
Proof complexity and SAT solving

Jakob Nordström

University of Copenhagen and Lund University

SAT/SMT/AR Summer School
Nancy, France
June 29, 2024

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 1/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 2/56



. . . with Huge Practical Implications

Some more examples of problems that can be encoded as propositional logic
formulas:

computer hardware verification
computer software testing
artificial intelligence
operations research
cryptography
bioinformatics
et cetera. . .

Leads to humongous formulas (100,000s or even 1,000,000s of variables)

Can we use computers to solve these problems efficiently?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 3/56



Solving NP in Theory and Practice

Sat mentioned already in Gödel’s famous letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers [BS97, MS99, MMZ+01]
that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 4/56



Solving NP in Theory and Practice

Sat mentioned already in Gödel’s famous letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers [BS97, MS99, MMZ+01]
that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 4/56



Solving NP in Theory and Practice

Sat mentioned already in Gödel’s famous letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers [BS97, MS99, MMZ+01]
that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 4/56



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this presentation: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 5/56



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this presentation: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 5/56



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this presentation: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 5/56



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this presentation: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 5/56



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this presentation: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 5/56



Applications of Proof Complexity

Three applied reasons for proof complexity:

1 Understand real-world applied algorithmic paradigms [this lecture ]

2 Get ideas for algorithmic improvements
[EN18, EN20, DGD+21, DGN21, KBBN22]
(See, e.g., tutorials https://www.youtube.com/watch?v=LZ8VztiplaQ and

https://www.youtube.com/watch?v=wD_2tx1rTaw about RoundingSat)

3 Enhance algorithms to write machine-verifiable certificates of correctness
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BGMN23,
BBN+23, MM23, GMM+24, HOGN24, BBN+24, DMM+24, IOT+24, MMN24]
(See tutorial https://www.youtube.com/watch?v=s_5BIi4I22w about VeriPB)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 6/56

https://www.youtube.com/watch?v=LZ8VztiplaQ
https://www.youtube.com/watch?v=wD_2tx1rTaw
https://www.youtube.com/watch?v=s_5BIi4I22w


Outline

1 DPLL, CDCL, and Resolution
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

2 Algebraic and Semi-algebraic Approaches
Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

3 Some More Advanced Proof Systems We Might Not Have Time for
Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 7/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Formal Description of Sat Problem

Variable x: takes value true (= 1) or false (= 0)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

Here is our example formula again:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 8/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Formal Description of Sat Problem

Variable x: takes value true (= 1) or false (= 0)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

Here is our example formula again:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 8/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 9/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− x)(1− z) = 0

(1− y)z = 0

(1− x)y(1− u) = 0

yu = 0

(1− u)(1− v) = 0

xv = 0

u(1− w) = 0

xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 9/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

1− x− z + xz = 0

z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 9/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

1− x− z + xz = 0

z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y + (1− z) ≥ 1

x+ (1− y) + u ≥ 1

(1− y) + (1− u) ≥ 1

u+ v ≥ 1

(1− x) + (1− v) ≥ 1

(1− u) + w ≥ 1

(1− x) + (1− u) + (1− w) ≥ 1

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 9/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

1− x− z + xz = 0

z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y − z ≥ 0

x− y + u ≥ 0

−y − u ≥ −1
u+ v ≥ 1

−x− v ≥ −1
−u+ w ≥ 0

−x− u− w ≥ −2

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 9/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 10/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

y ∨ zx ∨ z

1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0

x ∨ y ∨ u

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

0
u

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

0
u

0
v

u ∨ v

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

0
u

0
v

1

u ∨ v x ∨ v

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

0
u

0
v

1

u ∨ v

1

x ∨ v

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

0
u

0
v

1

u ∨ v

1

x ∨ v u ∨ w

0
w

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals x

0

y
0

z
0

x ∨ z

1

1

y ∨ z

u
0 1

x ∨ y ∨ u y ∨ u

1

0
u

0
v

1

u ∨ v

1

x ∨ v

0
w

1

u ∨ w x ∨ u ∨ w

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 11/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

State-of-the-Art SAT Solving in One Slide

High-level description of modern conflict-driven clause learning (CDCL) SAT solving (as
pioneered in [BS97, MS99, MMZ+01]):

Try to build satisfying assignment for formula (branching or decision heuristic crucial)

When partial assignment violates formula, compute explanation for conflict and add
to formula as new clause (clause learning)

Every once in a while, restart from beginning (but save computed info)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 12/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 13/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 14/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 14/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 14/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 14/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 14/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 15/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 16/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 16/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Resolution Proofs by Contradction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses D1, D2 ∈ F by the
resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty clause (denoted ⊥) from
F by resolution

Such proof by contradiction also called resolution refutation

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 17/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Resolution Proofs by Contradction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses D1, D2 ∈ F by the
resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty clause (denoted ⊥) from
F by resolution

Such proof by contradiction also called resolution refutation

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 17/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1

z u v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1

z u v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1

0 1 0 1

0 1

x ∨ y u v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1

0 1 0 1

0 1

x ∨ y x ∨ y v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1

0 1 0 1

0 1

x ∨ y x ∨ y x ∨ u w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1

0 1

x ∨ y x ∨ y x ∨ u x ∨ u

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1

0 1

x ∨ y x ∨ y x ∨ u x ∨ u

x u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1

x ∨ y x ∨ y x ∨ u x ∨ u

x x

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

x ∨ y x ∨ y x ∨ u x ∨ u

x x

⊥

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 19/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 19/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 19/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 19/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 19/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof. . . from our example CDCL execution by stringing together
conflict analyses:

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 20/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution. . . by stringing together
conflict analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 20/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 20/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

x ∨ z

x ∨ z

x

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 20/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒ lower bounds on CDCL running time

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 21/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒ lower bounds on CDCL running time

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 21/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒ lower bounds on CDCL running time

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 21/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒ lower bounds on CDCL running time

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 21/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒ lower bounds on CDCL running time

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 21/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof complexity lower
bounds for (seemingly) “obvious” formulas

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 22/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof complexity lower
bounds for (seemingly) “obvious” formulas

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 22/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof complexity lower
bounds for (seemingly) “obvious” formulas

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 22/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 23/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 23/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 23/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander graphs —
“resolution cannot count mod 2”
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 24/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander graphs —
“resolution cannot count mod 2”
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 24/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander graphs —
“resolution cannot count mod 2”
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 24/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander graphs —
“resolution cannot count mod 2”
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 24/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But no such strong lower bounds known for Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 25/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But no such strong lower bounds known for Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 25/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But no such strong lower bounds known for Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 25/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations ∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 26/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations ∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 26/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations ∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 26/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hilbert’s Nullstellensatz

Consider any system of polynomial equations

p1(x1, . . . , xn) = 0 x21 − x1 = 0

p2(x1, . . . , xn) = 0 x22 − x2 = 0

...
...

pm(x1, . . . , xn) = 0 x2n − xn = 0

in polynomial ring over field F

Hilbert’s Nullstellensatz

System infeasible ⇔ exist qi, rj ∈ F[x1, . . . , xn] such that

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 27/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hilbert’s Nullstellensatz

Consider any system of polynomial equations

p1(x1, . . . , xn) = 0 x21 − x1 = 0

p2(x1, . . . , xn) = 0 x22 − x2 = 0

...
...

pm(x1, . . . , xn) = 0 x2n − xn = 0

in polynomial ring over field F

Hilbert’s Nullstellensatz

System infeasible ⇔ exist qi, rj ∈ F[x1, . . . , xn] such that

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 27/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Proof System [BIK+94]

Nullstellensatz refutation of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

is (syntactic) equality

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Complexity measures of refutations:

Size: number of monomials (when all polynomials expanded out)

Degree: highest total degree of any polynomial

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 28/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Proof System [BIK+94]

Nullstellensatz refutation of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

is (syntactic) equality

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Complexity measures of refutations:

Size: number of monomials (when all polynomials expanded out)

Degree: highest total degree of any polynomial

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 28/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 29/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 29/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 29/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 29/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 29/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Proof Search

Solve linear system of equations with coefficients of polynomials qi, rj as unknowns

Used successfully to solve, e.g., graph colouring problems
[DLMM08, DLMO09, DLMM11]

Running time grows exponentially with degree, though high-degree refutations can
be very small [BCIP02, dRMNR21]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 30/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1− x1)(1− x2)(1− x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 − x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 31/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1− x1)(1− x2)(1− x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 − x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 31/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1− x1)(1− x2)(1− x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 − x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 31/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1− x1)(1− x2)(1− x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 − x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 31/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1− x1)(1− x2)(1− x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 − x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 31/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

xj + x′j − 1 = 0 j ∈ [n]

⇕
1 lies in polynomial ideal I generated by these polynomials

Ideal I:
1 p, q ∈ I ⇒ p+ q ∈ I
2 p ∈ I ⇒ r · p ∈ I for any r

Compute polynomials in this ideal I step by step
Use “multivariate division” to check whether 1 lies in ideal or not

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 32/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

xj + x′j − 1 = 0 j ∈ [n]

⇕
1 lies in polynomial ideal I generated by these polynomials

Ideal I:
1 p, q ∈ I ⇒ p+ q ∈ I
2 p ∈ I ⇒ r · p ∈ I for any r

Compute polynomials in this ideal I step by step
Use “multivariate division” to check whether 1 lies in ideal or not

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 32/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:
1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)
If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of polynomials G until no further
reductions possible

G is a Gröbner basis if final result uniquely determined
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 33/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:
1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)
If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of polynomials G until no further
reductions possible

G is a Gröbner basis if final result uniquely determined
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 33/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:
1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)
If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of polynomials G until no further
reductions possible

G is a Gröbner basis if final result uniquely determined
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 33/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Gröbner Bases: Buchberger’s Algorithm

Buchberger’s algorithm for computing Gröbner bases (very rough)

1 Let G := all axioms

2 Pick unprocessed pair p, q ∈ G or terminate if none exists

3 Compute p′ = tp · p and q′ = tq · q to make leading terms cancel

4 Set S := p′ − q′; reduce S mod G with multivariate division;
add result to G if non-zero

5 Go to 2

Facts:

Buchberger’s algorithm computes Gröbner basis

At termination, 1 ∈ G ⇔ polynomial equations infeasible

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 34/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Gröbner Bases: Buchberger’s Algorithm

Buchberger’s algorithm for computing Gröbner bases (very rough)

1 Let G := all axioms

2 Pick unprocessed pair p, q ∈ G or terminate if none exists

3 Compute p′ = tp · p and q′ = tq · q to make leading terms cancel

4 Set S := p′ − q′; reduce S mod G with multivariate division;
add result to G if non-zero

5 Go to 2

Facts:

Buchberger’s algorithm computes Gröbner basis

At termination, 1 ∈ G ⇔ polynomial equations infeasible

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 34/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus [CEI96, ABRW02]

Compute polynomials in ideal I generated by pi, x
2
j − xj , and xj + x′j − 1 step by

step:

pi ∈ I, x2
j − xj ∈ I, and xj + x′

j − 1 ∈ I (axioms)
If p, q ∈ I, then αp+ βq ∈ I for any α, β ∈ F (linear combination)
If p ∈ I, then m · p ∈ I for any monomial m =

∏
j xj (multiplication)

A refutation is a derivation ending with the polynomial 1

Complexity measures:

Size: total number of monomials in all polynomials in derivation expanded out
Degree: highest total degree of any polynomial

Polynomial calculus (much) stronger than Nullstellensatz w.r.t. both size and degree

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 35/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus [CEI96, ABRW02]

Compute polynomials in ideal I generated by pi, x
2
j − xj , and xj + x′j − 1 step by

step:

pi ∈ I, x2
j − xj ∈ I, and xj + x′

j − 1 ∈ I (axioms)
If p, q ∈ I, then αp+ βq ∈ I for any α, β ∈ F (linear combination)
If p ∈ I, then m · p ∈ I for any monomial m =

∏
j xj (multiplication)

A refutation is a derivation ending with the polynomial 1

Complexity measures:

Size: total number of monomials in all polynomials in derivation expanded out
Degree: highest total degree of any polynomial

Polynomial calculus (much) stronger than Nullstellensatz w.r.t. both size and degree

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 35/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step

Example: Resolution step
x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 36/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step

Example: Resolution step
x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 36/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step

Example: Resolution step
x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 36/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 37/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 37/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 37/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Colouring and Clique for Polynomial Calculus

Colouring

Exponential worst-case lower bounds in [LN17]

Exponential average-case lower bounds in [CdRN+23]

Clique

Essentially nothing known!

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 38/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but promise of performance
improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 39/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but promise of performance
improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 39/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but promise of performance
improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 39/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but promise of performance
improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 39/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 40/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 41/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 41/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 41/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes Proof System [CCT87]

Cutting planes introduced in [CCT87] to model integer linear programming algorithm in
[Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Division

∑
aixi ≥ A∑

⌈ai/c⌉xi ≥ ⌈A/c⌉
c ∈ N+

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 42/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes Proof System [CCT87]

Cutting planes introduced in [CCT87] to model integer linear programming algorithm in
[Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Division

∑
aixi ≥ A∑

⌈ai/c⌉xi ≥ ⌈A/c⌉
c ∈ N+

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 42/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes Derivations and Refutations

A cutting planes derivation is a sequence of 0-1 integer linear inequalities derived
using

Axioms (clauses and variable bounds)
Multiplication

∑
aixi ≥ A⇒

∑
caixi ≥ cA

Addition
∑

aixi ≥ A,
∑

bixi ≥ B ⇒
∑

(ai + bi)xi ≥ A+B
Division

∑
aixi ≥ A⇒

∑
⌈ai/c⌉xi ≥ ⌈A/c⌉

A refutation ends with the inequality 0 ≥ 1

Complexity measures:

Length: # inequalities
Size: Count also bit size of representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 43/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes vs. Resolution

Cutting planes can simulate resolution reasoning efficiently and can be exponentially
stronger (e.g., for PHP, just count and argue that #pigeons > #holes)

And 0-1 linear inequalities are similar to but much more concise than CNF

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 44/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Cutting Planes vs. Resolution

Cutting planes can simulate resolution reasoning efficiently and can be exponentially
stronger (e.g., for PHP, just count and argue that #pigeons > #holes)

And 0-1 linear inequalities are similar to but much more concise than CNF

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 44/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 45/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 45/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 45/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some recent developments in [dRMN+20, HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for cutting
planes [DT20]!

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 46/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some recent developments in [dRMN+20, HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for cutting
planes [DT20]!

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 46/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some recent developments in [dRMN+20, HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for cutting
planes [DT20]!

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 46/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20], but
this doesn’t work so well in practice

Better to encode problem with 0-1 integer linear inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 47/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20], but
this doesn’t work so well in practice

Better to encode problem with 0-1 integer linear inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 47/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20], but
this doesn’t work so well in practice

Better to encode problem with 0-1 integer linear inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 47/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20], but
this doesn’t work so well in practice

Better to encode problem with 0-1 integer linear inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 47/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can sometimes be better
in theory [GNY19]

. . . And most often also in practice [EN18], though not always [LBD+20]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 48/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can sometimes be better
in theory [GNY19]

. . . And most often also in practice [EN18], though not always [LBD+20]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 48/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can sometimes be better
in theory [GNY19]

. . . And most often also in practice [EN18], though not always [LBD+20]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 48/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = 1

Sherali–Adams (SA) (αk ∈ R+)

m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 49/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = −1

Sherali–Adams (SA) (αk ∈ R+)

m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +
s∑

k=1

s2k = −1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 49/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = −1

Sherali–Adams (SA) (αk ∈ R+)

m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 49/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = −1

Sherali–Adams (SA) (αk ∈ R+)

m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 49/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams, Sums of Squares, and Relations to Other Proof Systems

Sherali–Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali–Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system (e.g., can reason about PHP)
But can’t do parity reasoning efficiently [GV01, Gri01]

Survey [FKP19] recommended for more reading

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 50/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams, Sums of Squares, and Relations to Other Proof Systems

Sherali–Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali–Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system (e.g., can reason about PHP)
But can’t do parity reasoning efficiently [GV01, Gri01]

Survey [FKP19] recommended for more reading

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 50/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams, Sums of Squares, and Relations to Other Proof Systems

Sherali–Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali–Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system (e.g., can reason about PHP)
But can’t do parity reasoning efficiently [GV01, Gri01]

Survey [FKP19] recommended for more reading

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 50/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 51/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 51/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 51/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 51/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 51/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 51/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFI+18]

Stabbing planes probably much stronger!?

Or maybe not. . . Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Very recent news: Interpolation and circuit complexity can be used to get similar lower
bounds for stabbing planes as for cutting planes! [GP24]

Still possible that stabbing planes is exponentially more powerful than cutting planes, but
hard to know what to believe

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 52/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFI+18]

Stabbing planes probably much stronger!?

Or maybe not. . . Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Very recent news: Interpolation and circuit complexity can be used to get similar lower
bounds for stabbing planes as for cutting planes! [GP24]

Still possible that stabbing planes is exponentially more powerful than cutting planes, but
hard to know what to believe

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 52/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFI+18]

Stabbing planes probably much stronger!?

Or maybe not. . . Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Very recent news: Interpolation and circuit complexity can be used to get similar lower
bounds for stabbing planes as for cutting planes! [GP24]

Still possible that stabbing planes is exponentially more powerful than cutting planes, but
hard to know what to believe

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 52/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFI+18]

Stabbing planes probably much stronger!?

Or maybe not. . . Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Very recent news: Interpolation and circuit complexity can be used to get similar lower
bounds for stabbing planes as for cutting planes! [GP24]

Still possible that stabbing planes is exponentially more powerful than cutting planes, but
hard to know what to believe

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 52/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution [Tse68]

Resolution rule
C1 ∨ x C2 ∨ x

C1 ∨ C2

Extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (encoding that a↔ (x ∧ y) must hold)

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 53/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution and SAT Solving

Closely related (and equivalent) to DRAT system used to justify correctness of some
SAT preprocessing techniques [JHB12]

DRAT also used for SAT solver proof logging

Attempts to combine extended resolution with CDCL in, e.g., [AKS10, Hua10]

Without restrictions, corresponds to extremely strong extended Frege system [CR79]
— pretty much no lower bounds known

To analyse solvers using extended resolution, would need to:

Describe heuristics/rules actually used
See if possible to reason about such restricted proof system

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 54/56



Some More References for Further Reading

Handbook of Satisfiability
(Especially chapter 7 ,)

[BHvMW21]

Proof Complexity
by Jan Kraj́ıček

[Kra19]

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 55/56



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ conflict-driven clause learning (CDCL)
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief discussion of some other proof systems:

Sherali–Adams and sums of squares ←→ LP and SDP hierarchies
Stabbing planes ←→ integer linear programming
Extended resolution ←→ SAT pre- and inprocessing

Proof complexity useful to

Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
Give ideas for new approaches
Provide a fun playground for theory-practice interaction! (And we’re hiring!)

Thank you for your attention!
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 56/56



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ conflict-driven clause learning (CDCL)
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief discussion of some other proof systems:

Sherali–Adams and sums of squares ←→ LP and SDP hierarchies
Stabbing planes ←→ integer linear programming
Extended resolution ←→ SAT pre- and inprocessing

Proof complexity useful to

Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
Give ideas for new approaches
Provide a fun playground for theory-practice interaction! (And we’re hiring!)

Thank you for your attention!
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 56/56



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ conflict-driven clause learning (CDCL)
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief discussion of some other proof systems:

Sherali–Adams and sums of squares ←→ LP and SDP hierarchies
Stabbing planes ←→ integer linear programming
Extended resolution ←→ SAT pre- and inprocessing

Proof complexity useful to

Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
Give ideas for new approaches
Provide a fun playground for theory-practice interaction! (And we’re hiring!)

Thank you for your attention!
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 56/56



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ conflict-driven clause learning (CDCL)
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief discussion of some other proof systems:

Sherali–Adams and sums of squares ←→ LP and SDP hierarchies
Stabbing planes ←→ integer linear programming
Extended resolution ←→ SAT pre- and inprocessing

Proof complexity useful to

Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
Give ideas for new approaches
Provide a fun playground for theory-practice interaction! (And we’re hiring!)

Thank you for your attention!
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 56/56



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ conflict-driven clause learning (CDCL)
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief discussion of some other proof systems:

Sherali–Adams and sums of squares ←→ LP and SDP hierarchies
Stabbing planes ←→ integer linear programming
Extended resolution ←→ SAT pre- and inprocessing

Proof complexity useful to

Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
Give ideas for new approaches
Provide a fun playground for theory-practice interaction! (And we’re hiring!)

Thank you for your attention!
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 56/56



References I

[ABdR+21] Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and
Alexander Razborov. Clique is hard on average for regular resolution. Journal of the ACM,
68(4):23:1–23:26, August 2021. Preliminary version in STOC ’18.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space complexity
in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, April 2002. Preliminary
version in STOC ’00.

[AKS10] Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of extended resolution for
clause learning SAT solvers. In Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI ’10), pages 15–20, July 2010.

[AM20] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the ACM,
67(5):31:1–31:17, October 2020. Preliminary version in FOCS ’19.

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35, 2003. Available
at http://people.cs.uchicago.edu/~razborov/files/misha.pdf. Preliminary version in
FOCS ’01.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 57/56

http://people.cs.uchicago.edu/~razborov/files/misha.pdf


References II

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated
Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer,
July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter
Vandesande. Certifying without loss of generality reasoning in solution-improving maximum
satisfiability. In Proceedings of the 30th International Conference on Principles and Practice of
Constraint Programming (CP ’24), September 2024. To appear.

[BCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi.
Homogenization and the polynomial calculus. Computational Complexity, 11(3-4):91–108, 2002.
Preliminary version in ICALP ’00.

[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristopher Moore. The resolution
complexity of random graph k-colorability. Discrete Applied Mathematics, 153(1-3):25–47, December
2005.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 58/56



References III

[Ber18] Christoph Berkholz. The relation between polynomial calculus, Sherali-Adams, and sum-of-squares
proofs. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer Science
(STACS ’18), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages
11:1–11:14, February 2018.

[BFI+18] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, Toniann
Pitassi, and Robert Robere. Stabbing planes. In Proceedings of the 9th Innovations in Theoretical
Computer Science Conference (ITCS ’18), volume 94 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 10:1–10:20, January 2018.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System
Sciences, 62(2):267–289, March 2001. Preliminary version in CCC ’99.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and
symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence Research,
77:1539–1589, August 2023. Preliminary version in AAAI ’22.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 59/56



References IV

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd
edition, February 2021.

[BI99] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial calculus. In
Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’99),
pages 415–421, October 1999. Journal version in [BI10].

[BI10] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial calculus.
Computational Complexity, 19(4):501–519, 2010. Preliminary version in FOCS ’99.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower bounds on
Hilbert’s Nullstellensatz and propositional proofs. In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’94), pages 794–806, November 1994.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1937.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 60/56



References V

[BLLM14] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. Detecting cardinality
constraints in CNF. In Proceedings of the 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
285–301. Springer, July 2014.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Biere et al.
[BHvMW21], chapter 7, pages 233–350.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT
instances. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI ’97), pages
203–208, July 1997.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CdRN+23] Jonas Conneryd, Susanna F. de Rezende, Jakob Nordström, Shuo Pang, and Kilian Risse. Graph
colouring is hard on average for polynomial calculus and Nullstellensatz. In Proceedings of the 64th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’23), pages 1–11, November
2023.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 61/56



References VI

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to
find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory of
Computing (STOC ’96), pages 174–183, May 1996.

[Chv73] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics,
4(1):305–337, 1973.

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(3):305–317, March 2005. Preliminary
version in DAC ’03.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing (STOC ’71), pages 151–158, May 1971.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, March 1979. Preliminary version in STOC ’74.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM,
35(4):759–768, October 1988.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 62/56



References VII

[DGD+21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting to the
core of pseudo-Boolean optimization: Combining core-guided search with cutting planes reasoning. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3750–3758,
February 2021.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear
programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55, October 2021.
Preliminary version in CPAIOR ’20.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

[DLMM08] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Hilbert’s Nullstellensatz and an
algorithm for proving combinatorial infeasibility. In Proceedings of the 21st International Symposium
on Symbolic and Algebraic Computation (ISSAC ’08), pages 197–206, July 2008.

[DLMM11] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Computing infeasibility
certificates for combinatorial problems through Hilbert’s Nullstellensatz. Journal of Symbolic
Computation, 46(11):1260–1283, November 2011.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 63/56



References VIII

[DLMO09] Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn. Expressing combinatorial problems by
systems of polynomial equations and Hilbert’s Nullstellensatz. Combinatorics, Probability and
Computing, 18(4):551–582, July 2009.

[DMM+24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and Konstantin
Sidorov. Pseudo-Boolean reasoning about states and transitions to certify dynamic programming and
decision diagram algorithms. In Proceedings of the 30th International Conference on Principles and
Practice of Constraint Programming (CP ’24), September 2024. To appear.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201–215, 1960.

[dRGN+21] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry
Sokolov. Automating algebraic proof systems is NP-hard. In Proceedings of the 53rd Annual ACM
Symposium on Theory of Computing (STOC ’21), pages 209–222, June 2021.

[dRLNS21] Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The power of
negative reasoning. In Proceedings of the 36th Annual Computational Complexity Conference
(CCC ’21), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages
40:1–40:24, July 2021.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 64/56



References IX

[dRMN+20] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and Marc
Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity. In Proceedings
of the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS ’20), pages 24–30,
November 2020.

[dRMNR21] Susanna F. de Rezende, Or Meir, Jakob Nordström, and Robert Robere. Nullstellensatz size-degree
trade-offs from reversible pebbling. Computational Complexity, 30:4:1–4:45, February 2021.

[DT20] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In Proceedings of the
35th Annual Computational Complexity Conference (CCC ’20), volume 169 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 34:1–34:35, July 2020.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using
pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI ’20), pages 1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18), pages
1291–1299, July 2018.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 65/56



References X

[EN20] Jan Elffers and Jakob Nordström. A cardinal improvement to pseudo-Boolean solving. In Proceedings
of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages 1495–1503, February 2020.

[FGI+21] Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan, and
Avi Wigderson. On the power and limitations of branch and cut. In Proceedings of the 36th Annual
Computational Complexity Conference (CCC ’21), volume 200 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1–6:30, July 2021.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient algorithm
design. Foundations and Trends in Theoretical Computer Science, 14(1–2):1–221, December 2019.

[FPPR22] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random θ(logn)-CNFs are
hard for cutting planes. Journal of the ACM, 69(3):19:1–19:32, June 2022. Preliminary version in
FOCS ’17.

[GGKS20] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds from
resolution. Theory of Computing, 16(13):1–30, 2020. Preliminary version in STOC ’18.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 66/56



References XI

[GKMP20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-hard. In
Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC ’20), pages
68–77, June 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In
Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Proceedings of the 368h AAAI
Conference on Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 67/56



References XII

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice of Constraint
Programming (CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for
pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

[GNY19] Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On division versus saturation in
pseudo-Boolean solving. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI ’19), pages 1711–1718, August 2019.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 68/56



References XIII

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In R.L. Graves and P. Wolfe,
editors, Recent Advances in Mathematical Programming, pages 269–302. McGraw-Hill, New York,
1963.

[GP24] Max Gläser and Marc E. Pfetsch. Sub-exponential lower bounds for branch-and-bound with general
disjunctions via interpolation. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’24), pages 3747–3764, January 2024.

[Gri01] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity.
Theoretical Computer Science, 259(1–2):613–622, May 2001.

[GV01] Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and Positivstellensatz proofs. Annals of
Pure and Applied Logic, 113(1–3):153–160, December 2001.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297–308,
August 1985.

[Hås99] Johan Håstad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142, 1999.
Preliminary version in FOCS ’96.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 69/56



References XIV

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, July
2001. Preliminary version in STOC ’97.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based presolve
reductions for 0–1 integer linear programs. In Proceedings of the 21st International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR ’24), volume 14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May
2024.

[HP17] Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In
Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’17),
pages 121–131, October 2017.

[Hua10] Jinbo Huang. Extended clause learning. Artificial Intelligence, 174(15):1277–1284, October 2010.

[IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen,
and Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th International
Joint Conference on Automated Reasoning (IJCAR ’24), July 2024. To appear.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 70/56



References XV

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the 6th
International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes
in Computer Science, pages 355–370. Springer, June 2012.

[KB20] Daniela Kaufmann and Armin Biere. Nullstellensatz-proofs for multiplier verification. In Proceedings
of the 22nd International Workshop on Computer Algebra in Scientific Computing (CASC’ 20),
volume 12291 of Lecture Notes in Computer Science, pages 368–389. Springer, September 2020.

[KB21] Daniela Kaufmann and Armin Biere. AMulet 2.0 for verifying multiplier circuits. In Proceedings of the
27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’21), volume 12652 of Lecture Notes in Computer Science, pages 357–364. Springer,
March-April 2021.

[KBBN22] Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström. Adding dual variables to
algebraic reasoning for circuit verification. In Proceedings of the 25th Design, Automation and Test in
Europe Conference (DATE ’22), pages 1435–1440, March 2022.

[KBK20a] Daniela Kaufmann, Armin Biere, and Manuel Kauers. From DRUP to PAC and back. In Proceedings
of the Design, Automation & Test in Europe Conference & Exhibition (DATE ’20), pages 654–657,
March 2020.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 71/56



References XVI

[KBK20b] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Incremental column-wise verifiation of
arithmetic circuits using computer algebra. Formal Methods in Systems Design, 56(1–3):22–54, 2020.
Preliminary version in FMCAD ’17.

[KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof checkers Pacheck and Pastèque for
the practical algebraic calculus. In Proceedings of the 20th Conference on Formal Methods in
Computer-Aided Design (FMCAD ’20), pages 264–269, September 2020.

[Kho01] Subhash Khot. Improved inapproximability results for MaxClique, chromatic number and approximate
graph coloring. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’01), pages 600–609, October 2001.

[Kra19] Jan Kraj́ıček. Proof Complexity, volume 170 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, March 2019.

[LBD+20] Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, and Jakob Nordström. Verifying properties of
bit-vector multiplication using cutting planes reasoning. In Proceedings of the 20th Conference on
Formal Methods in Computer-Aided Design (FMCAD ’20), pages 194–204, September 2020.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 72/56



References XVII

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy peredachi informatsii, 9(3):115–116,
1973. In Russian. Available at http://mi.mathnet.ru/ppi914.

[LN17] Massimo Lauria and Jakob Nordström. Graph colouring is hard for algorithms based on Hilbert’s
Nullstellensatz and Gröbner bases. In Proceedings of the 32nd Annual Computational Complexity
Conference (CCC ’17), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs), pages
2:1–2:20, July 2017.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation, 7:59–64, July 2010.

[McC17] Ciaran McCreesh. Solving Hard Subgraph Problems in Parallel. PhD thesis, University of Glasgow,
2017.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In
Proceedings of the 29th International Conference on Principles and Practice of Constraint
Programming (CP ’23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:17, August 2023.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 73/56

http://mi.mathnet.ru/ppi914


References XVIII

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In
Proceedings of the 21st International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of Lecture Notes in
Computer Science, pages 38–55. Springer, May 2024.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Proceedings of
the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT ’14),
volume 8561 of Lecture Notes in Computer Science, pages 121–137. Springer, July 2014.

[MN15] Mladen Mikša and Jakob Nordström. A generalized method for proving polynomial calculus degree
lower bounds. In Proceedings of the 30th Annual Computational Complexity Conference (CCC ’15),
volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages 467–487, June 2015.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. Preliminary version in
ICCAD ’96.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 74/56



References XIX

[Pro12] Patrick Prosser. Exact algorithms for maximum clique: A computational study. Algorithms,
5(4):545–587, November 2012.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity,
7(4):291–324, December 1998.

[Rii93] Søren Riis. Independence in Bounded Arithmetic. PhD thesis, University of Oxford, 1993.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, January 1965.

[Sok23] Dmitry Sokolov. Random (logn)-CNF are hard for cutting planes (again). Technical Report
TR23-086, Electronic Colloquium on Computational Complexity (ECCC), June 2023.

[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability benchmarks. Journal of
Experimental Algorithmics, 15:1.2:1–1.2:15, March 2010.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 75/56



References XX

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):165–189, March 2006. Preliminary version
in DATE ’05.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko, editor,
Structures in Constructive Mathematics and Mathematical Logic, Part II, pages 115–125. Consultants
Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, January 1987.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In
Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard SAT instances. In
Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages 388–397. Springer, July 2010.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 76/56



References XXI

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing, 3(6):103–128, August 2007. Preliminary version in STOC ’06.

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 77/56


	Introductory Slides
	Main Talk
	DPLL, CDCL, and Resolution
	Davis-Putnam-Logemann-Loveland (DPLL) Method
	Conflict-Driven Clause Learning (CDCL)
	Resolution Proof System

	Algebraic and Semi-algebraic Approaches
	Nullstellensatz
	Gröbner Bases and Polynomial Calculus
	Pseudo-Boolean Solving and Cutting Planes 

	Some More Advanced Proof Systems We Might Not Have Time for
	Sherali-Adams and Sums of Squares
	Stabbing Planes
	Extended Resolution


	Concluding Slides
	Appendix

