
End-to-End Verification for Subgraph Solving [Demo]

Yong Kiam Tan

Institute for Infocomm Research, A*STAR and Nanyang Technological University

WHOOPS ’25

1 / 9



Talk Logistics

This talk is mainly a demo of how a proof checker is verified using
infrastructure from the CakeML project.
Complementary to most other talks at WHOOPS, but especially
“Proof logging for subgraph solving” by Ciaran McCreesh
Feel free to interrupt on Zoom if you need more clarification.
Agenda:

Brief introduction to interactive theorem proving.
A quick tour of tools used to verify the CakePB “backend”.
A quick tour of a CakePB “frontend” for clique solving.

2 / 9



Interactive Theorem Proving (ITP)

“By interactive theorem proving, we mean some arrangement where
the machine and a human user work together interactively to
produce a formal proof.” — quoted from Harrison et al. [1]

Lots of recent interest in ITP, especially with Lean.
History of ITPs goes way back (around 60s/70s).
Integration of automated tools in ITPs has been hugely successful,
e.g., Sledgehammer in Isabelle/HOL.
Proof certificates/logs can be independently checked in an ITP as a
way of obtaining automation without trusting ATPs.

This talk: Proof checking, where the checker’s implementation itself is
verified inside an ITP—note the subtle difference!

Demo: HOL4 interaction.

3 / 9



Verified Proof Checking for Subgraph Solving (I)

Graph File(s)

Graph Solver

Untrusted
Encoding

Augmented
Proof

Checker

✓?

Elaborator

Kernel Proof

Verified
Encoder

Verified
Encoding

Verified
Checker

✓ Trusted
Conclusion

VeriPB

CakePB-graph

CakePB

This talk

cf. other WHOOPS talks

General Workflow:

1 Solver generates result
& proof.

2 VeriPB elaborates
proof into (simpler)
kernel format.

3 CakePB checks
elaborated proof
(with verified
encoding).

Demo: CakePB-graph
(verified PB proof checker for
max clique size)

4 / 9



Verified Proof Checking for Subgraph Solving (II)

Other Domains

Graph File(s)

✓ Trusted Conclusion

Other Encoders

Subgraph Isomorphism

Max Clique

Max CIS

Max CCIS

Conclusion Translator

PB Encoding

PB Conclusion

PB Normalizer

Norm. PB Encoding

PB Proof Checker

Externally
Generated

Kernel Proof

CakePB
(common backend)

CakePB-graph
(various frontends)

It would be very expensive to build a whole new proof checking
framework for each new graph/combinatorial problem.
0-1 ILP (PB) reasoning has served well as a common, expressive
language for such proofs.

The same benefit applies to the verified checker, with a common PB
checking “backend” supporting several proof checker “frontends”.

+ Diverse frontend usage informs key optimizations for CakePB backend.
+ CakePB backend optimizations automatically benefit every frontend.

5 / 9



CakePB (backend)

Our proof checkers are built and verified within the CakeML project.

Programming language
(CakeML) with formal
semantics and a verified
compiler to machine code
(x86, ARM8, etc.).
Various tools for generating
verified CakeML code.

Demo: A taste of verification tools used in CakePB.
Defining a syntax and semantics for PB constraints.
Proving (abstractly) some cutting planes rules.
Refinement towards formally verified CakeML source code (translation,
separation logic).

6 / 9



CakePB-graph (frontend)

Our proof checkers are built and verified within the CakeML project.

Programming language
(CakeML) with formal
semantics and a verified
compiler to machine code
(x86, ARM8, etc.).
Various tools for generating
verified CakeML code.

Demo: Putting things together with a clique frontend and an end-to-end
compilation theorem.

Defining a syntax and semantics for clique.
Proving the encoding into PB.
Plugging together the encoder and backend.

7 / 9



Summary

Our proof checkers are built and verified within the CakeML project.

Programming language
(CakeML) with formal
semantics and a verified
compiler to machine code
(x86, ARM8, etc.).
Various tools for generating
verified CakeML code.

Get in touch with us if you:
Need a new verified CakePB frontend.
Need improvements to CakePB’s backend performance.
Want either of the above, AND you are keen to dive into the
verification yourself. We’re happy to help you get started!

8 / 9



References

[1] Harrison, J., Urban, J., and Wiedijk, F. (2014). History of interactive
theorem proving. In Siekmann, J. H., editor, Computational Logic,
volume 9 of Handbook of the History of Logic, pages 135–214. Elsevier.

9 / 9


	References

