Proof Logging with CaDiCaL
Florian Pollitt

universitatfreiburg

WHOOPS'25: 2nd International
Workshop on Highlights in Organizing

and Optimizing Proof-logging Systems

September 13.-14., 2025, Orsay, France

supported by DFG Intel

Proof logging for standalone SAT solvers

= DRAT vs. LRAT

® trade solving and engineering effort for checking efficiency.
® good trade in SAT solvers [SAT'23].

® necessary for PB [CP'25].

Implication Graph

Implementation — LRAT — practical challenges

= RUP vs. resolution semantics.

= only RUP in cadical — resolution.
= many different algorithms.

= implicit resolution.

® track and reconstruct.

= on the fly computation.

® simplify if possible.

® design your algorithms differently?

Example — BIG decomposition

—a/Nb
—bAc
—cN\d
—dNe

—e/Na

—xADb
—X/\qg

“pAg
—pAF
g NS

! AR

—SAPp

Example — BIG decomposition

® substitution depends on representative.

® positive and negative cycles.

= |owest absolute value for consistency.

® recompute paths after cycles are fixed.

® binary resolution chains for both directions.
= not easily combinable.

® |earn all binary pairs first.

And Then?

= do this to all the entire solver.
= or use mix-and-match approach (FRAT).

® \What about other uses of CaDiCal.

Applications — Incremental solving

® non-incremental checking feasible but slow.

= problem changes dependent on answers.

= (L)IDRUP: certifying interactions as well as reasoning.

= not all reasoning is equal (equivalence preserving vs. equisatisfiable).
® for now: equisatisfiable reasoning only for SAT.

®= model reconstruction in SAT solvers.

= complete model of original formula in proofs.

Build your own application — the tracer interface [CAV'24]

m API for proof steps.

® captures a range of applications.

m proof formats (DRAT, FRAT, LRAT, VeriPB, IDRUP, LIDRUP)

® beyond SAT proof checking:

® proof extraction (e.g. for MaxSAT [CP’'24], Constraint Programming),
® interpolation (model checker CaDiCraig),

® persistent certificate (bit-vector solver in Lean),

= explainability,

m other applications?

What about VeriPB?

®= pseudo-Boolean proof version 2.0
= DRAT and LRAT variants

® checked deletions? | always assumed you could not do variable elimination...

What | learned yesterday:

Not always though...

@ 2 VIR wlvlEleld @
. -. - Xl ale@ b
® Qv b Vv X LV Rl @
G; av l) W | Xl V. JD vV &1 (jbt!}(ue&?o’ 63 :
resoWwe dep ;*‘*"{"*
e il g :QEL'*%-"
él w-\ncifjf.{ < P Qcﬁc’} *%” rejgolutios C(Tifc_i_-l.
resu 1S,
})DV’Q ‘JUQ'%{* vl clv o ?X = ,?a{ae,S
Bl
o) e | fuith w%?ﬁd N ledo
dved | A K‘ \
/ﬁl’j J()EJ 5’1@9)0{/05’3 b/ K\ p R (e

proof statistics

® sudoku-N30-10.cnf: p cnf 842089 2262758, 44MB
= DRAT — LRAT — VeriPB (RUP) — VeriPB (RES)

® gsolving time: 8117s — 8933s — 8141s — 9011s

® proof sizes: 6/15GB — 29/62GB — 13GB — 93GB
® checking: 2060s — 93s/254s — N/A — N/A

Bibliography

[CP’25] Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordstrom, Andy
Qertel, Yong Kiam Tan and Marc Vinyals. “Practically Feasible Proof Logging for Pseudo-
Boolean Optimization”

[CP’24] Jeremias Berg, Bart Bogaerts, Jakob Nordstrom, Andy Oertel, Tobias Paxian
and Dieter Vandesande. “Certifying Without Loss of Generality Reasoning in Solution-
Improving Maximum Satisfiability”

[CAV’24] Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks and
Florian Pollitt . “CaDiCaL 2.0”

[SAT'23] Florian Pollitt, Mathias Fleury and Armin Biere. “Faster LRAT Checking Than
Solving with CaDiCal”

