Formal Verification for Constraint Solving

Catherine Dubois

ENSIIE, Samovar, Évry, France

joined work with A. Butant, M. Carlier, V. Clément, S. Elloumi, A. Gotlieb, A. Ledein and H. Mlodecki

WHOOPS 2025 14 september 2025 1 / 32

Formal Verification of CP solvers

- Few work about CP solving & formal verification
- Verification of real code : too hard! ... but maybe possible for some pieces
- Formal development (or proof-based development) :
 - Colibrics developed by F. Bobot (Why3),
 - {log} Set Constraints Resolution [Dubois and Weppe, 2018] (Coq/Rocq)
 - CoqBinFD and its extensions by C. Dubois et al (Coq/Rocq, Why3)
 - My objectives :
 - Develop a formally verified CP(FD) solver (at least as a reference solver)
 - Formalize and understand deeply some CP algorithms and results

WHOOPS 2025 14 september 2025 2 / 32

Roadmap of the talk

- Preliminary CP & FM background
- Formally verified binary constraints solver
- Extensions
 - From binary to non-binary constraints
 - Domain representations
 - Towards a AllDifferent constraint formally verified
- Some ideas about proof logging

WHOOPS 2025 14 september 2025 3 / 32

Preliminaries

A CSP (Constraint Satisfaction Problem or constraint network) is a triple (X, D, C) where

- X : a set of variables,
- D: a function that maps each variable of X to its domain (here finite set of possible values),
- C: a set of constraints (relations btw variables) over variables of X, arity of a constraint = number of its variables.

In a binary csp, all the constraints are binary - In a non-binary csp, at least one constraint has an arity ≥ 3

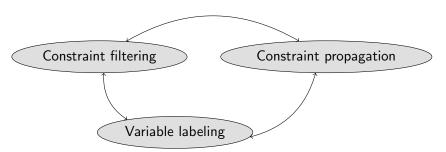
A solution of (X, C, D) is a valid (compatible with D) assignment defined for all the variables in X that satisfies all the constraints in C A csp is unsatisfiable when it has no solution

WHOOPS 2025 14 september 2025 4 / 32

CP solving

Main idea of CP(FD) solving algorithms = repeatedly removing inconsistent values from the domains (propagators).

3 interleaved processes



Maintain/enforce a local consistency property during search Many local consistency properties : arc-consistency (AC), generalized arc-consistency (GAC), path consistency, bound-consistency, etc.

WHOOPS 2025 14 september 2025 5 / 32

A very quick tour of Rocq

What is Rocq?

- A functional programming language (recursion, algebraic datatypes, pattern-matching, (dependent) types)
- A specification language (higher order, inductive types and predicates)
- An interactive prover (but also decision procedures, user-defined tactics), a proof checker (Curry-Howard correspondence)
- A recognized tool used in some industries and education, a tool we can trust (thanks to the MetaRocq project)

To do what?

- Formalize and verify theorems (4 colors Feit-Thompson)
- Build formally verified software (Compcert)

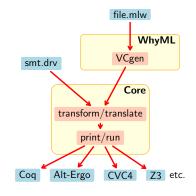
How?

Write the code as in OCaml, write specs and proofs, and then extract standalone OCaml code

WHOOPS 2025 14 september 2025 6 / 32

A very quick tour of Why3

- a specification and a programming language, WhyML
 - polymorphism, pattern-matching
 - exceptions, mutable data structures (controlled aliasing)
- a polymorphic first-order logic
 - algebraic datatypes, récursives definitions, inductive predicates
 - annotations and contracts (requires/ensures)
 - ▶ ghost code



7/32

Credits : A. Paskevich

Auto-active verification (automation through additional guiding annotations, e.g. assertions, ghost code, lemma functions, etc.)

Extraction of Ocaml (or C) code

WHOOPS 2025 14 september 2025

CoqbinFD

- A formally verified CP(FD) solver relying on the Rocq interactive proof assistant
- proved sound and complete
- generic, parametrized by the language of constraints itself
- only dealing with binary CSPs
- implementing a classical algorithm AC3 (Mackworth 77) (at the heart of main existing solvers), focusing on arc-consistency
- written in OCaml, extracted from Rocq
- featuring a raisonnable efficiency (but not competitive with existing solvers)

WHOOPS 2025 14 september 2025 8 / 32

Rocq formalization of a CSP

A key feature : genericity

- variable : any type equipped with a decidable equality and a strict order
- value : any type with a decidable equality
- constraint: also an abstract type, we ask for 2 functions:

Parameter interp: constraint \rightarrow value \rightarrow value \rightarrow bool. It gives the semantics of the constraints

Parameter get_vars : $constraint \rightarrow variable \times variable$. It allows us to retrieve the variables of a constraint

consistent $c \times u \ y \ v$ is defined as $get_vars \ c = (x,y) \land interp \ c \ u \ v = true.$

WHOOPS 2025 14 september 2025 9 / 32

```
Record network: Type := Make_csp {
CVars: list variable;
Doms: mapdomain;
Csts: list constraint
}.
```

with *mapdomain*: type of maps indexed by variables with values as list (without replicates) of elements of type *value*, built from the Rocq map module.

WHOOPS 2025 10 / 32

Well-formedness of a constraint network

Record network_inv csp : Prop := Make_csp_inv {

 $Dwf: \forall x, In x (Doms csp) \leftrightarrow In x (CVars csp);$

The map of domains is defined on the variables of the csp and only those ones.

Cwf1:
$$\forall$$
 (c:constraint) (x1 x2: variable),
 $c \in (Csts\ csp) \rightarrow get_vars\ c = (x1, x2) \rightarrow x1 \in (CVars\ csp) \land x2 \in (CVars\ csp);$

The variables appearing in the constraints are variables of the csp.

$$\textit{Cwf2}: \forall \ \textit{x}, \ \textit{x} \in (\textit{CVars csp}) \rightarrow \exists \ \textit{c}, \textit{c} \in (\textit{Csts csp}) \land (\textit{fst } (\textit{get_vars } \textit{c}) = \textit{x} \lor \textit{snd } (\textit{get_vars } \textit{c}) = \textit{x});$$

Each variable is used at least in one constraint.

Norm :
$$\forall$$
 c c', c \in (Csts csp) \rightarrow c' \in (Csts csp) \rightarrow get_vars c = get_vars c' \rightarrow c = c'

Two different constraints share at most one variable.

WHOOPS 2025 14 september 2025

11/32

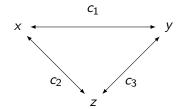
Graph of Constraints

A CSP can be depicted by a constraint (symmetric directed) graph:

- nodes are variables,
- an arc relates 2 nodes x and y iff x and y are involved in a constraint
 c (label of the arc).

$$get_vars \ c_1 = (x, y)$$

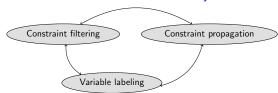
 $\rightarrow 2 \ arcs$
 $c_1(x, y)$
 $c_1(y, x)$



WHOOPS 2025 14 september 2025 12 / 32

Arc-consistency

enforce local consistency



Definition

c(x,y) is arc-consistent wrt (X,C,D) iff for all $u \in D(x)$, there exists at least a value (support) $v \in D(y)$ such that c(x := u, y := v) is satisfied.

$$c \equiv x \ge y$$
 arc-consistent

$$c \equiv x > y$$
 not arc-consistent

$$D(x) D(y) \\
1 ----- 1 1 \\
2 ---- 2 2 \\
3 ---- 3 \\
4 ---- 4$$

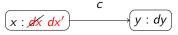
$$D(x)$$
 $D(y)$
 1
 2
 3
 4
 3

13 / 32

WHOOPS 2025 14 september 2025

The filtering algorithm *revise*= a function that prunes the domain of a variable according to a constraint.

```
-- x and y are the variables of c, dx = D(x), dy = D(y) revise c \times y \ dx \ dy = (b, \ dx')
-- if b then dx' is the pruned domain of x, dx' \subsetneq dx else dx'=dx.
```



```
Fixpoint revise c \times y \ dx \ dy :=

match dx with

nil \Rightarrow (false, \ dx)

| \ v : : r \Rightarrow \text{let} \ (b, \ d) := revise} \ c \times y \ r \ dy \ \text{in}

if List.existsb (fun t \Rightarrow consistent\_value \ c \times v \ y \ t) \ dy

then (b, \ v : : d)

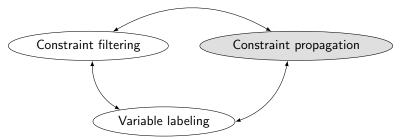
else (true, \ d)
```

WHOOPS 2025 14 / 32

The Propagation Algorithm AC3

Propogation algorithm : a fixpoint computation algorithm that repeats filtering consistency (such as arc-consistency) over each constraint.

The most well-known one: AC3



Main idea of AC3: just revise the arcs that may have been impacted

Maintain a worklist of the arcs to be revisited.

WHOOPS 2025 14 september 2025 15 / 32

Definition of AC3

```
Function AC3 (doms: mapdomain, qu: list arc) {wf AC3_wf d_q}: option
mapdomain :=
match qu with
 nil \Rightarrow Some (doms)
|(x, c, y): :r \Rightarrow
  match find x doms, find y doms with
  | Some dx, Some dy \Rightarrow
    let (bool_red, dx') := revise c \times y \ dx \ dy in
       if bool red then
         if is_empty dx'
         then None
         else AC3 (add x dx' doms, r \oplus (incidentTo \times y g))
       else AC3 (doms, r)
  | \_, \_ \Rightarrow None
  end
end.
```

lexicographic ordering $AC3_wf$ based on the length of the worklist and sum of the lengths of the domains

WHOOPS 2025 14 september 2025

16/32

The solver

It is implemented as a systematic search based on backtracking interleaved with propagation with a simple heuristics for selecting a variable and a value

 \longrightarrow a function solve Either solve csp = Some a (a is provided as a solution) or solve csp = None (no solution)

WHOOPS 2025 17 / 32

A sound and complete solver

Prove soundness

```
\forall csp, \forall a, wellformed csp \rightarrow solve csp = Some a \rightarrow is_solution a csp. \forall csp, wellformed csp\rightarrow solve csp = None \rightarrow \forall a, \neg(is_solution a csp)
```

Prove completeness

```
\forall csp, \forall a, wellformed csp \rightarrow is_solution a csp \rightarrow \exists a', solve csp = Some a' \forall csp, wellformed csp \rightarrow (\forall a, \neg(is_solution a csp)) \rightarrow solve csp = None
```

WHOOPS 2025 14 september 2025 18 / 32

Soundness and completeness of AC3

After application of AC3, arc-consistency is enforced.

```
Theorem AC3_sound : \forall csp d',

network_inv csp \rightarrow

AC3 (Doms csp, initq (Csts csp)) = Some d' \rightarrow

\forall x y c, (x, c, y) \in (arcs (Csts csp)) \rightarrow

arc_consistent x y c d'.
```

The proof relies on the proof of an invariant : if an arc is not consistent wrt d then it is in the queue.

```
Definition PNC csts (d : mapdomain) (I : list arc) : Prop := \forall x y c, (x, c, y) \in (arcs csts) \rightarrow \neg (arc\_consistent x y c d) \rightarrow (x, c, y) \in I.
```

WHOOPS 2025 14 september 2025 19 / 32

Soundness and Completeness of AC3

AC3 does not loose any solution

```
Theorem AC3_complete: \forall csp a d', network_inv csp \rightarrow solution a csp \rightarrow AC3 (Doms csp, (initq (Csts csp))) = Some (d') \rightarrow solution a (set_domains d' csp).
```

WHOOPS 2025 14 september 2025 20 / 32

Soundness and completeness

Both theorems rely on soundness and completeness of the filtering algorithm *revise*.

```
Theorem revise_arc_consistent : \forall csp c x y,
  c \in (Csts\ csp) \rightarrow compat\_var\_const\ x\ y\ c \rightarrow
  \forall dx dy dx' b,
  find x (Doms csp) = Some dx \rightarrow find y (Doms csp) = Some dy \rightarrow
  revise c \times y \ dx \ dy = (b, \ dx') \rightarrow
      arc\_consistent \times y \ c \ (add \times dx' \ (Doms \ csp)).
Theorem revise_complete: \forall csp c x y dx dy (a : assign),
  network\_inv csp \rightarrow
  c \in (\mathit{Csts}\ \mathit{csp}) \to \mathit{compat\_var\_const}\ x\ y\ c \to
  find x (Doms csp) = Some dx \rightarrow find y (Doms csp) = Some dy \rightarrow
  solution a csp \rightarrow
     \forall newdx, revise c x y dx dy = (true, newdx) \rightarrow
         solution a (set_domain \times newd\times csp).
```

WHOOPS 2025 14 september 2025

21/32

Soundness and completeness

The following lemmas justify the filling of the AC3 worklist (propagation)

```
Lemma revise_x_y_consistent_y_x : \forall csp c x y dx dy ,
  c \in (Csts \ csp) \rightarrow compat\_var\_const \ x \ y \ c \rightarrow
  find x (Doms csp) = Some dx \rightarrow find y (Doms csp) = Some dy \rightarrow
     \forall newdx, revise c x y dx dy = (true, newdx) \rightarrow
         arc\_consistent \ y \ x \ c \ (Doms \ csp) \rightarrow
            arc\_consistent\ y\ x\ c\ (add\ x\ newdx\ (Doms\ csp)).
Lemma revise\_x\_y\_consistent\_x\_z: \forall d x y dx dy c newdx,
  compat\_var\_const \ x \ y \ c \rightarrow
   find x d = Some dx \rightarrow find y d = Some dy \rightarrow
   revise c \times y \ dx \ dy = (true, newdx) \rightarrow
  \forall z c0, compat_var_const x z c0 \rightarrow
      arc\_consistent \times z \ c0 \ d \rightarrow
         arc\_consistent \times z c0 (add \times newdx d).
```

WHOOPS 2025 14 september 2025 22 / 32

Conclusion

- ightarrow We have developed a correct constraint solver for finite domains (the first one)
 - for any (binary) constraint language
 - allowing to certify the absence of solutions for a CSP
- → The model counts 8500 lines of Rocq
- \rightarrow The Ocaml code of the solver is extracted from Rocq, used on some different problems.
- → It is generic: propagation and labeling as functors.
 - We have developed and proved 2 instances, one using AC3 and another well-known variant of it (AC2001), focusing on arc-consistency [Carlier et al, FM 2012]
 - And later also another instance using bound-consistency.

WHOOPS 2025 14 september 2025 23 / 32

From non-binary csps to binary csps

Resolution of a non-binary csp by translating/encoding it into an equivalent binary one and using well-established binary csp techniques or

Most popular encodings : dual graph encoding and hidden variable encoding (HVE) (1990)

Our work:

- Formalisation in Rocq of the hidden variable encoding, proof of its correctness

[C. Dubois. Formally Verified Transformation of Non-binary Constraints into Binary Constraints. WFLP 2020]

WHOOPS 2025 14 september 2025 24 / 32

Hidden Variable Encoding

$$csp(X, D, C)$$
 $\leadsto csp'(X', D', C')$
 $x \in X$ $\leadsto x \in X'$ Ordinary variable $\leadsto D'(x) = D(x)$

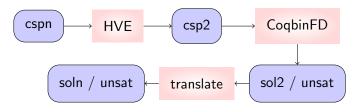
binary constraint c $\leadsto c$
 n -ary constraint $c'(n > 2)$ $\leadsto v_{c'} \in X'$ Hidden variable $vars(v'_c) = \{x_1, \dots, x_n\}$ $\leadsto D'(v_{c'}) = D(x_1) \times D(x_2) \dots D(x_n)$
 $\leadsto c' \notin C'$
 $\leadsto proj_i(v_{c'}, x_i) \in C', i \in [1..n]$

Each n-ary constraint (n > 2) is replaced by n binary constraints One hidden variable per non-binary constraint is added

WHOOPS 2025 14 september 2025 25 / 32

Extension of CoqbinFD

Definition of solve_csp_n



solve_csp_n is proved sound and complete

- soundness and completeness of HVE (wrt satisfiability)
- soundness and completeness of solve_csp
- well-formedness of the HVE output
- correctness of the translation of the solution

WHOOPS 2025 14 september 2025 26 / 32

Formally verified domains

Main domain representations in CP solvers :

Range sequences, Gap interval trees (lists or binary trees), Bit vectors, Sparse sets . . .

Our contributions:

- Formalisation in Rocq of range sequences using lists (module Domain of FaCiLe)
- Formalisation in Why3 of sparse sets for integer and set variables

A. Ledein, C. Dubois. FaCiLe en Coq : vérification formelle des listes d'intervalles, JFLA 2020

- C. Dubois. Deductive Verification of Sparse Sets in Why3. VSTTE 2024
- C. Dubois, Domaines formellement vérifiés JFPC 2025

WHOOPS 2025 14 september 2025 27 / 32

Range sequences - Rocq formalization

Well-formedness of a range sequence

Ranges must be sorted in the increasing order, disjoints and non empty. Two successive intervals must have a gap of at least one integer

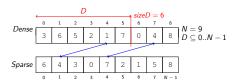
```
Inductive Inv_elt_list : Z \rightarrow elt_list \rightarrow Prop := | invNil : \forall b, Inv_elt_list b Nil | invCons : \forall (a b j : Z) (q : elt_list), 
 <math>j \le a \rightarrow a \le b \rightarrow Inv_elt_list (b+2) q \rightarrow Inv_elt_list j (Cons a b q).
```

- Definition of 17 set operations
- Add and remove : tricky they require to merge or split intervals.
- For each operation, proof of the well-formedness preservation

WHOOPS 2025 14 september 2025 28 / 32

Sparse sets as domains

2 arrays and an integer to represent $D \subseteq 0..N-1$, $0 \le N$ (N called the width of the sparse set)



Invariants

$$D \subseteq 0..N - 1 \land D = \{Dense[i] \mid 0 \le i < sizeD\}$$
 (P₁)

$$Sparse[v] = i \iff Dense[i] = v$$
, for all i and v (P_2)

Operations

Add, remove, membership, clear, cardinality: operations in constant time exists, forall, tolist, copy: linear wrt the number of elements in D ... and easy to trail and backtrack: just store *sizeD*

WHOOPS 2025 14 september 2025 29 / 32

Sparse sets as domains - Why3 formalization

Type of sparse sets

```
type tsparse = { n : int;
    mutable dense: array int;
    mutable sparse: array int;
    mutable sizeD: int;
    mutable sizeD: int;
    mutable ghost setD : fset int; -- modèle abstrait = ens fini
    mutable ghost states : fmap(fset int);
invariant {
    dom_ran dense n && dom_ran sparse n &&
    0 <= sizeD <= n &&
    setD ⊆ (interval 0 n) && %Pl
    (forall x: int. 0<=xcn -> (sparse[x] < sizeD <-> x ∈ setD)) && %Pl
    (forall i:int. 0 <= i < sizeD -> sparse[dense[i]]=i) %P2
    inv.states states setD n sparse }
```

states records the previous states \dots needed to express and prove an undo operation

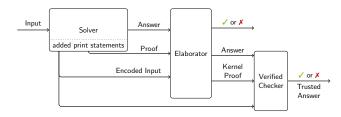
For each operation, this invariant and also its postcondition are proved.

Extraction of OCaml code (with machine integers, proof of no overflows)

Details on Wednesday in WG3 workshop

WHOOPS 2025 14 september 2025 30 / 32

Proof logging



Credit: C. Mccreesh

Proposition: Dedukti/LambdaPi used as a proof checker

- Reconstruct proof terms from the elaborated proof logs
 - \longrightarrow encode PB constraints and encode the proof rules (RUP, cutting places) in LambdaPi
 - Irat proofs can be checked by Dedukti (G. Burel)
 - support for arithmetic checks (e.g. for rule la_generic of SMTlib can be checked)
- Check the proof terms by running Dedukti/LambdaPi

WHOOPS 2025 14 september 2025 31 / 32

Proof logging of CP solvers



How can we benefit from a formally verified propagator in a proof logging approach?

WHOOPS 2025 14 september 2025 32 / 32