Proof Logging with CaDiCaL
Florian Pollitt

universitatfreiburg

WHOOPS'25: 2nd International
Workshop on Highlights in Organizing

and Optimizing Proof-logging Systems

September 13.-14., 2025, Orsay, France

supported by DFG Intel



Proof logging for standalone SAT solvers

= DRAT vs. LRAT

® trade solving and engineering effort for checking efficiency.
® good trade in SAT solvers [SAT'23].

® necessary for PB [CP'25].



Implication Graph




Implementation — LRAT — practical challenges

= RUP vs. resolution semantics.

= only RUP in cadical — resolution.
= many different algorithms.

= implicit resolution.

® track and reconstruct.

= on the fly computation.

® simplify if possible.

® design your algorithms differently?



Example — BIG decomposition
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Example — BIG decomposition

® substitution depends on representative.

® positive and negative cycles.

= |owest absolute value for consistency.

® recompute paths after cycles are fixed.

® binary resolution chains for both directions.
= not easily combinable.

® |earn all binary pairs first.



And Then?

= do this to all the entire solver.
= or use mix-and-match approach (FRAT).

®  \What about other uses of CaDiCal.



Applications — Incremental solving

® non-incremental checking feasible but slow.

= problem changes dependent on answers.

= (L)IDRUP: certifying interactions as well as reasoning.

= not all reasoning is equal (equivalence preserving vs. equisatisfiable).
® for now: equisatisfiable reasoning only for SAT.

®= model reconstruction in SAT solvers.

= complete model of original formula in proofs.



Build your own application — the tracer interface [CAV'24]

m  API for proof steps.

® captures a range of applications.

m proof formats (DRAT, FRAT, LRAT, VeriPB, IDRUP, LIDRUP)

® beyond SAT proof checking:

® proof extraction (e.g. for MaxSAT [CP’'24], Constraint Programming),
® interpolation (model checker CaDiCraig),

® persistent certificate (bit-vector solver in Lean),

= explainability,

m other applications?



What about VeriPB?

®= pseudo-Boolean proof version 2.0
= DRAT and LRAT variants

® checked deletions? | always assumed you could not do variable elimination...



What | learned yesterday:




Not always though...
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proof statistics

® sudoku-N30-10.cnf: p cnf 842089 2262758, 44MB
= DRAT — LRAT — VeriPB (RUP) — VeriPB (RES)

® gsolving time: 8117s — 8933s — 8141s — 9011s

® proof sizes: 6/15GB — 29/62GB — 13GB — 93GB
® checking: 2060s — 93s/254s — N/A — N/A
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