A VARIETY OF TRIMMING TECHNIQUES FOR PSEUDO-BOOLEAN PROOF LOGS

Arthur GONTIER et al

September 13, 2025

TABLE OF CONTENTS

Introduction

•0000

- Introduction

- 4 Conclusion

Introduction

 F_4

Introduction ○●○○○

Introduction ○●○○○

Introduction ○●○○○

Trimming for smaller proofs

Introduction ○●○○○

LOOKING FOR ANTECEDENTS

pol F_1 3 * C_1 + s

Introduction

pol F_1 3 * C_1 + s

Introduction ○○●○○

Antecedents: F_1 , C_1

LOOKING FOR ANTECEDENTS

pol F_1 3 * C_1 + s

Introduction

 $rup ax + by + cz \ge r$

Antecedents: F_1 , C_1

pol F_1 3 * C_1 + s

Introduction

00000

 $rup ax + by + cz \ge r$

Antecedents: F_1 , C_1

Antecedents: All ctrs used in rup check

LOOKING FOR ANTECEDENTS

pol F_1 3 * C_1 + s

rup ax + by + cz > r

Antecedents: F_1 , C_1

Antecedents: All ctrs used in rup check

```
red ax + by \ge r : x \ 0 : subproof
    proofgoal C_1
        pol C_2 F_3 + s
        \mathsf{rup}\; 0 \geq 1
    ged : -1
    proofgoal C_2
        pol C_1 F_2 + s
        \mathsf{rup}\ \mathsf{0} \geq \mathsf{1}
    ged : -1
ged red
```

Trimming for smaller proofs

LOOKING FOR ANTECEDENTS

pol F_1 3 * C_1 + s

rup ax + by + cz > r

Antecedents: F_1 , C_1

Antecedents: All ctrs used in rup check

```
red ax + by > r : x 0 : subproof
    proofgoal C_1
        pol C_2 F_3 + s
        \operatorname{\mathsf{rup}} 0 \geq 1
    ged : -1
    proofgoal C_2
        pol C_1 F_2 + s
        \mathsf{rup}\ \mathsf{0} \geq \mathsf{1}
    ged : -1
aed red
```

Trimming for smaller proofs

Antecedents: If proofgoal is marked then subproof antecedants are.

Introduction ○○○●○

Introduction ○○○●○

5

del id 1

Introduction ○○○●○

5

del id 1

6

Introduction ○○○●○

5

del id 1

6

Introduction ○○○●○

5

del id 1

del id 2 3 7

Cone-first Rup

Algorithm 1: rup

while no contradiction do

propagate()

Cone-first Rup

Introduction

0000

Algorithm 2: rup while no contradiction do propagate()

Algorithm 3: Cone-first rup

```
1 only_marked ← true
2 while no contradiction do
3  | if only_marked then
4  | only_marked ← try_propagate_marked()
5  | else
6  | propagate_one()
7  | only_marked ← true
```

TABLE OF CONTENTS

- Introduction
- 2 Trimming for faster proof checks
- 4 Conclusion

Trimmer for faster proof checks

1) Decoration:

Introduction

- Produce decorated proofs
- Forward pass on the proof
- Compute pol lines
- Add ctrs on deletions

Trimmer for faster proof checks

- 1) Decoration:
 - Produce decorated proofs
 - Forward pass on the proof
 - Compute pol lines
 - Add ctrs on deletions

```
Example:
pol F_1 3 * C_1 + s
e ax + by + cz \ge r
e cz > r
del F_2
```

- 1) Decoration:
 - Produce decorated proofs
 - Forward pass on the proof
 - Compute pol lines
 - Add ctrs on deletions

Example:

```
pol F_1 3 * C_1 + s
e ax + bv + cz > r
e cz > r
del F_2
```

- 2) Backward trimming:
 - Backward pass from the contradiction

Trimming for smaller proofs

- Run cone-first rup
- Mark the needed ctrs
- Conditionally mark proofgoals

- 1) Decoration:
 - Produce decorated proofs
 - Forward pass on the proof
 - Compute pol lines
 - Add ctrs on deletions

Example: pol F_1 3 * C_1 + s e ax + bv + cz > re cz > r $del F_2$

- 2) Backward trimming:
 - Backward pass from the contradiction
 - Run cone-first rup
 - Mark the needed ctrs.
 - Conditionally mark proofgoals

3) Compaction

Trimming for smaller proofs

- Forward pass
- Writing elaborated proof
- Mark needed proofgoals
- Add deletions

- 1) Decoration:
 - Produce decorated proofs
 - Forward pass on the proof
 - Compute pol lines
 - Add ctrs on deletions

- 2) Backward trimming:
 - Backward pass from the contradiction
 - Run cone-first rup
 - Mark the needed ctrs
 - Conditionally mark proofgoals

- 3) Compaction
 - Forward pass
 - Writing elaborated proof
 - Mark needed proofgoals
 - Add deletions

Example: pol F_1 3 * C_1 + s e $ax + by + cz \ge r$ e $cz \ge r$ del F_2

PS: If your solver can output the decorated proof or the proof only has pol lines, you can skip phase 1

- 1) Decoration:
 - Produce decorated proofs
 - Forward pass on the proof
 - Compute pol lines
 - Add ctrs on deletions

- 2) Backward trimming:
 - Backward pass from the contradiction
 - Run cone-first rup
 - Mark the needed ctrs
 - Conditionally mark proofgoals

3) Compaction

Trimming for smaller proofs

- Forward pass
- Writing elaborated proof
- Mark needed proofgoals
- Add deletions

pol
$$F_1$$
 3 * C_1 + s
e $ax + by + cz \ge r$
e $cz \ge r$
del F_2

Example:

PS: If your solver can output the decorated proof or the proof only has pol lines, you can skip phase 1 PPS: We can write to file each intermediate proof to avoid mem out on big proofs.

000000000

STATE OF DEVELOPMENT (BERHAN)

Implemented:

- Cone-first rup
- All phases for pol and rup
- Full-ram
- Skip decoration option

STATE OF DEVELOPMENT (BERHAN)

Implemented:

- Cone-first rup
- All phases for pol and rup
- Full-ram
- Skip decoration option

Working on (by priority):

Trimming for smaller proofs

000000000

- Redundance
- Optimisation (soli)
- Strengthening to core
- File option

STATE OF DEVELOPMENT (BERHAN)

Implemented:

- Cone-first rup
- All phases for pol and rup
- Full-ram
- Skip decoration option

Working on (by priority):

- Redundance
- Optimisation (soli)
- Strengthening to core
- File option

End goal:

Trimming for smaller proofs

- Supporting full veriPB grammar
- Code optimisation
- PB trimming paper

TABLE OF CONTENTS

Introduction

- Introduction
- 2 Trimming for faster proof checks
- 3 Trimming for smaller proofs

TRIMMING FOR SMALLER PROOFS

Use cases:

- Using proof as certificate
- Try understanding your problem

TRIMMING FOR SMALLER PROOFS

Use cases:

- Using proof as certificate
- Try understanding your problem

Philosophy:

- Take more time and resources to trim more
- Never trust Matthew

Trimming for smaller proofs

00000000

Use cases:

- Using proof as certificate
- Try understanding your problem

Philosophy:

- Take more time and resources to trim more
- Never trust Matthew

Trimming for smaller proofs

00000000

• A derived constraint may be useful later.

 $C_{1.1}$

00000000

 $C_{1.2}$

del id $C_{1,1}$ $C_{1,2}$

Trimming for smaller proofs

 $C_{2.1}$

 $C_{2,2}$ C_2

del id $C_{2.1}$ $C_{2.2}$

 $C_{3.1}$

 $C_{3.2}$

del id $C_{3,1}$ $C_{3,2}$

9/17

Introduction

Do	NOT	TRUST	MATTE	IEW'S	DELETIC	ONS
•	A deriv	ed constrain	t may be use	eful later.		

 $C_{1.1}$ $C_{1.2}$ C_1

 $C_{3.1}$

 $C_{3.2}$ C_3

 C_4

del id $C_{1.1}$ $C_{1.2}$ $C_{2.1}$ $C_{2.2}$ C_2

del id $C_{3.1}$ $C_{3.2}$

Trimming for smaller proofs ○○●○○○○○

 $C_{1.2}$ del id $C_{2,1}$ $C_{2,2}$

 C_1 C_2 C_3

 $C_{1.1}$

 $C_{1.1}$ $C_{1.2}$

 C_1

 C_2

 C_3

DO NOT TRUST MATTHEW'S DELETIONS

- A derived constraint may be useful later.

• Be careful with redundance; they may need prior deletions to work.

 $red \neg y > 1 : y 0$

del id -1

 $red y \ge 1 : y 1$

 $C_{1.1}$ $C_{1.2}$

00000000

 C_1

del id $C_{1,1}$ $C_{1,2}$

 $C_{2.1}$

 $C_{2,2}$

 $C_{3.2}$ C_3

 C_4

 C_2

del id $C_{2,1}$ $C_{2,2}$

 $C_{3.1}$

del id $C_{3,1}$ $C_{3,2}$

del id $C_{1,1}$ $C_{1,2}$

9/17

 $C_{1.1}$ $C_{1.2}$

 C_1

 C_2

DO NOT TRUST MATTHEW'S DELETIONS

- A derived constraint may be useful later. • Be careful with redundance; they may need prior

deletions to work.

 $red \neg y > 1 : y 0$ del id -1

 $red y \ge 1 : y 1$

• Fine if you don't reuse the names

 $C_{1.1}$ $C_{1.2}$

00000000

 C_1

del id $C_{1,1}$ $C_{1,2}$ $C_{2.1}$

 C_{22}

 C_2

del id $C_{2,1}$ $C_{2,2}$

 $C_{3.1}$

 $C_{3,2}$

 C_3

del id $C_{3,1}$ $C_{3,2}$

del id $C_{1,1}$ $C_{1,2}$

9/17

BETTER RUP FOR TRIMMING?

Cone-first

Cone-first

Introduction

• Heuristic prioritizing the highest ctrs

000000000

Cone-first

Introduction

- Heuristic prioritizing the highest ctrs
- Conflict analysis to get smaller antecedent set

BETTER RUP FOR TRIMMING?

- Cone-first
- Heuristic prioritizing the highest ctrs
- Conflict analysis to get smaller antecedent set

Algorithm 4: rup

BETTER RUP FOR TRIMMING?

- Cone-first
- Heuristic prioritizing the highest ctrs
- Conflict analysis to get smaller antecedent set

Algorithm 5: rup

${\sf MarkAntecedantsFromConflictAnalysis()}$

Algorithm 6: MAFCA

```
1 enqueue(PQ, \perp, 1)
while not_empty(PQ) do
        lit \leftarrow dequeue(PQ)
3
        id \leftarrow implG[lit]
4
        mark(id)
5
        lits ← contributing_lits(id)
6
        sort(lits.bv:order)
        for l \in lits do
            if propagation then
                  break
10
11
            else
                 set_lit(/,false)
12
                 enqueue(PQ,I,IvI)
13
```

CONFLICT ANALYSIS EXAMPLE

Introduction

$$\neg a + \neg d + \neg f \ge 2 \tag{C_5}$$

CONFLICT ANALYSIS EXAMPLE

Introduction 00000

$$\neg a + \neg d + \neg f \geq 2$$
 (C₅)

Introduction

Introduction

$$a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z \ge 21$$

Introduction

$$a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z \ge 21$$

Introduction

$$\frac{a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z}{a+b+c+d+e+10x} \ge 1$$

Introduction

• Idea: weaken unused literals in equations

$$\frac{a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z}{a+b+c+d+e+10x} \ge 1$$

• How to propagate this conelits through pol lines?

Introduction

• Idea: weaken unused literals in equations

$$a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z \ge 21$$
 $a+b+c+d+e+10x \ge 1$

• How to propagate this conelits through pol lines?

$$a + \neg b + \neg c + d + e + 10x \ge 5 \tag{1}$$

000000000

$$2b + 2x \ge 1 \tag{2}$$

$$c + x \ge 1 \tag{3}$$

e
$$a + b + d + e + 13x \ge 5$$
 (5)

Introduction

• Idea: weaken unused literals in equations

$$a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z \ge 21$$

 $a+b+c+d+e+10x > 1$

• How to propagate this conelits through pol lines?

$$a + \neg b + \neg c + d + e + 10x \ge 5$$
 (1)
 $2b + 2x \ge 1$ (2)

$$c + x \ge 1$$
 (3)
pol 1 2 3 + +

e
$$a + b + d + e + 13x \ge 5$$
 (5)

$$conelits \cup (poslits \cap neglits)$$

Introduction

• Idea: weaken unused literals in equations

$$a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+10x+y+z \ge 21$$
 $a+b+c+d+e+10x \ge 1$

• How to propagate this conelits through pol lines?

$$a + \neg b + \neg c + d + e + 10x \ge 5 \tag{1}$$

$$2b + 2x \ge 1 \tag{2}$$

$$c + x \ge 1 \tag{3}$$

e
$$a + b + d + e + 13x \ge 5$$
 (5)

$$conelits \cup (poslits \cap neglits)$$

What about saturation and division?

Introduction

The graphs do not fit in the margin

JUSTIFICATION

1 Log proof skeleton

 F_1 F_2 assert C_1 assert C_2 assert C_3 assert C_4 C_5

JUSTIFICATION

- 1 Log proof skeleton
- 2 Trim proof skeleton

 F_1 F_2 assert C_1 assert C_2 assert C_3 assert C_4 assert C_5 C_5 C_6

JUSTIFICATION

Introduction

- 1 Log proof skeleton
- 2 Trim proof skeleton

4 Normal trimming and/or checking

- 3 Justify to get a full proof

- F_1
 - F_2
 - assert C_1

 C_5

 C_6

- assert C_2
- assert C_3
- assert C_4

000000000

assert C_2

assert C_4

 C_5

- F_1
- - $C_{2.4}$
 - $C_{2.5}$

 $C_{2.3}$

 F_1 $C_{2.1}$ $C_{2,2}$

- $C_{2.6}$

- C_2

 C_4 C_5

- $C_{4.1}$
- $C_{4.2}$
- $C_{4.3}$

00000000

STATE OF DEVELOPMENT (ARTHUR)

Implemented:

- Cone-first rup with conflict analysis, and heuristics.
- Support pol, rup, red and optimisation (soli)
- Full-ram (max 3T)

STATE OF DEVELOPMENT (ARTHUR)

Implemented:

- Cone-first rup with conflict analysis, and heuristics.
- Support pol, rup, red and optimisation (soli)
- Full-ram (max 3T)

Working on (by priority):

 Width trimming (weakening) unused literals)

Trimming for smaller proofs

00000000

- Visualisations
- Justifications

STATE OF DEVELOPMENT (ARTHUR)

Implemented:

- Cone-first rup with conflict analysis, and heuristics.
- Support pol, rup, red and optimisation (soli)
- Full-ram (max 3T)

Working on (by priority):

- Width trimming (weakening unused literals)
- Visualisations
- Justifications

End goal:

- Get proofs to be as small as possible
- Get satisfactory problem insight from small proofs
- PB trimming paper

TABLE OF CONTENTS

Introduction

- Introduction

- 4 Conclusion

	sizes			times (s)		
Instance	veriPB	fastPB	smallPB	veriPB	fastPB	smallPB (parse trim write verif)
LVg2g80	5.219 MB	6.455 MB	414.1 KB	44.2	12.5	100 (2.7 96.5 0.16 0.86)

Trimming for smaller proofs

Some funny instances (These comparison are unfair)

	sizes			times (s)		
	sizes			times (s)		
Instance	veriPB	fastPB	smalIPB	veriPB	fastPB	smallPB (parse trim write verif)
LVg3g17	1.665 MB	499.4 KB	643.8 KB	0.46	0.79	1.19 (0.21 0.66 0.02 0.3)
bio027085	2.922 MB	333.2 KB	75.15 KB	4.28	32.4	3.7 (2.35 0.98 0.02 0.35)
LVg2g80	5.219 MB	6.455 MB	414.1 KB	44.2	12.5	100 (2.7 96.5 0.16 0.86)

	sizes			times (s)		
	31263			tilles (s)		
Instance	veriPB	fastPB	smalIPB	veriPB	fastPB	smallPB (parse trim write verif)
LVg3g17	1.665 MB	499.4 KB	643.8 KB	0.46	0.79	1.19 (0.21 0.66 0.02 0.3)
bio027085	2.922 MB	333.2 KB	75.15 KB	4.28	32.4	3.7 (2.35 0.98 0.02 0.35)
LVg2g80	5.219 MB	6.455 MB	414.1 KB	44.2	12.5	100 (2.7 96.5 0.16 0.86)
LVg3g41	8.664 MB	6.284 MB	421.1 KB	45.3	46.4	261 (4.72 245 1.02 9.94)

	sizes			times (s)		
Instance	veriPB	fastPB	smallPB	veriPB	fastPB	smallPB (parse trim write verif)
LVg3g17	1.665 MB	499.4 KB	643.8 KB	0.46	0.79	1.19 (0.21 0.66 0.02 0.3)
bio027085	2.922 MB	333.2 KB	75.15 KB	4.28	32.4	3.7 (2.35 0.98 0.02 0.35)
LVg2g80	5.219 MB	6.455 MB	414.1 KB	44.2	12.5	100 (2.7 96.5 0.16 0.86)
LVg3g41	8.664 MB	6.284 MB	421.1 KB	45.3	46.4	261 (4.72 245 1.02 9.94)
bio170075	18.54 MB	14.15 MB	585.5 KB	192.0	173	571 (15.3 523 2.26 30.8)

Trimming for smaller proofs

Some funny instances (These comparison are unfair)

	sizes			times (s)		
Instance	veriPB	fastPB	smallPB	veriPB	fastPB	smallPB (parse trim write verif)
LVg3g17	1.665 MB	499.4 KB	643.8 KB	0.46	0.79	1.19 (0.21 0.66 0.02 0.3)
bio027085	2.922 MB	333.2 KB	75.15 KB	4.28	32.4	3.7 (2.35 0.98 0.02 0.35)
LVg2g80	5.219 MB	6.455 MB	414.1 KB	44.2	12.5	100 (2.7 96.5 0.16 0.86)
LVg3g41	8.664 MB	6.284 MB	421.1 KB	45.3	46.4	261 (4.72 245 1.02 9.94)
bio170075	18.54 MB	14.15 MB	585.5 KB	192.0	173	571 (15.3 523 2.26 30.8)
LVg53g56	46.81 MB	148.0 MB	12.89 MB	7.93	22.5	48.8 (10.2 32.9 1.95 3.84)

CONCLUSION

Introduction

Merci pour votre attention !

Questions?