Pl

Certified Constraint Programming a| University
Matthew Mcllree fGlasgow

2nd WHOOPS/EuroProofNet Workshop on Automated Reasoning

. =3
and PI"OO'F Logglng, /§ Royal Academy
13th September 2025 //@ of Engineering

'!; ﬁ‘
P
’ n
pL e g
LR T I e e
E * o —H’ o - . e
"!“.‘-'-fa W ] g 1
L] ;‘—--"'-’-l- -..-—:-——-
i .
'y I i
i mr o L
(T
i ™
ED
g .Y o nowe " -
1 B i
‘ | il
gy ui
~1
. - .
e T z
- I'
: we 2 .
N -
o !

&



Background

Constraint Programming (CP)

Matthew Mcllree

Certified Constraint Programming



Background
@®00000

Constraint Programming (CP)

Variables

Matthew Mcllree

Certified Constraint Programming



Background
@®O00000

Constraint Programming (CP)

Variables Domains

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions

P N TV VT P T aTaTaTala W e W W i W T e W W o~ Y i
@O0000 QOO0 0000000 DOOOOOOO0O0C0O0O0O0 QOO0 L0

Constraint Programming (CP)

Variables Domains Constraints

Matthew Mcliree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions

P T T g W N P e YT TaTeaTaTaTaTaTaTaTaTaY T — F Y i
9O0000 QOO0O0O0O0) OOCO00000 OO0O0O0OOO0O000000 0 QU

Constraint Programming (CP)

Variables Domains Constraints

X
Y
Z
o

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions

P o ¥ i W e T i T e ¥ i N N W T W e W i W W i ¥ T i T amn W amW o T anT any o P ."'".I oy
®O0000 LOLOLOO OO00000 QOOOOQOLOOO0LO0O0O0O Lo

Constraint Programming (CP)

Variables Domains Constraints

X dom(X)
dom(Y)

Y
A dom(Z)
W dom(W)

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
W i W e W i T e O e O e O o W ,——-.I P i ¥ s 7

Constraint Programming (CP)

Variables Domains Constraints
X dom(X) C(X,Y)
Y dom(Y) B(Z,W)
VA dom(Z) DX, W, Z)
W dom (W) EX,Y,Z, W)

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions

9O00C00

O00000 OO000000 OQOO000000000000

Constraint Programming (CP)
Variables Domains Constraints

X (0,1} X VY

ZNW
10,1} XVv-WVZ

Y
VA 10,1} X VaYVZVW
W {0,1}

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings

9O0000 O00000

Constraint Programming (CP)

Variables Domains Constraints
X R X +3Y >1
Y R Z — W <0

X+W4+24=2
Z R 2X +9Y
1% 4 _Z43W >4

Matthew Mcllree

Certified Constraint Programming



Constraint Programming (CP)

Variables Domains Constraints
X 1..5) X #3Y
Y —8.7] Zx W =5
AllDifferent( X, W, Z)
2..0
Z [ ] 2X +dY
% —2..6]

—/Z +3W >4

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions

'. l::_-,i' OO0

Constraint Programming (CP)

Variables Domains Constraints

X [1..5] X #3Y

Y =3 ZxW =5
Z [2 6] AllDifferent(X, W, Z)
|44

2X +9Y
—/Z +3W >4

Objective Variable or Function max /

Matthew Mcllree

Certified Constraint Programming



Background

Matthew Mcllree

Certified Constraint Programming



Bac

kground
o] lelelele

Inference

Matthew Mcllree

Certified Constraint Programming



Bac

kground
o] lelelele

Inference Search

Matthew Mcllree

Certified Constraint Programming



Bac

kground
o] lelelele

Inference Search
X=Y 472

Matthew Mcllree

Certified Constraint Programming



Inference Search

X =Y +2
Y € {2,4,5,7}

Matthew Mcllree

Certified Constraint Programming



Inference

X =Y +2
Y € {2,4,5,7}

Domain Consistency
— "Poking Holes"

Matthew Mcllree

Certified Constraint Programming

Search



Inference Search

X =Y +2
Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

X €{3,4,5,6,7,8,9,10,11}

Matthew Mcllree

Certified Constraint Programming



Inference Search

X =Y +2
Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

X €{3.4,5.6,7,8,9, }

Matthew Mcllree

Certified Constraint Programming



Inference

X =Y +2
Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

Xe{14°6,7,°09,

Bounds Consistency
= ""Narrowing Min/Max"

Matthew Mcllree

Certified Constraint Programming

Search



Inference Search

X =Y +2
Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

Xe{4,56,7,-.9, }

Bounds Consistency
= ""Narrowing Min/Max"

X €1{3,4,5,6,7,8,9,10,11}

Matthew Mcllree

Certified Constraint Programming



Inference Search

X =Y +2
Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

Xe{4,56,7,-.9, }

Bounds Consistency
= ""Narrowing Min/Max"

X €{5.4,5,6,7,8,9, !

Matthew Mcllree

Certified Constraint Programming



='Enforcing consistency'/
'Propagating Constraints' Sea rch

X =Y +2
Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

Xe{:14,°6,7,5.09, }

Bounds Consistency
= ""Narrowing Min/Max"

X e€{.4,5,6,7,8,9, !

Matthew Mcllree

Certified Constraint Programming



='Enforcing consistency'/
'Propagating Constraints' Sea rCh
X =Y +2 Backtracking Search

Y € {2,4,5,7}

Domain Consistency
= "Poking Holes"

Xe{:14,°6,7,2.09, }

Bounds Consistency
= ""Narrowing Min/Max"

X e€{.4,5,6,7,8,9, !

Matthew Mcllree

Certified Constraint Programming



Propagating Constraires Search
X =Y +2 Backtracking Search
Y € {2,4,5,7} /X\
Domain Consistency X Xi X

= ""Poking Holes" 12/ \ A\
X €{3,4,5,6,7,8.9, } { R S S B

Bounds Consistency
= ""Narrowing Min/Max"

X e€{.4,5,6,7,8,9, !

Matthew Mcllree

Certified Constraint Programming



Propagating Constrairee Search
X =Y +2 Backtracking Search
Y € {2,4,5,7} /X\
Domain Consistency X X, X

= "Poking Holes" /\ A\
X e{3.4,5.6,7,5.9, } (R Y R i B

Bounds Consistency
= "Narrowing Min/Max" (Conflict-Driven Search)

X e€{.4,5,6,7,8,9, !

Matthew Mcllree

Certified Constraint Programming



Propagating Constrairee Search
X =Y +2 Backtracking Search
Y € {2,4,5,7} /X\
Domain Consistency X X, X

= "Poking Holes" /\ A\
X e{3.4,5.6,7,5.9, } (R Y R i B

Bounds Consistency
= "Narrowing Min/Max" (Conflict-Driven Search)

X € { 3y 0,0, 1,8, 9, } (Local Search)

Matthew Mcllree

Certified Constraint Programming



Propagating Constrairee Search
X =Y +2 Backtracking Search
Y € {2,4,5,7} /X\
Domain Consistency X X, X

= "Poking Holes" /\ /A
X e{3.4,5.6,7,5.9, } (R Y R W B

Bounds Consistency
= "Narrowing Min/Max" (Conflict-Driven Search)

X e 45,6,7,8,9, h (Local Search)

Matthew Mcllree

Certified Constraint Programming



Background
el lelele

What we want:

Matthew Mcllree

Certified Constraint Programming



Background

What we want:

Problem
Description

Matthew Mcllree
Certified Constraint Programming




Background

What we want:

CP Solver

&

Problem
Description

Matthew Mcllree
Certified Constraint Programming




Background

What we want:

C P So|ver Untrusted

Answer

Problem
Description

o

Matthew Mcllree
Certified Constraint Programming




Background

What we want:

Untrusted
CP Solver Ansveer

Problem
Description

o

Matthew Mcllree
Certified Constraint Programming




Background

What we want:

Untrusted
CP Solver Ansueer

Independent
| Proof

Checker

Problem
Description

Matthew Mcllree
Certified Constraint Programming



Background

Related Work

Matthew Mcllree

Certified Constraint Programming



Background
00O

Related Work

A Proof-Producing CSP Solver

Michael Veksler and Ofer Strichman

myveksler@ix.technion.ac.il

ofers@ic.technion.ac.il

Information systems Engmeering, 1B, Technion, Haifa. Israel

Ahstract

PCS s a CSP solver that can produce a machine-checkable
deductive proof in case it decides that the inpul problem is
unsatisfiable. The roots of the proof may be nonclousal con
sirannis, whereas the rest of the proal 12 based on resolution
of signed clauses, ending with the empty clause, PCS uses
parameterized, constraini-specific inleremoe rules in onder o
bridge between the nonclousal and the clousal parts of the
procd, The consequent of each such rule is o signed closse
that is 1) logically implied by the nonclausal premise, and
21 strong enoygh fo be the premise of the consecuve prood
steps. The resolution process itsell is integrated in the: leam-
ing mechanisem, and can be scen a8 a peneralization o C5F of
a skimilar solution that s adopted by competilive SAT solvers

1 Introduction

Many problems in planning, scheduling, sutomatic test-
gencration, confignration and more, can be naturally mod-
eled s Constraint Satisfaction Problems (CSPY (Dechier
2063}, and solved with one of the many publicly available
CSP solvers, The common definition of this problem refers
to @ set of variables over finite and discrete domauns, and ar-
hitrary constraints over these variables, The goal is to decide
whether there is an assignment to the variables from their re-
spective domains, which satisfies all the construints. If the
answer | positive the assignment that is emitted by the CSP
solver can be verified easily, On the other hand a negative
answer 15 harder 1o verify, since current CSP solvers do not
produce a deductive proof of wnsatisfiability.

In contrast, most modern CNE-based SAT solvers accom-
pany an unsatisfability result with a deductive proof that can
be checked sutomatically. Specifically, they produce a nes-
oluion proof, which is a sequence of application of a single
inference rule, numely the binary resolusion rule. In the case
of SAT the proof hus uses olher than just the ability to inde-
pendently validate an unsatisfiability result. For example,
there is n successiul SAT-based model-checking algonthm
which is based on deriving interpolants from the resolution
proof (Henzinger et al, 2004},

Unlike SAT solvers, CSP solvers do not have the lux-
ury of handling clavsal consiraints. They need o han-
dle construinis such as a < b+ 5, allDiffereni{x. v.z), a o

Copyright ( 110, Association for the Advancemsent of Artificial
Intelligence (www.nasiorg). All righis reserved

Matthew Mcllree

b, and %0 on. However, we argue that the effect of a
constrainl in o given stale can always be replicated with
a signed clanse, which can then be part of a resolution
proof. A signed clavse is a disjunction between signed
fitgrals. A signed lileral is o unary constranl, consrin-
ing a variable to a domain of values, For example, the
signed clause () € {1,2} vz & {3}) constrains’ x; 1o be
in the range [1,2] or x3 to be anything but 3. A conjunc-
tion of signed clauses is called signed CNF, and the prob-
lem of solving signed CNF is called signed SATZ, a prob-
lem which attracted extensive theoretical research and de-
velopment of tools (Liv, Kuehlmann, and Moskewicz 2003,
Becken, Hithnle, and Manyd 2000b)

In this anticle we describe how our arc-consistency-based
CSP solver PCS (for a "Proof-producing Constraint Solver'™)
produces deductive proofs when the formula is unsatisfiable
In order to account for propagations by general constraints
it uses constraint-specific parametric inference mles. Each
such rule has o constradnl as a premise and a signed clause as
a consequent. These consequents, which are generated dur-
ing conflict analysis, are called explanation clauses, These
clauses are logically tmplicd by the premise, bt are also
strong enough 1o imply the same literal that the premize im-
plies at the current state, The emitted proof is a sequence of
inferences of such clauses and application of special resolu-
tion rules that are tailored for signed clauses

Like in the case of SAT, the signed clavses that are learned
as @ result of analyzing conflicis serve a5 ‘milestone” sloms
in the proof, although they are nod the oaly ones, They are
generated by a repeated application of the resolution rule
The intermediate clauses that are generated in this process
are discarded and hence have no effect on the solving pro-
cess itselll In case the learned clause eventually participates
in the proef PCS reconstructs them, by using information
that it saves during the leaming process. We will describe
this conflict-analysis mechanism in detail in Section 3 and 4,
and compare it to alternatives such as 1-UIP (Zhang e1 al
2001, MVS (Liv, Kuehlmann, and Moskewicz 2003) and
EFC (Katsirelos and Bocchus 2005) in Section 5. We begin,
however, by describing several preliminaries such as CSP

s . q {12 ;
" Alternative notations such as | 1,2} and x| ™" are used in
the liveratare 1o denote @ signed literal xy = {1,2}

*Signed SAT is also called MV-SAT (ie, Mony Valsed SAT)

Certified Constraint Programming

Certifying Optimality in Constraint Programming

GRAEME GANGE, Monash University
GEOFFREY CHU, Datat1, CSIRO
PETER ), STUCKEY, Monash University

Driscrete optimization problems are one of the most challenging class of problems to solve, they are typically NP-
hard. Complete solving approaches Lo these problems, such as integer programming or constraint programming,
are able to prove optimal selutions. Since complete solvers are highly complex software objects, when a solver
returns that it has proved optimality, how confident can we be in this result? The short answer is nof very,
Constraint programming (CF) solvers can hide difficult to observe bugs because they rely on complex state
maintenance over backiracking

In this paper we develop a strategy for validating unsatisfiability and optimality results. We extend a lazy
clause generation CP solver with proof-generating capabilities, which is paired with an external, formally
certified proof checking procedure. From this, we derive several proof checkers, which establish different
compromises between trust base and performance. We validate the practicality of this approach by verifying
the correctness of alleged unsatisfiability and optimality results from the 2016 MiniZine challenge.

CCS Concepls: » Theory of computation — Constraint and logic programming; Discrete optimization;
+ Software and its engineering —+ Software verification; - Computing methodologies — Theorem
proving algorithms;

Additienal Key Words and Phrases: constraint programming. certified code, verification, Boolean satisfiability

ACM Reference Format:
Graeme Gange, Gealfrey Chu, and Peter |. Stuckey. 2023, Certifying Optimality in Constraint Programming.
1.1 tSL']:lll.'mber 2023), 3% pages. hitps dobarg/' 10,1145/ nnnnnnn. Annnnmnn

1 INTRODUCTION

Discrete optimization problems arise in a vast range of applications: scheduling, rostering, routing,
and management decision. These problems frequently arise in mission critical applications; am-
bulance dispatch [40], E-commerce [28] and disaster recovery [47], amongst others - situations
where mistakes can have disastrous consequences. Since the results of the oplimization problems
are critical to the industry to which they belong, when we use optimization technology to create
solutions we wish to be able to trust the results we obtain. Optimization tools are also seeing
increasing use in combinatorics, where an incorrect result fundamentally undermines the entire
endeavor.
Twa kinds of error can occur:
# a "solution” returned by the solver does not satisfy the problem
# a claimed optimal solution returned by the solver is not in fact optimal

Authors” addresses: Graemse Gange, Paculty of Information Technology, Monash University, graeme. gangeidmonashedu;
Geaffrey Cha, Datas1, CSIRO, chu gn!lflf?'[l:l\gjlhll.{mlll.. Peter |, Stuckey, Paculty of Information Th!umln::gp. Monash

University, pelerstuckey@monashedu.

Perensasion o nsake d;;lm. of haed copbes nf|ur|: ar afl of this work for |\a,-rwn;|l 0F clagsoan w18 gr.1|||n1 withont fee
provided that coples are not made or distributed for profit or comanercial advantage and that coples bear this notice and
the full citation on the frst page. Copyrights for thind-party components of this work must be honored. For all other uses,
contact the owner/aathor(s).

2 2023 Copyright held by the owner/author(s)

XOO00-0000 2025 /9-ART

Vol 1, Mo 1, Article . Publication dale: September 2023




Background

Related Work

A Proof-Producing CSP Solver

Michael Veksler and Ofer Strichman

mveksler@ix.technion.ac.il

ofers@ic.technion.ac.il

Information systems Engineering, 1E, Technion, Haifa, Israe]

Ahstract

PCS s a CSP solver that can produce a machine-checkable
deductive proof in case it decides that the input problem is
unsatisfiable. The roots of the proof may be nonclausal con-
sirainis, whereas the nest of the prool is based on resolution
of signed clauses, ending with the empty clause. PCS uses
parametenized, constraini-specific inferenoe rules in onder o
bridge between the nonclausal and the clausal parts of the
proof. The consequent of ench such rule is a signed closse
that is 1} logically implicd by the nonclausal premise, and
21 strong encugh to be the premise of the consecutive pnmd'
steps. The resolution process itsell is inscgrated in the: leam-
ing mechanism, and can be seen a8 a generalization o CSF of
a similar solution that is adopted by competitive SAT solvers.

1 Introduction

Many problems in planning, scheduling, automatic tesi-
generation, configuration and more, can be naturally mod-
eled as Constraint Satisfaction Problems (CSF) (Dechier
2003}, and solved with one of the many publicly available
CSP solvers. The common definition of this problem refers
to a st of vartables over finite and discrete domains, and ar-
hitrary constraints over these variables, The goal is to decide
whether there 15 an assignment (o the variables from their re-
spective domains, which satisfies all the construints. If the
answer |5 positive the assignment that is emitted by the CSP
solver can be verified easily, On the other hand a negative
answer i3 harder to verify, since current CSP solvers do not
produce a deductive prool of unsatisfability.

In contrast, most modern CNEF-based SAT solvers accom-
pany an unsatisfability result with a deducive proof thit can
be checked automatically, Specifically, they produce a res-
olurion proof, which is a sequence of application of a single
inference rule, namely the binary resclusion rule. In the case
of SAT the proof has uses other than just the ability to inde-
pendently validate an unsatisfiability result. For example,
there is a successful SAT-based model-checking algorithm
which is based on deriving interpolants from the resolution
proof (Henzinger et al, 2004).

Unlike SAT solvers, CSP solvers do not have the lux-
ury of handling clausal constraints. They need to han-
dle construinis such as a < b+ 5, allDifferent(x. .z}, a &

2010, Asscciation for the Advancement of Artificial
Intelligence (www,aaziong), All rights reserved

Matthew Mcllree

b, and s0 on. However. we argue that the effect of a
constraint in a given stale can always be replicated with
a gigned clause, which can then be part of a resolution
proof, A signed clause iz a disjunction between signed
lirerals. A signed literal is a unary construinl, constrain-
ing a variable to a domain of values, For example, the
signed clause (z; & {1,2} vz @ {3}) consirains’ x; o be
in the range [1.2] or x3 to be anything but 3. A conjunc-
tion of signed clauses is called signed CNF, and the prob-
lem of solving signed CNF is called signed SAT?, a prob-
lem which artracted extensive theoretical research and de-
velopment of tools (Liv, Kuehlmann, and Moskewicz 2003,
Becker:, Hihnle, and Manyd 2000b),

In this article we describe how our arc-consistency-based
CSP solver PCS (for a "'Proof-producing Constraint Solver'™)
produces deductive proofs when the formula is unsatisfiable.
In arder to account for propagations by general constraints
it uses constraint-specific parametric inference rules. Each
such rule has 4 constraint as a premise and a signed clause as
a consequent. These consequents, which are gencrated dur-
ing conflict analysis, are called explanation clauses, These
clavses are logically implied by the premise, but are also
strong enough 1o imply the same literal that the premise im-
plies at the current state, The emitted proof is a sequence of
inferences of such clauses and application of special resolu-
tion rules that are tailored for signed clauses,

Like in the case of SAT, the signed clauses that are learned
as a result of analyzing conflicts serve as ‘milestone” atoms
in the proof, although they are not the only ones, They are
generated by a repeated application of the resolution rule.
The inmermediate clauses that are generated in this process
are discarded and hence have no effect on the solving pro-
cess itsell, In case the learned clause eventually participates
in the proof PCS reconstructs them, by using information
that it saves during the leamning process, We will describe
this conflict-analysis mechanizm in detail in Section 3 and 4,
and compare it to alternatives such as 1-UIP (Zhang ¢t al
20013, MVS (Liu, Kuehlmann, and Moskewicz 2003) and
EFC (Katsirelos and Bacchus 2005) in Section 5. We begin,
however, by describing several preliminaries such as CSP

! Albernative nosations sisch as {1, 2} and 1" are used in
the literature 1o denote & signed literal xy & {1,2}
*Signed SAT is also called MV-SAT (i.e. Many Valued SAT)

Certified Constraint Programming

Certifying Optimality in Constraint Programming

CGRAEME GANGE, Monash University
GEOFFREY CHU, Datas1, CSIRO
PETER . STUCKEY, Monash University

Discrete optimization problems are one of the most challenging class of problems to solve, they are typically NP-
hard. Complete solving approaches to these problems, such as integer programming or constraint programming,
are able to prove optimal selutions. Since complete solvers are highly complex software objects, when a solver
returns that it has proved optimality, how confident can we be in this result? The short answer is nof very,
Constraint programming (CF) solvers can hide difficult to observe bugs because they rely on complex state
maintenance over backiracking.

In this paper we develop a strategy for validating unsatisfinbility and optimality results. We extend a lazy
clause generation CP solver with proof-generating capabilitics, which is paired with an external, formally
certified proof checking procedure. From this, we derive several proof checkers, which establish different
compromises between trust base and performance. We validate the practicality of this approach by verifying
the correctness of alleged unsatisfiability and optimality results from the 2016 MiniZine challenge.

CCS Concepts: » Theory of computation — Constraint and logic programming; Discrete optimization;
= Software and its engineering —+ Software verification; - Computing methodologics —+ Theorem
proving algorithms;

Additional Key Words and Phrases: constraint programming, certified code, verification, Boolean satisfability

ACM Reference Format:
Graeme Gange, Geoffrey Chu, and Peter |. Stuckey. 2023, Certifying Optimality in Constraint Programming.
1.1 [Su]:llumher 2023), 3% pages. hll|:l:i' ‘bt org 10,1145/ nunnnnh.nannnmn

1 INTRODUCTION

Discrete optimization problems arise in a vast range of applications: scheduling, rostering, routing,
and management decision. These problems frequently arise in mission eritical applications; am-
bulance dispatch [40], E-commerce [28] and disaster recovery [47], amongst others - situations
where mistakes can have disastrous consequences, Since the results of the optimization problems
are critical to the industry to which they belong, when we use optimization technology to create
solutions we wish to be able to trust the results we obtain. Optimization tools are also seeing
increasing use in combinatorics, where an incorrect result fundamentally undermines the entire
endeavor.
Two kinds of error can occur:

* a "solution” returned by the solver does not satisfy the problem
* a claimed optimal solution returned by the solver is not in fact optimal

Authors” addeesses: Graeme Gange, Paculty of Informatian Tﬁhnn]ng:.: Monash University, grurmr.p.u;ruﬂmm.ml: el
Geaffrey Cha, Dats1, CEIRO, chu gmlfrr@-[eﬂgumlmk Peter ||, Stuckey, Faculty of Information Tﬂhnnln_gy. Monash
Universily, pelerstuckeyi@monash edu.

Permission to make digital or hard copbes of part or all of this work for personal of classgoom use iz granted without fee
provided that coples are not made or distributed for profit or commercial advantage and that coples bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/aatharis).

@ 2023 Copyright held by the owner/author(s)

00000000 S 9-ART

hitt s/ dodorg/10.1 145 nAsian. pRIADG

Vol | Mo 1, Article . Publication date: September 2023,

Do we need
trusted inference
checkers for
every constraint?




Background

vec_eq_tuple
visible
welghted partial_alldiff

X0or
Zero_or_not_zero
Zero_or_not_zero_vectors

Matthew Mcllree

Certified Constraint Programming



Background

Simple enough to
be easy to verify

Matthew Mcllree

Certified Constraint Programming



Simple enough to Expressive enough
be easy to verity for CP reasoning

Matthew Mcllree

Certified Constraint Programming



Simple enough to Expressive enough
be easy to verity for CP reasoning

|

pseudo-Boolean proofs!

Matthew Mcllree

Certified Constraint Programming



Background tructuring a CP Proof Justifying Constraint Propagation Further Challenges _onclusions

) i [ i ) ) { ¥ ) 11 i { { § |

Matthew Mcllree

Certified Constraint Programming



Background Justifying Constraint Propagation Further Challenges Conclusions
II.-‘--,; I_-—-.I f ,I II.- -I ra'-,l — — - P ¥ il

i O e W W P Y i W s T o ¥ i T T i P ¥ ¥ ¥ o T T i T P, L e N W P
olelelele] | Q00000 0000000 0/0/0]/0/6/0.0/0/0/6.0.0/0]0 QO

Pseudo-Boolean constraints
are very expressive

VeriPB

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions
II.-‘-,I: I_.—n_l f w NN NN N P N P - I = T . T g = P ¥ il

O00009

Pseudo-Boolean constraints
are very expressive

VeriPB

Cutting planes is a
powerful proof system

Matthew Mcllree

Certified Constraint Programming



kground PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions
Yy .I"I-'; P T ¥ s i VY il N T N P R . . m e pm  m  gm  am gm  gm  gm  m - ™

Working proof
checker implementation
(+ formally verified checker)

VeriPB

Pseudo-Boolean constraints
are Very expressive

Cutting planes is a
powerful proof system

Matthew Mcllree

Certified Constraint Programming



Background PB Encodings Structuring a CP Proof Justifying Constraint Propagation Further Challenges Conclusions
L I.---.__I I_..---.__ ] N TN P T Y - g A R e T T T a T el Vet aT T P o T il

OO YD)

slelele]

Working proof
checker implementation
(+ formally verified checker)

VeriPB

= SAT
= MaxSAT
= PB

Pseudo-Boolean constraints
are Very expressive

= Graphs
« .CP!

Cutting planes is a
powerful proof system

Matthew Mcllree

Certified Constraint Programming



PB Encodings

Matthew Mcllree

Certified Constraint Programming



PB Encodings

PB Variable

Matthew Mcllree

Certified Constraint Programming



PB Encodings

PB Variable
Tr; © {O, 1}

Matthew Mcllree

Certified Constraint Programming



PB Literal
V: := x; € {O, 1}

OI'.fi:1—£U

Matthew Mcllree

Certified Constraint Programming



PB Constraint

Cj = Zaijf' ij a,ij,bj c /

(

Matthew Mcllree

Certified Constraint Programming



PB Formula/Model

Cj .= Zaijf' Z bj

? ]




PB Formula/Model

{Cj . — Za,?;jfi 2 bj}

(min Z C?,Ez) Q;j, bj, Ci, € /.

J




Matthew Mcllree

Certified Constraint Programming



PB Encodings

PB Proof

PB Formula/Model

LG =) agli > by
: \ ? 7 :
E (mchzEz) aijjbj}ci, c Z E
: ¢ :

Matthew Mcllree

Certified Constraint Programming



PB Encodings

PB Proof

(load formula)

(rule) > _; @im41li = bjpa

Matthew Mcllree
Certified Constraint Programming




PB Encodings

PB Proof

(load formula)
(rule) Y . Gim+1ls = bieg
(rule) 3 _; Gim42bi 2 bjto

Matthew Mcllree
Certified Constraint Programming




PB Encodings

PB Proof

(load formula)
(rule) ) .. Gim+1b; = bipg
(rule) > .. aim+y2li > biyo

Matthew Mcllree
Certified Constraint Programming




PB Encodings

PB Proof

(load formula)
(rule) ) .. Gim+1b; = bipq
(rule) ) _; @im2li > bjto

Matthew Mcllree
Certified Constraint Programming




PB Encodings
@OO0000

PB Proof

(load formula)
(rule) ) @aim+1€i > bjta
(rule) Z@ a’im-{—Qg bj e

(rule) 0>1

Matthew Mcllree
Certified Constraint Programming




PB Encndmgs

PB Proof

(load formula)
(rule) ) .. Gim+1b; = bipq
(rule) ) _; @im2li > bjto

(rule) Z% C?;E?; Z O

Matthew Mcllree
Certified Constraint Programming




PB Encodings
@OO0000

PB Proof

(load formula)
(rule) ) @aim+1€i > bjta
(rule) Z@ a’im-{—Qg bj e

(rule) o Zg Ciﬁi > —0;
(rule) > . cili >0

Matthew Mcllree
Certified Constraint Programming




PB Encodings

PB Proof

--------------------------- % my_proof.pbp
% my_problem.opb

3 X1 4 x25~x3>=1 ;

5 X4 2 ~Xx1 3 ~x2 -1 x1 >= 4
3 x1 -2 x2 >= -1 ;

-1 X1 -2 ~x4 >= -1 ;
-------------------- output NONE ;

conclusion UNSAT;
end pseudo-Boolean proof ;

E gsgudo—Boolean proof version 3.0
: rup 1 x1 1 ~x2 >= 1 ;

! ruq 1l ~x3 2 ~x4 4 ~x5 >= 5 ;
s pol 1
;

2 +
1a 1 X1 5 ax4 >= 5
u>=1;

Matthew Mcllree

Certified Constraint Programming



PB Encodings

( _h.l. WL L)

C P Solver Untrusted

Answer

Independent
_— Proof

Checker

Problem
Description

Matthew Mcllree
Certified Constraint Programming




Untrusted
Answer

Problem
Description

Independent
Proof
Checker

St

Matthew Mcllree
Certified Constraint Programming




Untrusted
Answer

Problem
Description

Independent
Proof
Checker

(8 Ercoier)

Matthew Mcllree

Certified Constraint Programming



PB Encodings
o] lolele]e.

Untrusted
Answer

Problem
Description

Independent
Proof
Checker

D ——"

Matthew Mcllree

Certified Constraint Programming



PB Encodings
ele] lelele

Binary Variable Encoding

Matthew Mcllree

Certified Constraint Programming



PB Encodings
ole] lelele

Binary Variable Encoding

X € |3...10

Matthew Mcllree

Certified Constraint Programming



Binary Variable Encoding

8xp3z + 4xpo + 221 + Tpo > 3
—8113'53 — 433‘52 — 2([)()1 — fL‘bQ —10

Matthew Mcllree

Certified Constraint Programming



PB Encodings

Binary Variable Encoding

X € [—12...10]

Matthew Mcllree

Certified Constraint Programming



Binary Variable Encoding

—= 16254 + Sxpa + dxpo + 221+ Ton = =12

163?54 — 8.5(553 — 4:1752 — 2:1751 — ZZ?b() —10

Matthew Mcllree

Certified Constraint Programming



PB Encodings

Binary Variable Encoding

bits(X) > —12
—bits(X) > 10

Matthew Mcllree

Certified Constraint Programming



Binary Variable Encoding

X +2Y —47 > 11

Matthew Mcllree

Certified Constraint Programming



Binary Variable Encoding

X +2Y —47 > 11

v
bits(X) + 2bits(Y) — dbits(Z) > 11




PB Encodings

Reifying PB Constraints

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

8r1 — 4xo + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

Yy = 8xr1 —4x9 + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

20y + 8x1 — 4xo + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

201+ 8x1 — 4xo + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

8r1 — 4x9 + 63 — 1024 > —14

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

20y + 8x1 — 4x9 + 623 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

20-0+ 8x1 — 4xo + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

8r1 — 4xo + 063 — 1024 > 06

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

Yy & 8xr1 —4xry + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

Yy = 8xr1 —4x9 + 063 — 1014 > 6
y = —8x1 + —4x9 — 63 + 1024 = —5

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

Y1 \NYa... \ Yp =
8r1 —4xo + 63 — 1024 > 6

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

= (Y2 = (... = (Y =
8r1 — 4xo 4+ 6x3 — 1024 > 6)...))

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints

20y1 + 20y2 + - - - + 20y%
8r1 — 4xo + 6x3 — 1024 > 6)...))

Matthew Mcllree

Certified Constraint Programming



Reifying PB Constraints




PB Encodings

XY
X ¢13,5,7}

Matthew Mcllree

Certified Constraint Programming



PB Encodings

X ¢1{3,5,7}

Matthew Mcllree

Certified Constraint Programming



X #Y | f = bits(X) — bits(¥) > 1

' f = bits(Y) — bits(X) > 1 :

X ¢1{3,5,7}




X # Y E f = bits(X) — bits(Y) >

1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

X ¢ 4{3,5,7}

Matthew Mcllree

Certified Constraint Programming



f = bits(X) —bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 & —bits(X) > —3

XY
X ¢43,5,7}

Matthew Mcllree

Certified Constraint Programming



f = bits(X) —bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 < —bits(X) > —3

T=3 < T>3 —|—.’l?§3 > 2

XY
X ¢43,5,7}

Matthew Mcllree

Certified Constraint Programming



f = bits(X) — bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 < —bits(X) > —3

T=3 < T>3 T IT<3 > 2

XY
X ¢43,5,7}

Matthew Mcllree

Certified Constraint Programming



f = bits(X) —bits(Y) > 1
f = bits(Y) — bits(X) > 1
r>3 < bits(X) > 3

T<3 < —bits(X) > —3

T=3 < IT>3 T IT<3 = 2

XY
X ¢ {3,5,7)

T3+ T5+T_7 >3

Matthew Mcllree

Certified Constraint Programming



Slightly more convinced?

C P Solver Untrusted

Answer

Problem
Description

Independent
Proof

O g Checker
— R

Matthew Mcllree

Certified Constraint Programming



PB Encodings Structuring a CP Proof

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



RUP

Matthew Mcllree

Certified Constraint Programming



RUP

Matthew Mcllree

Certified Constraint Programming



Checking Process:
CiA...,NACpy ND1,...,Dy,

Matthew Mcllree

Certified Constraint Programming



Checking Process:
CiA...,ACp, NDq,...,D,,, A—=D,

Matthew Mcllree

Certified Constraint Programming



Checking Process:
CiA...,ACpy NDy,...,D,,, A=D,

'Unit Propagation'

X

Contradiction

Matthew Mcllree

Certified Constraint Programming



Checking Process:
CiA...,ANCpy NDq,...,Dy,, A—=D,

e

Contradiction

Matthew Mcllree

Certified Constraint Programming



Checking Process:
CiA...,ACp ADy,...,D,,, A—=D,

e

'Simple, Dumb

Reasoning'
Contradiction

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
o] Jololelele

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof
000000

A —=C

s always false

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
0900000

—F VvV (C

s always true

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

RUP

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

The "Reverse Unit Propagation" Rule

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

A thing that is RUP:

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

A thing that is RUP:

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof
OCOe0000

A thing that is RUP:

(RUP) xpg + 2241 + 4xp2 > 3

Matthew Mcllree
Certified Constraint Programming




A thing that is RUP:

Checking Process:
Tpo + 22p1 + 4Tp2 > 6

(RUP) zpo + 221 + 4xp2 > 3 —Xpo — 2Tp1 — 4Tp2 = —2

Matthew Mcllree

Certified Constraint Programming



A thing that is RUP:

Checking Process:
ThO) T 2.’1751 Z 2

(RUP) wpo + 2xp1 + 4ap2 > 3 —Th0 — 2Tbl — Ay = —2

Matthew Mcllree

Certified Constraint Programming



A thing that is RUP:

Checking Process:
Tpo + 22p1 = 2

—Zhp — 4T 2 &

Matthew Mcllree

Certified Constraint Programming



A thing that is RUP:

Checking Process:
Tpo + 221 = 2

(RUP) zpo + 2241 + 42p2 > 3 —Tpg — 2Th1 = 2

Matthew Mcllree

Certified Constraint Programming



A thing that is RUP:

Checking Process:
Tpho + 22p1 = 2

—Xpg — 2Tp1 = 2

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Proof Logging Backtracking Search

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Proof Logging Backtracking Search
X0

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
0008000

Proof Logging Backtracking Search
X0

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
0008000

Proof Logging Backtracking Search
X0

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
0008000

Proof Logging Backtracking Search
X0

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

Proof Logging Backtracking Search
X0

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof
QOOe0O00

0

T U

R
R
R
R

e

GGGGGC%GGGC}C}G‘G‘

2

A

2

2

|U

|—U

T U

;MX ;!2&)(;12&)(

Matthew Mcllree

I I I IC N A
)—U

O

(
(
(
(
(
(
(
(
(
(
(
(
(
(

Certified Constraint Programming



Structuring a CP Proof
000®000

+ 1 xlel + 1 x2e2

+ 1 xlel

+ 1 xle2
== 1 &
xlel
xlel
xlel
xle2
xle2

xle2

S R P R RPRRPRRPRRRRRB R @R

12\’ 12X12\,
X X X XX X

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

rup 1 x@el + 1 xlel + 1 x2el >=1 ;

L7
rup 1 x@el + 1 xlel + 1 x2e2 == 1 ;

rug 1 0el + 1 xlel »=1 3

ruB 1l x@el + 1 xle2 >=1 ;

rup 1 x0el >=1 ;

rua 1 x0e2 + 1 xlel + 1 x2el >= 1 ;
;Lé 1 x0e2 + 1 xlel + 1 x2e2 >= 1 ;
Fdz 1 x0e2 + 1 xlel >=1 ;

rug 1l x0e2 + 1 x1le2 + 1 x2el >=1 ;
rug 1 x@e2 + 1 x1e2 + 1 x2e2 >= 1 ;
rup 1 x0e2 + 1 xle2 >=1 ;

rus 1 x@e2 >= 1 ;

;;é 1 x@e3 >=1 ;

=

rup @ >= 1 ;

"

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof

How do we define all those variables?

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

How do we define all those variables?
>3 < bits(X) > 3
T<3 < —bits(X) > —3

L=3 <> T>3 —|—LU§3 2

AVARRAY,

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof
0000800

How do we define all those variables?
(RED) L3 < b’ﬁ:S(X) 0
(RED) r<3 < ——b’its(X) > —3
(RED) -3 < >3+ x<3 > 2

Matthew Mcllree

Certified Constraint Programming



How do we define all those variables?

(RED) >3 < bilfS(X) >3
(RED) L= —b?;tS(X) > —3
(RED) z_3 & >3+ x<3 > 2

Redundance-Based Strengthening

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

How do we define all those variables?
(RED) >3 < bi?fS(X) >3
(RED) T<3 < —b?;tS(X) > —3
(RED) z_3 & >3+ x<3 > 2

Matthew Mcllree

Certified Constraint Programming



How do we define all those variables?

(RED) >3 < b’i?fS(X) >3
(RED) L= —b?;tS(X) > —3
(RED) z_3 & >3+ x<3 > 2

Rule that lets us introduce reified
constraints on fresh variables :-)

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

We need to log justifications every time we infer something.

Matthew Mcllree

Certified Constraint Programming



We need to log justifications every time we infer something.

reason =— inference

Matthew Mcllree

Certified Constraint Programming



We need to log justifications every time we infer something.

reason — inference

Matthew Mcllree

Certified Constraint Programming



We need to log justifications every time we infer something.

reason =— inference

Matthew Mcllree

Certified Constraint Programming



We need to log justifications every time we infer something.

reason =— inference

Matthew Mcllree

Certified Constraint Programming



We need to log justifications every time we infer something.

reason — inference

Matthew Mcllree
Certified Constraint Programming




We need to log justifications every time we infer something.

reason =— inference

Want to derive:

To—1 — Li—9 = 1

Matthew Mcllree
Certified Constraint Programming




Structuring a CP Proof
elolelolele] |

Up to this point (the 'rules of the game')

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals

= Write a RUP step at every backtrack

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
= Write a RUP step at every backtrack

= (Also log solutions /bounds if proving optimality)

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
= Write a RUP step at every backtrack
= (Also log solutions/bounds if proving optimality)

= Interleave derived 'justifications' to account
for constraint propagation

Matthew Mcllree

Certified Constraint Programming



Structuring a CP Proof

Up to this point (the 'rules of the game')

= Use RED /reification to introduce CP literals
= Write a RUP step at every backtrack
= (Also log solutions/bounds if proving optimality)

= Interleave derived 'justifications' to account
for constraint propagation

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
@OO0O0CO0O0O0O00O0

Some constraints are really easy

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Some constraints are really easy
eg. X#Y, Xed{l,...,15},Y € {5}

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Some constraints are really easy
eg. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

(_]U_Stlfy‘?) Ut = g = 1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation
@O0000000000000

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

(RED) y>5 < ypo + 2yp1 + 4yp2 > 5
(RED) y<5 < —ybo — 2yp1 — 4yp2 > —5
(RED) y=5 < y>5 + y<s > 2

(_]UStlfy‘?) Y=k = T—5 = 1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

T>g5 < Tpo + 2Tp1 +42p2 >

T<s5 < —Tpy — 201 — 40 > —D

) To5 & T>5+ <5 > 2
) g =75 =1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Some constraints are really easy
e.g. X#Y, Xed{l,...,15},Y € {5}
..hence X # 5

Y>5 < Ybo + 2Yp1 + 4Yp2 = 5
Y<s5 <= —Ybo — 2Yp1 — 4Yp2 > —5

€T 5<:>ﬁ?b(]—f—2$bl +4xpe > 5

T<s & —Tpo — 2Tp1 — 4Tp 2

)
)
)
)
)
)

T—p S T>5+ 25 = 2

RUP) Yt —> B 5 =~ 1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Other constraints will need more than just RUP

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5AZ2>3=Y <6

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5AZ>3=>Y <6

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

X>5AZ>3=Y <6

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +474 <42
(RED) >5 = xpo + 241 + 4p2 + 8xp3 = 5
X>5AZ>3=Y <6

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +42 < 42
(RED) Z>5 = Tpo + 22p1 + 42p2 + 8xp3 > 5

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +42 < 42
(RED) Z>5 = Tpo + 22p1 + 42p2 + 8xp3 > 5

A Z2O0NZL23=X¥ S0 | RED) 253 = 250 + 2251 + 4262 + 8253 > 3

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +42 < 42
(RED) Z>5 = Tpo + 22p1 + 42p2 + 8xp3 > 5

X25/\223:>Y§6 (RED) z23:>zbo—|—2251—|-4252‘|-825323

(RED)

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7

—2:1350 — 4.21’551 — 85[?52 — 161}53

(Axiom) —3yso — 6ys1 — 12yp2 — 24yps
—-4250 = 8251 — 16252 = 32253 Z —42

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Other constraints will need more than just RUP

T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 = O
2>3 = 2po + 22p1 + 422 + B82p3 = 3
Y<6 = Ybo + 2Yp1 + 4xp2 + 8Tp3 = 7

'—'251350 — 4.2751 — 851752 — 1651?53
(Axiom) —3yso — 6ys1 — 12yp2 — 24yps
—4250 = 8251 = 16252 — 32253 Z —42

Recall: Cutting planes allows
us to derive linear combinations
of constraints.

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X >25AZ22>3=Y <6 T>5 => Tpo + 2Tp1 + 4Tp2 + 8Tp3 > 5
- N : 3>< (RED) 2>3 = 2po + 22p1 + 4252 + 82p3 = 3

4x (R Y<6 = Yo + 2Yp1 +4xp2 + 8xp3 > 7

—2.1750 - 4.213(31 — 83352 o 16.’13()3

(Axiom) —3ypo — 6Yp1 — 12yp2 — 24ys3

—42550 = 82551 e 162552 — 32253 2 —42
Recall: Cutting planes allows
us to derive linear combinations
of constraints.

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5ANZ2>3=Y<6 i T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 > 5
- N : o X (B 2>3 = 2p0 + 22p1 + 4252 + 82p3 = 3

4x (R T<6 = Yb0 + 2Ub1 + 4Tpa + 8Tp3 > 7

—23’350 a 43&‘()1 — 811352 — 16:1“3(33

(Axiom) —3ypo — 6yp1 — 12yp2 — 24yp3

_ —42p0 — 82p1 — 1062p9 — 32233 = —42
Recall: Cutting planes allows
us to derive linear combinations

of constraints. (Sum) 107>5 + 12253 + 21y>¢ > 1

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Other constraints will need more than just RUP

2X +3Y +424 < 42

X>5ANZ2>3=Y<6 1 T>5 = Tpo + 2Tp1 + 4Tp2 + 8Tp3 > 5
- N b o LK 2>3 = 2p0 + 22p1 + 4252 + 82p3 = 3

4% (R Y<6 = Yvo + 2Yp1 + 4Tp2 +8xp3 = 7

—23}()0 - 49&‘51 — 83’5‘52 — 16:1“3(33

(Axiom) —3ypo — 6yp1 — 12yp2 — 24yp3

_ _4360 — 8251 — 162’52 - 322’53 2 —42
Recall: Cutting planes allows
us to derive linear combinations

of constraints. (Sum) T>5 A 233 = Y>6

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Justifying AllIDifferent

Matthew Mcllree

Certified Constraint Programming



Justifying AllIDifferent
Ved{l 4 5

QU W W W
e o i e s

Matthew Mcllree

Certified Constraint Programming

Justifying Constraint Propagation



Justifying AllIDifferent
Ve{l 4 5

(N
Qo W W W
R o i e s

Matthew Mcllree

Certified Constraint Programming

Justifying Constraint Propagation



Justifying AllIDifferent

Ve{ 1l 4 5 }

{ 1 2 3 }
XE { 2 3 }
YE{ 1 3 }
Ze { 1 3 }

R p— ’le A\ ’wgg
NE>2 NT<3 NY>1 NY<3

/\’g_—_g /\ 221 AN 2:2 /\ 253

Matthew Mcllree

Certified Constraint Programming

Justifying Constraint Propagation



Justifying AllIDifferent

Ve{ 1l 4 5 }

{ 1 2 3 }
XE { 2 3 }
YE{ 1 3 }
Ze { 1 3 }

R = w>1 N w<s
/\3322 /\ L <3 /\ Y>1 £ Yy<3

/\3};2 /\ <>1 /\ 2:2 /N <<3

Matthew Mcllree

Certified Constraint Programming

Justifying Constraint Propagation



Justifying Constraint Propagation

R = w>1 N w<s
/\3322 /\ L <3 /\ Y>1 £ Yy<3

/\3];2 /\ Z>1 /\ 222 7 <<3

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

R = w>1 N w<s
/\3322 /\ L <3 /\ Y>1 A Yy<3

/\?:2 /\ <>1 /\ Zzz £ <<3

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
OO@OO00O000O00O00O000O0C

— W=9 _I_ —TL=9 =
—wog+ —2og + —yog + —23 > 1

R = w>1 A w<s
AT>2 A T<z AY>1 A Y<s (Sum all of the above:) R=-v=21

/\?:2 /\ <>1 /\ Zzz £ <<3

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
OO@OO00O000O00O00O000O0C

— W9 -~ —L9 =
—~ W+ T+ —Y=g+—2_35=—1

R = w>1 A w<s
AT>o A T<z AY>1 A Y<s (Sum all of the above:) R=>-v=21

Alj—5 A Z>1 N Z—2 /N 2<3 (Literal axiom:)

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

— =g ~ —F—2 =
—W_g+-—-_3+—-y_3g+—2_32-—1

R = w>1 A w<s
AT>2 A T<3z AYy>1 A Y<s (Sum all of the above:) R=>-v=21

=5 A\ T N B—2 /N 2<3 (Literal axiom:)

(Add:)

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

The Circuit constraint

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

The Circuit constraint

XO)"'aXn—l
{0,...,n—1}

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
ololel [ololololeleleololale

The Circuit constraint

Circuit(Xo, ..., Xp_1)
{0,...,n— 1}

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

The Circuit constraint

CiI’CUit(X(), Xl, XQ, Xg, X4, X5)
{0,...,n—1}

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

The Circuit constraint

CirCUit(X(), Xl, XQ, Xg, X4, X5)
10,1,2,3,4,5}

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

The Circuit constraint

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
0000000000000

The Circuit constraint

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

The Circuit constraint

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Enforcing Circuit:

o ® O

. © O

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

= ® O

. © ©

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

® O

AIIDIff(Xo, X1, Xa, X3, X4, X5) @ @

O ©

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

O=0

O
folc

AlDIfF(Xo, X1, X2, X3, X4, X5

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

O=0

O
o0

AlDIfF(Xo, X1, X2, X3, X4, X5

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

O=0

O
folc

AlDIfF(Xo, X1, X2, X3, X4, X5

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

AlIDiff( X, X1, X2, X3, X4, X5) @/—\
Nocyde(XOa Xla X25 X3a X4a X5)

folc

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Enforcing Circuit:

@—s

ANDIfF(Xo, X1, Xo, X3, X4, X5)
NOCyCIe(X()a Xla X27 X37 X47 X5)

—)

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Consistency for Circuit:

£ ® O

X ORNO

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Consistency for Circuit:

= ® O

. © ©

Matthew Mcllree

Certified Constraint Programming



Consistency for Circuit:

Xo € {0,1,2,5} @ @

X1 - {2, 3}

X5 € {0,2,5} @ @

X3 € {2, 4, 5}

X4 € {1} (1D G)

X5 € {O, a4, 5}

Matthew Mcllree

Certified Constraint Programming



Consistency for Circuit: '
X € {0,1,2,5} 9 o
X; €4{2,3) "
Xo € {O, 2, 5} e \ @’
X5 € {2,4,5) QA
X4 € {1} (4 e

X5 € {0,3,4,5}

Matthew Mcllree
Certified Constraint Programming




Consistency for Circuit: '
X € {0,1,2,5} 9 o
X; €{2,3) "
Xo € {O, 2, 5} e \ @’
X5 € {2,4,5) \\
X4 € {1} (4 e

X5 € {0,3,4,5}

Matthew Mcllree
Certified Constraint Programming




Consistency for Circuit:

Xo € {5} 9 o

X1 € {2, 3}

Xo € {O} e
X3 €42,5}
X4 e {1} (4 O

X5 € {3, 4}

Matthew Mcllree

Certified Constraint Programming



Matthew Mcllree
Certified Constraint Programming



Justifying

Constraint Propagation
000000000

(Partial) Consistency for Circuit

16 Constraints (2014) 19:1-29

root
1=n+1 1=n+1

start1 /—)\ \encﬂ y start1 \encn
b\‘_ i"/ 4 (<

y

length 1=4 il are GG other situation:
length a=2 > ar:har 5':& gk d unless n=8, the arc
length b=2 BIC etlinIemaye end1->a is removed

(b)

Figure 1: Propagation of the nocycle constraint

- If x=end; and length;+lengthy<n-2 we infer Next(b) # start} .

- If y=start; and length;+length,<n-2 we infer Next(end]) # a
- Otherwise, we infer Next(b) #a .

Caseau, Y. and Laburthe, F., 1997, July.

Solving Small TSPs with Constraints. In ICLP (Vol. 97, p. 104).

Matthew Mcllree

Certified Constraint Programming

Fig. 5 a The SCC exploration graph for circuit starting from root. At least one (thick) edge from
A to the root, from D to C, C to B, and B to A must exist (rule 1). Backwards (dotted) edges to the
root from B, C or D cannot be used (rule 1). The (thin-dashed) edges from C to A and D to B cannot
be used (rule 2). The (thick-dashed) edges leading from root to A, B and C cannot be used (rule 3).
b Ilustration of prune-within (rule 4). The edge from x to a cannot be used otherwise we cannot
escape the subtree rooted at a (dark grey). We need to enter the subtree from elsewhere

Francis, K.G. and Stuckey, P.J., 2014.
Explaining circuit propagation. Constraints, 19, pp.1-29.



Justifying Constraint Propagation

Circuit PB Encoding

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

R s

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex i relative to 0

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex i relative to 0

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation
oJololelolele] Jolelelolole

Circuit PB Encoding

bits(P;) := Position of vertex i relative to 0

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation
oJololelolele] Jolelelolole

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0

Matthew Mcllree
Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0

Matthew Mcllree
Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0

Matthew Mcllree
Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0

Matthew Mcllree
Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

bits(P;) := Position of vertex ¢ relative to 0
For each X;,j € dom(X;) j # 0 :

Matthew Mcllree
Certified Constraint Programming



Justifying Constraint Propagation

Circuit PB Encoding

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

T3—g4 = bits(Py) = bits(P3;) + 1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation
~NOOOO0O0000000

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Tyg—2 — b?:tS(PQ) —: bitS(PqE) + 1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation
~NOOOO0O0000000

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Typ—9 — b’itS(Pg) — bitS(P4) + 1

Cutting planes addition:

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

r3—q4 = bits(P,) = bits(Ps3) + 1

Ly—o9 — biiS(PQ) — biﬁS(P4) + 1

Cutting planes addition:

To—3 N\ T3=4 \ Ty—9 — b%tS(Pg) — bitS(Pg) = b?:tS(P4)
—b%f&(Pd) =+ b?:tS(Pg) = b&tS(P4)1 +1+1

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Ta—n —> b’itS(Pg) p— biﬁS(Pgl) + 1
Cutting planes addition:

To—% NEg—g N Bi—g = =3

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Typ—9 — b’itS(Pg) — bitS(P4) + 1

Cutting planes addition:

To—a \ Ba—u NV Ti=2

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Circuit PB Encoding

From encoding:

Lro—3 — b&té(Pg) = b’ét&(Pg) +1

r3—4 = bits(Py) = bits(Ps3) + 1

Typ—9 — b’itS(Pg) — bitS(P4) + 1
Cutting planes addition:

T2—=3 N\ L3=4 —=> T4=2

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

If AIIDiff is enforced:

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation
OO000000e00000

SCC Propagation

If AlIIDiff is enforced:

No subcycles

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

—

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

e

All vertices part of one cycle

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

e

All vertices part of one cycle

<

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIDiff is enforced:
No subcycles
—

All vertices part of one cycle

<

Every vertex reachable from every vertex

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIDiff is enforced:

No subcycles

—

All vertices part of one cycle

—

Every vertex reachable from every vertex

<

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIDiff is enforced:
No subcycles
—

All vertices part of one cycle

-
Every vertex reachable from every vertex

>

One one strongly connected component

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

If AlIIDiff is enforced:

No subcycles

e

All vertices part of one cycle

—
Every vertex reachable from every vertex

>

One one strongly connected component

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

ReachTooSmall( 0O )

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

ReachTooSmall( 0O )
{Py} =0

Matthew Mcllree
Certified Constraint Programming




SCC Propagation

ReachTooSmall( 0O )
{Py} =0




SCC Propagation

ReachTooSmall( O )
{Po} =0
{P,Ps} =1
{Py, P, P} =2




SCC Propagation

ReachTooSmall( O )
{Po} =0
{P,Ps} =1
{Py, P, P} =2

{Py, P1,Ps} =3

Matthew Mcllree
Certified Constraint Programming



SCC Propagation

ReachTooSmall( O )
{Po} =0
{P,P} =1
{Py, P, P5} =2

{Py, P1,Ps} =3
G = 02>1

Matthew Mcllree
Certified Constraint Programming



Justifying Constraint Propagation

SCC Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

SCC Propagation

c1 —> ReachTooSmall( v )

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Further Propagation Rules

©

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

leolelelelelele] lolele

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

leolelelelelele] lolele

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Root'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

) { Y Y . "
LALUIIL) L

(o
A

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Further Propagation Rules: 'Prune Skip'

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

@1 YO0 ) . £ )

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

rs—3 A a; =—> ReachTooSmall(1)

rg—3 /\ as —> ReachTooSmall (4)

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

rs—3 A a; = ReachTooSmall(1)

rgs—3 N\ aos —> ReachTooSmall(4)

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

rs—3 A a; = ReachTooSmall(1)

rgs—3 AN as —> ReachTooSmall(4)

Matthew Mcllree
Certified Constraint Programming




Justifying Constraint Propagation

So Far

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

So Far

= All Different
= Equals/Not equals

= Array MinMax

= Element

= (Reified) Linear (In)equalities
= Logical (and/or)

= Table

= NValue

= Count

= Among

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

So Far And lately:

= All Different = Circuit*

= Equals/Not equals = Multiplication*(somewhat awkard but doable)

= Array MinMax = Any constraint with an efficient 'Smart Table' representation™
= Element (e.g. Lex, Diffn, Notallequal)

= (Reified) Linear (In)equalities = Any constraint with an efficient MDD representation™

= Logical (and/or) (e.g. Knapsack, Regular)

. Table = (Lately) Any constraint with a Network Flow Propagator
or Totally Unimodular ILP relaxation
= NValue
(e.g. GCC, Inverse, Sequence)
= Count
= Among

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

So Far And lately:

= All Different = Circuit*

= Equals/Not equals = Multiplication*(somewhat awkard but doable)

= Array MinMax = Any constraint with an efficient 'Smart Table' representation™®
= Element (e.g. Lex, Diffn, Notallequal)

= (Reified) Linear (In)equalities = Any constraint with an efficient MDD representation™

= Logical (and/or) (e.g. Knapsack, Regular)

= Table = (Lately) Any constraint with a Network Flow Propagator
or Totally Unimodular ILP relaxation
= NValue
(e.g. GCC, Inverse, Sequence)
= Count o |
*Citations available on request :-)
= Among

Matthew Mcllree

Certified Constraint Programming



Justifying Constraint Propagation

vec_eq_tuple
visible
welghted partial_alldiff

X0or
Zero_or. not._zero
Zero_or.not. zero_.vectors

Matthew Mcllree

Certified Constraint Programming



Further Challenges
o0

Further Challenges

Matthew Mcllree

Certified Constraint Programming



Further Challenges

Further Challenges

= Painful overheads on top of solving

Matthew Mcllree

Certified Constraint Programming



Further Challenges

Further Challenges

: - @ 25 4 —— y = 20x g
= Painful overheads on top of solving > e
> 20 e 7
5 15 o @ ;f"j ®
S <.
2 10 *’” i
2 & o &"‘. M P
g w.:.’ - il
F 0 .

Matthew Mcllree

Certified Constraint Programming

0.00 0.25 0.50 0.75
Time without proof logging (s)

1.00

1:25




Further Challenges
L 1)

Further Challenges

= Painful overheads on top of solving

= (Can be) difficult to implement

Time with proof logging (s)

0.00 0.25 050 0.75 1.00 1.25
Time without proof logging (s)

Matthew Mcllree

Certified Constraint Programming



Further Challenges

Further Challenges

= Painful overheads on top of solving
= (Can be) difficult to implement

= Verification overhead

Time with proof logging (s)

I | I | I 1
000 0.25 050 0.75 1.00 1.25

Time without proof logging (s)

Matthew Mcllree

Certified Constraint Programming



Further Challenges

Further Challenges

= Painful overheads on top of solving
= (Can be) difficult to implement

= Verification overhead

= Trusting the PB Encoding (or the

Time with proof logging (s)

. e ] . l | | I | I |
verifiers's input more broadly) SA5 S5 GED BTE A0 G

Time without proof logging (s)

Matthew Mcllree

Certified Constraint Programming



Further Challenges
oe

Multi-Stage Proof Logging, 2024

A Multi-Stage Proof Logging Framework to
Certify the Correctness of CP Solvers

Maarten Flippo &

Delft University of Technology, The Netherlands

Konstantin Sidorov &
Delft University of Technology, The Netherlands

Imko Marijnissen &
Delft University of Technology, The Netherlands

Jeff Smits &
Delft University of Technology, The Netherlands

Emir Demirovi¢ &
Delft University of Technology, The Netherlands

——— Abstract

Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However,
to this date, no constraint programming solver can practically produce proofs without significantly
impacting performance, which hinders mainstream adoption. We address this issue by introducing a
novel proof generation framework, together with a CP proof format and proof checker. Our approach
is to divide the proof generation into three steps. At runtime, we require the CP solver to only
produce a proof sketch, which we call a scaffold. After the solving is done, our proof processor trims

and expands the scaffold into a full CP proof, which is subsequently verified. Our framework is
agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate
that with our framework, the overhead of logging during solving is often less than 10%, significantly
lower than other approaches, and that our proof processing step can reduce the overall size of the
proof by orders of magnitude and by extension the proof checking time. Our results demonstrate
that proof logging has the potential to become an integral part of the CP community.

2012 ACM Subject Classification Mathematics of computing — Combinatorial optimization; Theory
of computation — Logic and verification

Matthew; MEI_Iree

Certified Constraint Programming



Further Challenges

Multi-Stage Proof Logging, 2024

A Multi-Stage Proof Logging Framework to

Certify the Correctness of CP Solvers Fi rSt OUtpUt d lsca ffOl d | ;

Maarten Flippo &
Delft University of Technology, The Netherlands

Konstantin Sidorov &

Delft University of Technology, The Netherlands = -
Iy then find which
Delft University of Technology, The Netherlands

Jeff Smits &

e e justifications are needed;

Delft University of Technology, The Netherlands

——— Abstract
Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However, = -

to this date, no constraint programming solver can practically produce proofs without significantly

impacting performance, which hinders mainstream adoption. We address this issue by introducing a t h e n t h e n f ' | | I n
novel proof generation framework, together with a CP proof format and proof checker. Our approach

is to divide the proofl generation into three steps. At runtime, we require the CP solver to only - -

produce a proofl sketch, which we call a scaffold. After the solving is done, our proof processor trims

and expands the secaffold into a full CP proof, which is subsequently verified. Our framework is e e r I V a I O n S -
agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate

that with our framework, the overhead of logging during solving is often less than 10%, significantly

lower than other approaches, and that our proof processing step can reduce the overall size of the

proof by orders of magnitude and by extension the proof checking time. Our results demonstrate
that proof logging has the potential to become an integral part of the CP community.

2012 ACM Subject Classification Mathematics of computing — Combinatorial optimization; Theory
of computation — Logic and verification

Matthew Mcllree

Certified Constraint Programming



Conclusions

If nothing else

= Proof logging is worth doing, generally speaking.

Matthew Mcllree

Certified Constraint Programming



Conclusions

If nothing else

= Proof logging is worth doing, generally speaking.

= (Constraint Programming Solvers have a huge potential
to be turned into certifying algorithms.

Matthew Mcllree

Certified Constraint Programming



Conclusions

If nothing else

= Proof logging is worth doing, generally speaking.

= Constraint Programming Solvers have a huge potential
to be turned into certifying algorithms.

» Pseudo-Boolean proof logging seems to be very effective
for a wide range of constraint propagation algorithms.

Matthew Mcllree

Certified Constraint Programming



Conclusions

If nothing else

= Proof logging is worth doing, generally speaking.

= Constraint Programming Solvers have a huge potential
to be turned into certifying algorithms.

= Pseudo-Boolean proof logging seems to be very effective
for a wide range of constraint propagation algorithms.

= In particular, high-level constraint reasoning can be reduced to
simple steps in a (relatively) simple proof system.

Matthew Mcllree

Certified Constraint Programming



Conclusions

Open Questions

= Are there going to be CP constraints fundamentally difficult for
PB justifications?

Matthew Mcllree

Certified Constraint Programming



Conclusions

Open Questions

= Are there going to be CP constraints fundamentally difficult for
PB justifications?

= (Can we integrate low-level proofs with external trusted justifiers?

Matthew Mcllree

Certified Constraint Programming



Conclusions

Open Questions

= Are there going to be CP constraints fundamentally difficult for
PB justifications?

= Can we integrate low-level proofs with external trusted justifiers?

= How else can we encourage uptake in the CP community?’

Matthew Mcllree

Certified Constraint Programming



Conclusions

Open Questions

= Are there going to be CP constraints fundamentally difficult for
PB justifications?

= Can we integrate low-level proofs with external trusted justifiers?
= How else can we encourage uptake in the CP community?

= How can we get faster logging, proof trimming, faster checking?

Matthew Mcllree

Certified Constraint Programming



