
Wishes for the VeriPB proof format: an update

Daniel Le Berre

WHOOPS ’25 - September 14, 2025

Université d’Artois and CNRS



SAT4J is 21 years old ...

• SAT, MAXSAT, PBO solvers

• Main development between 2004 and 2011

• Specific work by Emmanuel Lonca (Multi-Objective Optimization in 2015) and Romain

Wallon (PB proof systems in 2020)

• Contains PB solvers with either Resolution-based or Cutting-Planes-based proof systems

1 / 15



Proof logging in Sat4j

• 2013: DRUP UNSAT proof (Daniel)

• 2021: VeriPB 1 UNSAT proof (Antony Blomme and Romain Wallon)

• 2024: iDRUP incremental proof and VeriPB 2 optimal and UNSAT first trial (Daniel)

• 2025: VeriPB 2 optimal and UNSAT second trial (Daniel with the help of Marc and

Wietze)

2 / 15



VeriPB 2 proof logging difficulty in Sat4j, simplifications

From toy/crafted benchmarks to competition benchmarks

• PB competition benchmarks contain ”unit clauses”

• PB competition benchmarks contain PB constraints that can be simplified as cardinality

constraints or clauses

Sat4j Cutting Planes VeriPB 2.0 certificates are incorrect in 2024 on those benchmarks

Sat4j Resolution VeriPB 2.0 certificates are correct on those benchmarks

3 / 15



VeriPB 2 proof logging difficulty in Sat4j, simplifications

From toy/crafted benchmarks to competition benchmarks

• PB competition benchmarks contain ”unit clauses”

• PB competition benchmarks contain PB constraints that can be simplified as cardinality

constraints or clauses

Sat4j Cutting Planes VeriPB 2.0 certificates are incorrect in 2024 on those benchmarks

Sat4j Resolution VeriPB 2.0 certificates are correct on those benchmarks

3 / 15



Why is it a problem in Sat4j?

• ”Unit clauses” are propagated directly when parsing the benchmark

• The simplification is performed to represent the constraint in the most appropriate way in

the solver, again while parsing the benchmark

• This is true for both Sat4j Resolution and Sat4j Cutting Planes

There is no ”event” in that case, especially because the simplifications can be done in many

places

Claim at SLOPPY’24: VeriPB 2.0 is friendly to Resolution proof system, unfriendly with

Cutting Planes one!

4 / 15



Why is it a problem in Sat4j?

• ”Unit clauses” are propagated directly when parsing the benchmark

• The simplification is performed to represent the constraint in the most appropriate way in

the solver, again while parsing the benchmark

• This is true for both Sat4j Resolution and Sat4j Cutting Planes

There is no ”event” in that case, especially because the simplifications can be done in many

places

Claim at SLOPPY’24: VeriPB 2.0 is friendly to Resolution proof system, unfriendly with

Cutting Planes one!

4 / 15



How to fix this?

On Sat4j side:

• create new events for all simplifications occurring before the search?

• not so easy on 21 years old code (47k LOC)

• API fuzz testing can help (not available for PB yet in Sat4j)

On VeriPB side:

• Could VeriPB be more friendly with equivalent transformations?

• Could VeriPB focus on what we derive, not how we derive it?

5 / 15



How did we fix this this year?

Suppose Sat4j reads the constraint 6x1 ` 2x2 ` x3 ` x4 ě 5 and that x4 “ 0

We use labels to replace the original constraint by the simplified constraint:

@x4 rup 1 ~x4 >= 1 x4 ě 1 (1)

@M pol M @x4 + s 5x1 ` 2x2 ` x3 ě 5 (2)

The propagation of x1 is logged only if needed.

Suppose Sat4j reads later 3x1 ` 2x2 ` 2x3 ` x4 ` 2x5 ě 3.

@x1 rup 1 x1 >= 1 x1 ě 1 (3)

@N pol N @x1 3 * + x4 w 2x2 ` 2x3 ` 2x5 ě 2 (4)

6 / 15



VeriPB 2.0 in Sat4j 2025: the achievement

7 / 15



VeriPB 2.0 in Sat4j 2025: the numbers

Codebase (before the changes):

• Lines of Code 48,339

• Classes 525

• Files 548

% git diff --stat main veripb2

149 files changed, 2961 insertions(+), 1299 deletions(-)

It only works on specific solvers (ResolutionPB24 and CuttingPlanesPB24)!

It introduced bugs in Sat4j (to compute hints for rup statements)!

8 / 15



VeriPB 2.0 in Sat4j 2025: the numbers

Codebase (before the changes):

• Lines of Code 48,339

• Classes 525

• Files 548

% git diff --stat main veripb2

149 files changed, 2961 insertions(+), 1299 deletions(-)

It only works on specific solvers (ResolutionPB24 and CuttingPlanesPB24)!

It introduced bugs in Sat4j (to compute hints for rup statements)!

8 / 15



VeriPB 2.0 in Sat4j 2025: the numbers

Codebase (before the changes):

• Lines of Code 48,339

• Classes 525

• Files 548

% git diff --stat main veripb2

149 files changed, 2961 insertions(+), 1299 deletions(-)

It only works on specific solvers (ResolutionPB24 and CuttingPlanesPB24)!

It introduced bugs in Sat4j (to compute hints for rup statements)!

8 / 15



The issue with rup proofs

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)

V
er
iP
B

+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Cutting Planes

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)

V
er
iP
B

+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Resolution

9 / 15



Can VeriPB proof logging help in fixing PB solvers?

• VeriPB checks that rules are correctly applied

• We know that it does not prevent deriving constraints with irrelevant literals

• Can VeriPB proofs help fixing this?

10 / 15



Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d ` a ` b ` c ě 3 3d̄ ` 2a ` 2b ě 3
3a ` 3b ` c ě 3

A literal is said to be irrelevant in a PB constraint when its

truth value does not impact the truth value of the constraint:

irrelevant literals can thus be removed

11 / 15



Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d ` a ` b ` c ě 3 3d̄ ` 2a ` 2b ě 3
3a ` 3b ` c ě 3

A literal is said to be irrelevant in a PB constraint when its

truth value does not impact the truth value of the constraint:

irrelevant literals can thus be removed

11 / 15



Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d ` a ` b ` c ě 3 3d̄ ` 2a ` 2b ě 3
3a ` 3b ` c ě 3

A literal is said to be irrelevant in a PB constraint when its

truth value does not impact the truth value of the constraint:

irrelevant literals can thus be removed

11 / 15



Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d ` a ` b ` c ě 3 3d̄ ` 2a ` 2b ě 3
3a ` 3b ` c ě 3

A literal is said to be irrelevant in a PB constraint when its

truth value does not impact the truth value of the constraint:

irrelevant literals can thus be removed

11 / 15



Irrelevant Literals

Cutting planes rules may introduce irrelevant literals

3d ` a ` b ` c ě 3 3d̄ ` 2a ` 2b ě 3
3a ` 3b ` �Ac ě 3

A literal is said to be irrelevant in a PB constraint when its

truth value does not impact the truth value of the constraint:

irrelevant literals can thus be removed

11 / 15



Production of Irrelevant Literals

1

10

100

1000

10000

A
a
rd

a
l_

1

a
rm

ie
s

c
a
ix

a

d
_
n
_
k

d
−

e
q
u
a
ls

−
n
_
k

E
C

_
O

D
D

_
G

R
ID

S

E
C

_
R

A
N

D
O

M
_
G

R
A

P
H

S

F
P

G
A

_
S

A
T

0
5

h
e
in

z

In
s
ta

n
c
e
s
3
c
o
l_

O
P

B

liu

lo
p
e
s

n
o
s
s
u
m

o
liv

e
ra

s

p
p
p
−

p
ro

b
le

m
s

ra
n
d
6
re

g

ro
b
in

ro
u
s
s
e
l

s
ro

u
s
s
e
l

s
u
b
s
e
tc

a
rd

S
U

M
IN

E
Q

ts
p

u
c
lid

_
p

b
_
b
e
n
c
h
m

a
rk

s

ve
rt

e
x
c
o
ve

r−
in

s
ta

n
c
e
s

w
n
q
u
e
e
n

Family

N
u
m

b
e
r 

o
f 
d
e
c
te

c
te

d
 i
rr

e
le

va
n
t 
lit

e
ra

ls

Figure 1: Statistics about the production of irrelevant literals in Sat4j CurringPlanes for each family of

benchmarks (logarithmic scale)
12 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` c ě 3 3ā ` 3d ` 2c ě 3
3b ` 3c ` 3d ě 3
b ` c ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` c ě 3 3ā ` 3d ` 2c ě 3
3b ` 3c ` 3d ě 3
b ` c ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` c ě 3 3ā ` 3d ` 2c ě 3
3b ` 3c ` 3d ě 3
b ` c ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` �Ac ě 3 3ā ` 3d ` 2c ě 3
3b ` 3c ` 3d ě 3
b ` c ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` �Ac ě 3 3ā ` 3d `��ZZ2c ě 3
3b ` 3c ` 3d ě 3
b ` c ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` �Ac ě 3 3ā ` 3d `��ZZ2c ě 3

3b `��ZZ3c ` 3d ě 3
b ` c ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` �Ac ě 3 3ā ` 3d `��ZZ2c ě 3

3b `��ZZ3c ` 3d ě 3
b ` �Ac ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



Artificially Relevant Literals

Irrelevant literals may become artificially relevant, in which case they may impact the

strength of the derived constraints

3a ` 3b ` �Ac ě 3 3ā ` 3d `��ZZ2c ě 3

3b `��ZZ3c ` 3d ě 3
b ` �Ac ` d ě 1

Detecting irrelevant literals is NP-hard

13 / 15



One more thing ...

14 / 15



Why we really care about SAT/UNSAT/OPTIMAL proofs!

15 / 15


