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Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend
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Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem
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Introduction

This Talk

Efficient VeriPB proof logging and checking for pseudo-Boolean optimization [KLM+25]
Covers all techniques in state-of-the-art solvers RoundingSat [EN18] and Sat4j [LP10]

Performance close to our goals:
▶ Proof logging overhead usually ⩽ 10% (worst-case 50%)
▶ Checking overhead usually ⩽ ×6 (worst-case ×20)

First time practically feasible proof logging beyond SAT
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Introduction

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Introduction

Overview of This Talk

1 Pseudo-Boolean Solving and Optimization

2 The VeriPB Proof System

3 Optimization Techniques

4 Core-Guided Optimization

5 LP Integration

6 Empirical Results

7 Concluding Remarks
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Pseudo-Boolean Solving and Optimization

Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 (false) or 1 (true)

Objective Obj =
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3
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Pseudo-Boolean Solving and Optimization

Conflict-Driven Search

SAT and pseudo-Boolean solving: based on conflict-driven search

Propagation: Infer literal values from single constraint and other literal values
Example: After deciding x1 = 0, constraint 3x1 + 2x2 + x3 + x4 ≥ 3 propagates x2 = 1

Conflict-driven search:
▶ Try to build satisfying assignment literal by literal using decisions and propagations
▶ When falsifying constraint, derive constraint explaining the conflict and add to formula
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Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
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Pseudo-Boolean Solving and Optimization
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Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Solving and Optimization

Two main approaches for pseudo-Boolean solving:
▶ CNF-based: Translate to CNF and run conflict-driven clause learning (CDCL)
▶ Native PB: Generalize conflict-driven search to pseudo-Boolean constraints (focus of this talk)

New challenges and techniques for native PB solving compared to SAT:
▶ Efficient propagation [Dev20, NORZ24]
▶ Linear programming (LP) integration [DGN21]
▶ Optimization techniques, e.g. solution-improving search, core-guided search [DGD+21]
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Pseudo-Boolean Solving and Optimization

Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, we can just print the learned clause
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▶ Objective rewriting in core-guided search
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▶ Logging unit constraints (saying that a variable must take some fixed value, e.g. x2 ≥ 1)
▶ Logging constraint simplifications (e.g. simplifying away variables with fixed values)
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The VeriPB Proof System

Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
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The VeriPB Proof System

The Division Rule
∑

i aiℓi ≥ A∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Proof of soundness:

Dividing
∑

i aiℓi ≥ A by c yields
∑

i
ai
c ℓi ≥ A

c

Rounding up coefficients on the LHS:
∑

i

⌈ai
c

⌉
ℓi ≥ A

c (valid since ℓi ≥ 0)
The LHS is an integer, so can round up RHS to next integer:

∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Division is crucial for Boolean (as opposed to real-valued) reasoning:

Addition and multiplication valid over the reals
Literal axioms ℓi ≥ 0 and ℓi = 1 − ℓi ≥ 0 valid for all reals in [0, 1]
Division only valid over the integers: e.g. 2x1 ≥ 1 implies x1 ≥ 1
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The VeriPB Proof System

Conflict Analysis Example: VeriPB Derivation

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add 2x ≥ 1

Divide by 2
x ≥ 1

By naming constraints by labels as

Constraint @C1 .= z + w ≥ 1
Constraint @C2 .= y + w ≥ 1
Constraint @C3 .= 2x + y + z ≥ 2

such a calculation is written in the proof log in reverse Polish notation as

pol @C1 @C2 + @C3 + 2 d ;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 14/42



The VeriPB Proof System

Conflict Analysis Example: VeriPB Derivation

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add 2x ≥ 1

Divide by 2
x ≥ 1

By naming constraints by labels as

Constraint @C1 .= z + w ≥ 1
Constraint @C2 .= y + w ≥ 1
Constraint @C3 .= 2x + y + z ≥ 2

such a calculation is written in the proof log in reverse Polish notation as

pol @C1 @C2 + @C3 + 2 d ;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 14/42



The VeriPB Proof System

Conflict Analysis Example: VeriPB Derivation

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add 2x ≥ 1

Divide by 2
x ≥ 1

By naming constraints by labels as

Constraint @C1 .= z + w ≥ 1
Constraint @C2 .= y + w ≥ 1
Constraint @C3 .= 2x + y + z ≥ 2

such a calculation is written in the proof log in reverse Polish notation as

pol @C1 @C2 + @C3 + 2 d ;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 14/42



The VeriPB Proof System

Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

When using rule in a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either “obviously” or by explicit derivation
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The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;
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The VeriPB Proof System

Proof by Contradiction

F and F ∪ {C} are equisatisfiable if F ∪ {¬C} |= ⊥
Can be seen as a special case of the redundance rule (empty witness ω)
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The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;
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The VeriPB Proof System

Proof Logging for Decision and Optimization Problems

Decision problems:
▶ Satisfiable instances: just provide a solution
▶ Unsatisfiable instances: derivation of contradiction 0 ≥ 1

Optimization problems: provide:
(i) a solution with value UB, and
(ii) a derivation of the inequality Obj ≥ LB

(Optimality proven if UB = LB)
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Optimization Techniques

Optimization Techniques: Solution-Improving Search

Find solutions with better and better objective values
When finding solution with value v, introduce objective-improving constraint Obj ≤ v − 1
After finding optimal solution with value v∗, derive contradiction from Obj ≤ v∗ − 1

Proof logging:
▶ Objective-improving constraints are provided by the soli rule in VeriPB
▶ Final contradiction implies Obj ≥ v∗

Example: Let Obj = x1 + 2x2 + x3

We find the solution x1 = x3 = 1, x2 = 0 with objective value 2
Then soli x1 ∼x2 x3 introduces constraint Obj ≤ 1, i.e. x1 + 2x2 + x3 ≤ 1
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Optimization Techniques

Optimization Techniques: Running Decision Solver with Assumptions

Recall: conflict-driven search tries to build satisfying assignment
Can also do this starting from pre-chosen literal values
These pre-chosen values are called assumptions

Possible outcomes:
▶ Consistent → find solution to formula
▶ Inconsistent → learn constraint (called core) why assumptions are inconsistent
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Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective
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Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .
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Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;
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Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Some Further Details

Objorig = x1 + 2(x2 + x3 + x4) + x3 + 2x4

Objrewritten = x1 + 2(2 + y3) + x3 + 2x4

Multiplying x2 + x3 + x4 ≥ 2 + y3 by 2 yields inequality Objorig ≥ Objrewritten
(after canceling rest of objective from both sides)
Used to show, e.g., that Objrewritten ≥ LB implies Objorig ≥ LB
Other inequality needed in solver
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LP Integration

LP Relaxation

Linear programming (LP) relaxation: allow variables to take any real value in [0, 1]
In practice usually solved quickly using simplex algorithm
Relaxation has a better/lower optimal objective value
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LP Integration

Pseudo-Boolean Solving: LP Integration

Recall: conflict-driven search tries to build satisfying assignment
Partial assignments may yield unsatisfiable subproblem even over the reals
Propagation does not necessarily detect this, but LP solving can

Possible outcomes when solving LP relaxation on formula + partial assignment:
▶ infeasibility → generate Farkas certificate
▶ found integral solution → this solution is optimal
▶ found fractional solution → add constraints ‘cutting away’ fractional solution: cut generation
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LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
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are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
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LP Integration

Farkas Certificates: Proof Logging

For

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

a Farkas certificate is

C1 + C2 + 2 · C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 2y ≥ 2

Divide by 2 to get y ≥ 1

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 29/42



LP Integration

Farkas Certificates: Proof Logging

For

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

a Farkas certificate is
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LP Integration

Cut Generation: Basics

Cut generation:
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d;
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LP Integration

Advanced Cut Generation

Cut generation with mixed integer rounding (MIR) rule [MW01, DGN21] more challenging
MIR rule is stronger than cutting planes division
Reasoning uses integer slack variables (not supported by VeriPB)
Proof logging instead uses proof by contradiction
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LP Integration

Advanced Cut Generation: MIR cut

MIR cut: given a constraint
∑

i aiℓi ≥ A and a divisor d ∈ N+, derive∑
i

(
min {ai mod d, A mod d} +

⌊
ai

d

⌋
(A mod d)

)
ℓi ≥

⌈
A

d

⌉
(A mod d)

We call R = A mod d the multiplier of the MIR cut
Example: Applying a MIR cut with divisor d = 5 to

10x1 + 5x2 + 6x3 + 3x4 + x5 ≥ 12

yields
4x1 + 2x2 + 3x3 + 2x4 + x5 ≥ 6

Cutting planes division by d = 5 and multiplying by R = 12 mod 5 = 2 yields
weaker constraint

4x1 + 2x2 + 4x3 + 2x4 + 2x5 ≥ 6
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LP Integration

Advanced Cut Generation: Example

For constraints

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

introduce integral slack variables s1, s2 ≥ 0 to obtain

C ′
1

.= 6x1 + 5x2 + 2x3 + 3x4 − s1 = 8, C ′
2

.= x1 + x3 − s2 = 1

Compute linear combination C ′
1 + 4 · C ′

2, and only keep ≥ part:

10x1 + 5x2 + 6x3 + 3x4 − s1 − 4s2 ≥ 12

Apply a MIR cut with divisor d = 5 (multiplier R = 12 mod 5 = 2):

4x1 + 2x2 + 3x3 + 2x4 − s2 ≥ 6

Subtract C ′
2 to obtain

3x1 + 2x2 + 2x3 + 2x4 ≥ 5
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LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
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Proof Logging for Advanced Cut Generation: Example

C1
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.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4
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LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2
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Proof Logging for Advanced Cut Generation: Example

C1
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−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4
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Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2
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We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
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Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4 −3x1−2x2−2x3−2x4 ≥ −4

Add −x1 − 2x3 ≥ 0
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Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction

Can use negation ¬D
.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4 −3x1−2x2−2x3−2x4 ≥ −4

Add −x1 − 2x3 ≥ 0 x1 + x3 ≥ 1
Add −x3 ≥ 1
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LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction

Can use negation ¬D
.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4 −3x1−2x2−2x3−2x4 ≥ −4

Add −x1 − 2x3 ≥ 0 x1 + x3 ≥ 1
Add −x3 ≥ 1

VeriPB:
pbc +3 x1 +2 x2 +2 x3 +2 x4 >= 5 : subproof

pol -1 @C1 + 3 d 2 * -1 + @C2 + ;
qed pbc : -1;
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Empirical Results

Empirical Results: Proof Logging Overhead for RoundingSat

Usually ⩽ 10%

Decision instances:
worst-case 20%

Optimization instances:
worst-case 50%

Goal: ⩽ 10%

Overheads gets smaller
for larger solving times
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Empirical Results

Empirical Results: Proof Checking Overhead for RoundingSat

Usually ⩽ ×6
Decision instances:
worst-case ×10
Optimization instances:
worst-case ×20
Goal: ⩽ ×10
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Empirical Results

Empirical Results: Proof Logging Overhead for Sat4j

Usually ⩽ 10%

Worst-case 60%

Goal: ⩽ 10%
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Empirical Results

Empirical Results: Proof Checking Overhead for Sat4j

Usually ⩽ ×2

Worst-case ×4

Goal: ⩽ ×10

Lower overheads than RoundingSat:
▶ Fewer advanced techniques
▶ Java is a bit slower than C++

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)
V
er
iP
B
+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 38/42



Empirical Results

Empirical Results: Proof Checking Overhead for Sat4j

Usually ⩽ ×2

Worst-case ×4

Goal: ⩽ ×10

Lower overheads than RoundingSat:
▶ Fewer advanced techniques
▶ Java is a bit slower than C++

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)
V
er
iP
B
+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 38/42



Concluding Remarks

Using Proof Logging to Detect Inefficiency Bugs

Main purpose of proof logging: detect soundness bugs
Can also detect bugs leading to inefficiencies (but not unsound reasoning)

Two examples:
▶ Unnecessarily large coefficient in a constraint
▶ Solver used Obj ≤ v instead of objective-improving constraint Obj ≤ v − 1

Having to specify derivation explicitly (in contrast to SAT) can also be an advantage
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Concluding Remarks

Challenges for Efficient Proof Logging and Checking

Attention to detail
▶ Caveat: many low-level details skipped
▶ Getting these right requires in-depth understanding of both solver and VeriPB
▶ So efficient proof logging is not just adding a few simple print statements

Different perspectives in solver and proof checker
▶ Sat4j simplifies input constraints but considers them “the same”
▶ In the proof these constraints are clearly different
▶ Requires painful book-keeping during proof logging
▶ New feature of labelling constraints very helpful for this
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Concluding Remarks

Future Work

Even faster proof logging and checking for pseudo-Boolean optimization
▶ Branch-and-bound search (checking solutions currently a bottleneck)
▶ Native efficient support for simplifications of constraints
▶ Low-level optimizations in VeriPB and formally verified backend CakePB

Faster proof logging and checking for further paradigms:
▶ MaxSAT solving
▶ Subgraph solving
▶ Constraint programming
▶ ...
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Concluding Remarks

Take-away Message

This talk:
▶ Survey of some techniques in pseudo-Boolean optimization
▶ Plus explanations how to certify correctness with proof logging
▶ First example of practically feasible certified solving beyond SAT

Future directions:
▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?
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