
Proof Logging with CaDiCaL
Florian Pollitt

WHOOPS’25: 2nd International
Workshop on Highlights in Organizing
and Optimizing Proof-logging Systems

September 13.-14., 2025, Orsay, France

supported by Intel



Proof logging for standalone SAT solvers

DRAT vs. LRAT

trade solving and engineering effort for checking efficiency.

good trade in SAT solvers [SAT’23].

necessary for PB [CP’25].



Implication Graph



Implementation — LRAT — practical challenges

RUP vs. resolution semantics.

only RUP in cadical → resolution.

many different algorithms.

implicit resolution.

track and reconstruct.

on the fly computation.

simplify if possible.

design your algorithms differently?



Example — BIG decomposition

¬a∧b ¬p∧q
¬b∧ c ¬x∧b ¬p∧ r
¬c∧d ¬x∧q ¬q∧ s
¬d ∧ e ¬r∧ s
¬e∧a ¬s∧ p

x
a

be

cd

p

q r

s

¬x¬a

¬b¬e

¬c¬d

¬p

¬q ¬r

¬s



Example — BIG decomposition

substitution depends on representative.

positive and negative cycles.

lowest absolute value for consistency.

recompute paths after cycles are fixed.

binary resolution chains for both directions.

not easily combinable.

learn all binary pairs first.



And Then?

do this to all the entire solver.

or use mix-and-match approach (FRAT).

What about other uses of CaDiCaL.



Applications — Incremental solving

non-incremental checking feasible but slow.

problem changes dependent on answers.

(L)IDRUP: certifying interactions as well as reasoning.

not all reasoning is equal (equivalence preserving vs. equisatisfiable).

for now: equisatisfiable reasoning only for SAT.

model reconstruction in SAT solvers.

complete model of original formula in proofs.



Build your own application — the tracer interface [CAV’24]

API for proof steps.

captures a range of applications.

proof formats (DRAT, FRAT, LRAT, VeriPB, IDRUP, LIDRUP)

beyond SAT proof checking:

proof extraction (e.g. for MaxSAT [CP’24], Constraint Programming),

interpolation (model checker CaDiCraig),

persistent certificate (bit-vector solver in Lean),

explainability,

other applications?



What about VeriPB?

pseudo-Boolean proof version 2.0

DRAT and LRAT variants

checked deletions? I always assumed you could not do variable elimination...



What I learned yesterday:



Not always though...



proof statistics

sudoku-N30-10.cnf: p cnf 842089 2262758, 44MB

DRAT — LRAT — VeriPB (RUP) — VeriPB (RES)

solving time: 8117s — 8933s — 8141s — 9011s

proof sizes: 6/15GB — 29/62GB — 13GB — 93GB

checking: 2060s — 93s/254s — N/A — N/A



Bibliography

[CP’25] Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy
Oertel, Yong Kiam Tan and Marc Vinyals. “Practically Feasible Proof Logging for Pseudo-
Boolean Optimization”

[CP’24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian
and Dieter Vandesande. “Certifying Without Loss of Generality Reasoning in Solution-
Improving Maximum Satisfiability”

[CAV’24] Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks and
Florian Pollitt . “CaDiCaL 2.0”

[SAT’23] Florian Pollitt, Mathias Fleury and Armin Biere. “Faster LRAT Checking Than
Solving with CaDiCaL”


