
Proof Logging for Pseudo-Boolean Optimization

Wietze Koops

Lund University and University of Copenhagen

WHOOPS ’25, Orsay, France
September 13, 2025

Based on joint work with Daniel Le Berre, Magnus O. Myreen,
Jakob Nordström, Andy Oertel, Yong Kiam Tan, and Marc Vinyals

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 1/42



Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 2/42



Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 2/42



Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 2/42



Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 2/42



Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 2/42



Introduction

Proof Logging

Proof logging is the most successful solution to deal with bugs in combinatorial solvers
Big success story in Boolean satisfiability (SAT) [HHW13, WHH14, CHH+17, BCH21]

Why is proof logging successful?
▶ Expressivity: Cover full range of techniques in existing state-of-the-art solvers

Only need to add some simple print statements (and some bookkeeping)
▶ Efficiency: Fast proof logging and checking

⋆ Small constant overhead for proof generation (⪅ 10% of solving time)
⋆ Efficient proof checking (⪅ 10× solving time)

▶ Simplicity: Keep the proof system simple
▶ Trustworthiness:

⋆ Proofs are fully complete, so each step easy to check
⋆ Checker has a formally verified backend

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 2/42



Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 3/42



Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 3/42



Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 3/42



Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 3/42



Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 3/42



Introduction

Proof Logging: Existing Work Beyond SAT

Constraint Programming:
▶ Early work [VS10]: no full coverage, not trustworthy
▶ VeriPB Proof Logging [EGMN20, GMN22, MM23, MMN24, MM25]: efficiency is a problem

(e.g. logging overhead ×10, checking overhead ×1000)
Subgraph solving: VeriPB Proof Logging [GMM+20, GMM+24]: efficiency is a problem
Mixed-Integer Programming:

▶ VIPR Proof Logging [CGS17]: not nearly full coverage
▶ VeriPB Proof Logging (0–1 ILP Presolving) [HOGN24]: efficiency is a problem

MaxSAT solving: VeriPB Proof Logging [BBN+23, BBN+24, IOT+24]: efficiency problem
Model Counting: KCPS [Cap19], CPOG [BNAH23], MICE [FHR22]: efficiency problem
SMT solving: Alethe [SFBF21], Carcara [ALB23]: no full coverage, efficiency problem

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 3/42



Introduction

This Talk

Efficient VeriPB proof logging and checking for pseudo-Boolean optimization [KLM+25]
Covers all techniques in state-of-the-art solvers RoundingSat [EN18] and Sat4j [LP10]

Performance close to our goals:
▶ Proof logging overhead usually ⩽ 10% (worst-case 50%)
▶ Checking overhead usually ⩽ ×6 (worst-case ×20)

First time practically feasible proof logging beyond SAT

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 4/42



Introduction

This Talk

Efficient VeriPB proof logging and checking for pseudo-Boolean optimization [KLM+25]
Covers all techniques in state-of-the-art solvers RoundingSat [EN18] and Sat4j [LP10]

Performance close to our goals:
▶ Proof logging overhead usually ⩽ 10% (worst-case 50%)
▶ Checking overhead usually ⩽ ×6 (worst-case ×20)

First time practically feasible proof logging beyond SAT

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 4/42



Introduction

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 5/42



Introduction

Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 5/42



Introduction

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 5/42



Introduction

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 5/42



Introduction

Overview of This Talk

1 Pseudo-Boolean Solving and Optimization

2 The VeriPB Proof System

3 Optimization Techniques

4 Core-Guided Optimization

5 LP Integration

6 Empirical Results

7 Concluding Remarks

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 6/42



Pseudo-Boolean Solving and Optimization

Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 (false) or 1 (true)

Objective Obj =
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 7/42



Pseudo-Boolean Solving and Optimization

Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 (false) or 1 (true)

Objective Obj =
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 7/42



Pseudo-Boolean Solving and Optimization

Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 (false) or 1 (true)

Objective Obj =
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 7/42



Pseudo-Boolean Solving and Optimization

Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 (false) or 1 (true)

Objective Obj =
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 7/42



Pseudo-Boolean Solving and Optimization

Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 (false) or 1 (true)

Objective Obj =
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 7/42



Pseudo-Boolean Solving and Optimization

Conflict-Driven Search

SAT and pseudo-Boolean solving: based on conflict-driven search

Propagation: Infer literal values from single constraint and other literal values
Example: After deciding x1 = 0, constraint 3x1 + 2x2 + x3 + x4 ≥ 3 propagates x2 = 1

Conflict-driven search:
▶ Try to build satisfying assignment literal by literal using decisions and propagations
▶ When falsifying constraint, derive constraint explaining the conflict and add to formula

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 8/42



Pseudo-Boolean Solving and Optimization

Conflict-Driven Search

SAT and pseudo-Boolean solving: based on conflict-driven search

Propagation: Infer literal values from single constraint and other literal values
Example: After deciding x1 = 0, constraint 3x1 + 2x2 + x3 + x4 ≥ 3 propagates x2 = 1

Conflict-driven search:
▶ Try to build satisfying assignment literal by literal using decisions and propagations
▶ When falsifying constraint, derive constraint explaining the conflict and add to formula

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 8/42



Pseudo-Boolean Solving and Optimization

Conflict-Driven Search

SAT and pseudo-Boolean solving: based on conflict-driven search

Propagation: Infer literal values from single constraint and other literal values
Example: After deciding x1 = 0, constraint 3x1 + 2x2 + x3 + x4 ≥ 3 propagates x2 = 1

Conflict-driven search:
▶ Try to build satisfying assignment literal by literal using decisions and propagations
▶ When falsifying constraint, derive constraint explaining the conflict and add to formula

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 8/42



Pseudo-Boolean Solving and Optimization

Conflict-Driven Search

SAT and pseudo-Boolean solving: based on conflict-driven search

Propagation: Infer literal values from single constraint and other literal values
Example: After deciding x1 = 0, constraint 3x1 + 2x2 + x3 + x4 ≥ 3 propagates x2 = 1

Conflict-driven search:
▶ Try to build satisfying assignment literal by literal using decisions and propagations
▶ When falsifying constraint, derive constraint explaining the conflict and add to formula

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 8/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
Add

y + z + w + w ≥ 2

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add

2x ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add

2x ≥ 1
Divide by 2

x ≥ 1
2

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Conflict Analysis Example

Let
C1

.= z + w ≥ 1 C2
.= y + w ≥ 1 C3

.= 2x + y + z ≥ 2

Decide x = 0
C3 propagates y = 1 and z = 1
C2 propagates w = 1
C1 is falsified – we found a conflict!

Conflict analysis to learn x = 1:

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add

2x ≥ 1
Divide by 2

x ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 9/42



Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Solving and Optimization

Two main approaches for pseudo-Boolean solving:
▶ CNF-based: Translate to CNF and run conflict-driven clause learning (CDCL)
▶ Native PB: Generalize conflict-driven search to pseudo-Boolean constraints (focus of this talk)

New challenges and techniques for native PB solving compared to SAT:
▶ Efficient propagation [Dev20, NORZ24]
▶ Linear programming (LP) integration [DGN21]
▶ Optimization techniques, e.g. solution-improving search, core-guided search [DGD+21]

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 10/42



Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Solving and Optimization

Two main approaches for pseudo-Boolean solving:
▶ CNF-based: Translate to CNF and run conflict-driven clause learning (CDCL)
▶ Native PB: Generalize conflict-driven search to pseudo-Boolean constraints (focus of this talk)

New challenges and techniques for native PB solving compared to SAT:
▶ Efficient propagation [Dev20, NORZ24]
▶ Linear programming (LP) integration [DGN21]
▶ Optimization techniques, e.g. solution-improving search, core-guided search [DGD+21]

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 10/42



Pseudo-Boolean Solving and Optimization

Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, we can just print the learned clause

(and check that it follows by reverse unit propagation (RUP))
▶ In PB, explicit description of conflict analysis steps required

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Low-level challenges for truly efficient proof logging and checking:
▶ Logging unit constraints (saying that a variable must take some fixed value, e.g. x2 ≥ 1)
▶ Logging constraint simplifications (e.g. simplifying away variables with fixed values)
▶ Logging and checking solutions
▶ Optimizing formally verified proof checking

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 11/42



Pseudo-Boolean Solving and Optimization

Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, we can just print the learned clause

(and check that it follows by reverse unit propagation (RUP))
▶ In PB, explicit description of conflict analysis steps required

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Low-level challenges for truly efficient proof logging and checking:
▶ Logging unit constraints (saying that a variable must take some fixed value, e.g. x2 ≥ 1)
▶ Logging constraint simplifications (e.g. simplifying away variables with fixed values)
▶ Logging and checking solutions
▶ Optimizing formally verified proof checking

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 11/42



Pseudo-Boolean Solving and Optimization

Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, we can just print the learned clause

(and check that it follows by reverse unit propagation (RUP))
▶ In PB, explicit description of conflict analysis steps required

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Low-level challenges for truly efficient proof logging and checking:
▶ Logging unit constraints (saying that a variable must take some fixed value, e.g. x2 ≥ 1)
▶ Logging constraint simplifications (e.g. simplifying away variables with fixed values)
▶ Logging and checking solutions
▶ Optimizing formally verified proof checking

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 11/42



The VeriPB Proof System

Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 12/42



The VeriPB Proof System

Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 12/42



The VeriPB Proof System

Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 12/42



The VeriPB Proof System

Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 12/42



The VeriPB Proof System

Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 12/42



The VeriPB Proof System

The Division Rule
∑

i aiℓi ≥ A∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Proof of soundness:

Dividing
∑

i aiℓi ≥ A by c yields
∑

i
ai
c ℓi ≥ A

c

Rounding up coefficients on the LHS:
∑

i

⌈ai
c

⌉
ℓi ≥ A

c (valid since ℓi ≥ 0)
The LHS is an integer, so can round up RHS to next integer:

∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Division is crucial for Boolean (as opposed to real-valued) reasoning:

Addition and multiplication valid over the reals
Literal axioms ℓi ≥ 0 and ℓi = 1 − ℓi ≥ 0 valid for all reals in [0, 1]
Division only valid over the integers: e.g. 2x1 ≥ 1 implies x1 ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 13/42



The VeriPB Proof System

The Division Rule
∑

i aiℓi ≥ A∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Proof of soundness:

Dividing
∑

i aiℓi ≥ A by c yields
∑

i
ai
c ℓi ≥ A

c

Rounding up coefficients on the LHS:
∑

i

⌈ai
c

⌉
ℓi ≥ A

c (valid since ℓi ≥ 0)
The LHS is an integer, so can round up RHS to next integer:

∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Division is crucial for Boolean (as opposed to real-valued) reasoning:

Addition and multiplication valid over the reals
Literal axioms ℓi ≥ 0 and ℓi = 1 − ℓi ≥ 0 valid for all reals in [0, 1]
Division only valid over the integers: e.g. 2x1 ≥ 1 implies x1 ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 13/42



The VeriPB Proof System

The Division Rule
∑

i aiℓi ≥ A∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Proof of soundness:

Dividing
∑

i aiℓi ≥ A by c yields
∑

i
ai
c ℓi ≥ A

c

Rounding up coefficients on the LHS:
∑

i

⌈ai
c

⌉
ℓi ≥ A

c (valid since ℓi ≥ 0)
The LHS is an integer, so can round up RHS to next integer:

∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Division is crucial for Boolean (as opposed to real-valued) reasoning:

Addition and multiplication valid over the reals
Literal axioms ℓi ≥ 0 and ℓi = 1 − ℓi ≥ 0 valid for all reals in [0, 1]
Division only valid over the integers: e.g. 2x1 ≥ 1 implies x1 ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 13/42



The VeriPB Proof System

The Division Rule
∑

i aiℓi ≥ A∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Proof of soundness:

Dividing
∑

i aiℓi ≥ A by c yields
∑

i
ai
c ℓi ≥ A

c

Rounding up coefficients on the LHS:
∑

i

⌈ai
c

⌉
ℓi ≥ A

c (valid since ℓi ≥ 0)
The LHS is an integer, so can round up RHS to next integer:

∑
i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Division is crucial for Boolean (as opposed to real-valued) reasoning:

Addition and multiplication valid over the reals
Literal axioms ℓi ≥ 0 and ℓi = 1 − ℓi ≥ 0 valid for all reals in [0, 1]
Division only valid over the integers: e.g. 2x1 ≥ 1 implies x1 ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 13/42



The VeriPB Proof System

Conflict Analysis Example: VeriPB Derivation

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add 2x ≥ 1

Divide by 2
x ≥ 1

By naming constraints by labels as

Constraint @C1 .= z + w ≥ 1
Constraint @C2 .= y + w ≥ 1
Constraint @C3 .= 2x + y + z ≥ 2

such a calculation is written in the proof log in reverse Polish notation as

pol @C1 @C2 + @C3 + 2 d ;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 14/42



The VeriPB Proof System

Conflict Analysis Example: VeriPB Derivation

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add 2x ≥ 1

Divide by 2
x ≥ 1

By naming constraints by labels as

Constraint @C1 .= z + w ≥ 1
Constraint @C2 .= y + w ≥ 1
Constraint @C3 .= 2x + y + z ≥ 2

such a calculation is written in the proof log in reverse Polish notation as

pol @C1 @C2 + @C3 + 2 d ;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 14/42



The VeriPB Proof System

Conflict Analysis Example: VeriPB Derivation

z + w ≥ 1 y + w ≥ 1
Add

y + z ≥ 1 2x + y + z ≥ 2
Add 2x ≥ 1

Divide by 2
x ≥ 1

By naming constraints by labels as

Constraint @C1 .= z + w ≥ 1
Constraint @C2 .= y + w ≥ 1
Constraint @C3 .= 2x + y + z ≥ 2

such a calculation is written in the proof log in reverse Polish notation as

pol @C1 @C2 + @C3 + 2 d ;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 14/42



The VeriPB Proof System

Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

When using rule in a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either “obviously” or by explicit derivation

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 15/42



The VeriPB Proof System

Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

When using rule in a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either “obviously” or by explicit derivation

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 15/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Redundance-Based Strengthening: Example
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2 : y3 -> 1;
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 16/42



The VeriPB Proof System

Proof by Contradiction

F and F ∪ {C} are equisatisfiable if F ∪ {¬C} |= ⊥
Can be seen as a special case of the redundance rule (empty witness ω)

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 17/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add 2t ≥ 1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add 2t ≥ 1

Divide by 2
t ≥ 1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add 2t ≥ 1

Divide by 2
t ≥ 1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add

2t ≥ 1
Divide by 2

t ≥ 1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add 2t ≥ 1

Divide by 2
t ≥ 1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add

2t ≥ 1
Divide by 2

t ≥ 1
Add 0 ≥ 1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof by Contradiction: Example

From
C1

.= 2t + x1 + x2 ≥ 2 C2
.= 2t + x1 + x2 ≥ 2

derive D
.= x1 + x2 ≥ 2

Can use negation ¬D
.= x1 + x2 ≤ 1 .= −x1 − x2 ≥ −1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add 2t ≥ 1

Divide by 2
t ≥ 1

2t + x1 + x2 ≥ 2 −x1 − x2 ≥ −1
Add

2t ≥ 1
Divide by 2

t ≥ 1
Add 0 ≥ 1

VeriPB:
pbc +1 x1 +1 x2 >= 2 : subproof

pol @C1 -1 + 2 d @C2 -1 + 2 d + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 18/42



The VeriPB Proof System

Proof Logging for Decision and Optimization Problems

Decision problems:
▶ Satisfiable instances: just provide a solution
▶ Unsatisfiable instances: derivation of contradiction 0 ≥ 1

Optimization problems: provide:
(i) a solution with value UB, and
(ii) a derivation of the inequality Obj ≥ LB

(Optimality proven if UB = LB)

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 19/42



The VeriPB Proof System

Proof Logging for Decision and Optimization Problems

Decision problems:
▶ Satisfiable instances: just provide a solution
▶ Unsatisfiable instances: derivation of contradiction 0 ≥ 1

Optimization problems: provide:
(i) a solution with value UB, and
(ii) a derivation of the inequality Obj ≥ LB

(Optimality proven if UB = LB)

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 19/42



Optimization Techniques

Optimization Techniques: Solution-Improving Search

Find solutions with better and better objective values
When finding solution with value v, introduce objective-improving constraint Obj ≤ v − 1
After finding optimal solution with value v∗, derive contradiction from Obj ≤ v∗ − 1

Proof logging:
▶ Objective-improving constraints are provided by the soli rule in VeriPB
▶ Final contradiction implies Obj ≥ v∗

Example: Let Obj = x1 + 2x2 + x3

We find the solution x1 = x3 = 1, x2 = 0 with objective value 2
Then soli x1 ∼x2 x3 introduces constraint Obj ≤ 1, i.e. x1 + 2x2 + x3 ≤ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 20/42



Optimization Techniques

Optimization Techniques: Solution-Improving Search

Find solutions with better and better objective values
When finding solution with value v, introduce objective-improving constraint Obj ≤ v − 1
After finding optimal solution with value v∗, derive contradiction from Obj ≤ v∗ − 1

Proof logging:
▶ Objective-improving constraints are provided by the soli rule in VeriPB
▶ Final contradiction implies Obj ≥ v∗

Example: Let Obj = x1 + 2x2 + x3

We find the solution x1 = x3 = 1, x2 = 0 with objective value 2
Then soli x1 ∼x2 x3 introduces constraint Obj ≤ 1, i.e. x1 + 2x2 + x3 ≤ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 20/42



Optimization Techniques

Optimization Techniques: Solution-Improving Search

Find solutions with better and better objective values
When finding solution with value v, introduce objective-improving constraint Obj ≤ v − 1
After finding optimal solution with value v∗, derive contradiction from Obj ≤ v∗ − 1

Proof logging:
▶ Objective-improving constraints are provided by the soli rule in VeriPB
▶ Final contradiction implies Obj ≥ v∗

Example: Let Obj = x1 + 2x2 + x3

We find the solution x1 = x3 = 1, x2 = 0 with objective value 2
Then soli x1 ∼x2 x3 introduces constraint Obj ≤ 1, i.e. x1 + 2x2 + x3 ≤ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 20/42



Optimization Techniques

Optimization Techniques: Solution-Improving Search

Find solutions with better and better objective values
When finding solution with value v, introduce objective-improving constraint Obj ≤ v − 1
After finding optimal solution with value v∗, derive contradiction from Obj ≤ v∗ − 1

Proof logging:
▶ Objective-improving constraints are provided by the soli rule in VeriPB
▶ Final contradiction implies Obj ≥ v∗

Example: Let Obj = x1 + 2x2 + x3

We find the solution x1 = x3 = 1, x2 = 0 with objective value 2
Then soli x1 ∼x2 x3 introduces constraint Obj ≤ 1, i.e. x1 + 2x2 + x3 ≤ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 20/42



Optimization Techniques

Optimization Techniques: Running Decision Solver with Assumptions

Recall: conflict-driven search tries to build satisfying assignment
Can also do this starting from pre-chosen literal values
These pre-chosen values are called assumptions

Possible outcomes:
▶ Consistent → find solution to formula
▶ Inconsistent → learn constraint (called core) why assumptions are inconsistent

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 21/42



Optimization Techniques

Optimization Techniques: Running Decision Solver with Assumptions

Recall: conflict-driven search tries to build satisfying assignment
Can also do this starting from pre-chosen literal values
These pre-chosen values are called assumptions

Possible outcomes:
▶ Consistent → find solution to formula
▶ Inconsistent → learn constraint (called core) why assumptions are inconsistent

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 21/42



Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 22/42



Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 22/42



Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 22/42



Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 22/42



Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 22/42



Core-Guided Optimization

Core-Guided Optimization

Make most optimistic assumption: all literals ℓi in objective are 0
If assumptions consistent: found optimal solution
If assumptions inconsistent: derive core constraint∑k

i=1 ℓi ≥ A

Introduce fresh variables yk such that∑k
i=1 ℓi = A +

∑k
i=A+1 yi

(yj is true iff
∑k

i=1 ℓi ≥ j for A + 1 ≤ j ≤ k)
Use this equality to cancel literal with lowest coefficient from objective
Repeat with rewritten objective

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 22/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Core-Guided Optimization: Example
Objective: Obj = x1 + 2x2 + 3x3 + 4x4

Assume
x1 = x2 = x3 = x4 = 0

Decision solver: Inconsistent, core constraint:
x2 + x3 + x4 ≥ 2

Introduce variable y3 such that
x2 + x3 + x4 = 2 + y3

Rewrite objective:
Obj = x1 + 2(x2 + x3 + x4) + x3 + 2x4

= x1 + 2(2 + y3) + x3 + 2x4

= x1 + x3 + 2x4 + 2y3 + 4
Shows that Obj ≥ 4
Next assume x1 = x3 = x4 = y3 = 0 . . .

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 23/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 24/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 24/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 24/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 24/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 24/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Example
We know D

.= x2 + x3 + x4 ≥ 2. Want to introduce a variable y3 such that

x2 + x3 + x4 = 2 + y3, i.e.
{

C1
.= x2 + x3 + x4 ≤ 2 + y3

C2
.= x2 + x3 + x4 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1↾ω trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2↾ω follows from D;
¬C2

.= x2 + x3 + x4 ≤ 1 + y3 implies C1↾ω
.= x2 + x3 + x4 ≤ 2

VeriPB: red +1 x2 +1 x3 +1 x4 -1 y3 <= 2 : y3 -> 1;
red +1 x2 +1 x3 +1 x4 -1 y3 >= 2 : y3 -> 0;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 24/42



Core-Guided Optimization

Proof Logging for Core-Guided Optimization: Some Further Details

Objorig = x1 + 2(x2 + x3 + x4) + x3 + 2x4

Objrewritten = x1 + 2(2 + y3) + x3 + 2x4

Multiplying x2 + x3 + x4 ≥ 2 + y3 by 2 yields inequality Objorig ≥ Objrewritten
(after canceling rest of objective from both sides)
Used to show, e.g., that Objrewritten ≥ LB implies Objorig ≥ LB
Other inequality needed in solver

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 25/42



LP Integration

LP Relaxation

Linear programming (LP) relaxation: allow variables to take any real value in [0, 1]
In practice usually solved quickly using simplex algorithm
Relaxation has a better/lower optimal objective value

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 26/42



LP Integration

Pseudo-Boolean Solving: LP Integration

Recall: conflict-driven search tries to build satisfying assignment
Partial assignments may yield unsatisfiable subproblem even over the reals
Propagation does not necessarily detect this, but LP solving can

Possible outcomes when solving LP relaxation on formula + partial assignment:
▶ infeasibility → generate Farkas certificate
▶ found integral solution → this solution is optimal
▶ found fractional solution → add constraints ‘cutting away’ fractional solution: cut generation

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 27/42



LP Integration

Pseudo-Boolean Solving: LP Integration

Recall: conflict-driven search tries to build satisfying assignment
Partial assignments may yield unsatisfiable subproblem even over the reals
Propagation does not necessarily detect this, but LP solving can

Possible outcomes when solving LP relaxation on formula + partial assignment:
▶ infeasibility → generate Farkas certificate
▶ found integral solution → this solution is optimal
▶ found fractional solution → add constraints ‘cutting away’ fractional solution: cut generation

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 27/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates

If solver decides y = 0, then constraints

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

are infeasible over the reals, so y ≥ 1 must hold
LP solver can detect this, but we cannot trust its floating-point arithmetic...
Solution: Ask LP solver for Farkas certificate: positive linear combination of constraints (and
literal axioms, e.g. x4 ≥ 0 .= −x4 ≥ −1) proving infeasibility
Round multipliers provided by LP solver to integers and check in exact arithmetic

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 28/42



LP Integration

Farkas Certificates: Proof Logging

For

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

a Farkas certificate is

C1 + C2 + 2 · C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 2y ≥ 2

Divide by 2 to get y ≥ 1

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 29/42



LP Integration

Farkas Certificates: Proof Logging

For

C1
.= y + x1 + x2 + x3 ≥ 2

C2
.= y + 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= − 2x1 − 2x2 − x3 ≥ −1

a Farkas certificate is

C1 + C2 + 2 · C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 2y ≥ 2

Divide by 2 to get y ≥ 1

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 29/42



LP Integration

Cut Generation: Basics

Cut generation:
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 30/42



LP Integration

Cut Generation: Basics

Cut generation:
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 30/42



LP Integration

Cut Generation: Basics

Cut generation:
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 30/42



LP Integration

Cut Generation: Basics

Cut generation:
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 30/42



LP Integration

Cut Generation: Basics

Cut generation:
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 30/42



LP Integration

Advanced Cut Generation

Cut generation with mixed integer rounding (MIR) rule [MW01, DGN21] more challenging
MIR rule is stronger than cutting planes division
Reasoning uses integer slack variables (not supported by VeriPB)
Proof logging instead uses proof by contradiction

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 31/42



LP Integration

Advanced Cut Generation: MIR cut

MIR cut: given a constraint
∑

i aiℓi ≥ A and a divisor d ∈ N+, derive∑
i

(
min {ai mod d, A mod d} +

⌊
ai

d

⌋
(A mod d)

)
ℓi ≥

⌈
A

d

⌉
(A mod d)

We call R = A mod d the multiplier of the MIR cut
Example: Applying a MIR cut with divisor d = 5 to

10x1 + 5x2 + 6x3 + 3x4 + x5 ≥ 12

yields
4x1 + 2x2 + 3x3 + 2x4 + x5 ≥ 6

Cutting planes division by d = 5 and multiplying by R = 12 mod 5 = 2 yields
weaker constraint

4x1 + 2x2 + 4x3 + 2x4 + 2x5 ≥ 6
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 32/42



LP Integration

Advanced Cut Generation: Example

For constraints

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

introduce integral slack variables s1, s2 ≥ 0 to obtain

C ′
1

.= 6x1 + 5x2 + 2x3 + 3x4 − s1 = 8, C ′
2

.= x1 + x3 − s2 = 1

Compute linear combination C ′
1 + 4 · C ′

2, and only keep ≥ part:

10x1 + 5x2 + 6x3 + 3x4 − s1 − 4s2 ≥ 12

Apply a MIR cut with divisor d = 5 (multiplier R = 12 mod 5 = 2):

4x1 + 2x2 + 3x3 + 2x4 − s2 ≥ 6

Subtract C ′
2 to obtain

3x1 + 2x2 + 2x3 + 2x4 ≥ 5
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 33/42



LP Integration

Advanced Cut Generation: Example

For constraints

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

introduce integral slack variables s1, s2 ≥ 0 to obtain

C ′
1

.= 6x1 + 5x2 + 2x3 + 3x4 − s1 = 8, C ′
2

.= x1 + x3 − s2 = 1

Compute linear combination C ′
1 + 4 · C ′

2, and only keep ≥ part:

10x1 + 5x2 + 6x3 + 3x4 − s1 − 4s2 ≥ 12

Apply a MIR cut with divisor d = 5 (multiplier R = 12 mod 5 = 2):

4x1 + 2x2 + 3x3 + 2x4 − s2 ≥ 6

Subtract C ′
2 to obtain

3x1 + 2x2 + 2x3 + 2x4 ≥ 5
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 33/42



LP Integration

Advanced Cut Generation: Example

For constraints

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

introduce integral slack variables s1, s2 ≥ 0 to obtain

C ′
1

.= 6x1 + 5x2 + 2x3 + 3x4 − s1 = 8, C ′
2

.= x1 + x3 − s2 = 1

Compute linear combination C ′
1 + 4 · C ′

2, and only keep ≥ part:

10x1 + 5x2 + 6x3 + 3x4 − s1 − 4s2 ≥ 12

Apply a MIR cut with divisor d = 5 (multiplier R = 12 mod 5 = 2):

4x1 + 2x2 + 3x3 + 2x4 − s2 ≥ 6

Subtract C ′
2 to obtain

3x1 + 2x2 + 2x3 + 2x4 ≥ 5
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 33/42



LP Integration

Advanced Cut Generation: Example

For constraints

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

introduce integral slack variables s1, s2 ≥ 0 to obtain

C ′
1

.= 6x1 + 5x2 + 2x3 + 3x4 − s1 = 8, C ′
2

.= x1 + x3 − s2 = 1

Compute linear combination C ′
1 + 4 · C ′

2, and only keep ≥ part:

10x1 + 5x2 + 6x3 + 3x4 − s1 − 4s2 ≥ 12

Apply a MIR cut with divisor d = 5 (multiplier R = 12 mod 5 = 2):

4x1 + 2x2 + 3x3 + 2x4 − s2 ≥ 6

Subtract C ′
2 to obtain

3x1 + 2x2 + 2x3 + 2x4 ≥ 5
Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 33/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1
We prove resulting cut D

.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction
Can use negation ¬D

.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction

Can use negation ¬D
.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction

Can use negation ¬D
.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4 −3x1−2x2−2x3−2x4 ≥ −4

Add −x1 − 2x3 ≥ 0

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction

Can use negation ¬D
.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4 −3x1−2x2−2x3−2x4 ≥ −4

Add −x1 − 2x3 ≥ 0 x1 + x3 ≥ 1
Add −x3 ≥ 1

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



LP Integration

Proof Logging for Advanced Cut Generation: Example

C1
.= 6x1 + 5x2 + 2x3 + 3x4 ≥ 8, C2

.= x1 + x3 ≥ 1

We prove resulting cut D
.= 3x1 + 2x2 + 2x3 + 2x4 ≥ 5 by contradiction

Can use negation ¬D
.= 3x1 + 2x2 + 2x3 + 2x4 ≤ 4 .= −3x1 − 2x2 − 2x3 − 2x4 ≥ −4

−3x1−2x2−2x3−2x4 ≥ −4 6x1+5x2+2x3+3x4 ≥ 8
Add 3x1 + 3x2 + x4 ≥ 4

Divide by 3
x1 + x2 + x4 ≥ 2

Multiply by 2
2x1 + 2x2 + 2x4 ≥ 4 −3x1−2x2−2x3−2x4 ≥ −4

Add −x1 − 2x3 ≥ 0 x1 + x3 ≥ 1
Add −x3 ≥ 1

VeriPB:
pbc +3 x1 +2 x2 +2 x3 +2 x4 >= 5 : subproof

pol -1 @C1 + 3 d 2 * -1 + @C2 + ;
qed pbc : -1;

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 34/42



Empirical Results

Empirical Results: Proof Logging Overhead for RoundingSat

Usually ⩽ 10%

Decision instances:
worst-case 20%

Optimization instances:
worst-case 50%

Goal: ⩽ 10%

Overheads gets smaller
for larger solving times

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

RoundingSat without proof logging (s)

ad
d
it
io
n
a
l
ti
m
e
fo
r
p
ro
of

lo
gg
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 35/42



Empirical Results

Empirical Results: Proof Checking Overhead for RoundingSat

Usually ⩽ ×6
Decision instances:
worst-case ×10
Optimization instances:
worst-case ×20
Goal: ⩽ ×10

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

RoundingSat with proof logging (s)

V
er
iP
B
+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 36/42



Empirical Results

Empirical Results: Proof Logging Overhead for Sat4j

Usually ⩽ 10%

Worst-case 60%

Goal: ⩽ 10%

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sat4j without proof logging (s)
ad

d
it
io
n
al

ti
m
e
fo
r
p
ro
of

lo
gg
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 37/42



Empirical Results

Empirical Results: Proof Checking Overhead for Sat4j

Usually ⩽ ×2

Worst-case ×4

Goal: ⩽ ×10

Lower overheads than RoundingSat:
▶ Fewer advanced techniques
▶ Java is a bit slower than C++

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)
V
er
iP
B
+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 38/42



Empirical Results

Empirical Results: Proof Checking Overhead for Sat4j

Usually ⩽ ×2

Worst-case ×4

Goal: ⩽ ×10

Lower overheads than RoundingSat:
▶ Fewer advanced techniques
▶ Java is a bit slower than C++

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)
V
er
iP
B
+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 38/42



Concluding Remarks

Using Proof Logging to Detect Inefficiency Bugs

Main purpose of proof logging: detect soundness bugs
Can also detect bugs leading to inefficiencies (but not unsound reasoning)

Two examples:
▶ Unnecessarily large coefficient in a constraint
▶ Solver used Obj ≤ v instead of objective-improving constraint Obj ≤ v − 1

Having to specify derivation explicitly (in contrast to SAT) can also be an advantage

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 39/42



Concluding Remarks

Using Proof Logging to Detect Inefficiency Bugs

Main purpose of proof logging: detect soundness bugs
Can also detect bugs leading to inefficiencies (but not unsound reasoning)

Two examples:
▶ Unnecessarily large coefficient in a constraint
▶ Solver used Obj ≤ v instead of objective-improving constraint Obj ≤ v − 1

Having to specify derivation explicitly (in contrast to SAT) can also be an advantage

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 39/42



Concluding Remarks

Using Proof Logging to Detect Inefficiency Bugs

Main purpose of proof logging: detect soundness bugs
Can also detect bugs leading to inefficiencies (but not unsound reasoning)

Two examples:
▶ Unnecessarily large coefficient in a constraint
▶ Solver used Obj ≤ v instead of objective-improving constraint Obj ≤ v − 1

Having to specify derivation explicitly (in contrast to SAT) can also be an advantage

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 39/42



Concluding Remarks

Challenges for Efficient Proof Logging and Checking

Attention to detail
▶ Caveat: many low-level details skipped
▶ Getting these right requires in-depth understanding of both solver and VeriPB
▶ So efficient proof logging is not just adding a few simple print statements

Different perspectives in solver and proof checker
▶ Sat4j simplifies input constraints but considers them “the same”
▶ In the proof these constraints are clearly different
▶ Requires painful book-keeping during proof logging
▶ New feature of labelling constraints very helpful for this

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 40/42



Concluding Remarks

Challenges for Efficient Proof Logging and Checking

Attention to detail
▶ Caveat: many low-level details skipped
▶ Getting these right requires in-depth understanding of both solver and VeriPB
▶ So efficient proof logging is not just adding a few simple print statements

Different perspectives in solver and proof checker
▶ Sat4j simplifies input constraints but considers them “the same”
▶ In the proof these constraints are clearly different
▶ Requires painful book-keeping during proof logging
▶ New feature of labelling constraints very helpful for this

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 40/42



Concluding Remarks

Future Work

Even faster proof logging and checking for pseudo-Boolean optimization
▶ Branch-and-bound search (checking solutions currently a bottleneck)
▶ Native efficient support for simplifications of constraints
▶ Low-level optimizations in VeriPB and formally verified backend CakePB

Faster proof logging and checking for further paradigms:
▶ MaxSAT solving
▶ Subgraph solving
▶ Constraint programming
▶ ...

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 41/42



Concluding Remarks

Future Work

Even faster proof logging and checking for pseudo-Boolean optimization
▶ Branch-and-bound search (checking solutions currently a bottleneck)
▶ Native efficient support for simplifications of constraints
▶ Low-level optimizations in VeriPB and formally verified backend CakePB

Faster proof logging and checking for further paradigms:
▶ MaxSAT solving
▶ Subgraph solving
▶ Constraint programming
▶ ...

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 41/42



Concluding Remarks

Take-away Message

This talk:
▶ Survey of some techniques in pseudo-Boolean optimization
▶ Plus explanations how to certify correctness with proof logging
▶ First example of practically feasible certified solving beyond SAT

Future directions:
▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 42/42



Concluding Remarks

Take-away Message

This talk:
▶ Survey of some techniques in pseudo-Boolean optimization
▶ Plus explanations how to certify correctness with proof logging
▶ First example of practically feasible certified solving beyond SAT

Future directions:
▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 42/42



Concluding Remarks

Take-away Message

This talk:
▶ Survey of some techniques in pseudo-Boolean optimization
▶ Plus explanations how to certify correctness with proof logging
▶ First example of practically feasible certified solving beyond SAT

Future directions:
▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 42/42



References I

[ALB23] Bruno Andreotti, Hanna Lachnitt, and Haniel Barbosa. Carcara: An efficient proof checker and elaborator for
SMT proofs in the alethe format. In Proceedings of the 29th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’23), volume 13993 of Lecture Notes in
Computer Science, pages 367–386. Springer, April 2023.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided
MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29),
volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.
Certifying without loss of generality reasoning in solution-improving maximum satisfiability. In Proceedings of
the 30th International Conference on Principles and Practice of Constraint Programming (CP ’24), volume
307 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:28, September 2024.

[BCH21] Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT solver-elaborator
communication. In Proceedings of the 27th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’21), volume 12651 of Lecture Notes in Computer Science,
pages 59–75. Springer, March-April 2021.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 43/42



References II

[BNAH23] Randal E. Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn J. H. Heule. Certified knowledge
compilation with application to verified model counting. In Meena Mahajan and Friedrich Slivovsky, editors,
26th International Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023,
Alghero, Italy, volume 271 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In
Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing
(SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[Cap19] Florent Capelli. Knowledge compilation languages as proof systems. In Mikolás Janota and Inês Lynce,
editors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT
2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture Notes in Computer Science,
pages 90–99. Springer, 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 44/42



References III

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming results. In
Proceedings of the 19th International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’17), volume 10328 of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp.
Efficient certified RAT verification. In Proceedings of the 26th International Conference on Automated
Deduction (CADE-26), volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer,
August 2017.

[Dev20] Jo Devriendt. Watched propagation of 0-1 integer linear constraints. In Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333 of Lecture Notes
in Computer Science, pages 160–176. Springer, September 2020.

[DGD+21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting to the core of
pseudo-Boolean optimization: Combining core-guided search with cutting planes reasoning. In Proceedings of
the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3750–3758, February 2021.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear
programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55, October 2021.
Preliminary version in CPAIOR ’20.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 45/42



References IV

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using
pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),
pages 1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18), pages
1291–1299, July 2018.

[FHR22] Johannes Klaus Fichte, Markus Hecher, and Valentin Roland. Proofs for propositional model counting. In
Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 30:1–30:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333
of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 46/42



References V

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.
End-to-end verification for subgraph solving. In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In
Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming
(CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August
2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February
2021.

[HHW13] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In
Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design
(FMCAD ’13), pages 181–188, October 2013.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 47/42



References VI

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based presolve
reductions for 0–1 integer linear programs. In Proceedings of the 21st International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24),
volume 14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May 2024.

[IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and
Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th International Joint
Conference on Automated Reasoning (IJCAR ’24), volume 14739 of Lecture Notes in Computer Science,
pages 396–418. Springer, July 2024.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the 6th
International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in
Computer Science, pages 355–370. Springer, June 2012.

[KLM+25] Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam Tan, and
Marc Vinyals. Practically feasible proof logging for pseudo-Boolean optimization. In Proceedings of the 31st
International Conference on Principles and Practice of Constraint Programming (CP ’25), August 2025. To
appear.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 48/42



References VII

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling
and Computation, 7:59–64, July 2010.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of
the 29th International Conference on Principles and Practice of Constraint Programming (CP ’23), volume
280 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MM25] Matthew McIlree and Ciaran McCreesh. Certifying bounds propagation for integer multiplication constraints.
In Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI ’25), pages 11309–11317,
February-March 2025.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In
Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of Lecture Notes in Computer Science,
pages 38–55. Springer, May 2024.

[MW01] Hugues Marchand and Laurence A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49(3):325–468, June 2001.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 49/42



References VIII

[NORZ24] Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Rui Zhao. Speeding up pseudo-Boolean
propagation. In Proceedings of the 27th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’24), volume 305 of Leibniz International Proceedings in Informatics (LIPIcs), pages
22:1–22:18, August 2024.

[SFBF21] Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, and Pascal Fontaine. Alethe: Towards a generic SMT
proof format (extended abstract). In Proceedings of the 7th Workshop on Proof eXchange for Theorem
Proving (PxTP ’21), volume 336 of Electronic Proceedings in Theoretical Computer Science, pages 49–54,
July 2021.

[VS10] Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI ’10), pages 204–209, July 2010.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, July 2014.

Wietze Koops (LU & UCPH) Proof Logging for Pseudo-Boolean Optimization September 13, 2025 50/42


	Introduction
	Pseudo-Boolean Solving and Optimization
	The VeriPB Proof System
	Optimization Techniques
	Core-Guided Optimization
	LP Integration
	Empirical Results
	Concluding Remarks
	Appendix

