Wishes for the VeriPB proof format: an update

Daniel Le Berre
WHOOPS '25 - September 14, 2025

Université d'Artois and CNRS

SATA4J is 21 years old ...

SAT, MAXSAT, PBO solvers
Main development between 2004 and 2011

Specific work by Emmanuel Lonca (Multi-Objective Optimization in 2015) and Romain
Wallon (PB proof systems in 2020)

Contains PB solvers with either Resolution-based or Cutting-Planes-based proof systems

1/15

Proof logging in Sat4j

2013: DRUP UNSAT proof (Daniel)
2021: VeriPB 1 UNSAT proof (Antony Blomme and Romain Wallon)
2024: iDRUP incremental proof and VeriPB 2 optimal and UNSAT first trial (Daniel)

e 2025: VeriPB 2 optimal and UNSAT second trial (Daniel with the help of Marc and
Wietze)

2/15

VeriPB 2 proof logging difficulty in Sat4j, simplifications

From toy/crafted benchmarks to competition benchmarks

e PB competition benchmarks contain "unit clauses”

e PB competition benchmarks contain PB constraints that can be simplified as cardinality
constraints or clauses

Sat4j Cutting Planes VeriPB 2.0 certificates are incorrect in 2024 on those benchmarks

3/15

VeriPB 2 proof logging difficulty in Sat4j, simplifications

From toy/crafted benchmarks to competition benchmarks

e PB competition benchmarks contain "unit clauses”

e PB competition benchmarks contain PB constraints that can be simplified as cardinality
constraints or clauses

Sat4j Cutting Planes VeriPB 2.0 certificates are incorrect in 2024 on those benchmarks

Sat4j Resolution VeriPB 2.0 certificates are correct on those benchmarks

3/15

Why is it a problem in Sat4j?

e "Unit clauses” are propagated directly when parsing the benchmark

e The simplification is performed to represent the constraint in the most appropriate way in
the solver, again while parsing the benchmark

e This is true for both Sat4j Resolution and Sat4j Cutting Planes

There is no "event” in that case, especially because the simplifications can be done in many
places

4 /15

Why is it a problem in Sat4j?

e "Unit clauses” are propagated directly when parsing the benchmark

e The simplification is performed to represent the constraint in the most appropriate way in
the solver, again while parsing the benchmark

e This is true for both Sat4j Resolution and Sat4j Cutting Planes

There is no "event” in that case, especially because the simplifications can be done in many
places

Claim at SLOPPY'24: VeriPB 2.0 is friendly to Resolution proof system, unfriendly with
Cutting Planes one!

4 /15

On Sat4j side:

e create new events for all simplifications occurring before the search?
e not so easy on 21 years old code (47k LOC)
e API fuzz testing can help (not available for PB yet in Sat4j)

On VeriPB side:

e Could VeriPB be more friendly with equivalent transformations?

e Could VeriPB focus on what we derive, not how we derive it?

5/ 15

How did we fix this this year?

Suppose Sat4j reads the constraint 6x; + 2x, + x3 + x4 = 5 and that x4 = 0

We use labels to replace the original constraint by the simplified constraint:

@x4 rup 1 "x4 >= 1 X421 (1)
@M pol M @x4 + s 5x1+2x2+x3 =5 (2)
The propagation of x; is logged only if needed.

Suppose Sat4j reads later 3x1 + 2xp + 2x3 + X4 + 2x5 = 3.

0x1 rup 1 x1 >= 1 x1 =1 (3)
ON pol N @x1 3 * + x4 w 20 +2x3 +2x5 =2 (4)

6/ 15

VeriPB 2.0 in Sat4j 2025: the achievement

Satdj CP cone

2025-06-06 -
(complete) NS
128

Sat4j CP VeriPB o

2025-06-06 —

R Y _
175

Sat4j Resolution cone
2025-06-06
(complete) Sl
157
Sat4j Resolution VeriPB o
2025-06-06 —
(complete) WA

157

7/15

VeriPB 2.0 in Sat4j 2025: the numbers

Codebase (before the changes):

e Lines of Code 48,339
e Classes 525
o Files 548

% git diff --stat main veripb2
149 files changed, 2961 insertions(+), 1299 deletions(-)

8/ 15

VeriPB 2.0 in Sat4j 2025: the numbers

Codebase (before the changes):

e Lines of Code 48,339
e Classes 525
o Files 548

% git diff --stat main veripb2
149 files changed, 2961 insertions(+), 1299 deletions(-)

It only works on specific solvers (ResolutionPB24 and CuttingPlanesPB24)!

8/ 15

VeriPB 2.0 in Sat4j 2025: the numbers

Codebase (before the changes):

e Lines of Code 48,339
e Classes 525
o Files 548

% git diff --stat main veripb2
149 files changed, 2961 insertions(+), 1299 deletions(-)

It only works on specific solvers (ResolutionPB24 and CuttingPlanesPB24)!

It introduced bugs in Sat4j (to compute hints for rup statements)!

8/ 15

The issue with rup proofs

= —
2 El
= =
g g
g 5
& R
=1 =1
R 10t gl = 8 R 10t F% 8
8])
< 3
S S
T T
= =
q 8

[memont

timelimit

T memout I I

timelimit x

103 | x&x&*,

BT
2 | B X -
10 % X;g;ré* *

100 |- P 3
T

x

= decision
+optimization

100 [ek —
107t f = decision)

102 ‘ ‘ ‘ : : 102 ‘ ‘ ‘ +01‘>timiza‘tion i
1072 107* 10° 10t 102 10®° 10* 1072 10=' 10° 10! 102 10% 10%
Sat4j with proof logging (s) Sat4j with proof logging (s)

Cutting Planes Resolution

9/15

Can VeriPB proof logging help in fixing PB solvers?

e VeriPB checks that rules are correctly applied
e We know that it does not prevent deriving constraints with irrelevant literals

e Can VeriPB proofs help fixing this?

10/ 15

Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d+a+b+c=3 3d+2a+2b>3

11/15

Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d+a+b+c>=3 3d+2a+2b>3
3a+3b+c>=3

11/15

Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d+a+b+c>=3 3d+2a+2b>3
3a+3b+c>=3

11/15

Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d+a+b+c>=3 3d+2a+2b>3
3a+3b+c>=3

A literal is said to be irrelevant in a PB constraint when its
truth value does not impact the truth value of the constraint:
irrelevant literals can thus be removed

11/15

Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d+a+b+c>=3 3d+2a+2b>3
3a+3b+%>3

A literal is said to be irrelevant in a PB constraint when its
truth value does not impact the truth value of the constraint:
irrelevant literals can thus be removed

11/15

&hn
o]
S
(]

=

-
-
=
(1]
>

2
)
b
E S

o
o
=

2
)
Q
=

S
o
;™

(a8

usanbum
. S80UBJSUI-IBA00XBLIBA
. syewyousqqd pion
dsy
O3NINNS
pieojesqns
jessnois
jessnol
uigos

41] e

swajqoid-ddd

| I wnssou
_H_H_‘ L sedo|
_H_H_‘ . gdO joogseourisu|
E L zujey
1 T }——— | sowsvoa
. SHdVHD WOANvVH 03
E‘ L salygo aao 03
- _HD‘ L ¥ u-sienba-p

exeo

1" lepsey

° =

1000

=) =
3 5]
3 2
3

S[eIal| JUBABS.I PaJ08JO8aP JO JaqUINN

Family

Figure 1: Statistics about the production of irrelevant literals in Sat4j CurringPlanes for each family of

12/15

benchmarks (logarithmic scale)

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

33+3b+c>3 33+3d+2c>3

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

33+3b+c>3 33+3d+2c>3
3b+3c+3d =3

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

3a3+3b+c>=3 33+3d+2c>=3
3b+3c+3d >3
b+c+d=>1

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

3a+3b+¥=>3 33+3d+2c>3
3b+3c+3d >3
b+c+d=>=1

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

3a+3b+¥%¥>3 33+3d+2€>3
3b+3c+3d >3
b+tc+d=1

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

3a+3b+¥%¥>3 33+3d+2€>3
3b+3€+3d >3
b+c+d=>1

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

3a+3b+¥=>3 33+3d+2€>3
3b+3€+3d >3
b+¥+d=>1

13/ 15

Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the
strength of the derived constraints

3a+3b+¥=>3 33+3d+2€>3
3b+3€+3d >3
b+¥+d=>1

Detecting irrelevant literals is NP-hard

13/ 15

14 / 15

Why we really care about SAT /UNSAT/OPTIMAL proofs!

2509.07367v1 [cs.Al] 9 Sep 2025

arXiv

Autonomous Code Evolution Meets
NP-Completeness

Cunxi Yu?*, Rongjian Liang3, Chia-Tung Ho?, Haoxing Ren®
1" NVIDIA Research, College Park, 20740, MD, USA.
2" University of Maryland, College Park, 20742, MD, USA.
3 NVIDIA Research, Austin, 78717, TX, USA.
4 NVIDIA Research, Santa Clara, 95051, CA, USA.

*Corresponding author(s). E-mail(s): cunxiyu@umd.edu;

Abstract

Large language models (LLMs) have recently shown strong coding abilities,
enabling not only static code generation but also iterative code self-evolving
through agentic Recently, A 1 that LLM-
based coding agents can autonomously improve algorithms and surpass human
experts, with scopes limited to isolated kernels spanning hundreds of lines of
code. Inspired by AlphaEvolve, we present SATLUTION, the first framework to
extend LLM-based code evolution to the full repository scale, encompassing hun-
dreds of files and tens of thousands of lines of C/C++ code. Targeting Boolean
Satisfiability (SAT), the canonical NP-complete problem and a cornerstone of
both theory and applications. SATLUTION orchestrates LLM agents to directly
evolve solver itories under strict and di Tun-
time feedback, while simultaneously self-evolving its own evolution policies and
rules. Starting from SAT Competition 2024 codebases and benchmark, SATLU-
TION evolved solvers that d ively outperformed the human-designed winners
of the SAT Competition 2025, and also surpassed both 2024 and 2025 champions
on the 2024 benchmarks.

Keywords: Large Language Models (LLMs), Boolean Satisfiability (SAT),
Combinatorial Optimization, Coding Agent

Tribute: We are deeply grateful to the SAT solving community for nearly three decades of
foundational work , which has produced modern SAT solvers capable of handling
industrial-scale instances. In particular , the SAT Competition serics , founded in 2002 , has
provided a rigorous benchmarking arena that continues to motivate and accelerate solver
innovation , setting high standards for performance and reproducibility in the field. We
further acknowledge the landmark contributions of numerous solvers , such as zChaff

15/ 15

