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Prosser: Exact Algorithms for Maximum Clique: A Computational Study, Algorithms 5(4) (2012)

A Brief and Incomplete Guide to Clique Solving (1/4)

Recursive maximum clique algorithm:

Pick a vertex v.

Either v is in the clique. . .

Throw away every vertex not adjacent to v.
If vertices remain, recurse.

. . . or v is not in the clique, so

Throw v away and pick another vertex.
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Prosser: Exact Algorithms for Maximum Clique: A Computational Study, Algorithms 5(4) (2012)

A Brief and Incomplete Guide to Clique Solving (2/4)

Key data structures:

Growing clique C.

Shrinking set of potential vertices P .

All the vertices we haven’t thrown away yet.
Every v ∈ P is adjacent to every w ∈ C.

Branch and bound:

Remember the biggest clique C⋆ found so far.

If |C|+ |P | ≤ |C⋆|, no need to keep going.
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Prosser: Exact Algorithms for Maximum Clique: A Computational Study, Algorithms 5(4) (2012)

A Brief and Incomplete Guide to Clique Solving (3/4)
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Given a k-colouring of a subgraph, that subgraph cannot have a clique of more than k vertices.

We can use |C|+#colours(P ) as a bound, for any colouring.
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Prosser: Exact Algorithms for Maximum Clique: A Computational Study, Algorithms 5(4) (2012)

A Brief and Incomplete Guide to Clique Solving (4/4)

This brings us to 1997.

Many improvements since then:

better bound functions,
clever vertex selection heuristics,
efficient data structures,
local search,
. . .

But key ideas for proof logging can be explained without worrying about such things.
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Demotivation

My first experience of research: a summer internship reimplementing a clique enumeration algorithm
from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Five years later, my first small grant: trying to use computational experiments to understand the
empirical hardness of maximum clique.

A billion problem instances solved using “state of the art” solver and £20,000 of supercomputer time
(which used to be a lot, before ChatGPT came along).

For around a thousand instances, the solver gave the wrong answer.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 6 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Demotivation

My first experience of research: a summer internship reimplementing a clique enumeration algorithm
from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Five years later, my first small grant: trying to use computational experiments to understand the
empirical hardness of maximum clique.

A billion problem instances solved using “state of the art” solver and £20,000 of supercomputer time
(which used to be a lot, before ChatGPT came along).

For around a thousand instances, the solver gave the wrong answer.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 6 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Demotivation

My first experience of research: a summer internship reimplementing a clique enumeration algorithm
from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Five years later, my first small grant: trying to use computational experiments to understand the
empirical hardness of maximum clique.

A billion problem instances solved using “state of the art” solver and £20,000 of supercomputer time
(which used to be a lot, before ChatGPT came along).

For around a thousand instances, the solver gave the wrong answer.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 6 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Demotivation

My first experience of research: a summer internship reimplementing a clique enumeration algorithm
from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Five years later, my first small grant: trying to use computational experiments to understand the
empirical hardness of maximum clique.

A billion problem instances solved using “state of the art” solver and £20,000 of supercomputer time
(which used to be a lot, before ChatGPT came along).

For around a thousand instances, the solver gave the wrong answer.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 6 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Demotivation

My first experience of research: a summer internship reimplementing a clique enumeration algorithm
from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Five years later, my first small grant: trying to use computational experiments to understand the
empirical hardness of maximum clique.

A billion problem instances solved using “state of the art” solver and £20,000 of supercomputer time
(which used to be a lot, before ChatGPT came along).

For around a thousand instances, the solver gave the wrong answer.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 6 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Demotivation

My first experience of research: a summer internship reimplementing a clique enumeration algorithm
from the literature.

My code produced the “wrong” answer on a few instances.

I spent a month trying to find and fix it.

The published answers were wrong.

Five years later, my first small grant: trying to use computational experiments to understand the
empirical hardness of maximum clique.

A billion problem instances solved using “state of the art” solver and £20,000 of supercomputer time
(which used to be a lot, before ChatGPT came along).

For around a thousand instances, the solver gave the wrong answer.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 6 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Proof Logging

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Solver also prints out a proof as part of its output.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.
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What is a Proof?
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What is a Proof?

What’s the smallest instance in which four fifth powers sum to a fifth power?

ChatGPT said: You’re referring to a taxicab number-type problem, specifically for fifth powers:
What is the smallest positive integer solution to the equation a5 + b5 + c5 + d5 = e5 where a, b, c, d, e are positive integers?
This is a well-known problem in number theory. The first known and smallest such solution was found in 1966 by L.J. Lander and T.R.
Parkin:

27
5
+ 84

5
+ 110

5
+ 133

5
= 144

5

Let’s break that down:

27
5
= 14348907

84
5
= 418211328

110
5
= 1610510000

133
5
= 433494437

WRONG!

14348907 + 418211328 + 1610510000 + 433494437 = 6191730672

WRONG!

144
5
= 6191730672

It checks out.
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What is a Proof?

How do you know that there aren’t any smaller solutions?
ChatGPT said: Great question – and it gets right into the heart of computational number theory.
The short answer is: we don’t know for sure that there are no smaller solutions. But here’s why the solution

27
5
+ 84

5
+ 110

5
+ 133

5
= 144

5

is considered the smallest known:
1. Extensive Exhaustive Searches. Since the Lander-Parkin discovery in 1966, mathematicians and hobbyists have used computers to
exhaustively search all possible combinations of four fifth powers below certain limits. These searches have tested billions of combinations,
often up to values of e (the fifth power on the right) in the thousands. No smaller integer solution has been found despite this effort.
2. Nature of the Equation. The Diophantine equation a5 + b5 + c5 + d5 = e5 is extremely ”sparse” in terms of having solutions. Fifth
powers grow very rapidly, so the space of integers that can possibly match on both sides is tight. Most fifth powers don’t come close to
summing nicely with others to produce another fifth power.
3. No Proof of Uniqueness or Minimality. Importantly, there is no proof that the Lander-Parkin solution is the smallest possible. It’s just
the smallest one that has been discovered so far, meaning there could be a smaller solution that hasn’t yet been found.
4. Reference to OEIS and Other Resources. OEIS (Online Encyclopedia of Integer Sequences) has entries on this topic (like A023042)
listing known solutions, but it only includes the one we’re discussing. No other minimal examples have appeared in academic literature,
high-powered computational searches, or even anecdotal reports.
As of now, no smaller solutions are known. The next smallest solution is:

14132
5
+ (−220)

5
+ 5027

5
+ 6237

5
+ 14068

5
= 14132

5

This was found by Lander, Parkin, and Selfridge in 1967.
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What is a Proof?

Start with some facts about the problem, which we assume are true.

At each step, derive a new fact from existing facts, in a way that is easily checkable if we agree
with each previous fact.

Finish by deriving whatever we want to show.

For maximum clique:

Start with the definition of a maximum clique, and with the properties of our graph.
Need to show two things:

There is a solution with ω vertices.
There is no solution with more than ω vertices.
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

11
12maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

11
12

Start with a header

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

11
12

We branched on 12, 7, 9
Found a new incumbent
Now looking for a ≥ 4 vertex clique

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
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7

8

9
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9 explored already, only 6 feasible
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9
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11
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Backtrack from 12
Only 1, 6 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Effectively this deletes vertex 12
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

11

Branch on 11 then 10
Only 1, 3 and 9 feasible (1-colourable)
No ≥ 4 vertex clique possible
Backtrack, deleting the edge

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack
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What Might an Ad-Hoc Proof Look Like?
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2
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4

5
6

7

8

9

10

11

Backtrack from 11
2-colourable, so no ≥ 4 clique
Delete the vertex
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

Branch on 8, 5, 1, 2
Find a new incumbent
Now looking for a ≥ 5 vertex clique
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backtrack 8
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

Backtrack from 8, 5
Only 4 vertices; can’t have a ≥ 5 clique
Delete the edge

maximum clique proof
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backtrack 11

solution 1 2 5 8
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backtrack 8
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

8

9

10

Backtrack from 8
Still not enough vertices
Delete the vertex

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack
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What Might an Ad-Hoc Proof Look Like?
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2

3

4

5
6

7

9

10

Remaining graph is 3-colourable
Backtrack from root node

maximum clique proof
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backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8
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What Might an Ad-Hoc Proof Look Like?

1

2

3

4

5
6

7

9

10

Finish with what we’ve concluded
We specify a lower and an upper bound
Here they’re the same, because we solved to optimality

maximum clique proof
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backtrack 11 10

backtrack 11

solution 1 2 5 8
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backtrack 8

backtrack
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Pseudo-Boolean Problems

I don’t want to write a checker for an ad-hoc proof format, though, so let’s try using VeriPB.

https://gitlab.com/MIAOresearch/software/VeriPB

Except VeriPB works with pseudo-Boolean problems, not cliques. . .
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Pseudo-Boolean Problems

We have a set of variables xi that must be given the value 0 (often means “false”) or 1 (“true”).

A literal ℓi is a variable xi or its negation 1− xi, written as either ˜xi or xi.

Constraints are integer linear inequalities ∑
i

ci · ℓi ≥ A

where ci and A are integers.

These are a superset of CNF, because

x ∨ y ∨ z ↔ x+ y + z ≥ 1

We might have an objective to minimise,

min
∑
i

ci · ℓi
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Pseudo-Boolean Problems

3

4

6
7

9

10

11
12

1

2

5

8

Variables x1 to x12, xi = 1 means “vertex i is in the clique”.

min: 1 ~x1 1 ~x2 1 ~x3 1 ~x4 1 ~x5 1 ~x6 1 ~x7 1 ~x8 1 ~x9 1 ~x10 1 ~x11 1 ~x12 ;

@noedge1_3 -1 x3 -1 x1 >= -1 ;

@noedge1_4 -1 x4 -1 x1 >= -1 ;

@noedge1_6 -1 x6 -1 x1 >= -1 ;

@noedge1_7 -1 x7 -1 x1 >= -1 ;

@noedge1_9 -1 x9 -1 x1 >= -1 ;

@noedge2_3 -1 x3 -1 x2 >= -1 ;

@noedge2_4 -1 x4 -1 x2 >= -1 ;

@noedge2_6 -1 x6 -1 x2 >= -1 ;

@noedge2_7 -1 x7 -1 x2 >= -1 ;

@noedge2_9 -1 x9 -1 x2 >= -1 ;

@noedge2_11 -1 x11 -1 x2 >= -1 ;

@noedge2_12 -1 x12 -1 x2 >= -1 ;

* ...and a further 29 similar lines for the remaining non-edges
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Pseudo-Boolean Problems

3
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Variables x1 to x12, xi = 1 means “vertex i is in the clique”.

min: 1 ~x1 1 ~x2 1 ~x3 1 ~x4 1 ~x5 1 ~x6 1 ~x7 1 ~x8 1 ~x9 1 ~x10 1 ~x11 1 ~x12 ;

@noedge1_3 -1 x3 -1 x1 >= -1 ;

@noedge1_4 -1 x4 -1 x1 >= -1 ;

@noedge1_6 -1 x6 -1 x1 >= -1 ;

@noedge1_7 -1 x7 -1 x1 >= -1 ;

@noedge1_9 -1 x9 -1 x1 >= -1 ;

@noedge2_3 -1 x3 -1 x2 >= -1 ;

@noedge2_4 -1 x4 -1 x2 >= -1 ;

@noedge2_6 -1 x6 -1 x2 >= -1 ;

@noedge2_7 -1 x7 -1 x2 >= -1 ;

@noedge2_9 -1 x9 -1 x2 >= -1 ;

@noedge2_11 -1 x11 -1 x2 >= -1 ;

@noedge2_12 -1 x12 -1 x2 >= -1 ;

* ...and a further 29 similar lines for the remaining non-edges

Has to be a minimisation problem.

Multiplication and addition are
implicit, so read this as

min

12∑
i=1

1 · xi

i.e. minimise the number of
vertices not selected.
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Pseudo-Boolean Problems

3

4

6
7

9
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1
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Variables x1 to x12, xi = 1 means “vertex i is in the clique”.

min: 1 ~x1 1 ~x2 1 ~x3 1 ~x4 1 ~x5 1 ~x6 1 ~x7 1 ~x8 1 ~x9 1 ~x10 1 ~x11 1 ~x12 ;

@noedge1_3 -1 x3 -1 x1 >= -1 ;

@noedge1_4 -1 x4 -1 x1 >= -1 ;

@noedge1_6 -1 x6 -1 x1 >= -1 ;

@noedge1_7 -1 x7 -1 x1 >= -1 ;

@noedge1_9 -1 x9 -1 x1 >= -1 ;

@noedge2_3 -1 x3 -1 x2 >= -1 ;

@noedge2_4 -1 x4 -1 x2 >= -1 ;

@noedge2_6 -1 x6 -1 x2 >= -1 ;

@noedge2_7 -1 x7 -1 x2 >= -1 ;

@noedge2_9 -1 x9 -1 x2 >= -1 ;

@noedge2_11 -1 x11 -1 x2 >= -1 ;

@noedge2_12 -1 x12 -1 x2 >= -1 ;

* ...and a further 29 similar lines for the remaining non-edges

For each non-edge, can’t take both
vertices. Note

−1 · x3 +−1 · x1 ≥ −1

is the same as

1 · x3 + 1 · x1 ≤ 1
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Pseudo-Boolean Problems

3

4

6
7

9
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11
12

1
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8

Variables x1 to x12, xi = 1 means “vertex i is in the clique”.

min: 1 ~x1 1 ~x2 1 ~x3 1 ~x4 1 ~x5 1 ~x6 1 ~x7 1 ~x8 1 ~x9 1 ~x10 1 ~x11 1 ~x12 ;

@noedge1_3 -1 x3 -1 x1 >= -1 ;

@noedge1_4 -1 x4 -1 x1 >= -1 ;

@noedge1_6 -1 x6 -1 x1 >= -1 ;

@noedge1_7 -1 x7 -1 x1 >= -1 ;

@noedge1_9 -1 x9 -1 x1 >= -1 ;

@noedge2_3 -1 x3 -1 x2 >= -1 ;

@noedge2_4 -1 x4 -1 x2 >= -1 ;

@noedge2_6 -1 x6 -1 x2 >= -1 ;

@noedge2_7 -1 x7 -1 x2 >= -1 ;

@noedge2_9 -1 x9 -1 x2 >= -1 ;

@noedge2_11 -1 x11 -1 x2 >= -1 ;

@noedge2_12 -1 x12 -1 x2 >= -1 ;

* ...and a further 29 similar lines for the remaining non-edges

The @label is optional. It gives the
constraint a name, which we’ll use
later on.
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A Slightly Different Workflow

Solver

Checker
added print statements

Answer

Proof ✓ or ✗

Input

Pseudo-Boolean Encoding of Input
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A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

Let’s try directly translating our
ad-hoc proof into VeriPB
syntax.
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A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

We still start with a header.
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A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

The solution command is “soli”.

We put an “x” in front of vertex
numbers, which are now Boolean
variables.

The “@obj” is a label, which
we’ll use later.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 12 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2020

A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

To backtrack, we use “rup”.

We’re saying “at least one of
these variables must be false”,
i.e. at least one of these vertices
must not be selected if we’re to
find a larger clique.
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A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

Same idea.
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A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

Backtracking from the root note
is saying “at least one of the
variables from this empty sum
must be true”, i.e. asserting
contradiction.
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A VeriPB Proof, Attempt One

maximum clique proof

solution 7 9 12

backtrack 12 7

backtrack 12

backtrack 11 10

backtrack 11

solution 1 2 5 8

backtrack 8 5

backtrack 8

backtrack

conclusion bounds 4 4

end maximum clique proof

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

The “output” rule is for
advanced features which we’re
not using, so we have no output.

Recall we’re minimising the
number of unselected vertices, so
the bound is 12− 4 = 8.
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Verifying This Proof (Or Not. . . )

$ pboxide_veripb example.opb example-1.pbp

Running PBOxide VeriPB version 0.2.0-357263b

Error: Verification error at example-1.pbp:6!

Caused by:

The constraint is not implied by reverse unit propagation (RUP).
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Verifying This Proof (Or Not. . . )

$ pboxide_veripb --trace example.opb example-1.pbp

Running PBOxide VeriPB version 0.2.0-357263b

Objective: min 1 ~x1 1 ~x2 1 ~x3 1 ~x4 1 ~x5 1 ~x6 1 ~x7 1 ~x8 1 ~x9 1 ~x10 1 ~x11 1 ~x12 + 0 ;

ConstraintId 1: 1 ~x1 1 ~x3 >= 1

ConstraintId 2: 1 ~x2 1 ~x3 >= 1

...

line 2: @obj soli x12 x7 x9 ;

ConstraintID 42: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 3: rup 1 ~x12 1 ~x7 1 ~x9 >= 1 ;

ConstraintID 43: 1 ~x7 1 ~x9 1 ~x12 >= 1

...

line 6: rup 1 ~x11 1 ~x10 >= 1 ;

Error: Verification error at example-1.pbp:6!

Caused by:

The constraint is not implied by reverse unit propagation (RUP).
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Verifying This Proof (Or Not. . . )

$ pboxide_veripb --trace-failed example.opb example-1.pbp

...

line 6: rup 1 ~x11 1 ~x10 >= 1 ;

Propagation check failed! The propagation had the following trail:

propagatons in format: <assignment> (<reason constraint>)

~x12 (1 ~x12 >= 1)

x10 (1 x10 1 x11 >= 2)

x11 (1 x10 1 x11 >= 2)

~x6 (1 ~x6 1 ~x10 >= 1)

~x7 (1 ~x7 1 ~x10 >= 1)

~x8 (1 ~x8 1 ~x10 >= 1)

~x4 (1 ~x4 1 ~x10 >= 1)

~x5 (1 ~x5 1 ~x10 >= 1)

~x2 (1 ~x2 1 ~x11 >= 1)

Error: Verification error at example-1.pbp:6!

Caused by:

The constraint is not implied by reverse unit propagation (RUP).
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Verifying This Proof (Or Not. . . )

The proof checker isn’t smart enough to figure out that:

The vertices 1, 3, and 9 can be coloured using one colour. . .
And each colour class contributes at most one to the objective variable. . .
So the “find a clique with more than three vertices” solution-improving constraint can’t be satisfied if
we have accepted both 10 and 11.
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Reasoning With Colour Classes

If we could take the “objective improving” constraint
line 2: @obj soli x12 x7 x9 ;

ConstraintID 42: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

i.e.
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 ≥ 4

and add an at-most-one constraint over the colour class {x1, x3, x9},

x1 + x3 + x9 ≥ 2

we would get

(x1 + x1) + x2 + (x3 + x3) + x4 + x5 + x6 + x7 + x8 + (x9 + x9) + x10 + x11 + x12 ≥ 6

and simplifying using xi + xi = 1 we get

x2 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 ≥ 3

from which it is much easier to see that taking both vertices 10 and 11 isn’t going to work.
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ConstraintID 42: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

i.e.
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 ≥ 4

and add an at-most-one constraint over the colour class {x1, x3, x9},

x1 + x3 + x9 ≥ 2

we would get

(x1 + x1) + x2 + (x3 + x3) + x4 + x5 + x6 + x7 + x8 + (x9 + x9) + x10 + x11 + x12 ≥ 6

and simplifying using xi + xi = 1 we get

x2 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 ≥ 3

from which it is much easier to see that taking both vertices 10 and 11 isn’t going to work.
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Reasoning With Colour Classes

pseudo-Boolean proof version 3.0

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

a 1 x2 1 x4 1 x5 1 x6 1 x7 1 x8 1 x10 1 x11 1 x12 >= 3 ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8 ;

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

a 1 x8 1 x11 1 x12 >= 2 ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

The “a” means “I’m asserting this without a
justification.”

It turns out we’ll need to help here too. This time
we’re dealing with three colour classes, each of three
vertices. Note that this isn’t obvious from the
constraint we’re asserting. . .
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Reasoning With Colour Classes

$ pboxide_veripb example.opb example-2.pbp

Running PBOxide VeriPB version 0.2.0-357263b

s VERIFIED BOUNDS 8 <= obj <= 8

Warning: The proof used unchecked assumptions.

This passes, but the checker complains about our use of the “a” rule.

This is fair: it’s really not obvious that the constraints we specify are valid. In general, we might have
worked very hard to produce a good colour bound.
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Reasoning With Colour Classes

pseudo-Boolean proof version 3.0 ;

@obj soli x7 x9 x12 ;

rup 1 ~x12 1 ~x7 >= 1 ;

rup 1 ~x12 >= 1 ;

a 1 ~x1 1 ~x3 1 ~x9 >= 2 ;

pol @obj -1 + ;

rup 1 ~x11 1 ~x10 >= 1 ;

rup 1 ~x11 >= 1 ;

@obj soli x1 x2 x5 x8

rup 1 ~x8 1 ~x5 >= 1 ;

rup 1 ~x8 >= 1 ;

a 1 ~x1 1 ~x3 1 ~x7 >= 2 ;

a 1 ~x2 1 ~x4 1 ~x9 >= 2 ;

a 1 ~x5 1 ~x6 1 ~x10 >= 2 ;

pol @obj -1 + -2 + -3 + ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

“pol” means “reverse Polish notation”. So, take the
solution-improving constraint we labelled “@obj”, and
add the previous constraint (negative numbers are
relative to the current constraint).

Here we’re asserting at-most-one constraints for three
colour classes, and then adding all of them to the
solution-improving constraint.
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Reasoning With Colour Classes

$ pboxide_veripb example.opb example-3.pbp

Running PBOxide VeriPB version 0.2.0-357263b

s VERIFIED BOUNDS 8 <= obj <= 8

Warning: The proof used unchecked assumptions.

Still relying upon assertions, but “these vertices form a colour class” is easily verifiable.
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Recovering At-Most-One Constraints

We can lazily recover at-most-one constraints for each colour class!

(x1 + x6 ≥ 1)

+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥

3

2
i.e. x1 + x6 + x9 ≤ 1

This generalises to colour classes of any size v.

Each non-edge is used exactly once, v(v − 1) additions

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” why this works (or when exactly it is necessary) to write this
derivation to proof log.
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Recovering At-Most-One Constraints
pseudo-Boolean proof version 3.0

@obj soli x12 x7 x9 ;

rup 1 ~x12 1 ~x7 1 ~x9 >= 1 ;

rup 1 ~x12 1 ~x7 >= 1 ;

pol @noedge1_6 @noedge1_9 + @noedge6_9 + 2 d @obj + ;

rup 1 ~x12 >= 1 ;

pol @noedge1_3 @noedge1_9 + @noedge3_9 + 2 d @obj + ;

rup 1 ~x11 1 ~x10 >= 1 ;

pol @noedge1_3 @noedge1_7 + @noedge3_7 + 2 d @obj + ;

rup 1 ~x11 >= 1 ;

@obj soli x8 x5 x2 x1 ;

rup 1 ~x8 1 ~x5 >= 1 ;

pol @obj @noedge1_9 + ;

rup 1 ~x8 >= 1 ;

pol @noedge1_3 @noedge1_7 + @noedge3_7 + 2 d @noedge2_4 @noedge2_9 + @noedge4_9 + 2 d +

@noedge5_6 @noedge5_10 + @noedge6_10 + 2 d + @obj + ;

rup >= 1 ;

output NONE ;

conclusion BOUNDS 8 8 ;

end pseudo-Boolean proof ;

It turns out we do colour-class reasoning in
each of these three places, although the
verifier doesn’t actually need help for two of
them.

In each case, we add together three
non-adjacency constraints, divide by two,
and then add the result to the solution-
improving constraint.

Here we’re creating three at-most-one constraints, and then
adding all of them to the solution-improving constraint.
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Recovering At-Most-One Constraints

$ pboxide_veripb example.opb example-4.pbp

Running PBOxide VeriPB version 0.2.0-357263b

s VERIFIED BOUNDS 8 <= obj <= 8
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Why a General-Purpose Proof System?

Why this, rather than having a “colouring bound” rule directly in the proof format?

Dozens of different colouring algorithms, and extensions using MaxSAT-like reasoning.

Even more when we look at problems like maximum weight clique. Weighted colour class rules can
be extremely clever (e.g. vertices can split their weights between multiple colours).

Don’t really want to have a proof checker and format per solver if we can help it. . .
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What is a VeriPB Proof?

For unsatisfiable problem instances:

Start by assuming the pseudo-Boolean constraints in the input.

At each step, derive a new additional constraint that must hold, based upon what we know so far.

“Must hold” means “equisatisfiable”: can’t turn a satisfiable instance into an unsatisfiable instance, or
vice-versa.
Steps have to be efficiently computable, possibly with hints.

Finish by deriving 0 ≥ 1.

For optimisation:

Can give witnesses of solutions, which become a solution-improving constraint.

So we prove “unsatisfiable, if you want something better than a solution I told you was best”.

Now “equisatisfiable” becomes “equioptimal’.
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Cutting Planes Proofs 1: Linear Inequalities

Model axioms From the input

Addition

∑
i aiℓi ≥ A

∑
i biℓi ≥ B∑

i(ai + bi)ℓi ≥ A+B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA
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Cutting Planes Proofs 2: 0-1 Variables

Literal axioms ℓi ≥ 0

Division
for any c ∈ N+

assumes normalised form
with ai, A ∈ N

∑
i aiℓi ≥ A∑

i

⌈
ai

c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
assumes normalised form

∑
i aiℓi ≥ A∑

i min (ai, A) ℓi ≥ A
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Unit Propagation for Clauses

Given the following,

a ∨ b ∨ c

c ∨ d

Suppose I tell you that a must be false and b must be true.

Must set c to true to satisfy first clause.

Now must set d to false to satisfy second clause.
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Unit Propagation for Pseudo-Boolean Constraints

5a+ 2b+ 3c+ d+ e+ f ≥ 5

Suppose I tell you that a = 0. Can’t say anything yet.

Suppose I tell you that b = 0 as well. Then c = 1 must hold.

Suppose I tell you that d = 0 as well. Then e = 1 and f = 1 must hold.

In general: integer bounds consistency. We can do this efficiently, but it’s not quite as simple as for
clauses.
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Reverse Unit Propagation

Let C be any constraint. Suppose C unit propagates to contradiction. Then without loss of satisfaction
or optimality, we can add C as a new constraint.

RUP
C any constraint

C unit propagates to contradiction

C
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Elffers, Gocht, McCreesh, Nordström: Justifying All Differences Using Pseudo-Boolean Reasoning, AAAI 2020

Interleaving RUP and Other Inferences

RUP forms a good skeleton for DPLL (or CDCL) style searches.

However, many facts discovered by smarter algorithms do not follow by RUP.

Key idea: can interleave RUP with additional cutting planes steps to help out.
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Bogaerts, Gocht, McCreesh, Nordström: Certified Dominance and Symmetry Breaking for Combinatorial Optimisation, JAIR 77 (2023)

Not Appearing in this Talk

Extension variables (redundance, dominance, and symmetries).

Deletions.
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Reducing the Trust Base
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End-to-End Verification for Maximum Clique

$ glasgow_clique_solver brock200_4.clq
recursions = 56613
clique = 17 (12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192)
runtime = 0.02153s

$ glasgow_clique_solver brock200_4.clq --prove brock200_4
runtime = 0.266475s

$ cake_pb_clique brock200_4.clq > brock200_4.verifiedopb

$ time pboxide_veripb --elaborate brock200_4.corepb brock200_4.verifiedopb brock200_4.pbp
s VERIFIED BOUNDS 183 <= obj <= 183
real 0m2.139s

$ time cake_pb_clique brock200_4.clq brock200_4.corepb
s VERIFIED MAX CLIQUE SIZE |CLIQUE| = 17
real 0m2.260s
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What Exactly are we Verifying?

is clique vs (v ,e)
def
=

vs ⊆ { 0,1,...,v−1 } ∧
∀ x y . x ∈ vs ∧ y ∈ vs ∧ x ̸= y ⇒ is edge e x y

max clique size g
def
= maxset { card vs | is clique vs g }
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What Exactly are we Verifying?

clique eq str n
def
= "s VERIFIED MAX CLIQUE SIZE |CLIQUE| = " ˆ toString n ˆ "\n"

clique bound str l u
def
=

"s VERIFIED MAX CLIQUE SIZE BOUND " ˆ toString l ˆ " <= |CLIQUE| <= " ˆ toString u ˆ "\n"

⊢ cake pb clique run cl fs mc ms ⇒
machine sem mc (basis ffi cl fs) ms ⊆
extend with resource limit { Terminate Success (cake pb clique io events cl fs) } ∧

∃ out err .
extract fs fs (cake pb clique io events cl fs) = Some (add stdout (add stderr fs err) out) ∧
(out ̸= "" ⇒
∃ g . get graph dimacs fs (el 1 cl) = Some g ∧

(length cl = 2 ∧ out = concat (print pbf (full encode g)) ∨
length cl = 3 ∧

(out = clique eq str (max clique size g) ∨
∃ l u.out = clique bound str l u ∧ (∀ vs. is clique vs g ⇒ card vs ≤ u) ∧

∃ vs. is clique vs g ∧ l ≤ card vs)))
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What’s Left to Trust?

Still have to trust:

The HOL4 theorem prover.

That the formal HOL model of the CakeML environment corresponds to the hardware on which it
is run.

HOL definition of what it means to be a maximum clique.

Input parsing and output formatting.

No need to trust, or even know about:

How the solver works.

What pseudo-Boolean means.
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Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern recognition, . . .

Often want to find all matches.

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 29 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex gets a target vertex:∑
t∈V(T )

xp,t = 1 p ∈ V(P )

Each target vertex may be used at most once:∑
p∈V(P )

−xp,t ≥ −1 t ∈ V(T )

Adjacency constraints, if p is mapped to t, then p’s neighbours must be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)

xq,u ≥ 1 p ∈ V(P ), q ∈ N(p), t ∈ V(T )
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Injectivity (All-Different) Reasoning

p ∈ { 1 4 5}
q ∈ { 1 2 3 }

xq,1 + xq,2 + xq,3 ≥ 1 vertex q must be mapped

r ∈ { 2 3 }

xr,2 + xr,3 ≥ 1 vertex r must be mapped

s ∈ { 1 3 }

xs,1 + xs,3 ≥ 1 vertex s must be mapped

t ∈ { 1 3 }

xt,1 + xt,3 ≥ 1 vertex t must be mapped
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Injectivity (All-Different) Reasoning

ChatGPT, can you draw me a picture of a
pigeon wearing a disguise?
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q ∈ { 1 2 3 } xq,1 + xq,2 + xq,3 ≥ 1 vertex q must be mapped
r ∈ { 2 3 } xr,2 + xr,3 ≥ 1 vertex r must be mapped
s ∈ { 1 3 } xs,1 + xs,3 ≥ 1 vertex s must be mapped
t ∈ { 1 3 } xt,1 + xt,3 ≥ 1 vertex t must be mapped

→ −xp,1 + −xq,1 + −xs,1 +−xt,1 ≥ −1 use vertex 1 at most once
→ −xq,2 +−xr,2 ≥ −1 use vertex 2 at most once

→ −xq,3 +−xr,3 +−xs,3 +−xt,3 ≥ −1 use vertex 3 at most once
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−xp,1 ≥ 1 sum all of the above
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Injectivity (All-Different) Reasoning

p ∈ { 1 4 5}
q ∈ { 1 2 3 } xq,1 + xq,2 + xq,3 ≥ 1 vertex q must be mapped
r ∈ { 2 3 } xr,2 + xr,3 ≥ 1 vertex r must be mapped
s ∈ { 1 3 } xs,1 + xs,3 ≥ 1 vertex s must be mapped
t ∈ { 1 3 } xt,1 + xt,3 ≥ 1 vertex t must be mapped

→ −xp,1 + −xq,1 + −xs,1 +−xt,1 ≥ −1 use vertex 1 at most once
→ −xq,2 +−xr,2 ≥ −1 use vertex 2 at most once

→ −xq,3 +−xr,3 +−xs,3 +−xt,3 ≥ −1 use vertex 3 at most once

−xp,1 ≥ 1 sum all of the above
xp,1 ≥ 0 variable xp,1 non-negative

0 ≥ 1 sum above two constraints
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Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Degree Reasoning in Cutting Planes

Pattern vertex p of degree deg(p) can never be mapped to target vertex t of degree < deg(p) in any
subgraph isomorphism.

Observe N(p) = {q, r, s} and N(t) = {u, v}.

We wish to derive xp,t ≥ 1.

o

p

q

r

s

t

u

v

x

y

z
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Degree Reasoning in Cutting Planes

Adjacency: xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Injectivity: −xo,u +−xp,u +−xq,u +−xr,u +−xs,u ≥ −1

−xo,v +−xp,v +−xq,v +−xr,v +−xs,v ≥ −1

Literal axioms: xo,u ≥ 0

xo,v ≥ 0

xp,u ≥ 0

xp,v ≥ 0

Add these together . . .

3 · xp,t ≥ 1
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v
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z
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Add these together and divide by 3 to get

xp,t ≥ 1
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xp,t ≥ 1
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ChatGPT, can you draw me a picture of a
sophisticated pigeon?
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Degree Reasoning in Cutting Planes
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xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Injectivity: −xo,u +−xp,u +−xq,u +−xr,u +−xs,u ≥ −1

−xo,v +−xp,v +−xq,v +−xr,v +−xs,v ≥ −1
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xo,v ≥ 0

xp,u ≥ 0

xp,v ≥ 0

Add these together and divide by 3 to get

xp,t ≥ 1

o
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I think a sophisticated pigeon should have a
monocle and a twirly mustache, rather than glasses
and a beard.
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Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Degree Reasoning in VeriPB

pol @adj_p_t_q @adj_p_t_r + @adj_p_t_s + % sum adjacency constraints

@inj_u + @inj_v + % sum injectivity constraints

xo_u + xo_v + % cancel stray xo_*

xp_u + xp_v + % cancel stray xp_*

3 d ; % divide, and we’re done

Or we can ask VeriPB to do the last bit of simplification automatically:

pol @adj_p_t_q @adj_p_t_r + @adj_p_t_s + % sum adjacency constraints

@inj_u + @inj_v + ; % sum injectivity constraints

ia 1 ~xp_t >= 1 : -1 ; % desired conclusion is syntactically implied
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Gocht, McCreesh, Nordström: Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions, IJCAI 2020

Other Forms of Reasoning

We can also log (almost) all of the other things state of the art subgraph solvers do, many of which do
not involve pigeons:

Conditional injectivity reasoning and filtering,

Distance filtering,

Neighbourhood degree sequences,

Path filtering,

Supplemental graphs.

Proof steps are “efficient” using cutting planes:

Length of proof ≈ time complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.
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Gocht, McBride, McCreesh, Nordström, Prosser, Trimble: Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems, CP 2020

Reformulation

a

b c d

1 2

3 4

1 2 3 4a 7→ { }

1

2

3

4

b 7→

1 2 3 4c 7→ { }

1

2

3

4

7→d

We can encode this reduction using cutting planes rules.

No need to modify the clique solver, either.
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Bogaerts, Gocht, McCreesh, Nordström: Certified Dominance and Symmetry Breaking for Combinatorial Optimisation, JAIR 77 (2023)

Pattern Graph Symmetries

If a solution exists, a solution where C < D exists.

Might want to decide the constraint C < D dynamically
during search, or even to change constraint to F < E for
different subproblems.

Enumeration proofs: “unsatisfiable, except for all the
solutions I listed”. But what does it mean to count or
enumerate solutions under symmetries?

A

B

C D

E F
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Yang, Ge, Nguyen, Molitor, Moorman, Bertozzi: Structural Equivalence in Subgraph Matching. IEEE Trans. Netw. Sci. Eng. 10(4) (2023)

Target Graph (Conditional) Symmetries

1 2 3 4

5 6 7

If 4 removed from all domains dynamically during search (all pattern vertices of degree 1 already
assigned elsewhere?), a symmetry appears.

If 3 and 7 removed, even more symmetries appear.

We can still count when exploiting target symmetries, but we now seem to need non-trivial
amounts of group theory to explain correctness efficiently.
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McCreesh, Prosser: Finding Maximum k-Cliques Faster Using Lazy Global Domination, SoCS 2016

Dominance

1

3

4

5
6

7

8

9

10

11
12

2
2b

Can ignore vertex 2b.

Every neighbour of 2b is also a neighbour of 2.

Too expensive to detect upfront, so we catch it on backtrack instead.
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Kraiczy, McCreesh: Solving Graph Homomorphism and Subgraph Isomorphism Problems Faster Through Clique Neighbourhood Constraints, IJCAI 2021

Lemmas, Maybe?

If pattern vertex P and its neighbourhood form a 5-clique, can’t map to any vertex T whose
neighbourhood does not form at least a 5-clique.

Can combine all of the techniques discussed to justify this efficiently in terms of work done, but
only for a specific choice of P and T .

Solvers can reuse clique computations, though. . .

Proof Logging for Subgraph-Finding Algorithms Ciaran McCreesh 40 / 41



Maximum Clique Proof Logging VeriPB Proofs End-to-End Verification Subgraph Isomorphism Tricker Things Conclusion

Conclusion

Need to be able to express a wide range of reasoning rules, efficiently.

Much more variety of reasoning between solvers in other areas, compared
to SAT solving.
Cutting planes can do this (which is somewhat mysterious).

Mixing RUP and explicit derivations makes proofs much easier to write.

No need for a close coupling between how the solver works and how the
proof system works.

ChatGPT is somewhat better at drawing pigeons than it is at maths.
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Conclusion

Need to be able to express a wide range of reasoning rules, efficiently.

Much more variety of reasoning between solvers in other areas, compared
to SAT solving.
Cutting planes can do this (which is somewhat mysterious).

Mixing RUP and explicit derivations makes proofs much easier to write.

No need for a close coupling between how the solver works and how the
proof system works.

ChatGPT is somewhat better at drawing pigeons than it is at maths.

ChatGPT, can you draw me a picture of a
wise pigeon?
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