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Formal Verification of CP solvers

Few work about CP solving & formal verification

Verification of real code : too hard ! ... but maybe possible for some
pieces ....

Formal development (or proof-based development) :

I Colibrics developed by F. Bobot (Why3),

I {log} Set Constraints Resolution [Dubois and Weppe, 2018]
(Coq/Rocq)

I CoqBinFD and its extensions by C. Dubois et al (Coq/Rocq, Why3)

I My objectives :
- Develop a formally verified CP(FD) solver (at least as a reference
solver)
- Formalize and understand deeply some CP algorithms and results
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Roadmap of the talk

1 Preliminary CP & FM background

2 Formally verified binary constraints solver

3 Extensions
I From binary to non-binary constraints
I Domain representations
I Towards a AllDifferent constraint formally verified

4 Some ideas about proof logging
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Preliminaries

A CSP (Constraint Satisfaction Problem or constraint network) is a triple
(X ,D,C ) where

X : a set of variables,

D : a function that maps each variable of X to its domain (here
finite set of possible values),

C : a set of constraints (relations btw variables) over variables of X ,
arity of a constraint = number of its variables.

In a binary csp, all the constraints are binary - In a non-binary csp, at least
one constraint has an arity ≥ 3

A solution of (X ,C ,D) is a valid (compatible with D) assignment defined
for all the variables in X that satisfies all the constraints in C
A csp is unsatisfiable when it has no solution
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CP solving

Main idea of CP(FD) solving algorithms = repeatedly removing
inconsistent values from the domains (propagators).

3 interleaved processes

Constraint filtering Constraint propagation

Variable labeling

Maintain/enforce a local consistency property during search
Many local consistency properties : arc-consistency (AC), generalized
arc-consistency (GAC), path consistency, bound-consistency, etc.
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A very quick tour of Rocq

What is Rocq ?

A functional programming language (recursion, algebraic datatypes,
pattern-matching, (dependent) types)

A specification language (higher order, inductive types and predicates)

An interactive prover (but also decision procedures, user-defined
tactics), a proof checker (Curry-Howard correspondence)

A recognized tool used in some industries and education, a tool we
can trust (thanks to the MetaRocq project)

To do what ?

Formalize and verify theorems (4 colors - Feit-Thompson)

Build formally verified software (Compcert)

How ?

Write the code as in OCaml, write specs and proofs, and then extract
standalone OCaml code
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A very quick tour of Why3

a specification and a programming
language, WhyML

I polymorphism, pattern-matching
I exceptions, mutable data structures

(controlled aliasing )

a polymorphic first-order logic
I algebraic datatypes, récursives

definitions, inductive predicates
I annotations and contracts

(requires/ensures)
I ghost code

WHY3 in a nutshell

WHYML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• break, continue, and return

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

WHY3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (⇡ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WHYML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)

smt.drv

file.mlw

WhyML

VCgen

Core

transform/translate

print/run

Coq Alt-Ergo CVC4 Z3 etc.

12 / 171
Credits : A. Paskevich

Auto-active verification (automation through additional guiding
annotations, e.g. assertions, ghost code, lemma functions, etc.)

Extraction of Ocaml (or C) code
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CoqbinFD

A formally verified CP(FD) solver relying on the Rocq interactive
proof assistant

proved sound and complete

generic, parametrized by the language of constraints itself

only dealing with binary CSPs

implementing a classical algorithm AC3 (Mackworth 77) (at the heart
of main existing solvers), focusing on arc-consistency

written in OCaml, extracted from Rocq

featuring a raisonnable efficiency (but not competitive with existing
solvers)
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Rocq formalization of a CSP

A key feature : genericity

variable : any type equipped with a decidable equality and a strict
order

value : any type with a decidable equality

constraint : also an abstract type, we ask for 2 functions :

Parameter interp : constraint → value → value → bool.
It gives the semantics of the constraints

Parameter get vars : constraint → variable × variable.
It allows us to retrieve the variables of a constraint

consistent c x u y v is defined as
get vars c = (x,y) ∧ interp c u v = true.
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Record network : Type := Make csp {
CVars : list variable ;
Doms : mapdomain ;
Csts : list constraint
}.

with mapdomain : type of maps indexed by variables with values as list
(without replicates) of elements of type value, built from the Rocq map
module.
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Well-formedness of a constraint network

Record network inv csp : Prop := Make csp inv {
Dwf : ∀ x, In x (Doms csp) ↔ In x (CVars csp) ;
The map of domains is defined on the variables of the csp and only those
ones.

Cwf1 : ∀ (c :constraint) (x1 x2 : variable),
c ∈ (Csts csp) → get vars c = (x1, x2) →

x1 ∈ (CVars csp) ∧ x2 ∈ (CVars csp) ;
The variables appearing in the constraints are variables of the csp.

Cwf2 : ∀ x, x ∈ (CVars csp) → ∃ c,c ∈ (Csts csp) ∧
(fst (get vars c) = x ∨ snd (get vars c) = x) ;

Each variable is used at least in one constraint.

Norm : ∀ c c’, c ∈ (Csts csp) → c’ ∈ (Csts csp) →
get vars c = get vars c’ → c = c’

Two different constraints share at most one variable.
}.
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Graph of Constraints

A CSP can be depicted by a constraint (symmetric directed) graph :

nodes are variables,

an arc relates 2 nodes x and y iff x and y are involved in a constraint
c (label of the arc).

get vars c1 = (x , y)
→ 2 arcs
c1(x , y)
c1(y , x)

x y

z

c1

c3c2
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Arc-consistency

CSP solving

enforce local consistency

Constraint filtering Constraint propagation

Variable labeling

Maintain/enforce a local consistency property during search

Many local consistency properties: arc-consistency (AC), generalized
arc-consistency (GAC), path consistency, bounds consistency, etc.

CICM 2020 July 28th 2020 14 / 38

Definition

c(x , y) is arc-consistent wrt (X ,C ,D) iff for all u ∈ D(x), there exists at
least a value (support) v ∈ D(y) such that c(x := u, y := v) is satisfied.

c ≡ x ≥ y arc-consistent
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support of x=2

c ≡ x > y not arc-consistent

1

2

3

4

D(x)

1

2

3

4

D(y)
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The filtering algorithm revise= a function that prunes the domain of a
variable according to a constraint.

- - x and y are the variables of c , dx = D(x), dy = D(y)
revise c x y dx dy = (b, dx’)
- - if b then dx ′ is the pruned domain of x , dx ′ ( dx
else dx ′=dx .

x :��dx dx ′ y : dy
c

Fixpoint revise c x y dx dy :=
match dx with

nil ⇒ (false, dx)
| v : :r ⇒ let (b, d) := revise c x y r dy in

if List.existsb (fun t ⇒ consistent value c x v y t) dy
then (b, v : :d)
else (true, d)

end.
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The Propagation Algorithm AC3

Propogation algorithm : a fixpoint computation algorithm that repeats
filtering consistency (such as arc-consistency) over each constraint.

The most well-known one : AC3

Constraint filtering Constraint propagation

Variable labeling

Main idea of AC3 : just revise the arcs that may have been impacted

Maintain a worklist of the arcs to be revisited.
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Definition of AC3
Function AC3 (doms : mapdomain, qu : list arc) {wf AC3 wf d q} : option
mapdomain :=
match qu with
| nil ⇒ Some (doms)
| (x, c, y) : :r ⇒
match find x doms, find y doms with
| Some dx, Some dy ⇒
let (bool red, dx’) := revise c x y dx dy in
if bool red then
if is empty dx’
then None
else AC3 (add x dx’ doms, r ⊕ (incidentTo x y g))

else AC3 (doms, r)
| , ⇒ None
end

end.

lexicographic ordering AC3 wf based on the length of the worklist and sum of the
lengths of the domains
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The solver

It is implemented as a systematic search based on backtracking interleaved
with propagation with a simple heuristics for selecting a variable and a
value

−→ a function solve
Either solve csp = Some a (a is provided as a solution) or
solve csp = None (no solution)
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A sound and complete solver

Prove soundness

∀ csp, ∀ a, wellformed csp →
solve csp = Some a → is solution a csp.

∀ csp, wellformed csp→
solve csp = None → ∀ a, ¬(is solution a csp)

Prove completeness

∀ csp, ∀ a, wellformed csp →
is solution a csp → ∃a′, solve csp = Some a’

∀ csp, wellformed csp →
(∀ a, ¬(is solution a csp)) → solve csp = None
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Soundness and completeness of AC3

After application of AC3, arc-consistency is enforced.

Theorem AC3 sound : ∀ csp d’,
network inv csp →
AC3 (Doms csp, initq (Csts csp)) = Some d’ →
∀ x y c, (x, c, y) ∈ (arcs (Csts csp)) →

arc consistent x y c d’.

The proof relies on the proof of an invariant : if an arc is not consistent
wrt d then it is in the queue.

Definition PNC csts (d : mapdomain) (l : list arc) : Prop := ∀ x y c,
(x, c, y) ∈ (arcs csts) → ¬(arc consistent x y c d) →

(x, c, y) ∈ l.
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Soundness and Completeness of AC3

AC3 does not loose any solution

Theorem AC3 complete : ∀ csp a d’,
network inv csp → solution a csp →
AC3 (Doms csp, (initq (Csts csp))) = Some (d’) →

solution a (set domains d’ csp).
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Soundness and completeness
Both theorems rely on soundness and completeness of the filtering
algorithm revise.

Theorem revise arc consistent : ∀ csp c x y ,
c ∈ (Csts csp) → compat var const x y c →
∀ dx dy dx’ b,
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
revise c x y dx dy = (b, dx’) →

arc consistent x y c (add x dx’ (Doms csp)).

Theorem revise complete : ∀ csp c x y dx dy (a : assign) ,
network inv csp →
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
solution a csp →
∀ newdx, revise c x y dx dy = (true, newdx) →

solution a (set domain x newdx csp).
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Soundness and completeness

The following lemmas justify the filling of the AC3 worklist (propagation)

Lemma revise x y consistent y x : ∀ csp c x y dx dy ,
c ∈ (Csts csp) → compat var const x y c →
find x (Doms csp) = Some dx → find y (Doms csp) = Some dy →
∀ newdx, revise c x y dx dy = (true, newdx) →

arc consistent y x c (Doms csp) →
arc consistent y x c (add x newdx (Doms csp)).

Lemma revise x y consistent x z : ∀ d x y dx dy c newdx,
compat var const x y c →
find x d = Some dx → find y d = Some dy →
revise c x y dx dy = (true, newdx) →
∀ z c0, compat var const x z c0 →

arc consistent x z c0 d →
arc consistent x z c0 (add x newdx d).
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Conclusion

→ We have developed a correct constraint solver for finite domains (the
first one)

for any (binary) constraint language

allowing to certify the absence of solutions for a CSP

→ The model counts 8500 lines of Rocq

→ The Ocaml code of the solver is extracted from Rocq, used on some
different problems.

→ It is generic : propagation and labeling as functors.

We have developed and proved 2 instances, one using AC3 and
another well-known variant of it (AC2001), focusing on
arc-consistency [Carlier et al, FM 2012]

And later also another instance using bound-consistency.
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From non-binary csps to binary csps

Resolution of a non-binary csp by translating/encoding it into an
equivalent binary one and using well-established binary csp techniques or

Most popular encodings : dual graph encoding and hidden variable
encoding (HVE) (1990)

Our work :

Formalisation in Rocq of the hidden variable encoding, proof of its
correctness

Extension of CoqbinFD −→ a formally verified CP(FD) solver for
both binary and non-binary constraints.

[C. Dubois. Formally Verified Transformation of Non-binary Constraints into
Binary Constraints. WFLP 2020]
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Hidden Variable Encoding

csp(X ,D,C ) ; csp′(X ′,D ′,C ′)

x ∈ X ; x ∈ X ′ Ordinary variable
; D ′(x) = D(x)

binary constraint c ; c

n-ary constraint c ′ (n > 2) ; vc ′ ∈ X ′ Hidden variable
vars(v ′c) = {x1, . . . , xn} ; D ′(vc ′) = D(x1)× D(x2) . . .D(xn)

; c ′ /∈ C ′

; proji (vc ′ , xi ) ∈ C ′, i ∈ [1..n]

Each n-ary constraint (n > 2) is replaced by n binary constraints
One hidden variable per non-binary constraint is added
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Extension of CoqbinFD

Definition of solve csp n

cspn HVE csp2 CoqbinFD

sol2 / unsattranslatesoln / unsat

solve csp n is proved sound and complete

soundness and completeness of HVE (wrt satisfiability)

soundness and completeness of solve csp

well-formedness of the HVE output

correctness of the translation of the solution
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Formally verified domains

Main domain representations in CP solvers :

Range sequences, Gap interval trees (lists or binary trees), Bit vectors,
Sparse sets . . .

Our contributions :

Formalisation in Rocq of range sequences using lists (module Domain
of FaCiLe)

Formalisation in Why3 of sparse sets for integer and set variables

A. Ledein, C. Dubois. FaCiLe en Coq : vérification formelle des listes d’intervalles,
JFLA 2020
C. Dubois. Deductive Verification of Sparse Sets in Why3. VSTTE 2024

C. Dubois. Domaines formellement vérifiés JFPC 2025
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Range sequences - Rocq formalization

Well-formedness of a range sequence

Ranges must be sorted in the increasing order, disjoints and non
empty. Two successive intervals must have a gap of at least one
integer

Inductive Inv elt list : Z → elt list → Prop :=
| invNil : ∀ b, Inv elt list b Nil
| invCons : ∀ (a b j : Z ) (q : elt list),

j ≤ a → a ≤ b → Inv elt list (b+2) q →
Inv elt list j (Cons a b q).

Definition of 17 set operations

Add and remove : tricky - they require to merge or split intervals.

For each operation, proof of the well-formedness preservation
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Sparse sets as domains

2 arrays and an integer to represent D ⊆ 0..N − 1, 0 ≤ N (N called the
width of the sparse set)

Sparse sets as domains - Data structure

2 arrays and an integer to represent D ✓ 0..N � 1, 0  N (N called the
width of the sparse set)

3 6 5 2 1 7 0 4 8

0 1 2 3 4 5 6 7 8

Dense N = 9
D ✓ 0..N � 1

D
sizeD = 6

6 4 3 0 7 2 1 5 8Sparse

0 1 2 3 4 5 6 7 N � 1

Invariants

D ✓ 0..N � 1 ^ D = {Dense[i ] | 0  i < sizeD} (P1)
Sparse[v ] = i () Dense[i ] = v , for all i and v (P2)

VSTTE 2024 - 14 October 2024 Sparse Sets in Why3 5 / 30

Invariants
D ⊆ 0..N − 1 ∧ D = {Dense[i ] | 0 ≤ i < sizeD} (P1)
Sparse[v ] = i ⇐⇒ Dense[i ] = v , for all i and v (P2)

Operations

Add, remove, membership, clear, cardinality : operations in constant time
exists, forall, tolist, copy : linear wrt the number of elements in D
... and easy to trail and backtrack : just store sizeD
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Sparse sets as domains - Why3 formalization

Type of sparse sets
Type de données en WhyML

type tsparse = { n : int;
mutable dense: array int;
mutable sparse: array int;
mutable sizeD: int;
mutable ghost setD : fset int; -- modèle abstrait = ens fini
mutable ghost states : fmap(fset int); }

invariant {
dom_ran dense n && dom_ran sparse n &&
0 <= sizeD <= n &&
setD ✓ (interval 0 n) && %P1
(forall x: int. 0<=x<n ->(sparse[x] < sizeD <-> x 2 setD)) && %P1
(forall i:int. 0 <= i < sizeD -> sparse[dense[i]]=i) %P2
inv states states setD n sparse }

�! Pour spécifier une opération undo :

I introduire l’ensemble des états précédents ... comme variable
fantôme dans l’invariant de tsparse

I states : fonction partielle de [0,n] dans fset(int) avec
states(p)=valeur de setD quand sizeD valait p

I propriété invariante sur states

states records the previous states ... needed to express and prove an
undo operation

For each operation, this invariant and also its postcondition are proved.

Extraction of OCaml code (with machine integers, proof of no overflows)

Details on Wednesday in WG3 workshop
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Proof logging

Recap Graph Problems End-to-End Verification Constraint Programming Dynamic Programming Cool Things I Will Not Have Time For Conclusion

Gocht, McCreesh, Myreen, Nordström, Oertel, Tan: End-to-End Verification for Subgraph Solving, AAAI 2024

Reducing the Trust Base

Solver

Elaborator

Verified
Checker

added print statements

Answer

Proof

3 or 7

Trusted
Answer

3 or 7

Trusted
Answer
in Graph
Language

Input

Answer

Kernel
Proof

3 or 7

Encoded Input

Verified Input

Pseudo-Boolean Proof Logging for Problems that are not Pseudo-Boolean Ciaran McCreesh 26 / 63

Credit : C. Mccreesh
Proposition : Dedukti/LambdaPi used as a proof checker

1 Reconstruct proof terms from the elaborated proof logs

−→ encode PB constraints and encode the proof rules (RUP, cutting
places) in LambdaPi

I lrat proofs can be checked by Dedukti (G. Burel)
I support for arithmetic checks (e.g. for rule la generic of SMTlib can be

checked)

2 Check the proof terms by running Dedukti/LambdaPi
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Proof logging of CP solvers

How can we benefit from a formally verified propagator in a proof logging
approach ?
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