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Ahstract

PCS s a CSP solver that can produce a machine-checkable
deductive proof in case it decides that the inpul problem is
unsatisfiable. The roots of the proof may be nonclousal con
sirannis, whereas the rest of the proal 12 based on resolution
of signed clauses, ending with the empty clause, PCS uses
parameterized, constraini-specific inleremoe rules in onder o
bridge between the nonclousal and the clousal parts of the
procd, The consequent of each such rule is o signed closse
that is 1) logically implied by the nonclausal premise, and
21 strong enoygh fo be the premise of the consecuve prood
steps. The resolution process itsell is integrated in the: leam-
ing mechanisem, and can be scen a8 a peneralization o C5F of
a skimilar solution that s adopted by competilive SAT solvers

1 Introduction

Many problems in planning, scheduling, sutomatic test-
gencration, confignration and more, can be naturally mod-
eled s Constraint Satisfaction Problems (CSPY (Dechier
2063}, and solved with one of the many publicly available
CSP solvers, The common definition of this problem refers
to @ set of variables over finite and discrete domauns, and ar-
hitrary constraints over these variables, The goal is to decide
whether there is an assignment to the variables from their re-
spective domains, which satisfies all the construints. If the
answer | positive the assignment that is emitted by the CSP
solver can be verified easily, On the other hand a negative
answer 15 harder 1o verify, since current CSP solvers do not
produce a deductive proof of wnsatisfiability.

In contrast, most modern CNE-based SAT solvers accom-
pany an unsatisfability result with a deductive proof that can
be checked sutomatically. Specifically, they produce a nes-
oluion proof, which is a sequence of application of a single
inference rule, numely the binary resolusion rule. In the case
of SAT the proof hus uses olher than just the ability to inde-
pendently validate an unsatisfiability result. For example,
there is n successiul SAT-based model-checking algonthm
which is based on deriving interpolants from the resolution
proof (Henzinger et al, 2004},

Unlike SAT solvers, CSP solvers do not have the lux-
ury of handling clavsal consiraints. They need o han-
dle construinis such as a < b+ 5, allDiffereni{x. v.z), a o

Copyright ( 110, Association for the Advancemsent of Artificial
Intelligence (www.nasiorg). All righis reserved
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b, and %0 on. However, we argue that the effect of a
constrainl in o given stale can always be replicated with
a signed clanse, which can then be part of a resolution
proof. A signed clavse is a disjunction between signed
fitgrals. A signed lileral is o unary constranl, consrin-
ing a variable to a domain of values, For example, the
signed clause () € {1,2} vz & {3}) constrains’ x; 1o be
in the range [1,2] or x3 to be anything but 3. A conjunc-
tion of signed clauses is called signed CNF, and the prob-
lem of solving signed CNF is called signed SATZ, a prob-
lem which attracted extensive theoretical research and de-
velopment of tools (Liv, Kuehlmann, and Moskewicz 2003,
Becken, Hithnle, and Manyd 2000b)

In this anticle we describe how our arc-consistency-based
CSP solver PCS (for a "Proof-producing Constraint Solver'™)
produces deductive proofs when the formula is unsatisfiable
In order to account for propagations by general constraints
it uses constraint-specific parametric inference mles. Each
such rule has o constradnl as a premise and a signed clause as
a consequent. These consequents, which are generated dur-
ing conflict analysis, are called explanation clauses, These
clauses are logically tmplicd by the premise, bt are also
strong enough 1o imply the same literal that the premize im-
plies at the current state, The emitted proof is a sequence of
inferences of such clauses and application of special resolu-
tion rules that are tailored for signed clauses

Like in the case of SAT, the signed clavses that are learned
as @ result of analyzing conflicis serve a5 ‘milestone” sloms
in the proof, although they are nod the oaly ones, They are
generated by a repeated application of the resolution rule
The intermediate clauses that are generated in this process
are discarded and hence have no effect on the solving pro-
cess itselll In case the learned clause eventually participates
in the proef PCS reconstructs them, by using information
that it saves during the leaming process. We will describe
this conflict-analysis mechanism in detail in Section 3 and 4,
and compare it to alternatives such as 1-UIP (Zhang e1 al
2001, MVS (Liv, Kuehlmann, and Moskewicz 2003) and
EFC (Katsirelos and Bocchus 2005) in Section 5. We begin,
however, by describing several preliminaries such as CSP

s . q {12 ;
" Alternative notations such as | 1,2} and x| ™" are used in
the liveratare 1o denote @ signed literal xy = {1,2}

*Signed SAT is also called MV-SAT (ie, Mony Valsed SAT)
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GRAEME GANGE, Monash University
GEOFFREY CHU, Datat1, CSIRO
PETER ), STUCKEY, Monash University

Driscrete optimization problems are one of the most challenging class of problems to solve, they are typically NP-
hard. Complete solving approaches Lo these problems, such as integer programming or constraint programming,
are able to prove optimal selutions. Since complete solvers are highly complex software objects, when a solver
returns that it has proved optimality, how confident can we be in this result? The short answer is nof very,
Constraint programming (CF) solvers can hide difficult to observe bugs because they rely on complex state
maintenance over backiracking

In this paper we develop a strategy for validating unsatisfiability and optimality results. We extend a lazy
clause generation CP solver with proof-generating capabilities, which is paired with an external, formally
certified proof checking procedure. From this, we derive several proof checkers, which establish different
compromises between trust base and performance. We validate the practicality of this approach by verifying
the correctness of alleged unsatisfiability and optimality results from the 2016 MiniZine challenge.

CCS Concepls: » Theory of computation — Constraint and logic programming; Discrete optimization;
+ Software and its engineering —+ Software verification; - Computing methodologies — Theorem
proving algorithms;

Additienal Key Words and Phrases: constraint programming. certified code, verification, Boolean satisfiability

ACM Reference Format:
Graeme Gange, Gealfrey Chu, and Peter |. Stuckey. 2023, Certifying Optimality in Constraint Programming.
1.1 tSL']:lll.'mber 2023), 3% pages. hitps dobarg/' 10,1145/ nnnnnnn. Annnnmnn

1 INTRODUCTION

Discrete optimization problems arise in a vast range of applications: scheduling, rostering, routing,
and management decision. These problems frequently arise in mission critical applications; am-
bulance dispatch [40], E-commerce [28] and disaster recovery [47], amongst others - situations
where mistakes can have disastrous consequences. Since the results of the oplimization problems
are critical to the industry to which they belong, when we use optimization technology to create
solutions we wish to be able to trust the results we obtain. Optimization tools are also seeing
increasing use in combinatorics, where an incorrect result fundamentally undermines the entire
endeavor.
Twa kinds of error can occur:
# a "solution” returned by the solver does not satisfy the problem
# a claimed optimal solution returned by the solver is not in fact optimal

Authors” addresses: Graemse Gange, Paculty of Information Technology, Monash University, graeme. gangeidmonashedu;
Geaffrey Cha, Datas1, CSIRO, chu gn!lflf?'[l:l\gjlhll.{mlll.. Peter |, Stuckey, Paculty of Information Th!umln::gp. Monash

University, pelerstuckey@monashedu.
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the full citation on the frst page. Copyrights for thind-party components of this work must be honored. For all other uses,
contact the owner/aathor(s).
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PCS s a CSP solver that can produce a machine-checkable
deductive proof in case it decides that the input problem is
unsatisfiable. The roots of the proof may be nonclausal con-
sirainis, whereas the nest of the prool is based on resolution
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parametenized, constraini-specific inferenoe rules in onder o
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ing mechanism, and can be seen a8 a generalization o CSF of
a similar solution that is adopted by competitive SAT solvers.

1 Introduction

Many problems in planning, scheduling, automatic tesi-
generation, configuration and more, can be naturally mod-
eled as Constraint Satisfaction Problems (CSF) (Dechier
2003}, and solved with one of the many publicly available
CSP solvers. The common definition of this problem refers
to a st of vartables over finite and discrete domains, and ar-
hitrary constraints over these variables, The goal is to decide
whether there 15 an assignment (o the variables from their re-
spective domains, which satisfies all the construints. If the
answer |5 positive the assignment that is emitted by the CSP
solver can be verified easily, On the other hand a negative
answer i3 harder to verify, since current CSP solvers do not
produce a deductive prool of unsatisfability.

In contrast, most modern CNEF-based SAT solvers accom-
pany an unsatisfability result with a deducive proof thit can
be checked automatically, Specifically, they produce a res-
olurion proof, which is a sequence of application of a single
inference rule, namely the binary resclusion rule. In the case
of SAT the proof has uses other than just the ability to inde-
pendently validate an unsatisfiability result. For example,
there is a successful SAT-based model-checking algorithm
which is based on deriving interpolants from the resolution
proof (Henzinger et al, 2004).

Unlike SAT solvers, CSP solvers do not have the lux-
ury of handling clausal constraints. They need to han-
dle construinis such as a < b+ 5, allDifferent(x. .z}, a &
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b, and s0 on. However. we argue that the effect of a
constraint in a given stale can always be replicated with
a gigned clause, which can then be part of a resolution
proof, A signed clause iz a disjunction between signed
lirerals. A signed literal is a unary construinl, constrain-
ing a variable to a domain of values, For example, the
signed clause (z; & {1,2} vz @ {3}) consirains’ x; o be
in the range [1.2] or x3 to be anything but 3. A conjunc-
tion of signed clauses is called signed CNF, and the prob-
lem of solving signed CNF is called signed SAT?, a prob-
lem which artracted extensive theoretical research and de-
velopment of tools (Liv, Kuehlmann, and Moskewicz 2003,
Becker:, Hihnle, and Manyd 2000b),

In this article we describe how our arc-consistency-based
CSP solver PCS (for a "'Proof-producing Constraint Solver'™)
produces deductive proofs when the formula is unsatisfiable.
In arder to account for propagations by general constraints
it uses constraint-specific parametric inference rules. Each
such rule has 4 constraint as a premise and a signed clause as
a consequent. These consequents, which are gencrated dur-
ing conflict analysis, are called explanation clauses, These
clavses are logically implied by the premise, but are also
strong enough 1o imply the same literal that the premise im-
plies at the current state, The emitted proof is a sequence of
inferences of such clauses and application of special resolu-
tion rules that are tailored for signed clauses,

Like in the case of SAT, the signed clauses that are learned
as a result of analyzing conflicts serve as ‘milestone” atoms
in the proof, although they are not the only ones, They are
generated by a repeated application of the resolution rule.
The inmermediate clauses that are generated in this process
are discarded and hence have no effect on the solving pro-
cess itsell, In case the learned clause eventually participates
in the proof PCS reconstructs them, by using information
that it saves during the leamning process, We will describe
this conflict-analysis mechanizm in detail in Section 3 and 4,
and compare it to alternatives such as 1-UIP (Zhang ¢t al
20013, MVS (Liu, Kuehlmann, and Moskewicz 2003) and
EFC (Katsirelos and Bacchus 2005) in Section 5. We begin,
however, by describing several preliminaries such as CSP

! Albernative nosations sisch as {1, 2} and 1" are used in
the literature 1o denote & signed literal xy & {1,2}
*Signed SAT is also called MV-SAT (i.e. Many Valued SAT)
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are able to prove optimal selutions. Since complete solvers are highly complex software objects, when a solver
returns that it has proved optimality, how confident can we be in this result? The short answer is nof very,
Constraint programming (CF) solvers can hide difficult to observe bugs because they rely on complex state
maintenance over backiracking.

In this paper we develop a strategy for validating unsatisfinbility and optimality results. We extend a lazy
clause generation CP solver with proof-generating capabilitics, which is paired with an external, formally
certified proof checking procedure. From this, we derive several proof checkers, which establish different
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the correctness of alleged unsatisfiability and optimality results from the 2016 MiniZine challenge.
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1 INTRODUCTION

Discrete optimization problems arise in a vast range of applications: scheduling, rostering, routing,
and management decision. These problems frequently arise in mission eritical applications; am-
bulance dispatch [40], E-commerce [28] and disaster recovery [47], amongst others - situations
where mistakes can have disastrous consequences, Since the results of the optimization problems
are critical to the industry to which they belong, when we use optimization technology to create
solutions we wish to be able to trust the results we obtain. Optimization tools are also seeing
increasing use in combinatorics, where an incorrect result fundamentally undermines the entire
endeavor.
Two kinds of error can occur:

* a "solution” returned by the solver does not satisfy the problem
* a claimed optimal solution returned by the solver is not in fact optimal
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Working proof
checker implementation
(+ formally verified checker)

VeriPB

= SAT
= MaxSAT
= PB

Pseudo-Boolean constraints
are Very expressive

= Graphs
« .CP!

Cutting planes is a
powerful proof system
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PB Encodings
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PB Encodings

PB Variable
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PB Encodings

PB Variable
Tr; © {O, 1}

Matthew Mcllree

Certified Constraint Programming



PB Literal
V: := x; € {O, 1}

OI'.fi:1—£U
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PB Constraint

Cj = Zaijf' ij a,ij,bj c /

(
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PB Formula/Model

Cj .= Zaijf' Z bj

? ]




PB Formula/Model

{Cj . — Za,?;jfi 2 bj}

(min Z C?,Ez) Q;j, bj, Ci, € /.

J
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PB Encodings

PB Proof

PB Formula/Model

LG =) agli > by
: \ ? 7 :
E (mchzEz) aijjbj}ci, c Z E
: ¢ :
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PB Encodings

PB Proof

(load formula)

(rule) > _; @im41li = bjpa
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PB Encodings

PB Proof

(load formula)
(rule) Y . Gim+1ls = bieg
(rule) 3 _; Gim42bi 2 bjto
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PB Encodings

PB Proof

(load formula)
(rule) ) .. Gim+1b; = bipg
(rule) > .. aim+y2li > biyo
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PB Encodings

PB Proof

(load formula)
(rule) ) .. Gim+1b; = bipq
(rule) ) _; @im2li > bjto
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PB Encodings
@OO0000

PB Proof

(load formula)
(rule) ) @aim+1€i > bjta
(rule) Z@ a’im-{—Qg bj e

(rule) 0>1
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PB Encndmgs

PB Proof

(load formula)
(rule) ) .. Gim+1b; = bipq
(rule) ) _; @im2li > bjto

(rule) Z% C?;E?; Z O
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PB Encodings
@OO0000

PB Proof

(load formula)
(rule) ) @aim+1€i > bjta
(rule) Z@ a’im-{—Qg bj e

(rule) o Zg Ciﬁi > —0;
(rule) > . cili >0

Matthew Mcllree
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PB Encodings

PB Proof

--------------------------- % my_proof.pbp
% my_problem.opb

3 X1 4 x25~x3>=1 ;

5 X4 2 ~Xx1 3 ~x2 -1 x1 >= 4
3 x1 -2 x2 >= -1 ;

-1 X1 -2 ~x4 >= -1 ;
-------------------- output NONE ;

conclusion UNSAT;
end pseudo-Boolean proof ;

E gsgudo—Boolean proof version 3.0
: rup 1 x1 1 ~x2 >= 1 ;

! ruq 1l ~x3 2 ~x4 4 ~x5 >= 5 ;
s pol 1
;

2 +
1a 1 X1 5 ax4 >= 5
u>=1;

Matthew Mcllree
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PB Encodings

( _h.l. WL L)

C P Solver Untrusted

Answer

Independent
_— Proof

Checker

Problem
Description

Matthew Mcllree
Certified Constraint Programming




Untrusted
Answer

Problem
Description

Independent
Proof
Checker

St
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Untrusted
Answer

Problem
Description

Independent
Proof
Checker

(8 Ercoier)
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PB Encodings
o] lolele]e.

Untrusted
Answer

Problem
Description

Independent
Proof
Checker

D ——"
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PB Encodings
ele] lelele

Binary Variable Encoding
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PB Encodings
ole] lelele

Binary Variable Encoding

X € |3...10
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Binary Variable Encoding

8xp3z + 4xpo + 221 + Tpo > 3
—8113'53 — 433‘52 — 2([)()1 — fL‘bQ —10
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PB Encodings

Binary Variable Encoding

X € [—12...10]
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Binary Variable Encoding

—= 16254 + Sxpa + dxpo + 221+ Ton = =12

163?54 — 8.5(553 — 4:1752 — 2:1751 — ZZ?b() —10
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PB Encodings

Binary Variable Encoding

bits(X) > —12
—bits(X) > 10
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Binary Variable Encoding

X +2Y —47 > 11
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Binary Variable Encoding

X +2Y —47 > 11

v
bits(X) + 2bits(Y) — dbits(Z) > 11




PB Encodings

Reifying PB Constraints
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Reifying PB Constraints

8r1 — 4xo + 63 — 1024 > 6
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Reifying PB Constraints

Yy = 8xr1 —4x9 + 63 — 1024 > 6
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Reifying PB Constraints

20y + 8x1 — 4xo + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

201+ 8x1 — 4xo + 63 — 1024 > 6
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Reifying PB Constraints

8r1 — 4x9 + 63 — 1024 > —14

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

20y + 8x1 — 4x9 + 623 — 1024 > 6
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Reifying PB Constraints

20-0+ 8x1 — 4xo + 63 — 1024 > 6
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Reifying PB Constraints

8r1 — 4xo + 063 — 1024 > 06
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Reifying PB Constraints

Yy & 8xr1 —4xry + 63 — 1024 > 6
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Reifying PB Constraints

Yy = 8xr1 —4x9 + 063 — 1014 > 6
y = —8x1 + —4x9 — 63 + 1024 = —5
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Reifying PB Constraints

Y1 \NYa... \ Yp =
8r1 —4xo + 63 — 1024 > 6
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Reifying PB Constraints

= (Y2 = (... = (Y =
8r1 — 4xo 4+ 6x3 — 1024 > 6)...))
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Reifying PB Constraints

20y1 + 20y2 + - - - + 20y%
8r1 — 4xo + 6x3 — 1024 > 6)...))
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Reifying PB Constraints




PB Encodings

XY
X ¢13,5,7}
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PB Encodings

X ¢1{3,5,7}
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X #Y | f = bits(X) — bits(¥) > 1

' f = bits(Y) — bits(X) > 1 :

X ¢1{3,5,7}




X # Y E f = bits(X) — bits(Y) >

1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

X ¢ 4{3,5,7}
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f = bits(X) —bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 & —bits(X) > —3

XY
X ¢43,5,7}
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f = bits(X) —bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 < —bits(X) > —3

T=3 < T>3 —|—.’l?§3 > 2

XY
X ¢43,5,7}
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f = bits(X) — bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 < —bits(X) > —3

T=3 < T>3 T IT<3 > 2

XY
X ¢43,5,7}
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f = bits(X) —bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 < —bits(X) > —3

T=3 < IT>3 T IT<3 = 2

XY
X ¢ {3,5,7)

T3+ T5+T_7 >3
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Slightly more convinced?

C P Solver Untrusted

Answer

Problem
Description

Independent
Proof

O g Checker
— R
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PB Encodings Structuring a CP Proof
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Structuring a CP Proof
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Structuring a CP Proof

RUP
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Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



RUP
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RUP
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Checking Process:
CiA...,NACpy ND1,...,Dy,
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Checking Process:
CiA...,ACp, NDq,...,D,,, A—=D,
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Checking Process:
CiA...,ACpy NDy,...,D,,, A=D,

'Unit Propagation'

X

Contradiction
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Checking Process:
CiA...,ANCpy NDq,...,Dy,, A—=D,

e

Contradiction
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Checking Process:
CiA...,ACp ADy,...,D,,, A—=D,

e

'Simple, Dumb

Reasoning'
Contradiction
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Structuring a CP Proof

RUP
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Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
o] Jololelele

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof
000000

A —=C

s always false
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Structuring a CP Proof
0900000

—F VvV (C

s always true
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Structuring a CP Proof

RUP
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Structuring a CP Proof

The "Reverse Unit Propagation" Rule
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Structuring a CP Proof

A thing that is RUP:
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Structuring a CP Proof

A thing that is RUP:
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Structuring a CP Proof
OCOe0000

A thing that is RUP:

(RUP) xpg + 2241 + 4xp2 > 3
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A thing that is RUP:

Checking Process:
Tpo + 22p1 + 4Tp2 > 6

(RUP) zpo + 221 + 4xp2 > 3 —Xpo — 2Tp1 — 4Tp2 = —2
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A thing that is RUP:

Checking Process:
ThO) T 2.’1751 Z 2

(RUP) wpo + 2xp1 + 4ap2 > 3 —Th0 — 2Tbl — Ay = —2
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A thing that is RUP:

Checking Process:
Tpo + 22p1 = 2

—Zhp — 4T 2 &
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A thing that is RUP:

Checking Process:
Tpo + 221 = 2

(RUP) zpo + 2241 + 42p2 > 3 —Tpg — 2Th1 = 2
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A thing that is RUP:

Checking Process:
Tpho + 22p1 = 2

—Xpg — 2Tp1 = 2
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Structuring a CP Proof

Proof Logging Backtracking Search
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Structuring a CP Proof

Proof Logging Backtracking Search
X0
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Structuring a CP Proof
0008000

Proof Logging Backtracking Search
X0
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Structuring a CP Proof
0008000

Proof Logging Backtracking Search
X0
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Structuring a CP Proof
0008000

Proof Logging Backtracking Search
X0
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Structuring a CP Proof

Proof Logging Backtracking Search
X0
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Structuring a CP Proof
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Structuring a CP Proof
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Structuring a CP Proof
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Structuring a CP Proof
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Structuring a CP Proof
000®000

+ 1 xlel + 1 x2e2

+ 1 xlel

+ 1 xle2
== 1 &
xlel
xlel
xlel
xle2
xle2

xle2

S R P R RPRRPRRPRRRRRB R @R

12\’ 12X12\,
X X X XX X
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Structuring a CP Proof

rup 1 x@el + 1 xlel + 1 x2el >=1 ;

L7
rup 1 x@el + 1 xlel + 1 x2e2 == 1 ;

rug 1 0el + 1 xlel »=1 3

ruB 1l x@el + 1 xle2 >=1 ;

rup 1 x0el >=1 ;

rua 1 x0e2 + 1 xlel + 1 x2el >= 1 ;
;Lé 1 x0e2 + 1 xlel + 1 x2e2 >= 1 ;
Fdz 1 x0e2 + 1 xlel >=1 ;

rug 1l x0e2 + 1 x1le2 + 1 x2el >=1 ;
rug 1 x@e2 + 1 x1e2 + 1 x2e2 >= 1 ;
rup 1 x0e2 + 1 xle2 >=1 ;

rus 1 x@e2 >= 1 ;

;;é 1 x@e3 >=1 ;

=

rup @ >= 1 ;

"
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Structuring a CP Proof

How do we define all those variables?
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Structuring a CP Proof

How do we define all those variables?
>3 < bits(X) > 3
T<3 < —bits(X) > —3

L=3 <> T>3 —|—LU§3 2

AVARRAY,

Matthew Mcllree
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Structuring a CP Proof
0000800

How do we define all those variables?
(RED) L3 < b’ﬁ:S(X) 0
(RED) r<3 < ——b’its(X) > —3
(RED) -3 < >3+ x<3 > 2

Matthew Mcllree
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How do we define all those variables?

(RED) >3 < bilfS(X) >3
(RED) L= —b?;tS(X) > —3
(RED) z_3 & >3+ x<3 > 2

Redundance-Based Strengthening

Matthew Mcllree
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Structuring a CP Proof

How do we define all those variables?
(RED) >3 < bi?fS(X) >3
(RED) T<3 < —b?;tS(X) > —3
(RED) z_3 & >3+ x<3 > 2
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How do we define all those variables?

(RED) >3 < b’i?fS(X) >3
(RED) L= —b?;tS(X) > —3
(RED) z_3 & >3+ x<3 > 2

Rule that lets us introduce reified
constraints on fresh variables :-)
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Structuring a CP Proof

We need to log justifications every time we infer something.
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We need to log justifications every time we infer something.

reason =— inference
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We need to log justifications every time we infer something.

reason — inference
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We need to log justifications every time we infer something.

reason =— inference
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We need to log justifications every time we infer something.

reason =— inference
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We need to log justifications every time we infer something.

reason — inference
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We need to log justifications every time we infer something.

reason =— inference

Want to derive:

To—1 — Li—9 = 1

Matthew Mcllree
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Structuring a CP Proof
elolelolele] |

Up to this point (the 'rules of the game')
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Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
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Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals

= Write a RUP step at every backtrack
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Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
= Write a RUP step at every backtrack

= (Also log solutions /bounds if proving optimality)
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Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
= Write a RUP step at every backtrack
= (Also log solutions/bounds if proving optimality)

= Interleave derived 'justifications' to account
for constraint propagation
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Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
= Write a RUP step at every backtrack
= (Also log solutions/bounds if proving optimality)

= Interleave derived 'justifications' to account
for constraint propagation
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Justifying Constraint Propagation
@OO0O0CO0O0O0O00O0

Some constraints are really easy
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Justifying Constraint Propagation

Some constraints are really easy
eg. X#Y, Xed{l,...,15},Y € {5}
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Justifying Constraint Propagation

Some constraints are really easy
eg. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5
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Justifying Constraint Propagation

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

(_]U_Stlfy‘?) Ut = g = 1
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Justifying Constraint Propagation
@O0000000000000

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

(RED) y>5 < ypo + 2yp1 + 4yp2 > 5
(RED) y<5 < —ybo — 2yp1 — 4yp2 > —5
(RED) y=5 < y>5 + y<s > 2

(_]UStlfy‘?) Y=k = T—5 = 1

Matthew Mcllree
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Justifying Constraint Propagation

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

T>g5 < Tpo + 2Tp1 +42p2 >

T<s5 < —Tpy — 201 — 40 > —D

) To5 & T>5+ <5 > 2
) g =75 =1

Matthew Mcllree
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Justifying Constraint Propagation

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

Y>5 < Ybo + 2Yp1 + 4Yp2 = 5
Y<s5 <= —Ybo — 2Yp1 — 4Yp2 > —5

€T 5<:>ﬁ?b(]—f—2$bl +4xpe > 5

T<s & —Tpo — 2Tp1 — 4Tp 2

)
)
)
)
)
)

T—p S T>5+ 25 = 2

RUP) Yt —> B 5 =~ 1
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Justifying Constraint Propagation

Other constraints will need more than just RUP
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5AZ2>3=Y <6
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5AZ>3=>Y <6
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Justifying Constraint Propagation

Other constraints will need more than just RUP

X>5AZ>3=Y <6
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +474 <42
(RED) >5 = xpo + 241 + 4p2 + 8xp3 = 5
X>5AZ>3=Y <6
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +42 < 42
(RED) Z>5 = Tpo + 22p1 + 42p2 + 8xp3 > 5
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +42 < 42
(RED) Z>5 = Tpo + 22p1 + 42p2 + 8xp3 > 5

A Z2O0NZL23=X¥ S0 | RED) 253 = 250 + 2251 + 4262 + 8253 > 3
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +42 < 42
(RED) Z>5 = Tpo + 22p1 + 42p2 + 8xp3 > 5

X25/\223:>Y§6 (RED) z23:>zbo—|—2251—|-4252‘|-825323

(RED)
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Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7
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Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7
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Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7

—2:1350 — 4.21’551 — 85[?52 — 161}53

(Axiom) —3yso — 6ys1 — 12yp2 — 24yps
—-4250 = 8251 — 16252 = 32253 Z —42
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Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7

'—'251350 — 4.2751 — 851752 — 1651?53
(Axiom) —3yso — 6ys1 — 12yp2 — 24yps
—4250 = 8251 = 16252 — 32253 Z —42

Recall: Cutting planes allows
us to derive linear combinations
of constraints.
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X >25AZ22>3=Y <6 T>5 => Tpo + 2Tp1 + 4Tp2 + 8Tp3 > 5
- N : 3>< (RED) 2>3 = 2po + 22p1 + 4252 + 82p3 = 3

4x (R Y<6 = Yo + 2Yp1 +4xp2 + 8xp3 > 7

—2.1750 - 4.213(31 — 83352 o 16.’13()3

(Axiom) —3ypo — 6Yp1 — 12yp2 — 24ys3

—42550 = 82551 e 162552 — 32253 2 —42
Recall: Cutting planes allows
us to derive linear combinations
of constraints.
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5ANZ2>3=Y<6 i T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 > 5
- N : o X (B 2>3 = 2p0 + 22p1 + 4252 + 82p3 = 3

4x (R T<6 = Yb0 + 2Ub1 + 4Tpa + 8Tp3 > 7

—23’350 a 43&‘()1 — 811352 — 16:1“3(33

(Axiom) —3ypo — 6yp1 — 12yp2 — 24yp3

_ —42p0 — 82p1 — 1062p9 — 32233 = —42
Recall: Cutting planes allows
us to derive linear combinations

of constraints. (Sum) 107>5 + 12253 + 21y>¢ > 1
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Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5ANZ2>3=Y<6 1 T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 > 5
- N b o LK 2>3 = 2p0 + 22p1 + 4252 + 82p3 = 3

4% (R Y<6 = Yvo + 2Yp1 + 4Tp2 +8xp3 = 7

—23}()0 - 49&‘51 — 83’5‘52 — 16:1“3(33

(Axiom) —3ypo — 6yp1 — 12yp2 — 24yp3

_ _4360 — 8251 — 162’52 - 322’53 2 —42
Recall: Cutting planes allows
us to derive linear combinations

of constraints. (Sum) T>5 A 233 = Y>6
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Justifying Constraint Propagation

Justifying AllIDifferent

Matthew Mcllree

Certified Constraint Programming



Justifying AllIDifferent
Ved{l 4 5

QU W W W
e o i e s
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Justifying AllIDifferent
Ve{l 4 5

(N
Qo W W W
R o i e s
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Justifying AllIDifferent

Ve{ 1l 4 5 }

{ 1 2 3 }
XE { 2 3 }
YE{ 1 3 }
Ze { 1 3 }

R p— ’le A\ ’wgg
NE>2 NT<3 NY>1 NY<3

/\’g_—_g /\ 221 AN 2:2 /\ 253

Matthew Mcllree
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Justifying AllIDifferent

Ve{ 1l 4 5 }

{ 1 2 3 }
XE { 2 3 }
YE{ 1 3 }
Ze { 1 3 }

R = w>1 N w<s
/\3322 /\ L <3 /\ Y>1 £ Yy<3

/\3};2 /\ <>1 /\ 2:2 /N <<3
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Justifying Constraint Propagation

R = w>1 N w<s
/\3322 /\ L <3 /\ Y>1 £ Yy<3

/\3];2 /\ Z>1 /\ 222 7 <<3
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Justifying Constraint Propagation

R = w>1 N w<s
/\3322 /\ L <3 /\ Y>1 A Yy<3

/\?:2 /\ <>1 /\ Zzz £ <<3

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
OO@OO00O000O00O00O000O0C

— W=9 _I_ —TL=9 =
—wog+ —2og + —yog + —23 > 1

R = w>1 A w<s
AT>2 A T<z AY>1 A Y<s (Sum all of the above:) R=-v=21

/\?:2 /\ <>1 /\ Zzz £ <<3
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Justifying Constraint Propagation
OO@OO00O000O00O00O000O0C

— W9 -~ —L9 =
—~ W+ T+ —Y=g+—2_35=—1

R = w>1 A w<s
AT>o A T<z AY>1 A Y<s (Sum all of the above:) R=>-v=21

Alj—5 A Z>1 N Z—2 /N 2<3 (Literal axiom:)
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Justifying Constraint Propagation

— =g ~ —F—2 =
—W_g+-—-_3+—-y_3g+—2_32-—1

R = w>1 A w<s
AT>2 A T<3z AYy>1 A Y<s (Sum all of the above:) R=>-v=21

=5 A\ T N B—2 /N 2<3 (Literal axiom:)

(Add:)

Matthew Mcllree
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Justifying Constraint Propagation

The Circuit constraint
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Justifying Constraint Propagation

The Circuit constraint

XO)"'aXn—l
{0,...,n—1}
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Justifying Constraint Propagation
ololel [ololololeleleololale

The Circuit constraint

Circuit(Xo, ..., Xp_1)
{0,...,n— 1}
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Justifying Constraint Propagation

The Circuit constraint

CiI’CUit(X(), Xl, XQ, Xg, X4, X5)
{0,...,n—1}
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Justifying Constraint Propagation

The Circuit constraint

CirCUit(X(), Xl, XQ, Xg, X4, X5)
10,1,2,3,4,5}
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Justifying Constraint Propagation

The Circuit constraint
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Justifying Constraint Propagation
0000000000000

The Circuit constraint
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Justifying Constraint Propagation
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Justifying Constraint Propagation

The Circuit constraint
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Justifying Constraint Propagation

Enforcing Circuit:

o ® O

. © O
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Justifying Constraint Propagation

Enforcing Circuit:

= ® O

. © ©
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Justifying Constraint Propagation

Enforcing Circuit:

® O

AIIDIff(Xo, X1, Xa, X3, X4, X5) @ @

O ©
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Justifying Constraint Propagation

Enforcing Circuit:

O=0

O
folc

AlDIfF(Xo, X1, X2, X3, X4, X5
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Justifying Constraint Propagation

Enforcing Circuit:

O=0

O
o0

AlDIfF(Xo, X1, X2, X3, X4, X5

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

O=0

O
folc

AlDIfF(Xo, X1, X2, X3, X4, X5
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Justifying Constraint Propagation

Enforcing Circuit:

AlIDiff( X, X1, X2, X3, X4, X5) @/—\
Nocyde(XOa Xla X25 X3a X4a X5)

folc
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Justifying Constraint Propagation

Enforcing Circuit:

@—s

ANDIfF(Xo, X1, Xo, X3, X4, X5)
NOCyCIe(X()a Xla X27 X37 X47 X5)

—)
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Justifying Constraint Propagation

Consistency for Circuit:

£ ® O

X ORNO
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Justifying Constraint Propagation

Consistency for Circuit:

= ® O

. © ©
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Consistency for Circuit:

Xo € {0,1,2,5} @ @

X1 - {2, 3}

X5 € {0,2,5} @ @

X3 € {2, 4, 5}

X4 € {1} (1D G)

X5 € {O, a4, 5}
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Consistency for Circuit: '
X € {0,1,2,5} 9 o
X; €4{2,3) "
Xo € {O, 2, 5} e \ @’
X5 € {2,4,5) QA
X4 € {1} (4 e

X5 € {0,3,4,5}
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Consistency for Circuit: '
X € {0,1,2,5} 9 o
X; €{2,3) "
Xo € {O, 2, 5} e \ @’
X5 € {2,4,5) \\
X4 € {1} (4 e

X5 € {0,3,4,5}
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Consistency for Circuit:

Xo € {5} 9 o

X1 € {2, 3}

Xo € {O} e
X3 €42,5}
X4 e {1} (4 O

X5 € {3, 4}
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Justifying

Constraint Propagation
000000000

(Partial) Consistency for Circuit

16 Constraints (2014) 19:1-29

root
1=n+1 1=n+1

start1 /—)\ \encﬂ y start1 \encn
b\‘_ i"/ 4 (<

y

length 1=4 il are GG other situation:
length a=2 > ar:har 5':& gk d unless n=8, the arc
length b=2 BIC etlinIemaye end1->a is removed

(b)

Figure 1: Propagation of the nocycle constraint

- If x=end; and length;+lengthy<n-2 we infer Next(b) # start} .

- If y=start; and length;+length,<n-2 we infer Next(end]) # a
- Otherwise, we infer Next(b) #a .

Caseau, Y. and Laburthe, F., 1997, July.

Solving Small TSPs with Constraints. In ICLP (Vol. 97, p. 104).

Matthew Mcllree

Certified Constraint Programming

Fig. 5 a The SCC exploration graph for circuit starting from root. At least one (thick) edge from
A to the root, from D to C, C to B, and B to A must exist (rule 1). Backwards (dotted) edges to the
root from B, C or D cannot be used (rule 1). The (thin-dashed) edges from C to A and D to B cannot
be used (rule 2). The (thick-dashed) edges leading from root to A, B and C cannot be used (rule 3).
b Ilustration of prune-within (rule 4). The edge from x to a cannot be used otherwise we cannot
escape the subtree rooted at a (dark grey). We need to enter the subtree from elsewhere

Francis, K.G. and Stuckey, P.J., 2014.
Explaining circuit propagation. Constraints, 19, pp.1-29.
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Circuit PB Encoding
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Justifying Constraint Propagation

Circuit PB Encoding

R s
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Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex i relative to 0
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Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex i relative to 0
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Justifying Constraint Propagation
oJololelolele] Jolelelolole

Circuit PB Encoding

bits(P;) := Position of vertex i relative to 0
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Justifying Constraint Propagation
oJololelolele] Jolelelolole

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0
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Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0
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Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0
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Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0
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Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0
For each X;,j € dom(X;) j # 0 :
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Justifying Constraint Propagation

Circuit PB Encoding
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Justifying Constraint Propagation

Circuit PB Encoding
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Justifying Constraint Propagation

Circuit PB Encoding
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Justifying Constraint Propagation

Circuit PB Encoding
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

T3—g4 = bits(Py) = bits(P3;) + 1
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Justifying Constraint Propagation
~NOOOO0O0000000

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Tyg—2 — b?:tS(PQ) —: bitS(PqE) + 1
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Justifying Constraint Propagation
~NOOOO0O0000000

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Typ—9 — b’itS(Pg) — bitS(P4) + 1

Cutting planes addition:

Matthew Mcllree
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

r3—q4 = bits(P,) = bits(Ps3) + 1

Ly—o9 — biiS(PQ) — biﬁS(P4) + 1

Cutting planes addition:

To—3 N\ T3=4 \ Ty—9 — b%tS(Pg) — bitS(Pg) = b?:tS(P4)
—b%f&(Pd) =+ b?:tS(Pg) = b&tS(P4)1 +1+1
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Ta—n —> b’itS(Pg) p— biﬁS(Pgl) + 1
Cutting planes addition:

To—% NEg—g N Bi—g = =3
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Typ—9 — b’itS(Pg) — bitS(P4) + 1

Cutting planes addition:

To—a \ Ba—u NV Ti=2
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Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Typ—9 — b’itS(Pg) — bitS(P4) + 1
Cutting planes addition:

T2—=3 N\ L3=4 —=> T4=2
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Justifying Constraint Propagation

SCC Propagation
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Justifying Constraint Propagation

SCC Propagation

If AIIDiff is enforced:
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Justifying Constraint Propagation
OO000000e00000

SCC Propagation

If AlIIDiff is enforced:

No subcycles
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Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

—
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Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

e

All vertices part of one cycle
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Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

e

All vertices part of one cycle

<
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Justifying Constraint Propagation

SCC Propagation

If AlIDiff is enforced:
No subcycles
—

All vertices part of one cycle

<

Every vertex reachable from every vertex
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Justifying Constraint Propagation

SCC Propagation

If AlIDiff is enforced:

No subcycles

—

All vertices part of one cycle

—

Every vertex reachable from every vertex

<
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Justifying Constraint Propagation

SCC Propagation

If AlIDiff is enforced:
No subcycles
—

All vertices part of one cycle

-
Every vertex reachable from every vertex

>

One one strongly connected component
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Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

e

All vertices part of one cycle

—
Every vertex reachable from every vertex

>

One one strongly connected component
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Justifying Constraint Propagation

SCC Propagation
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Justifying Constraint Propagation

SCC Propagation
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Justifying Constraint Propagation

SCC Propagation

ReachTooSmall( 0O )
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Justifying Constraint Propagation

SCC Propagation

ReachTooSmall( 0O )
{Py} =0
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SCC Propagation

ReachTooSmall( 0O )
{Py} =0




SCC Propagation

ReachTooSmall( O )
{Po} =0
{P,Ps} =1
{Py, P, P} =2




SCC Propagation

ReachTooSmall( O )
{Po} =0
{P,Ps} =1
{Py, P, P} =2

{Py, P1,Ps} =3
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SCC Propagation

ReachTooSmall( O )
{Po} =0
{P,P} =1
{Py, P, P5} =2

{Py, P1,Ps} =3
G = 02>1
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Justifying Constraint Propagation

SCC Propagation
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Justifying Constraint Propagation

SCC Propagation
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Justifying Constraint Propagation

SCC Propagation

c1 —> ReachTooSmall( v )
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Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Further Propagation Rules

©
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Justifying Constraint Propagation

Further Propagation Rules
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Further Propagation Rules
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Justifying Constraint Propagation

Further Propagation Rules
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Further Propagation Rules
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Further Propagation Rules

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules
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Justifying Constraint Propagation
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Justifying Constraint Propagation
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Justifying Constraint Propagation
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Justifying Constraint Propagation
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Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'
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Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'
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Further Propagation Rules: 'Prune Root'
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Further Propagation Rules: 'Prune Root'
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Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'
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Justifying Constraint Propagation

) { Y Y . "
LALUIIL) L
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A
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Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'
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Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'
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Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'
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Further Propagation Rules: 'Prune Skip'
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Further Propagation Rules: 'Prune Skip'
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Further Propagation Rules: 'Prune Skip'
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Justifying Constraint Propagation
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Justifying Constraint Propagation
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Justifying Constraint Propagation

rs—3 A a; =—> ReachTooSmall(1)

rg—3 /\ as —> ReachTooSmall (4)
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Justifying Constraint Propagation

rs—3 A a; = ReachTooSmall(1)

rgs—3 N\ aos —> ReachTooSmall(4)
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Justifying Constraint Propagation

rs—3 A a; = ReachTooSmall(1)

rgs—3 AN as —> ReachTooSmall(4)
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Justifying Constraint Propagation

So Far
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Justifying Constraint Propagation

So Far

= All Different
= Equals/Not equals

= Array MinMax

= Element

= (Reified) Linear (In)equalities
= Logical (and/or)

= Table

= NValue

= Count

= Among
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Justifying Constraint Propagation

So Far And lately:

= All Different = Circuit*

= Equals/Not equals = Multiplication*(somewhat awkard but doable)

= Array MinMax = Any constraint with an efficient 'Smart Table' representation™
= Element (e.g. Lex, Diffn, Notallequal)

= (Reified) Linear (In)equalities = Any constraint with an efficient MDD representation™

= Logical (and/or) (e.g. Knapsack, Regular)

. Table = (Lately) Any constraint with a Network Flow Propagator
or Totally Unimodular ILP relaxation
= NValue
(e.g. GCC, Inverse, Sequence)
= Count
= Among
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Justifying Constraint Propagation

So Far And lately:

= All Different = Circuit*

= Equals/Not equals = Multiplication*(somewhat awkard but doable)

= Array MinMax = Any constraint with an efficient 'Smart Table' representation™®
= Element (e.g. Lex, Diffn, Notallequal)

= (Reified) Linear (In)equalities = Any constraint with an efficient MDD representation™

= Logical (and/or) (e.g. Knapsack, Regular)

= Table = (Lately) Any constraint with a Network Flow Propagator
or Totally Unimodular ILP relaxation
= NValue
(e.g. GCC, Inverse, Sequence)
= Count o |
*Citations available on request :-)
= Among
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Justifying Constraint Propagation

vec_eq_tuple
visible
welghted partial_alldiff

X0or
Zero_or. not._zero
Zero_or.not. zero_.vectors
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Further Challenges
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Further Challenges
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Further Challenges

Further Challenges

= Painful overheads on top of solving

Matthew Mcllree

Certified Constraint Programming



Further Challenges

Further Challenges

: - @ 25 4 —— y = 20x g
= Painful overheads on top of solving > e
> 20 e 7
5 15 o @ ;f"j ®
S <.
2 10 *’” i
2 & o &"‘. M P
g w.:.’ - il
F 0 .
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Further Challenges
L 1)

Further Challenges

= Painful overheads on top of solving

= (Can be) difficult to implement

Time with proof logging (s)

0.00 0.25 050 0.75 1.00 1.25
Time without proof logging (s)
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Further Challenges

Further Challenges

= Painful overheads on top of solving
= (Can be) difficult to implement

= Verification overhead

Time with proof logging (s)

I | I | I 1
000 0.25 050 0.75 1.00 1.25

Time without proof logging (s)
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Further Challenges

Further Challenges

= Painful overheads on top of solving
= (Can be) difficult to implement

= Verification overhead

= Trusting the PB Encoding (or the

Time with proof logging (s)

. e ] . l | | I | I |
verifiers's input more broadly) SA5 S5 GED BTE A0 G

Time without proof logging (s)
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Further Challenges
oe

Multi-Stage Proof Logging, 2024

A Multi-Stage Proof Logging Framework to
Certify the Correctness of CP Solvers

Maarten Flippo &

Delft University of Technology, The Netherlands

Konstantin Sidorov &
Delft University of Technology, The Netherlands

Imko Marijnissen &
Delft University of Technology, The Netherlands

Jeff Smits &
Delft University of Technology, The Netherlands

Emir Demirovi¢ &
Delft University of Technology, The Netherlands

——— Abstract

Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However,
to this date, no constraint programming solver can practically produce proofs without significantly
impacting performance, which hinders mainstream adoption. We address this issue by introducing a
novel proof generation framework, together with a CP proof format and proof checker. Our approach
is to divide the proof generation into three steps. At runtime, we require the CP solver to only
produce a proof sketch, which we call a scaffold. After the solving is done, our proof processor trims

and expands the scaffold into a full CP proof, which is subsequently verified. Our framework is
agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate
that with our framework, the overhead of logging during solving is often less than 10%, significantly
lower than other approaches, and that our proof processing step can reduce the overall size of the
proof by orders of magnitude and by extension the proof checking time. Our results demonstrate
that proof logging has the potential to become an integral part of the CP community.

2012 ACM Subject Classification Mathematics of computing — Combinatorial optimization; Theory
of computation — Logic and verification
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Further Challenges

Multi-Stage Proof Logging, 2024
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——— Abstract
Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However, = -

to this date, no constraint programming solver can practically produce proofs without significantly

impacting performance, which hinders mainstream adoption. We address this issue by introducing a t h e n t h e n f ' | | I n
novel proof generation framework, together with a CP proof format and proof checker. Our approach

is to divide the proofl generation into three steps. At runtime, we require the CP solver to only - -

produce a proofl sketch, which we call a scaffold. After the solving is done, our proof processor trims

and expands the secaffold into a full CP proof, which is subsequently verified. Our framework is e e r I V a I O n S -
agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate

that with our framework, the overhead of logging during solving is often less than 10%, significantly

lower than other approaches, and that our proof processing step can reduce the overall size of the

proof by orders of magnitude and by extension the proof checking time. Our results demonstrate
that proof logging has the potential to become an integral part of the CP community.
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Conclusions

If nothing else

= Proof logging is worth doing, generally speaking.

= Constraint Programming Solvers have a huge potential
to be turned into certifying algorithms.

= Pseudo-Boolean proof logging seems to be very effective
for a wide range of constraint propagation algorithms.

= In particular, high-level constraint reasoning can be reduced to
simple steps in a (relatively) simple proof system.
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Conclusions

Open Questions

= Are there going to be CP constraints fundamentally difficult for
PB justifications?

= Can we integrate low-level proofs with external trusted justifiers?
= How else can we encourage uptake in the CP community?

= How can we get faster logging, proof trimming, faster checking?
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