End-to-End Verification for Subgraph Solving [Demo]

Yong Kiam Tan

Institute for Infocomm Research, A*STAR and Nanyang Technological University

WHOOPS 25

1/9

Talk Logistics

e This talk is mainly a demo of how a proof checker is verified using
infrastructure from the CakeML project.

e Complementary to most other talks at WHOOPS, but especially
“Proof logging for subgraph solving” by Ciaran McCreesh

o Feel free to interrupt on Zoom if you need more clarification.

e Agenda:

e Brief introduction to interactive theorem proving.
e A quick tour of tools used to verify the CakePB “backend".
o A quick tour of a CakePB “frontend” for clique solving.

2/9

Interactive Theorem Proving (ITP)

"By interactive theorem proving, we mean some arrangement where
the machine and a human user work together interactively to
produce a formal proof.” — quoted from Harrison et al. [1]

@ Lots of recent interest in ITP, especially with Lean.

@ History of ITPs goes way back (around 60s/70s).

@ Integration of automated tools in ITPs has been hugely successful,
e.g., Sledgehammer in Isabelle/HOL.

e Proof certificates/logs can be independently checked in an ITP as a
way of obtaining automation without trusting ATPs.

This talk: Proof checking, where the checker's implementation itself is
verified inside an ITP—note the subtle difference!

Demo: HOL4 interaction.

3/9

Verified Proof Checking for Subgraph Solving (1)

Graph File(s)

Graph Solver

Verified
Encoder

CakePB

e N
Untrusted Augmented
Encoding Proof

Verified
Checker

This talk

General Workflow:

@ Solver generates result
& proof.

@ VeriPB elaborates
proof into (simpler)
kernel format.

© CakePB checks
elaborated proof
(with verified
encoding).

Demo: CakePB-graph
(verified PB proof checker for
max clique size)

4/9

Verified Proof Checking for Subgraph Solving (I1)

P — - P = ! Externally
|
|
I

Generated
oGl
wecs

Max CCIS

Kernel Proof

PB E;coding)—»[PB Normalizer]

CakePB -
(various frontends) (common backend) Norm. PB Encoding

[/ Trusted Conclusion]‘—(Conclusion Translator] PB Conclusion]*—(PB Proof Checker]

@ It would be very expensive to build a whole new proof checking
framework for each new graph/combinatorial problem.

@ 0-1 ILP (PB) reasoning has served well as a common, expressive
language for such proofs.

Graph File(s)

CakePB-graph

The same benefit applies to the verified checker, with a common PB
checking “backend” supporting several proof checker “frontends”.

+ Diverse frontend usage informs key optimizations for CakePB backend.

+ CakePB backend optimizations automatically benefit every frontend.
5/9

CakePB (backend)

Our proof checkers are built and verified within the CakeML project.

@ Programming language
(CakeML) with formal
semantics and a verified
compiler to machine code
(x86, ARMS, etc.).

@ Various tools for generating
verified CakeML code.

Demo: A taste of verification tools used in CakePB.
@ Defining a syntax and semantics for PB constraints.
@ Proving (abstractly) some cutting planes rules.

@ Refinement towards formally verified CakeML source code (translation,

separation logic).
6/9

CakePB-graph (frontend)

Our proof checkers are built and verified within the CakeML project.

@ Programming language
(CakeML) with formal
semantics and a verified
compiler to machine code
(x86, ARMS, etc.).

@ Various tools for generating
verified CakeML code.

Demo: Putting things together with a clique frontend and an end-to-end
compilation theorem.

@ Defining a syntax and semantics for clique.

@ Proving the encoding into PB.

o Plugging together the encoder and backend.

7/9

Summary

Our proof checkers are built and verified within the CakeML project.

@ Programming language
(CakeML) with formal
semantics and a verified
compiler to machine code
(x86, ARMS, etc.).

@ Various tools for generating
verified CakeML code.

Get in touch with us if you:
@ Need a new verified CakePB frontend.
@ Need improvements to CakePB's backend performance.

@ Want either of the above, AND you are keen to dive into the
verification yourself. We're happy to help you get started!

8/9

References

[1] Harrison, J., Urban, J., and Wiedijk, F. (2014). History of interactive
theorem proving. In Siekmann, J. H., editor, Computational Logic,
volume 9 of Handbook of the History of Logic, pages 135-214. Elsevier.

9/9

	References

