass on the proof contradiction

@ Run cone-first rup

°
@ Compute pol lines
° @ Mark the needed ctrs

Add ctrs on deletions
@ Conditionally mark
proofgoals

Example :

p0| F3*C +s
eax+by+cz>r
ecz>r

del F

6/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 (o] To} 000000000 000

TRIMMER FOR FASTER PROOF CHECKS

1) Decoration : 2) Backward trimming : 3) Compaction

@ Produce decorated proofs @ Backward pass from the @ Forward pass

Forward pass on the proof contradiction @ Writing elaborated proof

°
@ Compute pol lines @ Run cone-first rup @ Mark needed proofgoals
°

Add ctrs on deletions © Mark the needed ctrs @ Add deletions

@ Conditionally mark
proofgoals

Example :

p0| F3*C +s
eax+by+cz>r
ecz>r

del F

6/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 (o] To} 000000000 000

TRIMMER FOR FASTER PROOF CHECKS

1) Decoration : 2) Backward trimming : 3) Compaction

@ Produce decorated proofs @ Backward pass from the @ Forward pass

contradiction

Forward pass on the proof @ Writing elaborated proof

© Run cone-first rup @ Mark needed proofgoals

°
@ Compute pol lines
° @ Mark the needed ctrs o Add deletions

Add ctrs on deletions

@ Conditionally mark
proofgoals

Example :

p0| F3*C +s
eax+by+cz>r
ecz>r

del F,

PS: If your solver can output the decorated proof or the proof only has pol lines, you can skip phase 1

6/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 (o] To} 000000000 000

TRIMMER FOR FASTER PROOF CHECKS

1) Decoration : 2) Backward trimming : 3) Compaction

@ Produce decorated proofs @ Backward pass from the @ Forward pass

contradiction

Forward pass on the proof @ Writing elaborated proof

© Run cone-first rup @ Mark needed proofgoals

°
@ Compute pol lines
° @ Mark the needed ctrs o Add deletions

Add ctrs on deletions
@ Conditionally mark
proofgoals

Example :

p0| F3*C +s
eax+by+cz>r
ecz>r

del F,

PS: If your solver can output the decorated proof or the proof only has pol lines, you can skip phase 1
PPS: We can write to file each intermediate proof to avoid mem out on big proofs.

6/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 ooe 000000000 000

STATE OF DEVELOPMENT (BERHAN)

Implemented :
@ Cone-first rup
@ All phases for pol and rup
@ Full-ram
°

Skip decoration option

7/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 ooe 000000000 000

STATE OF DEVELOPMENT (BERHAN)

Implemented : Working on (by priority) :
@ Cone-first rup @ Redundance
@ All phases for pol and rup @ Optimisation (soli)
@ Full-ram @ Strengthening to core
@ Skip decoration option @ File option

7/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 ooe 000000000 000

STATE OF DEVELOPMENT (BERHAN)

Implemented : Working on (by priority) : End goal :
@ Cone-first rup @ Redundance @ Supporting full veriPB
@ All phases for pol and rup @ Optimisation (soli) grammar
@ Full-ram @ Strengthening to core @ Code optimisation
@ Skip decoration option @ File option @ PB trimming paper

7/17

© INTRODUCTION

© TRIMMING FOR FASTER PROOF CHECKS
© TRIMMING FOR SMALLER PROOFS

@ CONCLUSION

7/17

Use cases:

@ Using proof as certificate

@ Try understanding your problem

8/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 0@0000000 ele]e}

TRIMMING FOR SMALLER PROOFS

FR R F R

Use cases:
LAy :

@ Using proof as certificate G B

@ Try understanding your problem " G
Philosophy: C; « 5

@ Take more time and resources to trim more B _ G o

@ Never trust Matthew ‘ Sy ' Gs

L

8/17

Introduction Trimming for faster proof checks Trimming for smaller proofs
00000 000 0@0000000

TRIMMING FOR SMALLER PROOFS

F

Use cases:

@ Using proof as certificate

@ Try understanding your problem ;.
Philosophy: G

@ Take more time and resources to trim more ‘

@ Never trust Matthew PR

1L

Fa

Conclusion

[e]e]e}

8/17

Introduction Trimming for faster proof checks
00000 000

DO NOT TRUST MATTHEW’S DELETIONS

@ A derived constraint may be useful later.

Trimming for smaller proofs
00@000000

Cia

G

G

delid Gi1 G2
G

G2

G

del id Go1 G
G

G

G

del id Gs1 Gs2
G

1L

Conclusion

[e]e]e}

9/17

Introduction Trimming for faster proof checks
00000 000

DO NOT TRUST MATTHEW’S DELETIONS

@ A derived constraint may be useful later.

Trimming for smaller proofs
00@000000

Cia

G

G

delid Gi1 G2
G

G2

G

del id Go1 G
G

G

G

del id Gs1 Gs2
G

1L

Conclusion
000

Cia

Cio

G

G

G

del id Gi.1 G2
G

1

9/17

Introduction Trimming for faster proof checks
00000 000

DO NOT TRUST MATTHEW’S DELETIONS

@ A derived constraint may be useful later.

@ Be careful with redundance; they may need prior
deletions to work.

red -y >1: yo
del id -1
red y>1: y1

Trimming for smaller proofs
00@000000

Cia

G

G

delid Gi1 G2
G

G2

G

del id Go1 G
G

G

G

del id Gs1 Gs2
G

1L

ClAl
C1.2
G
G
G

Conclusion

[e]e]e}

del id C1,1 C1,2

G
1

9/17

Introduction Trimming for faster proof checks
00000 000

DO NOT TRUST MATTHEW’S DELETIONS

@ A derived constraint may be useful later.

@ Be careful with redundance; they may need prior
deletions to work.

red -y >1: yo
del id -1
red y>1: y1

@ Fine if you don't reuse the names

Trimming for smaller proofs
00@000000

Cia

G

G

delid Gi1 G2
G

G2

G

del id Go1 G
G

G

G

del id Gs1 Gs2
G

1L

ClAl
C1.2
G
G
G

Conclusion

[e]e]e}

del id C1,1 C1,2

G
1

9/17

@ Cone-first

10/17

@ Cone-first

@ Heuristic prioritizing the highest ctrs

10/17

@ Cone-first

@ Heuristic prioritizing the highest ctrs

@ Conflict analysis to get smaller antecedent set

10/17

Introduction Trimming for faster proof checks Trimming for smaller proofs

Conclusion
00000 000

000®00000 [ele]e]

BETTER RUP FOR TRIMMING ?

@ Cone-first
@ Heuristic prioritizing the highest ctrs

@ Conflict analysis to get smaller antecedent set

Algorithm 4: rup

only_m < true
while no contradiction do
if only_m then

‘ only_m < try_prop_m_ordered()
else

prop_one_ordered()
only_m < true

N o O s W N

©

update_implG(lit,Ivl,ctrID)
9 MarkAntecedantsFromConflictAnalysis()

10/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 000e00000 ele]e}

BETTER RUP FOR TRIMMING ?

@ Cone-first Algorithm 6: MAFCA
@ Heuristic prioritizing the highest ctrs 1 enqueue(PQ,L,1)
@ Conflict analysis to get smaller antecedent set 2 Wh'lef not_empty(PQ) do
3 lit < dequeue(PQ)
Algorithm 5: rup 4 id < implG[lit]
I 5 mark(id)
Lonly_m ¢ true 6 lits <— contributing__lits(id)
2 while no contradiction do .)
) 7 sort(lits,by:order)
3 if only_m then .
8 for | € lits do
4 ‘ only_m < try_prop_m_ordered() 0 if propagation then
> else 10 ‘ break
6 L prop_one_ordered() " else
! only_m < true 12 set_lit(/ false)
8 update_implG(lit,Ivl,ctrID) 13 enqueue(PQ,/,Ivl)

9 MarkAntecedantsFromConflictAnalysis() =

10/17

—a+-d+-f>2 (G)

1/17

—a+-d+-f>2 (G)

1/17

@ Idea: weaken unused literals in equations

12/17

@ Idea: weaken unused literals in equations

at+b+c+d+e+f+g+h+i+j+k+I+m+nto+p+qg+r+s+t+ut+v+w—+10x+y+2z > 21

12/17

@ Idea: weaken unused literals in equations

a+b+c+d+e+f+g+h+i+j+k+I+m+nto+p+qg+r+s+t+ut+v+w+10x+y+z>21

12/17

@ ldea: weaken unused literals in equations

a+b+c+d+e+f+g+h+i+j+k+I+m+nto+p+qg+r+s+t+ut+v+w+10x+y+z>21
at+tb+c+d+e+10x>1

12/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 00000e000 ele]e}

WIDTH TRIMMING

@ l|dea: weaken unused literals in equations
at+b+c+d+e+f+g+h+i+j+k+I+m+n+o+p+qg+r+s+t+ut+v+w+10x+y+z > 21

a+b+c+d+e+10x2>1

@ How to propagate this conelits through pol lines ?

12/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 00000e000 ele]e}

WIDTH TRIMMING

@ l|dea: weaken unused literals in equations
a+b+c+d+e+f+g+h+i+j+k+I+m+nto+p+qg+r+s+t+ut+v+w+10x+y+2z > 21

at+tb+c+d+e+10x>1

@ How to propagate this conelits through pol lines ?

at+-b+-c+d+e+10x>5 (1)
2b+2x>1 (2
c+x>1 (3)
pol 123 + + 4
eat+b+d+e+13x>5 (5)

12/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 00000e000 ele]e}

WIDTH TRIMMING

@ l|dea: weaken unused literals in equations
a+b+c+d+e+f+g+h+i+j+k+I+m+nto+p+qg+r+s+t+ut+v+w+10x+y+z>21

at+b+c+d+e+10x>1

@ How to propagate this conelits through pol lines ?

a+-b+-c+d+e+10x2>5 (1)
2b+2x>1 (2)
c+x>1 3)
pol 1 23 + + 4
eat+b+d+e+13x>5 (5)

conelits U (poslits N neglits)

12/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 00000e000 ele]e}

WIDTH TRIMMING

@ l|dea: weaken unused literals in equations
at+b+c+d+e+f+g+h+i+j+k+I+m+nto+p+qg+r+s+t+u+v+w+10x+y+z > 21

at+b+c+d+e+10x>1

@ How to propagate this conelits through pol lines ?

at+-b+-c+d+e+10x>5 (1)
2b+2x>1 (2)
c+x>1 3)
pol 1 2 3 + + (4)
eat+b+d+e+13x>5 (5)

conelits U (poslits N neglits)

@ What about saturation and division ?

12/17

The graphs do not fit in the margin

13/17

1 Log proof skeleton

A
F

assert Gy

assert G
assert C3
assert C4
G
Ce
€

14/17

1 Log proof skeleton

2 Trim proof skeleton

A
F

assert Gy

assert G
assert C3
assert C4
Gs
Ce
€

A

assert G

assert Cy
G

1

14/17

Introduction Trimming for faster proof checks
00000 000
JUSTIFICATION

1 Log proof skeleton
2 Trim proof skeleton
3 Justify to get a full proof

4 Normal trimming and/or checking

F
R
assert C;
assert G
assert C3
assert G4
Gs
Ge
L

Trimming for smaller proofs
000000080

A

assert G

assert Gy
G

1

Conclusion

[e]e]e}

14/17

Trimming for smaller proofs Conclusion

Introduction Trimming for faster proof checks
00000000e 000

00000 [e]e]e}

STATE OF DEVELOPMENT (ARTHUR)

Implemented :

@ Cone-first rup with conflict
analysis, and heuristics.

@ Support pol, rup, red and
optimisation (soli)

@ Full-ram (max 3T)

15/17

Trimming for smaller proofs
L]

Introduction Trimming for faster proof checks
[e]e]e]e]eleTole]

00000 [e]e]e}

STATE OF DEVELOPMENT (ARTHUR)

Implemented : Working on (by priority) :
@ Cone-first rup with conflict @ Width trimming (weakening
analysis, and heuristics. unused literals)
@ Support pol, rup, red and @ Visualisations
optimisation (soli) @ Justifications

@ Full-ram (max 3T)

Conclusion

[e]e]e}

15/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion

00000 e]e]e} 00000000e

STATE OF DEVELOPMENT (ARTHUR)

Implemented : Working on (by priority) :
@ Cone-first rup with conflict @ Width trimming (weakening
analysis, and heuristics. unused literals)
@ Support pol, rup, red and @ Visualisations

optimisation (soli) @ Justifications

@ Full-ram (max 3T)

[e]e]e}

End goal :

@ Get proofs to be as small as
possible

@ Get satisfactory problem
insight from small proofs

@ PB trimming paper

15/17

@ INTRODUCTION

© TRIMMING FOR FASTER PROOF CHECKS
© TRIMMING FOR SMALLER PROOFS

@ ConcLUsION

15/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 000000000 (o] Yo}

SOME FUNNY INSTANCES (THESE COMPARISON ARE UNFAIR)

sizes times (s)
Instance veriPB fastPB smallPB veriPB fastPB smallPB (parse trim write verif)
LVg2g80 [5.219 MB 6.455 MB 414.1 KB 44.2 12,5 100 (2.7 96.5 0.16 0.86)

16/17

Introduction
00000

Trimming for faster proof checks

[e]e]e}

Trimming for smaller proofs Conclusion
000000000 [e] 1o}

SOME FUNNY INSTANCES (THESE COMPARISON ARE UNFAIR)

sizes times (s)
Instance veriPB fastPB smallPB veriPB fastPB smallPB (parse trim write verif)
LVg3gl7? | 1.665 MB 499.4 KB 643.8 KB 0.46 0.79 1.19 (0.21 0.66 0.02 0.3)
bio027085 | 2.922 MB 333.2 KB 75.15 KB 4.28 324 3.7 (2.350.98 0.02 0.35)
LVg2g80 | 5.219 MB 6.455 MB 414.1 KB 44.2 12,5 100 (2.7 96.5 0.16 0.86)

16/17

Introduction
00000

Trimming for faster proof checks

[e]e]e}

Trimming for smaller proofs Conclusion
000000000 [e] 1o}

SOME FUNNY INSTANCES (THESE COMPARISON ARE UNFAIR)

sizes times (s)
Instance veriPB fastPB smallPB veriPB fastPB smallPB (parse trim write verif)
LVg3gl7? | 1.665 MB 499.4 KB 643.8 KB 0.46 0.79 1.19 (0.21 0.66 0.02 0.3)
bio027085 | 2.922 MB 333.2 KB 75.15 KB 4.28 324 3.7 (2.350.98 0.02 0.35)
LVg2g80 | 5.219 MB 6.455 MB 414.1 KB 44.2 12,5 100 (2.7 96.5 0.16 0.86)
LVg3g4l 8.664 MB 6.284 MB 421.1 KB 45.3 46.4 261 (4.72 245 1.02 9.94)

16/17

Introduction
00000

Trimming for faster proof checks

[e]e]e}

Trimming for smaller proofs Conclusion
000000000 [e] 1o}

SOME FUNNY INSTANCES (THESE COMPARISON ARE UNFAIR)

sizes times (s)
Instance veriPB fastPB smallPB veriPB fastPB smallPB (parse trim write verif)
LVg3gl7? | 1.665 MB 499.4 KB 643.8 KB 0.46 0.79 1.19 (0.21 0.66 0.02 0.3)
bio027085 | 2.922 MB 333.2 KB 75.15 KB 4.28 324 3.7 (2.350.98 0.02 0.35)
LVg2g80 | 5.219 MB 6.455 MB 414.1 KB 44.2 12,5 100 (2.7 96.5 0.16 0.86)
LVg3g4l 8.664 MB 6.284 MB 421.1 KB 45.3 46.4 261 (4.72 245 1.02 9.94)
bio170075 | 18.54 MB 14.15 MB 585.5 KB 192.0 173 571 (15.3 523 2.26 30.8)

16/17

Introduction
00000

Trimming for faster proof checks

[e]e]e}

Trimming for smaller proofs Conclusion
o] e}

000000000

SOME FUNNY INSTANCES (THESE COMPARISON ARE UNFAIR)

sizes times (s)
Instance veriPB fastPB smallPB veriPB fastPB smallPB (parse trim write verif)
LVg3gl7? | 1.665 MB 499.4 KB 643.8 KB 0.46 0.79 1.19 (0.21 0.66 0.02 0.3)
bio027085 | 2.922 MB 333.2 KB 75.15 KB 4.28 324 3.7 (2.350.98 0.02 0.35)
LVg2g80 | 5.219 MB 6.455 MB 414.1 KB 44.2 12,5 100 (2.7 96.5 0.16 0.86)
LVg3g4l 8.664 MB 6.284 MB 421.1 KB 45.3 46.4 261 (4.72 245 1.02 9.94)
bio170075 | 18.54 MB 14.15 MB 585.5 KB 192.0 173 571 (15.3 523 2.26 30.8)
LVgh3g56 | 46.81 MB 148.0 MB 12.89 MB 7.93 22.5 48.8 (10.2 32.9 1.95 3.84)

16/17

Introduction Trimming for faster proof checks Trimming for smaller proofs Conclusion
00000 000 000000000 ooe

CONCLUSION

Merci pour votre attention |

Questions ?

17/17

	Introduction
	Trimming for faster proof checks
	Trimming for smaller proofs
	Conclusion

