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Three Simple Problems. . .

Does the graph G = (V, E) have a
colouring with k colours such that all
neighbours have distinct colours?
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Three Simple Problems. . .

Does the graph G = (V, E) have a
colouring with k colours such that all
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Three Simple Problems. . .

Does the graph G = (V, E) have a
colouring with k colours such that all

i isti ? . .
neighbours have distinct colours? 3-colouring? Yes, but no 2-colouring
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Three Simple Problems. . .

Is there a clique in the graph G = (V, E)
with k vertices that are all pairwise
connected by edges in E7
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Three Simple Problems. . .

Is there a clique in the graph G = (V, E)
with k vertices that are all pairwise
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Three Simple Problems. . .

Is there a clique in the graph G = (V, E)
with k vertices that are all pairwise

3-clique? Yes connected by edges in E7
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Three Simple Problems. . .

Is there a clique in the graph G = (V, E)
with k vertices that are all pairwise

3-clique? Yes, but no 4-clique connected by edges in £7?
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Three Simple Problems. . .

Does the graph G = (V, E) have a Is there a clique in the graph G = (V, E)
colouring with k& colours such that all with k vertices that are all pairwise
neighbours have distinct colours? connected by edges in E7

Given propositional logic formula, is there a
satisfying assignment?
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Three Simple Problems. . .

Does the graph G = (V, E) have a Is there a clique in the graph G = (V, E)
colouring with k& colours such that all with k vertices that are all pairwise
neighbours have distinct colours? connected by edges in E7
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Given propositional logic formula, is there a
satisfying assignment?

(zV2)AN(yV-2)A(xV-yVu)A(-yV )
A (Vo)A (2 V) A(—uVw)A(mzV-u VvV —w)
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Three Simple Problems. . .

Does the graph G = (V, E) have a Is there a clique in the graph G = (V, E)
colouring with k& colours such that all with k vertices that are all pairwise
neighbours have distinct colours? connected by edges in E7

Given propositional logic formula, is there a
satisfying assignment?

(zV2)AN(yV-2)A(xV-yVu)A(-yV )
A (Vo)A (2 V) A(—uVw)A(mzV-u VvV —w)
@ Variables should be set to true or false
@ Constraint (z V =y V z): means x or z should be true or y false
@ A means all constraints should hold simultaneously

@ s there a truth value assignment satisfying all constraints?
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Three Simple Problems. . .

Does the graph G = (V, E) have a Is there a clique in the graph G = (V, E)
colouring with k& colours such that all with k vertices that are all pairwise
neighbours have distinct colours? connected by edges in E7

Given propositional logic formula, is there a
satisfying assignment?

COLOURING: frequency allocation for mobile base stations
CLIQUE: bioinformatics, computational chemistry
SAT: easily models these and many other problems
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.. with Huge Practical Implications

@ Some more examples of problems that can be encoded as propositional logic
formulas:

computer hardware verification
computer software testing
artificial intelligence
operations research
cryptography

bioinformatics

et cetera. ..

@ Leads to humongous formulas (100,000s or even 1,000,000s of variables)

@ Can we use computers to solve these problems efficiently?
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Solving NP in Theory and Practice

@ SAT mentioned already in Godel’s famous letter in 1956 to von Neumann

@ Topic of intense research in computer science ever since 1960s
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Solving NP in Theory and Practice

@ SAT mentioned already in Godel’s famous letter in 1956 to von Neumann
@ Topic of intense research in computer science ever since 1960s

@ SAT problem is NP-complete, so probably very hard [Coo71, Lev73]

@ Assuming P # NP, even impossible to meaningfully approximate
o COLOURING [KhoO1, Zuc07]
o CLIQUE [H3s99]
o SAT [H3s01]
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Solving NP in Theory and Practice

@ SAT mentioned already in Godel’s famous letter in 1956 to von Neumann
@ Topic of intense research in computer science ever since 1960s

@ SAT problem is NP-complete, so probably very hard [Coo71, Lev73]

@ Assuming P # NP, even impossible to meaningfully approximate
o COLOURING [KhoO1, Zuc07]
o CLIQUE [H3s99]
o SAT [H3s01]
@ Except that in practice, there are good algorithms for
o COLOURING [DLMMO08, DLMO09, DLMM11]
o CLIQUE [Prol2, McC17]
and amazing conflict-driven clause learning (CDCL) solvers [BS97, MS99, MMZ*01]
that solve huge SAT problem instances

How can we understand real-world algorithms for NP-hard problems?
This lecture: Use proof complexity (not only conceivable answer)
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently

verifiable
Efficiency of algorithm splits into two questions:
© s there a short proof of the right answer using rules in this proof system?

@ Can short proofs in the proof system be found efficiently?
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:
© s there a short proof of the right answer using rules in this proof system?

@ Can short proofs in the proof system be found efficiently?

Focus of this lecture: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:
© s there a short proof of the right answer using rules in this proof system?

@ Can short proofs in the proof system be found efficiently?

Focus of this lecture: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN*21]
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Applications of Proof Complexity

Three applied reasons for proof complexity:

@ Understand real-world applied algorithmic paradigms [this lecture]

@ Get ideas for algorithmic improvements
[EN18, EN20, LBD*20, DGD*21, DGN21, KBBN22, MBGN23, MSB*25]
(See, e.g., tutorials youtu.be/VCOCHXoWnS4 and youtu.be/FIJ3k7HWpiQ about ROUNDINGSAT)

© Enhance algorithms to write machine-verifiable certificates of correctness
[EGMN20, GMN20, GMM*20, GN21, GMN22, GMNO22, BBN*23, BGMN23,
MM23, BBNT24, DMM™*24, GMM*24, HOGN24, I0T+24, MMN24, DHN*25,
KLM™25, MM25]
(See tutorial youtu.be/s_5Bli4122w about VERIPB)
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https://youtu.be/VC0CHXoWnS4
https://youtu.be/FlJ3k7HWpiQ
https://youtu.be/s_5BIi4I22w

Applications of Proof Complexity

Three applied reasons for proof complexity:

@ Understand real-world applied algorithmic paradigms [this lecture]

@ Get ideas for algorithmic improvements
[EN18, EN20, LBD*20, DGD*21, DGN21, KBBN22, MBGN23, MSB*25]
(See, e.g., tutorials youtu.be/VCOCHXoWnS4 and youtu.be/FIJ3k7HWpiQ about ROUNDINGSAT)

© Enhance algorithms to write machine-verifiable certificates of correctness
[EGMN20, GMN20, GMM*20, GN21, GMN22, GMNO22, BBN*23, BGMN23,
MM23, BBNT24, DMM™*24, GMM*24, HOGN24, I0T+24, MMN24, DHN*25,
KLM™25, MM25]
(See tutorial youtu.be/s_5Bli4122w about VERIPB)

Or just view this as a convenient excuse to study nice computational complexity problems
for their own sake... ®
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Outline

@ DPLL, CDCL, and Resolution
@ Davis-Putnam-Logemann-Loveland (DPLL) Method
@ Conflict-Driven Clause Learning (CDCL)
@ Resolution Proof System

© Algebraic and Semi-algebraic Approaches
@ Nullstellensatz
@ Grobner Bases and Polynomial Calculus
@ Pseudo-Boolean Solving and Cutting Planes

© Some More Advanced Proof Systems
@ Sherali-Adams and Sums of Squares
@ Stabbing Planes
@ Extended Resolution
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Some Preliminaries

e Variable x: takes value true (= 1) or false (= 0)
@ Literal ¢: variable z or its negation T (write T instead of —x)

o Clause C = /{1 V ---V ¥ disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

e Conjunctive normal form (CNF) formula F'= Cj A --- A Cy,: conjunction of clauses
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Some Preliminaries

e Variable x: takes value true (= 1) or false (= 0)

Literal ¢: variable x or its negation T (write T instead of —x)

Clause C = /{1 V --- V £y disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F'= Cj A --- A Cp,: conjunction of clauses

@ k-CNF formula: CNF formula with clauses of size < k (typically k& constant)

Refer to clauses of CNF formula as axioms (as opposed to derived clauses)

e NN denotes size of formula (# literals counted with repetitions)
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Some Preliminaries

e Variable x: takes value true (= 1) or false (= 0)
@ Literal ¢: variable z or its negation T (write T instead of —x)

o Clause C = /{1 V ---V ¥ disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

e Conjunctive normal form (CNF) formula F'= Cj A --- A Cy,: conjunction of clauses
@ k-CNF formula: CNF formula with clauses of size < k (typically k& constant)

@ Refer to clauses of CNF formula as axioms (as opposed to derived clauses)

e NN denotes size of formula (# literals counted with repetitions)

@ O(f(N)) grows at most as quickly as f(IN) asymptotically
Q(g(N)) grows at least as quickly as g(/V) asymptotically
©(h(N)) grows equally quickly as h(N') asymptotically
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The SAT Problem

The SATISFIABILITY (or just SAT) Problem

Given a formula F' in conjunctive normal form (CNF), is it satisfiable?
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The SAT Problem

The SATISFIABILITY (or just SAT) Problem

Given a formula F' in conjunctive normal form (CNF), is it satisfiable?

For instance, what about our example CNF formula?
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The Same Problem in Three Different Shapes
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The Same Problem in Three Different Shapes

(1-u)(1—v)=0

zv =20
u(l—w)=0
zuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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The Same Problem in Three Different Shapes

(xV2))AN(yVZ)A(zVyVu)A(gVa)
A(uVo)AN@VO)A(@Vw)A\(ZTVaVw)
l—z—2422=0

z—yz=20

y—zy —yu+ayu =0
yu =0
l-u—v4+uv=0

zv =0

u—uw =0
zuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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The Same Problem in Three Different Shapes

(xV2))AN(yVZ)A(zVyVu)A(gVa)
A(uVo)AN@VO)A(@Vw)A\(ZTVaVw)

l—x—2z4+2z2z2=0 r+z>1
z—yz=0 y+(1—2)>1
y—xy—yu+zxyu =0 r+(1—-y) +u>1
yu =0 l—-y)+(1—-u)>1
l—u—v+uw=0 ut+v>1
xv =0 l-2)+(1—-v)>1

u—uw =0 1-u)+w>1

ruw = 0 l-2)+1-u)+(1-w)>1

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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The Same Problem in Three Different Shapes

(xV2))AN(yVZ)A(zVyVu)A(gVa)
A(uVo)AN@VO)A(@Vw)A\(ZTVaVw)

l—x—2z4+2z2z2=0 r+z>1
z—yz=20 y—z22>0
y—zy—yu+zyu =20 z—y+u>0
yu =20 —y—u>-—1
l—u—v+uw=0 ut+v>1
zv =0 —rx—v>—1

u—uw =0 —u+w>0

zuw =0 —r—u—w> —2

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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Clique and Colouring as CNF Formulas

Clique formula
“The graph G = (V, E) has an m-clique”

Q1 Vae2V- - Vaen |V]=n1<E<m

oV Qoo utveV;1<k<m
Do V Qi veV;1<k<k <m
T V Qi (u,v) ¢ E k # K

some vertex is kth member of clique]

[

[cliqgue members are uniquely defined]

[no vertex counted as clique member twice]
[

clique members are neighbours]
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Clique and Colouring as CNF Formulas

Clique formula
“The graph G = (V, E) has an m-clique”

Q1 Vae2V- - Vaen |V]=n1<E<m

oV Qoo utveV;1<k<m
Do V Qi veV;1<k<k <m
T V Qi (u,v) ¢ E k # K

Colouring formula
“The graph G = (V, E) is m-colourable”

some vertex is kth member of clique]

[

[cliqgue members are uniquely defined]

[no vertex counted as clique member twice]
[

clique members are neighbours]

To,1 VTu2 V-V Tym veV [every vertex has a colour]
T V Toe veEV;1<i<l <m [colours are uniquely defined]
Tu,e Vo (u,v) EE,1<€<m [neighbours have distinct colours]
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Clique and Colouring as CNF Formulas

Clique formula
“The graph G = (V, E) has an m-clique”

Q1 Var2 V-V Qe [Vi=n;1<k<m [some vertex is kth member of clique]
Tho V Qi uFzveV;1<k<m [cliqgue members are uniquely defined]
[
[

Grow V Qi veV;1<k<k <m no vertex counted as clique member twice]

TV Tpr (u,v) ¢ E k£ K clique members are neighbours]

Colouring formula
“The graph G = (V, E) is m-colourable”

To,1 VTu2 V-V Tym veV [every vertex has a colour]
T V Toe veEV;1<i<l <m [colours are uniquely defined]
Tu,e Vo (u,v) EE,1<€<m [neighbours have distinct colours]

(Smarter encodings are possible, but these are good enough for our discussion)
Oct 30, 2025 11/63
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DPLL, CDCL, and Resolution Davns Putnam-Logemann-Loveland (DPLL) Method
earning (CDCL)

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven arning (CDCL)
Resolution Proof S

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Dauvis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

Q If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Dauvis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

Q If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

@ If F contains no clauses, report “satisfiable” and terminate
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Dauvis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

Q If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

@ If F contains no clauses, report “satisfiable” and terminate

© Otherwise pick some variable x in F
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Dauvis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

Q If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

@ If F contains no clauses, report “satisfiable” and terminate
© Otherwise pick some variable x in F
Q Set x = 0, simplify F' and make recursive call
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven arning (CDCL)
Resolution Proof S

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Dauvis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

Q If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

@ If F contains no clauses, report “satisfiable” and terminate
© Otherwise pick some variable x in F
Q Set x = 0, simplify F' and make recursive call

@ Set z =1, simplify F' and make recursive call
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven arning (CDCL)
Resolution Proof S

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Dauvis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

Q If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

@ If F contains no clauses, report “satisfiable” and terminate
© Otherwise pick some variable x in F
Q Set x = 0, simplify F' and make recursive call

@ Set z =1, simplify F' and make recursive call

@ If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens Oct 30, 2025 12/63



DPLL, CDCL, and Resolution Davns Putnam-Logemann-Loveland (DPLL) Method
earning (CDCL)

A DPLL Toy Example

F= (xV2)ANYyVZA(xVYyVu)AGVa)
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DPLL, CDCL, and Resolution Davis-Pu gemann-Loveland (DPLL) Method
Conflict- Learning (CDCL)
Resolution m

A DPLL Toy Example

F= (xV2)ANYyVZA(xVYyVu)AGVa)
ANuVo)yANZ Vo)A@V w)A@TVuV o)
Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing
@ satisfied clauses
o falsified literals
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DPLL, CDCL, and Resolution Davis-Pu gemann-Loveland (DPLL) Method
Conflict- Learning (CDCL)
Resolution m

A DPLL Toy Example

F= (xV2)ANYyVZA(xVYyVu)AGVa)
ANuVo)yANZ Vo)A@V w)A@TVuV o)
Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

@ satisfied clauses
o falsified literals @
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Dri Learning (CDCL)
Resolution m

A DPLL Toy Example

F= ( 2ANyVZA( yVuAGVa)
ANuVo)yA@ Vo)A@V w) AT VuV o)
Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing
@ satisfied clauses
o falsified literals
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Dri Learning (CDCL)
Resolution m

A DPLL Toy Example

F= ( 29N 2A( 7VuA@F Vv
ANuVo)yA@ Vo)A@V w) AT VuV o)
Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing
@ satisfied clauses
o falsified literals
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Dri Learning (CDCL)
Resolution m

A DPLL Toy Example

F= (zVz2)A( 2N yVu) Ay Va)
ANuVo)yA@ Vo)A@V w) AT VuV o)
Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing
@ satisfied clauses
o falsified literals
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DPLL, CDCL, and Resolution Davns Putnam-Logemann-Loveland (DPLL) Method
earning (CDCL)

A DPLL Toy Example

F= ( 2A@GVAHA( FVWAGV
ANuVo)yA@ Vo)A@V w) AT VuV o)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing
@ satisfied clauses
o falsified literals
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Resolution Proo

State-of-the-Art SAT Solving in One Slide

High-level description of modern conflict-driven clause learning (CDCL) SAT solving
(as pioneered in [BS97, MS99, MMZ*01]):

@ Try to build satisfying assignment for formula (branching or decision heuristic crucial)

@ When partial assignment violates formula, compute explanation for conflict and add
to formula as new clause (clause learning)

@ Every once in a while, restart from beginning (but save computed info)
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Two kinds of assignments — illustrate on example formula:

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)
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t-Drive Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example

Two kinds of assignments — illustrate on example formula:

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

Decision
Free choice to assign value to variable

Notation p <0
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Conflict-Driven Clause Learning (CDCL) by Example
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49 Decision

Free choice to assign value to variable

b

Notation p <0

Unit propagation
Forced choice to avoid falsifying clause
Given p = O cIause pVu forces u =0

Notation u "= 0 (p V@ is reason clause)
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Conflict-Driven Clause Learning (CDCL) by Example

Two kinds of assignments — illustrate on example formula:

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

p20 Decision

:';p'l%z)': Free choice to assign value to variable
T . d

= Notation p =0
q=0

Unit propagation
Forced choice to avoid falsifying clause
Given p = O cIause pVu forces u =0

Notation u "= 0 (p V@ is reason clause)
Always propagate if possible, otherwise decide

Add to assignment trail
Continue until satisfying assignment or conflict
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Conflict-Driven Clause Learning (CDCL) by Example

Two kinds of assignments — illustrate on example formula:

(pVa)A(gVr)ANTVw)AN(uNVzVY)A@VGV2)ANTV2I)ANTGVZ)ANEZVZE)A(PVa)

p20 Decision
v ! Free choice to assign value to variable
Lu =0, . d

i Notation p =0

q:
:"{;?I': Unit propa.\gation . -
Lo--o- ! Forced choice to avoid falsifying clause

TVw . —
Lw = 1) Given p = 0, clause p V @ forces u = 0

. pVa .
Notation u "= 0 (p V@ is reason clause)

! uVzVy . . . i
W Z_ L Always propagate if possible, otherwise decide
| OVEYE Add to assignment trail
L= 4 . . - . . .
T TpvE Continue until satisfying assignment or conflict
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Conflict-Driven use Learning (CDCL)

Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example

Two kinds of assignments — illustrate on example formula:

d = =
decision Decision

:__p_\/_ﬂz)_: level 1 Free choice to assign value to variable
v=2, . d
Notation p =0

q:
I"q‘gi‘: | decision Unit propagation
SR : level 2 Forced choice to avoid falsifying clause

TVw . —
Lw = 1) Given p = 0, clause p V @ forces u = 0

: pVa .
Notation u "= 0 (p V@ is reason clause)

! uVzVy . . . i
L?_/____:_____l_,' | decision Always propagate if possible, otherwise decide
| VIV | level 3 Add to assignment trail
L= 4 . - . . . .
T TpvE Continue until satisfying assignment or conflict
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DPLL, CDCL, and Resolution utnam-
Confllct-Dnven cl
Resolution Proc

Conflict Analysis

Time to analyse this conflict and learn from it!

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

decision
level 1

decision
level 2

u\/x\/ o
Y 11

—_ . L

decision
level 3

- I_QQ_ _
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Conflict Analysis

Time to analyse this conflict and learn from it!
(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

decision Could backtrack by erasing conflict level & flipping last
level 1 decision

decision
level 2

decision
level 3

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens Oct 30, 2025 16/63



DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Conflict Analysis

Resolution Proof S

Time to analyse this conflict and learn from it!

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

decision
level 1

decision
level 2

decision
level 3

Jakob Nordstrom (UCPH & LU)

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible
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Conflict Analysis

Time to analyse this conflict and learn from it!

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible
Case analysis over z for last two clauses:

e zVYyVzwants z =1

@ yVZwants 2 =0

@ Merge clauses & remove z — must satisfy = V7
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
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Resolution Proof System

Conflict Analysis

Time to analyse this conflict and learn from it!
(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible
Case analysis over z for last two clauses:

e zVYyVzwants z =1

@ yVZwants 2 =0

@ Merge clauses & remove z — must satisfy = V7

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump
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Conflict-Driven Clause Learning (CDCL)

Resolution Proof S

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)
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Resolution Proof System

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level
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DPLL, CDCL, and Resolution Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Resolution Proo

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(pVa)A(gVr)ANTFVw)AN(uNVzVY)A(@VGV2)ANTV2IANTGVZ)ANEZTVZE)A(PVa)

Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision
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Conflict-Driven Clause Learning (CDCL)

Resolution Proo

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(pVa)A(gVr)ANTVw)AN(uNVzVY)A@VGV2)ANTV2IANGVZ)ANEZTVZ)A(PVa)

Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates
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Complete Example of CDCL Execution
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Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates
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Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates
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DPLL, CDCL, and Resolution

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens

Oct 30, 2025 18/63



DPLL, CDCL, and Resolution

Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
e Start with clauses of CNF formula (axioms)
@ Derive new clauses by resolution rule

Civz CyVvzT
C1 Vv Cy
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DPLL, CDCL, and Resolution

Resolution Proofs by Contradiction

Resolution rule:
CiVz CoVvzT

C1V Oy

Observation

If F' is a satisfiable CNF formula and D is derived from clauses Dy, Dy € F' by the
resolution rule, then F' A\ D is satisfiable.
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Resolution Proof System

Resolution Proofs by Contradiction

Resolution rule:
CiVz CoVvzT

C1V Oy

Observation

If F' is a satisfiable CNF formula and D is derived from clauses Dy, Dy € F' by the
resolution rule, then F' A\ D is satisfiable.

So can prove F' unsatisfiable by deriving the unsatisfiable empty clause (denoted L)
from F' by resolution

Such proof by contradiction also called resolution refutation
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DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof
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DPLL and Resolution Proofs

d (DPLL) Method
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A DPLL execution is essentially a resolution proof

Look at our example again
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DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

. Civxz  CoVzT
and apply resolution rule BEreAvo bottom-up
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DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

0 1
. _
xVy T Vy TVu TVu
/N /N /N /N
xVz yVz xVyvVu yVu uVou TVU uVw xVuVvVw
. Civxz  CoVzT
and apply resolution rule Vo bottom-up
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Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

T/'L\x
TN PN

xVy T Vy TVu TVu
/N /N /N /N
TV z yVzZ xzVyVu yVvu u Vv VU uVw TVuVw

. Civxz  CoVzT
and apply resolution rule BEreAvo bottom-up
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Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

@ Can extract resolution proof from any DPLL execution
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DPLL Running Time and Tree-Like Resolution Proof Size

@ Can extract resolution proof from any DPLL execution

@ Requires an argument, of course, but not too hard to show
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DPLL, CDCL, and Resolution

DPLL Running Time and Tree-Like Resolution Proof Size

@ Can extract resolution proof from any DPLL execution
@ Requires an argument, of course, but not too hard to show

@ Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)
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DPLL, CDCL, and Resolution

DPLL Running Time and Tree-Like Resolution Proof Size

@ Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution =
lower bounds on DPLL running time
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DPLL, CDCL, and Resolution

@ Can extract resolution proof from any DPLL execution
@ Requires an argument, of course, but not too hard to show

@ Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

@ Hence, lower bounds on tree-like proof size in resolution =
lower bounds on DPLL running time

@ Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof
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Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof. ..
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CDCL and Resolution Proofs
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CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:
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CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:
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CDCL Running Time and General Resolution Proof Size

@ Can extract general resolution proof from CDCL execution
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DPLL, CDCL, and Resolution

CDCL Running Time and General Resolution Proof Size

@ Can extract general resolution proof from CDCL execution

@ Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .
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Resolution Proof System

CDCL Running Time and General Resolution Proof Size

@ Can extract general resolution proof from CDCL execution

@ Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

@ This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed*
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CDCL Running Time and General Resolution Proof Size

@ Can extract general resolution proof from CDCL execution

@ Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

@ This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed™

@ Hence, lower bounds on resolution proof size =
lower bounds on CDCL running time
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Resolution Proof System

CDCL Running Time and General Resolution Proof Size

@ Can extract general resolution proof from CDCL execution

@ Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

@ This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed™

@ Hence, lower bounds on resolution proof size =
lower bounds on CDCL running time

o If there are short proofs, then CDCL can run fast in principle [AFT11, PD11]
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CDCL Running Time and General Resolution Proof Size

@ Can extract general resolution proof from CDCL execution

@ Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

@ This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed*

@ Hence, lower bounds on resolution proof size =
lower bounds on CDCL running time

o If there are short proofs, then CDCL can run fast in principle [AFT11, PD11]
@ But ensuring this in practice is NP-hard [AM20]
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@ Can extract general resolution proof from CDCL execution

@ Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

@ This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed*

@ Hence, lower bounds on resolution proof size =
lower bounds on CDCL running time

o If there are short proofs, then CDCL can run fast in principle [AFT11, PD11]
@ But ensuring this in practice is NP-hard [AM20]

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated
and we don’t have time to go into details. ..
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Current State of Affairs in SAT Solving

@ State-of-the-art CDCL solvers often perform amazingly well
("SAT is easy in practice”)
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Current State of Affairs in SAT Solving

@ State-of-the-art CDCL solvers often perform amazingly well
("SAT is easy in practice”)

@ Very poor theoretical understanding:

e Why do heuristics work?
e Why are applied instances easy?
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DPLL, CDCL, and Resolution

Current State of Affairs in SAT Solving

@ State-of-the-art CDCL solvers often perform amazingly well
("SAT is easy in practice”)

@ Very poor theoretical understanding:

e Why do heuristics work?
e Why are applied instances easy?

@ Paradox: resolution quite weak proof system; many strong proof complexity lower
bounds for (seemingly) “obvious” formulas
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Examples of Hard Formulas for Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n 4+ 1 pigeons don't fit into n holes”
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Examples of Hard Formulas for Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n 4+ 1 pigeons don't fit into n holes”

Variables p; ; = “pigeon i — hole j"; 1 <i<n+1;1<j<n

Pia VpiaVeVpin [every pigeon i gets a hole]
Pij Vi [no hole j gets two pigeons i # 4]

Can also add “functionality” and “onto" axioms

Di; Vi [no pigeon i gets two holes j # ;']
P1,j VP2 VeV Pny1j [every hole j gets a pigeon|
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Examples of Hard Formulas for Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n 4+ 1 pigeons don't fit into n holes”

Variables p; ; = “pigeon i — hole j"; 1 <i<n+1;1<j<n

Pia VpiaVeVpin [every pigeon i gets a hole]
Pij Vi [no hole j gets two pigeons i # 4]

Can also add “functionality” and “onto" axioms

Di; Vi [no pigeon i gets two holes j # ;']
P1,j VP2 VeV Pny1j [every hole j gets a pigeon|
Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(2(n)) = exp(Q(V/N)) clauses
(measured in terms of formula size IV, i.e., total number of literals in formula)
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Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”
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Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd

@ Write CNF requiring parity of # true incident edges = label
Y
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Resolutlon Proof System

Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd
o Write CNF requmng parity of # true incident edges = label

(uVx) A (yV7Z)
A (TVT) ATV =2)
A (wVaVy) A(uVwVz)
A (wVEVTY) A (uVwVz)
A (WV xV7) A (@VwVz)
AN(@WVTVy) A@VwV 2)
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Resolutlon Proof System

Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd
o Write CNF requmng parity of # true incident edges = label

(uV ) A (yV7Z)
A (TVT) A(TV2)
A (wVaVy) A(uVwVz)
A (wVEVTY) A (uVwVz)
A (WV xV7) A (@VwVz)
AN(@WVTVy) A@VwV 2)
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Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd
o Write CNF requmng parity of # true incident edges = label

(uVx) A (yV7Z)
A (TVT) ATV =2)
A (wVaVy) A(uVwVz)
A (wVEVTY) A (uVwVz)
A (WVxV7y) A (@VwVz)
A (WVTVYy) AN@VWYV z)
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Resolutlon Proof System

Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd
o Write CNF requmng parity of # true incident edges = label

(uVx) A (yV7Z)
A (WVT) ATV 2)
A (wVaVy) A(uVwVz)
A (wVEVTY) A (uVwVz)
A (WV xV7) A (@VwVz)
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Resolutlon Proof System

Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd
o Write CNF requmng parity of # true incident edges = label

Jakob Nordstrom (UCPH & LU)
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A (TVT) ATV =2)
A (wVaVy) AuVuwVz)
A (wVTVY) A(uvVwVz)
A (WV xV7) A(@VwVz)
AN(@WVTVy) A@VwV z)

Proof Complexity as a Computational Lens

Oct 30, 2025 26/63



DPLL, CDCL, and Resolution

Resolutlon Proof System

Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)
@ Label every vertex 0/1 so that sum of labels odd
o Write CNF requmng parity of # true incident edges = label

(uVx) A (yV7Z)
A (TVT) ATV =2)
A (wVaVy) A(uVwVz)
A (wVEVTY) A (uVwVz)
A (WV xV7) A (@VwVz)
AN(@WVTVy) A@VwV 2)

Requires proof size exp(Q (N)) on well-connected so-called expander graphs —
“resolution cannot count mod 2"
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Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random i-CNF formulas [CS88]
An randomly sampled k-clauses over n variables
(A z 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp(Q (N))
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Examples of Hard Formulas for Resolution (3/3)

Random i-CNF formulas [CS88]
An randomly sampled k-clauses over n variables
(A z 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp(Q (N))

And more. ..
e COLOURING [BCMMO05]
@ Zero-one designs [Spel0, VS10, MN14]
o Et cetera... (See, e.g., [BN21] for overview)
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Examples of Hard Formulas for Resolution (3/3)

Random i-CNF formulas [CS88]
An randomly sampled k-clauses over n variables
(A z 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp(Q (N))

And more. ..
e COLOURING [BCMMO05]
@ Zero-one designs [Spel0, VS10, MN14]
o Et cetera... (See, e.g., [BN21] for overview)

But not CLIQUE!
o Refuting existence of k-clique in n-vertex graph should require proof size nf(*)
@ Only known for restricted so-called regular resolution [ABdR™21]

o For general resolution, best lower bounds are 2%%) for very large k [BISO7]

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens Oct 30, 2025 27/63



DPLL, CDCL, and Resolution D Putnam- emann-Lo d (DPLL) Method
v e Learn OCL)
Resolution Proof System

Other Complexity Measures for Resolution

The exponential size lower bounds mentioned can all be proven by studying width, i.e.,
the size of a largest clause in the proof
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Other Complexity Measures for Resolution

The exponential size lower bounds mentioned can all be proven by studying width, i.e.,
the size of a largest clause in the proof

Theorem ([BWO01])

If any resolution refutation of k-CNF formula F' over n variables requires width linear
in n, then refuting F' in resolution requires size exponential in n
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Other Complexity Measures for Resolution

The exponential size lower bounds mentioned can all be proven by studying width, i.e.,
the size of a largest clause in the proof

Theorem ([BWO01])

If any resolution refutation of k-CNF formula F' over n variables requires width linear
in n, then refuting F' in resolution requires size exponential in n

There are also other complexity measures of interest such as
@ space: memory needed for self-contained presentation of refutation

@ depth: longest path in refutation represented as directed acyclic graph (DAG)
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Algebraic and Semi-algebraic Approaches Grobner a nomial Calc
seudo-B an Solv and Cuttir

SAT as System of Polynomial Equations

e Given CNF formula F = A", C;
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Nullstellensatz
Algebraic and Semi-algebraic Approaches G e bmial Calculus
nd Cutting Planes

SAT as System of Polynomial Equations

e Given CNF formula F = A", C;

C:\/.%i\/\/fj

@ Translate clauses

i€EP JEN
to polynomial equations
[10 ) T[ # =0
1€P JEN
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner and Polynomial C
udo-Bc an S and Cut

SAT as System of Polynomial Equations

e Given CNF formula F = A", C;

@ Translate clauses

C:\/.%i\/\/fj

i€EP JEN
to polynomial equations
[10 ) T[ # =0
icP JEN

@ Add Boolean axioms

for all variables
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Algebraic and Semi-algebraic Approaches 5 e bmial Calculus
nd Cutting Planes

Hilbert's Nullstellensatz

Consider any system of polynomial equations

pi(x1,...,2y) =0 x%—xlzo
pa(21,...,xy) =0 x%—@:o
Pm(x1, ... 2n) =0 22— 2, =0

in polynomial ring over field F

Oct 30, 2025 30/63
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Nullstellensatz

Algebraic and Semi-algebraic Approaches Grobner omial Calc
and C

Hilbert's Nullstellensatz

Consider any system of polynomial equations

pi(x1,...,2y) =0 x%—xlzo
pa(21,...,xy) =0 x%—xgz()
Pm(x1, ... 2n) =0 22— 2, =0

in polynomial ring over field F

Hilbert’s Nullstellensatz
System infeasible < exist g;,7; € F[z1,...,xy] such that

m

n
Zqi(xh...,xn) pi(x1, ..., xn) —l—er(xl,...,xn) : (3332 —z;)=1
j=1

=1
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Algebraic and Semi-algebraic Approaches Gré 3
B Sc and Cutting Planes

omial Calculus

Nullstellensatz Proof System [BIK*94]

Nullstellensatz refutation of

pi(T1,. .., xn) = i € [m]

x5 —x; =0 Jj € n]

is (syntactic) equality

m n
Zqi(ml,...,xn) pi(x1, ..., xn) +er(x1,...,xn) : (:L'? —zj) =1
i=1 j=1
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Gré 3
B Sc and Cutting Planes

omial Calculus

Nullstellensatz Proof System [BIK*94]

Nullstellensatz refutation of

pi(T1,. .., xn) = i € [m]

x5 —x; =0 Jj € n]

is (syntactic) equality
m n
Zqi(ml,...,xn) pi(x1, ..., xn) +er(x1,...,xn) : (:L'? —zj) =1
i=1 j=1

Complexity measures of refutations:
@ Size: number of monomials (when all polynomials expanded out)

@ Degree: highest total degree of any polynomial
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grob a omial Calculus
and Cutting Planes

Nullstellensatz Example

).
+ z)-
+ 1-
+ (=) -yu Size 27
+ z-(1—u)(l—v) Degree 3
+(1—u) zv (No use of Boolean axioms)
+ z-u(l —w)
+ 1 zuw
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Algebraic and Semi-algebraic Approaches

Nullstellensatz Example

l-z—-—y—z+zy+z2+yz — Y2
+z—x2z—yz+ Yz
+y—yu —xy + YU

+yu = ayu Size 27
+x —2u— 20 + TUV Degree 3
+ zv — UV (No use of Boolean axioms)

+ zu — TUW
+ zuw
=1
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Algebraic and Semi-algebraic Approaches Gré 3

Nullstellensatz Example

|l —r—y—z4+aoy+az+yz—
+ 2z — — + xyz
+y—yu—2xy+ xyu
tyu— Size 27
+ & —2u— v+ TuY Degree 3
+ zv — (No use of Boolean axioms)
+ xu —
+ ruw
=1
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Algebraic and Semi-algebraic Approaches omial Calculus
and Cutting Planes

Nullstellensatz Proof Search

@ Solve linear system of equations with coefficients of polynomials ¢;, 7; as unknowns

@ Used successfully to solve, e.g., graph colouring problems
[DLMMO08, DLMO09, DLMM11]

@ Running time grows exponentially with degree, though high-degree refutations can
be very small [BCIP02, dRMNR21]
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Algebraic and Semi-algebraic Approaches 5 e bmial Calculus
nd Cutting Planes

Dual Variables

@ Annoying problem: x; V xo V x3 translates to polynomial

(1 — xl)(l — 1:2)(1 — 1133) =1—21—29 —x3+T1T2 + 123 + xax3 — T1T2X3
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Dual Variables

@ Annoying problem: x; V xo V x3 translates to polynomial
(1 — xl)(l — 1:2)(1 — 1133) =1—21—29 —x3+T1T2 + 123 + xax3 — T1T2X3

@ More generally, exponential blow-up in # positive literals
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Algebraic and Semi-algebraic Approaches 5 e bmial Calculus
nd Cutting Planes

Dual Variables

@ Annoying problem: x; V xo V x3 translates to polynomial
(1 — xl)(l — 1:2)(1 — 1133) =1—21—29 —x3+T1T2 + 123 + xax3 — T1T2X3
@ More generally, exponential blow-up in # positive literals

e Fix: introduce dual variables 2 and axioms z; + 2, — 1 =0
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Nullstellensatz
Algebraic and Semi-algebraic Approaches G e and Polynomial C
and Cut

Dual Variables

@ Annoying problem: x; V xo V x3 translates to polynomial
(1—21)(1 —x2)(1 —x3) =1 —2] — 29 — 3 + T 122 + T1T3 + TaT3 — T1X2T3
@ More generally, exponential blow-up in # positive literals
e Fix: introduce dual variables 2 and axioms z; + 2, — 1 =0
o Translate C' = V,;cp ;i V \/ ¢y T; to monomial equation

Ha:;'Ha:jZO

i€P JEN
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Algebraic and Semi-algebraic Approaches Grobner d Polynomial Calc

Dual Variables

@ Annoying problem: x; V xo V x3 translates to polynomial
(1—21)(1 —x2)(1 —x3) =1 —2] — 29 — 3 + T 122 + T1T3 + TaT3 — T1X2T3
@ More generally, exponential blow-up in # positive literals
e Fix: introduce dual variables 2 and axioms z; + 2, — 1 =0
o Translate C' = V,;cp ;i V \/ ¢y T; to monomial equation
H - H z; =0
ieP JEN

@ Doesn't affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi({L‘l,...,SL'n)ZO 1€ [m]
x?—mjzo J € [n]
zi+a;—1=0 j € [n]

v

1 lies in polynomial ideal Z generated by these polynomials
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi({L‘l,...,SL'n)ZO 1€ [m]
x?—mjzo Jj€n]
zi+a;—1=0 j € [n]

v

1 lies in polynomial ideal Z generated by these polynomials

o Ideal Z:
Q@ peel=pt+tqel
Q@pcI=r-pcIforanyr

@ Compute polynomials in this ideal Z step by step

@ Use “multivariate division” to check whether 1 lies in ideal or not
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo- an S and Cutting Planes

Grobner Bases: Admissible Orderings and Leading Terms

Admissible ordering < on monomials m,m/, t:
O m=<m=tm=<t-m
QO m=<t-m
Examples:
@ Lexicographic
@ Degree-lexicographic
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Grobner Bases: Admissible Orderings and Leading Terms

Admissible ordering < on monomials m,m/, t:
O m=<m=tm=<t-m
QO m=<t-m
Examples:
@ Lexicographic
@ Degree-lexicographic

Can write p = lt(p) + p’ for lt(p) leading term (largest w.r.t. <)
If 1t(p) =t - 1t(q), can reduce p mod ¢ by computing p — ¢ - ¢
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ea ng and Cutting Planes

Grobner Bases: Admissible Orderings and Leading Terms

Admissible ordering < on monomials m,m/, t:
O m=<m=tm=<t-m
QO m=<t-m
Examples:
@ Lexicographic
@ Degree-lexicographic

Can write p = lt(p) + p’ for lt(p) leading term (largest w.r.t. <)
If 1t(p) =t - 1t(q), can reduce p mod ¢ by computing p — ¢ - ¢
“Multivariate division”: Reduce p modulo all g in set of polynomials G until no further

reductions possible

G is a Grobner basis if final result uniquely determined
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Grobner Bases: Buchberger's Algorithm

Buchberger's algorithm for computing Grobner bases (very rou
@ Let G := all axioms
@ Pick unprocessed pair p,q € G or terminate if none exists
@ Compute p’ =t,-p and ¢’ = t, - q to make leading terms cancel

Q Set S:=p' — ¢; reduce S mod G with multivariate division;
add result to G if non-zero

Q@ Goto?2
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Grobner Bases: Buchberger's Algorithm

Buchberger's algorithm for computing Grobner bases (very rough)

@ Let G := all axioms
@ Pick unprocessed pair p,q € G or terminate if none exists
@ Compute p’ =t,-p and ¢’ = t, - q to make leading terms cancel

Q Set S:=p' — ¢; reduce S mod G with multivariate division;
add result to G if non-zero

Q@ Goto?2

Facts:
@ Buchberger's algorithm computes Grobner basis

@ At termination, 1 € G < polynomial equations infeasible
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo-B n Solving and Cutting Planes

Polynomial Calculus [CEI96, ABRW02]

@ Compute polynomials in ideal Z generated by p;, x? —xj, and x; + m; — 1 step by
step:
o p; €1, x?—xj €7 and z; + 2, — 1 € T (axioms)
o If p,q €Z, then ap + fq € Z for any «, B € F (linear combination)
o If p€Z, then m - p € T for any monomial m = [[; ; (multiplication)
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Polynomial Calculus [CEI96, ABRW02]

@ Compute polynomials in ideal Z generated by p;, x? —xj, and x; + m; — 1 step by
step:
o p; €1, x?—xj €7 and z; + 2, — 1 € T (axioms)
o If p,q €Z, then ap + fq € Z for any «, B € F (linear combination)
o If p€Z, then m - p € T for any monomial m = [[; ; (multiplication)

@ A polynomial calculus refutation is a derivation ending with the polynomial 1

@ Complexity measures:

e Size: total number of monomials in all polynomials in derivation expanded out
o Degree: highest total degree of any polynomial

@ Polynomial calculus (much) stronger than Nullstellensatz w.r.t. both size and degree
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo- an S and Cutting Planes

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step
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Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step

Example: Resolution step
TVyVz yVvz

rVy
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Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step

Example: Resolution step
TVyVz yVvz

rVy

simulated by polynomial calculus derivation

Yz z+2 =1
x'yz 'yz + 2y — 2y
2’y —x'y2 + 2’y
'y
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Pseudo-B n Solving and Cutting Planes

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:
@ Tseitin formulas on expander graphs if F = GF(2)
@ Onto functional pigeonhole principle over any field [Rii93]
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Algebraic and Semi-algebraic Approaches 6 lynomial Calculus
Solving and Cutting Planes

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:
@ Tseitin formulas on expander graphs if F = GF(2)
@ Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:
e “vanilla” PHP [Raz98, AR03]
e onto PHP [AR03]
e functional PHP [MN24]
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’se Solving and Cutting Planes

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:
@ Tseitin formulas on expander graphs if F = GF(2)
@ Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:
e “vanilla” PHP [Raz98, AR03]
e onto PHP [AR03]
e functional PHP [MN24]

Other hard formulas:
@ Tseitin-like formulas for counting mod p if p # field characteristic [BGIP01]
@ Random k-CNF formulas
o all characteristics except 2 [BI99]
o all characteristics [AR03]
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Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
Pseudo-B n Solving and Cutting Planes

COLOURING and CLIQUE for Polynomial Calculus

COLOURING

e Exponential worst-case lower bounds in [LN17]

@ Exponential average-case lower bounds in [CARNT23]

Almost nothing known! (Except lower bounds for very large cliques)

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens Oct 30, 2025 41/63



Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner Bases and Polynomial Calculus
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Complexity Measures for Polynomial Calculus

Exponential size lower bounds for polynomial calculus can be proven by studying degree
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Complexity Measures for Polynomial Calculus

Exponential size lower bounds for polynomial calculus can be proven by studying degree

Theorem ([IPS99])

If any polynomial calculus refutation of k-CNF formula F' over n variables requires degree
linear in n, then refuting F' in polynomial calculus requires size exponential in n
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Complexity Measures for Polynomial Calculus

Exponential size lower bounds for polynomial calculus can be proven by studying degree

Theorem ([IPS99])

If any polynomial calculus refutation of k-CNF formula F' over n variables requires degree
linear in n, then refuting F' in polynomial calculus requires size exponential in n

@ Other complexity measures analogous to those for resolution are also studied
@ Many results analogous to resolution hold, but are much harder to prove

@ Some analogous results are believed to hold, but remain open
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Pseudo- an Soly and Cutting Planes

What About Algebraic SAT Solvers?

@ Quite some excitement about Grobner basis approach after [CEI96], but promise of
performance improvement failed to deliver

@ Meanwhile: the CDCL revolution in late 1990s. ..
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What About Algebraic SAT Solvers?

@ Quite some excitement about Grobner basis approach after [CEI96], but promise of
performance improvement failed to deliver

@ Meanwhile: the CDCL revolution in late 1990s. ..

@ Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

@ Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?
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What About Algebraic SAT Solvers?

@ Quite some excitement about Grobner basis approach after [CEI96], but promise of
performance improvement failed to deliver

@ Meanwhile: the CDCL revolution in late 1990s. ..

@ Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

@ Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

e Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up
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What About Algebraic SAT Solvers?

@ Quite some excitement about Grobner basis approach after [CEI96], but promise of
performance improvement failed to deliver

@ Meanwhile: the CDCL revolution in late 1990s. ..

@ Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

@ Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

e Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up

@ Use dual variables! [KBBN22]
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Pseudo-Boolean Solving and Cutting Planes

Grobner bases: Some Problems and Questions

© Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info (#solutions)
Possible to use conflict-driven paradigm?!

@ Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

© Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?
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SAT as System of 0—1 Integer Linear Inequalities

e Given CNF formula F = A", C;
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SAT as System of 0—1 Integer Linear Inequalities

e Given CNF formula F = A", C;

@ Translate clauses
C=\zv\z
i€P JEN
to 0-1 integer linear inequalities

in—i—Z(l—xj) >1

iEP JEN
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SAT as System of 0—1 Integer Linear Inequalities

e Given CNF formula F = A", C;

@ Translate clauses
C=\zv\z
i€P JEN
to 0-1 integer linear inequalities
in + Z(l —.Ij) >1
iEP JEN
@ Add variable axioms
iL'j Z 0
—azj Z -1

for all variables
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Algebraic and Semi-algebraic Approaches Gro and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes Proof System [CCT87]

Cutting planes proof system introduced in [CCT87] to model integer linear programming
algorithm in [Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities
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Cutting Planes Proof System [CCT87]

Cutting planes proof system introduced in [CCT87] to model integer linear programming
algorithm in [Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Zaixi Z A

Multiplication ceNT
ca;x; > cA
Addition 2= %% 24 2 biwi 2 B
Z(aieri)SCi > A+ B
Division ey = A ceNT

. laifclas > [A/c]
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Cutting Planes Derivations and Refutations

@ A cutting planes derivation is a sequence of 0-1 integer linear inequalities derived
using

Axioms (clauses and variable bounds)

Multiplication " a;z; > A= > ca;x; > cA

Division > a;x; > A =Y [a;/clz; > [A/c]

@ A cutting planes refutation ends with the inequality 0 > 1

o Complexity measures:
e Length: # inequalities
e Size: Count also bit size of representing all coefficients

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens Oct 30, 2025 47/63



Nullste
Algebraic and Semi-algebraic Approaches Grobner nd Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes vs. Resolution

@ Cutting planes can simulate resolution reasoning efficiently and can be exponentially
stronger (e.g., for PHP, just count and argue that #pigeons > #holes)
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Cutting Planes vs. Resolution

@ Cutting planes can simulate resolution reasoning efficiently and can be exponentially
stronger (e.g., for PHP, just count and argue that #pigeons > #holes)

@ And 0-1 linear inequalities are similar to but much more concise than CNF

Compare
1+ a2+ 3+ x4+ 25 +26 >3

and

1 Ve VsV Ty x1 Ve VsV x1 Ve VsV xg

ANx1 Ve VsV as x1 VeV sV xg x1 Ve VsV xg

( YA YA )
( ) A YA )
ANz1VaesVaaVas)A(xiVaesVaeaVas) Az Ve VsV aes)
( )A( YA (z2 Va3V xaV xze)
( ) A( )A( )

ANx1VxaV sV xg x2 VI3V sV s

N(xo VX3V x5V T T2 VxaeV a5V Te x3VxeV x5V T
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Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m — 1)-colourable”
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Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m — 1)-colourable”

Variables:
® py, indicate edges in graph
® qi, identify members of m-clique

@ 7, ¢ specify colouring of vertices
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Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m — 1)-colourable”

Variables:
® py, indicate edges in graph
® qi, identify members of m-clique

@ 7, ¢ specify colouring of vertices
Qe Va2 V-V aen 1<k<m [some vertex is kth member of clique]

i V Tt 1<v<n;k#k [no vertex counted as clique member twice]

Puw V oy V Qs 1<u<v<nmk#k [clique members are neighbours|

[

[

Toa1 VTo2 V- Vrymo1 1<v<n; every vertex has a colour]

Puw VTue VT 1<u<v<n;1<€<m-—1 [neighbours have distinct colours]
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More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

@ From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

@ Prove separately that no such small circuits can exist

@ Hence, no small cutting planes proofs can exist either
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More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

@ From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

@ Prove separately that no such small circuits can exist

@ Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all — need new proof techniques!
Some recent developments in [ARMNT20, HP17, FPPR22, GGKS20, Sok24]
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More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

@ From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

@ Prove separately that no such small circuits can exist

@ Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all — need new proof techniques!
Some recent developments in [ARMNT20, HP17, FPPR22, GGKS20, Sok24]

e Random O(logn)-CNF formulas exponentially hard [HP17, FPPR22]

@ Lower bound for random k-CNF formulas open

@ Surprisingly, Tseitin formulas have refutations of quasi-polynomial size [DT20]!
@ Nothing known for COLOURING or CLIQUE
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Nullste
Algebraic and Semi-algebraic Approaches Grobne and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, challenging to make competitive with CDCL:
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SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, challenging to make competitive with CDCL:
© Dealing with 0-1 linear inequalities instead of clauses
e How to detect unit propagation efficiently?
o How to keep coefficient sizes down to make integer arithmetic feasible?
e How to compare and assess quality of constraints?
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SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, challenging to make competitive with CDCL:
© Dealing with 0-1 linear inequalities instead of clauses
e How to detect unit propagation efficiently?
o How to keep coefficient sizes down to make integer arithmetic feasible?
e How to compare and assess quality of constraints?
@ Designing search and conflict analysis
e Cutting planes much smarter method of reasoning than resolution
o But this also makes it trickier to design smart search algorithms
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So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, challenging to make competitive with CDCL:
© Dealing with 0-1 linear inequalities instead of clauses
e How to detect unit propagation efficiently?
o How to keep coefficient sizes down to make integer arithmetic feasible?
e How to compare and assess quality of constraints?
@ Designing search and conflict analysis
e Cutting planes much smarter method of reasoning than resolution
o But this also makes it trickier to design smart search algorithms
© Pseudo-Boolean solvers terrible for CNF input
e Can try to rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20]
e Doesn't work so well in practice
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SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, challenging to make competitive with CDCL:
© Dealing with 0-1 linear inequalities instead of clauses
e How to detect unit propagation efficiently?
o How to keep coefficient sizes down to make integer arithmetic feasible?
e How to compare and assess quality of constraints?
@ Designing search and conflict analysis
e Cutting planes much smarter method of reasoning than resolution
o But this also makes it trickier to design smart search algorithms
© Pseudo-Boolean solvers terrible for CNF input
e Can try to rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20]
e Doesn't work so well in practice

Is it truly harder to build good pseudo-Boolean solvers?

Or has just so much more work has been put into CDCL solvers?
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Algebraic and Semi-algebraic Approaches Grobner B and Polynomial
Pseudo-Bo n Solving and C

Division Versus Saturation

Use negated literals as needed to get all a;, A positive (normalized form)

Boolean derivation rules for 0—1 integer linear inequalities

Division 2aki> A ce Nt
Y laifclt; > [A/c]
Saturation 2ot = A

Zmin{a’ia A} . E’L Z A
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner B and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Division Versus Saturation

Use negated literals as needed to get all a;, A positive (normalized form)

Boolean derivation rules for 0—1 integer linear inequalities

Division 2 aibi = A ceNT
Y. laifclti > [A/c]
Saturation 2ot = A

Zmin{aia A} . E’L Z A

o Complexity literature of cutting planes uses division [CCT87]
@ Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

@ Open how the two variants compare, but clear that division can sometimes be better
in theory [GNY19]
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Pseudo-Boolean Solving and Cutting Planes

Division Versus Saturation

Use negated literals as needed to get all a;, A positive (normalized form)

Boolean derivation rules for 0—1 integer linear inequalities

Division 2 aibi = A ceNT
Y. laifclti > [A/c]
Saturation 2ot = A

Zmin{aia A} . E’L Z A

o Complexity literature of cutting planes uses division [CCT87]

@ Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

@ Open how the two variants compare, but clear that division can sometimes be better
in theory [GNY19]

@ ... And most often also in practice [EN18], though not always [LBD*20]
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Nullste
Algebraic and Semi-algebraic Approaches Grobner nd Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Separating Division from Saturation?

Even colouring formulas [Mar06]
“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”
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Separating Division from Saturation?

Even colouring formulas [Mar06]
“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”

u+w>1 —u—w> -1
u+z2>1 —u—z> -1
wtr+y+z2>22 —w—xr—y—z>-—2
v+x>1 —v—xz>-—1
v+y>1 —v—y>-1
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Separating Division from Saturation?

Even colouring formulas [Mar06]
“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”

u+w>1 —u—w> -1
u+z>1 —u—2z>-1
wtr+y+z2>22 —w—xr—y—z>-—2
v+x>1 —v—xz>-—1
v+y>1 —v—y>-1

Unsatisfiable < total # edges odd
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Separating Division from Saturation?

Even colouring formulas [Mar06]
“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”

u+w>1 —u—w> -1
u+z>1 —u—2z>-1
wtr+y+z2>22 —w—xr—y—z>-—2
v+x>1 —v—xz>-—1
v+y>1 —v—y>-1

Unsatisfiable < total # edges odd
@ Very easy for (tree-like) cutting planes
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“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”

u+w>1 —u—w> -1
u+z>1 —u—2z>-1
wtr+y+z2>22 —w—xr—y—z>-—2
v+x>1 —v—xz>-—1
v+y>1 —v—y>-1

Unsatisfiable < total # edges odd
@ Very easy for (tree-like) cutting planes
@ CNF encoding exponentially hard for resolution (and PB solvers) for expander graphs
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Separating Division from Saturation?

Even colouring formulas [Mar06]
“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”

u+w>1 —u—w> -1
u+z>1 —u—2z>-1
wtr+y+z2>22 —w—xr—y—z>-—2
v+x>1 —v—xz>-—1
v+y>1 —v—y>-1

Unsatisfiable < total # edges odd
@ Very easy for (tree-like) cutting planes
@ CNF encoding exponentially hard for resolution (and PB solvers) for expander graphs
@ Pseudo-Boolean encoding hard in practice for pseudo-Boolean solvers [EGNV18]
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Nullste
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Pseudo-Boolean Solving and Cutting Planes

Separating Division from Saturation?

Even colouring formulas [Mar06]
“J 0/1-colouring of edges so that every vertex has equal number of 0-edges and 1-edges”

u+w>1 —u—w> -1
u+z>1 —u—2z>-1
wtr+y+z2>22 —w—xr—y—z>-—2
v+x>1 —v—z>—1
v+y>1 —v—y>-1

Unsatisfiable < total # edges odd
@ Very easy for (tree-like) cutting planes
@ CNF encoding exponentially hard for resolution (and PB solvers) for expander graphs
@ Pseudo-Boolean encoding hard in practice for pseudo-Boolean solvers [EGNV18]

@ Possible to prove lower bounds for cutting planes with saturation instead of division?
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Nullstellensatz
Algebraic and Semi-algebraic Approaches Grobner and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

The Subgraph Isomorphism Problem

Input
e Pattern graph P with vertices V(P) = {a,b,c,...}
o Target graph T with vertices V(7)) = {u,v,w,...}
@ No loops (for simplicity)
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Algebraic and Semi-algebraic Approaches Grob and Polynomial Calculus
Solving and Cutting Planes

The Subgraph Isomorphism Problem

Input
e Pattern graph P with vertices V(P) = {a,b,c,...}
o Target graph T with vertices V(7)) = {u,v,w,...}
@ No loops (for simplicity)

Task
e Find all subgraph isomorphisms ¢ : V(P) — V(T)
@ l.e., one-to-one mappings ¢ such that if

Q pla)=u
Q () =v
Q (a,b) € E(P)

then must have (u,v) € E(T)
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Nullste

Algebraic and Semi-algebraic Approaches Grobne and Polynomial Calculus

Pseudo-Boolean Solving and Cutting Planes

Cutting Planes Lower Bounds for Subgraph Isomorphism?

Subgraph isomorphism formula

> vev (T) Taw
ZUEV(T) —Zaw
2 bev(P) ~Thu

>
>
>

1
-1
-1

—Zau T ZUEN(u) Tpp 2 0

Jakob Nordstrom (UCPH & LU)

every pattern vertex a € V(P) maps somewhere]
but only to one target vertex u € V(T)]
mapping is one-to-one]

[
[
[
[edge (a,b) € E(P) maps to edge (u,v) € E(T)]
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Algebraic and Semi-algebraic Approaches Gro and Polynomial Calculus
Pseudo-B Solving and Cutting Planes

Cutting Planes Lower Bounds for Subgraph Isomorphism?

Subgraph isomorphism formula

2 vev(T) Tap = 1 every pattern vertex a € V(P) maps somewhere]
> ovev(T) ~Tap = —1
2 bev(p) ~Tbu = —1

—Zau T Z’UEN(’M) Tpp 2 0

[
[... but only to one target vertex u € V(7]
[mapping is one-to-one]

[edge (a,b) € E(P) maps to edge (u,v) € E(T)]

@ All reasoning steps in Glasgow Subgraph Solver [ADH"19, GSS] can be formalized
efficiently in cutting planes [GMN20, GMM*24]
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Algebraic and Semi-algebraic Approaches Gro and Polynomial Calculus
Pseudo-B Solving and Cutting Planes

Cutting Planes Lower Bounds for Subgraph Isomorphism?

Subgraph isomorphism formula

2 vev(T) Tap = 1 every pattern vertex a € V(P) maps somewhere]
> ovev(T) ~Tap = —1
2 bev(p) ~Tbu = —1

—Zau T Z’UEN(’M) Tpp 2 0

[
[... but only to one target vertex u € V(7]
[mapping is one-to-one]

[edge (a,b) € E(P) maps to edge (u,v) € E(T)]

@ All reasoning steps in Glasgow Subgraph Solver [ADH"19, GSS] can be formalized
efficiently in cutting planes [GMN20, GMM*24]

@ So lower bounds for any graph pairs (P, T) would establish theoretical limitations on
state-of-the-art algorithms
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Some More Advanced Proof Systems xtenc Resolution

Sherali-Adams (SA) and Sum of Squares (SoS)

Refutation of p; € R[z1,..., ], 7 € [m], and 25 — z;, j € [n]

Nullstellensatz
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Some More Advanced Proof Systems

Sherali-Adams (SA) and Sum of Squares (SoS)

Refutation of p; € Rlz1,...,z,], i € [m], and 25 —z;, j € [n]

Nullstellensatz

Sherali-Adams (SA) (aj € RT)

ZQZ pHrZr] a:]—mj +Zakﬂ 1— ) H:cj

1€P: JEN:
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Sherall Adams and Sums of Squares

Some More Advanced Proof Systems

Sherali-Adams (SA) and Sum of Squares (SoS)

Refutation of p; € R[xy,...,2zy], @ € [m], and xj —xj, j € [n]

Nullstellensatz

IS RE B
i=1 j=1
Sherali-Adams (SA) (aj € RT)

qu pH—Zr] a:]—mj +Zakn 1—x)- H:L'j -1

1€P: JEN:
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Sherali-Adams and Sums of Squares
Stabbi
Some More Advanced Proof Systems

Sherali-Adams, Sum of Squares, and Relations to Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies
Sum of squares models semidefinite programming (SDP) hierarchies
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Sherali-Adams and Sums of Squares
Stabbi
Some More Advanced Proof Systems

Sherali-Adams, Sum of Squares, and Relations to Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies
Sum of squares models semidefinite programming (SDP) hierarchies
Strict hierarchy (over R):

o Nullstellensatz

@ Sherali-Adams

@ Sum of squares

Sum of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]
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nd Sums of Squares

Some More Advanced Proof Systems

Sherali-Adams, Sum of Squares, and Relatlons to Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies
Sum of squares models semidefinite programming (SDP) hierarchies
Strict hierarchy (over R):

o Nullstellensatz

@ Sherali-Adams

@ Sum of squares

Sum of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sum of squares very strong proof system (e.g., can reason about PHP)
But can't do, e.g., parity reasoning efficiently [GV01, Gri01, Sch08]

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens Oct 30, 2025 57/63



Some More Advanced Proof Systems

Sherali-Adams, Sum of Squares, and Relatlons to Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies
Sum of squares models semidefinite programming (SDP) hierarchies
Strict hierarchy (over R):

o Nullstellensatz

@ Sherali-Adams

@ Sum of squares

Sum of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sum of squares very strong proof system (e.g., can reason about PHP)
But can't do, e.g., parity reasoning efficiently [GV01, Gri01, Sch08]

Survey [FKP19] recommended for more reading
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Some More Advanced Proof Systems

Stabbing Planes [BFIT18]

Intended to model modern 0-1 integer linear programming
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Sherali-Adams and Sums of Squares
Stabbing Planes
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes [BFIT18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S

© If polytope S is empty over R, terminate this branch
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Some More Advanced Proof Systems Extended Resolution

Stabbing Planes [BFIT18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S

© If polytope S is empty over R, terminate this branch
@ Otherwise, pick new inequality ). a;f; > A and create two new branches
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Sherali-Adams and Sums of Squares
Stabbing Planes
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes [BFIT18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S

© If polytope S is empty over R, terminate this branch
@ Otherwise, pick new inequality ). a;f; > A and create two new branches
o S ZZSU{EZ»GZ'EZ' > A}
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Sherali-Adams and Sums of Squares
Stabbing Planes
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes [BFIT18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S

© If polytope S is empty over R, terminate this branch

@ Otherwise, pick new inequality ). a;f; > A and create two new branches
Q S :zsu{ziai&- > A}
(] S:zSU{Eiaifi SA—I}
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Sherali-Adams and Sums of Squares
Stabbing Planes
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes [BFIT18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S

© If polytope S is empty over R, terminate this branch

@ Otherwise, pick new inequality ). a;f; > A and create two new branches
Q S :zsu{ziai&- > A}
(] S:zSU{Eiaifi SA—I}

Complexity measures:
@ Length: # branching nodes / sets S

@ Size: Count also bit size for representing all coefficients
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Sherali-Adams and Sums of Squares
Stabbing Planes
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFIT18]

Stabbing planes probably much stronger!?
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Some More Advanced Proof Systems Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFIT18]
Stabbing planes probably much stronger!?

Or maybe not... Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI*21]
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Sherali-Adams and Sums of Squares
Stabbi
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFIT18]
Stabbing planes probably much stronger!?

Or maybe not... Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI*21]

Recent news: Interpolation and circuit complexity can be used to get similar lower bounds
for stabbing planes as for cutting planes! [GP24]
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Sherali-Adams and Sums of Squares
Stabbi
Some More Advanced Proof Systems Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFIT18]
Stabbing planes probably much stronger!?

Or maybe not... Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI*21]

Recent news: Interpolation and circuit complexity can be used to get similar lower bounds
for stabbing planes as for cutting planes! [GP24]

Still possible that stabbing planes is exponentially more powerful than cutting planes, but
hard to know what to believe
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Stabbing ne
Some More Advanced Proof Systems Extended Resolution

Extended Resolution [Tse68]

Resolution rule
CiVz CoVvT

C1V Oy

Extension rule introducing clauses

avVzVy aVzx aVy

for fresh variable a (encoding that a <+ (x A y) must hold)
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Sherali-Adams and Sums of Squares
Stabbing Planes
Some More Advanced Proof Systems Extended Resolution

Extended Resolution and SAT Solving

Closely related (and equivalent) to DRAT proof system used to justify correctness of
some SAT preprocessing techniques [JHB12]

DRAT also used for SAT solver proof logging [HHW13a, HHW13b, WHH14]

Attempts to combine extended resolution with CDCL in, e.g., [AKS10, Hual0]

Without restrictions, as powerful as extremely strong extended Frege system [CR79]
— pretty much no lower bounds known

To analyse solvers using extended resolution, would need to:

o Describe heuristics/rules actually used
o See if possible to reason about such restricted proof system
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Some More References for Further Reading

Handbook of Satisfiability Proof Complexity
(Especially chapter 7 ©) by Jan Krajitek

PROOF
COMPLEXITY

[BHVMW21]
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Summing up This Lecture

Overview of some proof systems used in combinatorial solving:

@ Resolution <— conflict-driven clause learning (CDCL)
@ Nullstellensatz and polynomial calculus «— Grobner bases
o Cutting planes <— pseudo-Boolean solving
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Summing up This Lecture

Overview of some proof systems used in combinatorial solving:

@ Resolution <— conflict-driven clause learning (CDCL)
@ Nullstellensatz and polynomial calculus «— Grobner bases
o Cutting planes <— pseudo-Boolean solving

Very brief discussion of some other proof systems:
@ Sherali-Adams and sums of squares ~ <— LP and SDP hierarchies
@ Stabbing planes < integer linear programming
@ Extended resolution <— SAT pre- and inprocessing
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@ Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
@ Give ideas for new approaches
@ Provide a fun playground for theory-practice interaction!
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Overview of some proof systems used in combinatorial solving:

@ Resolution <— conflict-driven clause learning (CDCL)
@ Nullstellensatz and polynomial calculus «— Grobner bases
o Cutting planes <— pseudo-Boolean solving

Very brief discussion of some other proof systems:
@ Sherali-Adams and sums of squares ~ <— LP and SDP hierarchies
@ Stabbing planes < integer linear programming
@ Extended resolution <— SAT pre- and inprocessing

Proof complexity useful to
@ Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)

@ Give ideas for new approaches
@ Provide a fun playground for theory-practice interaction!

Thank you for your attention!
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