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Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula, is there a
satisfying assignment?
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Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?
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Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
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Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems
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. . . with Huge Practical Implications

Some more examples of problems that can be encoded as propositional logic
formulas:

computer hardware verification
computer software testing
artificial intelligence
operations research
cryptography
bioinformatics
et cetera. . .

Leads to humongous formulas (100,000s or even 1,000,000s of variables)

Can we use computers to solve these problems efficiently?
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Solving NP in Theory and Practice

Sat mentioned already in Gödel’s famous letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers [BS97, MS99, MMZ+01]
that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)
Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 4/56



Solving NP in Theory and Practice
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of reasoning it uses

View this method of reasoning as formal proof system, with each single step efficiently
verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this presentation: Question 1 for different proof systems/algorithms
Study infeasible problems — proofs of feasibility are trivial

Question 2: Topic for separate lecture(s) — lots of recent exciting progress; mostly
negative (worst-case) results that proof search is hard, e.g., [AM20, GKMP20, dRGN+21]
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Applications of Proof Complexity

Three applied reasons for proof complexity:

1 Understand real-world applied algorithmic paradigms [this lecture ]

2 Get ideas for algorithmic improvements
[EN18, EN20, DGD+21, DGN21, KBBN22]
(See, e.g., tutorials https://www.youtube.com/watch?v=LZ8VztiplaQ and

https://www.youtube.com/watch?v=wD_2tx1rTaw about RoundingSat)

3 Enhance algorithms to write machine-verifiable certificates of correctness
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BGMN23,
BBN+23, MM23, GMM+24, HOGN24, BBN+24, DMM+24, IOT+24, MMN24]
(See tutorial https://www.youtube.com/watch?v=s_5BIi4I22w about VeriPB)
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Outline

1 DPLL, CDCL, and Resolution
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

2 Algebraic and Semi-algebraic Approaches
Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

3 Some More Advanced Proof Systems We Might Not Have Time for
Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Formal Description of Sat Problem

Variable x: takes value true (= 1) or false (= 0)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

Here is our example formula again:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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xuw = 0
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z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y + (1− z) ≥ 1

x+ (1− y) + u ≥ 1

(1− y) + (1− u) ≥ 1

u+ v ≥ 1

(1− x) + (1− v) ≥ 1

(1− u) + w ≥ 1

(1− x) + (1− u) + (1− w) ≥ 1

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 9/56



DPLL, CDCL, and Resolution
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Some More Advanced Proof Systems We Might Not Have Time for
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y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y − z ≥ 0

x− y + u ≥ 0

−y − u ≥ −1
u+ v ≥ 1

−x− v ≥ −1
−u+ w ≥ 0

−x− u− w ≥ −2

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL: Attempting Smart Case Analysis

The foundation of state-of-the-art SAT solvers is the DPLL method developed by Davis,
Putnam, Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

1 If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

2 If F contains no clauses, report “satisfiable” and terminate

3 Otherwise pick some variable x in F

4 Set x = 0, simplify F and make recursive call

5 Set x = 1, simplify F and make recursive call

6 If result in both cases “unsatisfiable”, then report “unsatisfiable” and return
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

State-of-the-Art SAT Solving in One Slide

High-level description of modern conflict-driven clause learning (CDCL) SAT solving (as
pioneered in [BS97, MS99, MMZ+01]):

Try to build satisfying assignment for formula (branching or decision heuristic crucial)

When partial assignment violates formula, compute explanation for conflict and add
to formula as new clause (clause learning)

Every once in a while, restart from beginning (but save computed info)
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Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)
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decision
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decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)
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Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Assertion level 1 (2nd largest level in learned clause) —
trim trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Resolution Proofs by Contradction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses D1, D2 ∈ F by the
resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty clause (denoted ⊥) from
F by resolution

Such proof by contradiction also called resolution refutation
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1

z u v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1

z u v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1

0 1 0 1

0 1

x ∨ y u v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1

0 1 0 1

0 1

x ∨ y x ∨ y v w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1

0 1 0 1

0 1

x ∨ y x ∨ y x ∨ u w

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1

0 1

x ∨ y x ∨ y x ∨ u x ∨ u

y u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1

0 1

x ∨ y x ∨ y x ∨ u x ∨ u

x u

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1

x ∨ y x ∨ y x ∨ u x ∨ u

x x

x

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

x ∨ y x ∨ y x ∨ u x ∨ u

x x

⊥

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 18/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof. . . from our example CDCL execution by stringing together
conflict analyses:
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CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution. . . by stringing together
conflict analyses:
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CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in this presentation to be
able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒ lower bounds on CDCL running time

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .
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Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof complexity lower
bounds for (seemingly) “obvious” formulas
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Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
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Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander graphs —
“resolution cannot count mod 2”
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But no such strong lower bounds known for Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations ∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hilbert’s Nullstellensatz

Consider any system of polynomial equations

p1(x1, . . . , xn) = 0 x21 − x1 = 0

p2(x1, . . . , xn) = 0 x22 − x2 = 0

...
...

pm(x1, . . . , xn) = 0 x2n − xn = 0

in polynomial ring over field F

Hilbert’s Nullstellensatz

System infeasible ⇔ exist qi, rj ∈ F[x1, . . . , xn] such that

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Proof System [BIK+94]

Nullstellensatz refutation of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

is (syntactic) equality

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Complexity measures of refutations:

Size: number of monomials (when all polynomials expanded out)

Degree: highest total degree of any polynomial
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Nullstellensatz Proof Search

Solve linear system of equations with coefficients of polynomials qi, rj as unknowns

Used successfully to solve, e.g., graph colouring problems
[DLMM08, DLMO09, DLMM11]

Running time grows exponentially with degree, though high-degree refutations can
be very small [BCIP02, dRMNR21]
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1− x1)(1− x2)(1− x3) = 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 − x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)
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Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size exponentially [dRLNS21]
(also for other algebraic proof systems)
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Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

xj + x′j − 1 = 0 j ∈ [n]

⇕
1 lies in polynomial ideal I generated by these polynomials

Ideal I:
1 p, q ∈ I ⇒ p+ q ∈ I
2 p ∈ I ⇒ r · p ∈ I for any r

Compute polynomials in this ideal I step by step
Use “multivariate division” to check whether 1 lies in ideal or not
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Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:
1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)
If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of polynomials G until no further
reductions possible

G is a Gröbner basis if final result uniquely determined
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
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Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:
1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)
If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of polynomials G until no further
reductions possible
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Gröbner Bases: Buchberger’s Algorithm

Buchberger’s algorithm for computing Gröbner bases (very rough)

1 Let G := all axioms

2 Pick unprocessed pair p, q ∈ G or terminate if none exists

3 Compute p′ = tp · p and q′ = tq · q to make leading terms cancel

4 Set S := p′ − q′; reduce S mod G with multivariate division;
add result to G if non-zero

5 Go to 2

Facts:

Buchberger’s algorithm computes Gröbner basis

At termination, 1 ∈ G ⇔ polynomial equations infeasible
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Polynomial Calculus [CEI96, ABRW02]

Compute polynomials in ideal I generated by pi, x
2
j − xj , and xj + x′j − 1 step by

step:

pi ∈ I, x2
j − xj ∈ I, and xj + x′

j − 1 ∈ I (axioms)
If p, q ∈ I, then αp+ βq ∈ I for any α, β ∈ F (linear combination)
If p ∈ I, then m · p ∈ I for any monomial m =

∏
j xj (multiplication)

A refutation is a derivation ending with the polynomial 1

Complexity measures:

Size: total number of monomials in all polynomials in derivation expanded out
Degree: highest total degree of any polynomial

Polynomial calculus (much) stronger than Nullstellensatz w.r.t. both size and degree
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Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently step by step

Example: Resolution step
x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y
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Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]
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Colouring and Clique for Polynomial Calculus

Colouring

Exponential worst-case lower bounds in [LN17]

Exponential average-case lower bounds in [CdRN+23]

Clique

Essentially nothing known!
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What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but promise of performance
improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is only very limited form
of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that too little work has
been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit verification quite
successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]
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Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?
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Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables
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Cutting Planes Proof System [CCT87]

Cutting planes introduced in [CCT87] to model integer linear programming algorithm in
[Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Division

∑
aixi ≥ A∑

⌈ai/c⌉xi ≥ ⌈A/c⌉
c ∈ N+
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Cutting Planes Derivations and Refutations

A cutting planes derivation is a sequence of 0-1 integer linear inequalities derived
using

Axioms (clauses and variable bounds)
Multiplication

∑
aixi ≥ A⇒

∑
caixi ≥ cA

Addition
∑

aixi ≥ A,
∑

bixi ≥ B ⇒
∑

(ai + bi)xi ≥ A+B
Division

∑
aixi ≥ A⇒

∑
⌈ai/c⌉xi ≥ ⌈A/c⌉

A refutation ends with the inequality 0 ≥ 1

Complexity measures:

Length: # inequalities
Size: Count also bit size of representing all coefficients

Jakob Nordström (UCPH & LU) Proof complexity and SAT solving SAT/SMT/AR Summer School ’24 43/56



DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
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Cutting Planes vs. Resolution

Cutting planes can simulate resolution reasoning efficiently and can be exponentially
stronger (e.g., for PHP, just count and argue that #pigeons > #holes)

And 0-1 linear inequalities are similar to but much more concise than CNF

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)
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Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and circuit complexity

From small cutting planes proof, build small circuit of special type that can decide
whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some recent developments in [dRMN+20, HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for cutting
planes [DT20]!
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting planes reasoning
developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20], but
this doesn’t work so well in practice

Better to encode problem with 0-1 integer linear inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Pseudo-Boolean Solving and Cutting Planes

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can sometimes be better
in theory [GNY19]

. . . And most often also in practice [EN18], though not always [LBD+20]
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = 1

Sherali–Adams (SA) (αk ∈ R+)

m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1
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Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali–Adams, Sums of Squares, and Relations to Other Proof Systems

Sherali–Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali–Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system (e.g., can reason about PHP)
But can’t do parity reasoning efficiently [GV01, Gri01]

Survey [FKP19] recommended for more reading
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Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients
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Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes and Cutting Planes

Stabbing planes efficiently simulates cutting planes [BFI+18]

Stabbing planes probably much stronger!?

Or maybe not. . . Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Very recent news: Interpolation and circuit complexity can be used to get similar lower
bounds for stabbing planes as for cutting planes! [GP24]

Still possible that stabbing planes is exponentially more powerful than cutting planes, but
hard to know what to believe
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution [Tse68]

Resolution rule
C1 ∨ x C2 ∨ x

C1 ∨ C2

Extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (encoding that a↔ (x ∧ y) must hold)
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DPLL, CDCL, and Resolution
Algebraic and Semi-algebraic Approaches

Some More Advanced Proof Systems We Might Not Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution and SAT Solving

Closely related (and equivalent) to DRAT system used to justify correctness of some
SAT preprocessing techniques [JHB12]

DRAT also used for SAT solver proof logging

Attempts to combine extended resolution with CDCL in, e.g., [AKS10, Hua10]

Without restrictions, corresponds to extremely strong extended Frege system [CR79]
— pretty much no lower bounds known

To analyse solvers using extended resolution, would need to:

Describe heuristics/rules actually used
See if possible to reason about such restricted proof system
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Some More References for Further Reading

Handbook of Satisfiability
(Especially chapter 7 ,)

[BHvMW21]

Proof Complexity
by Jan Kraj́ıček

[Kra19]
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Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ conflict-driven clause learning (CDCL)
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief discussion of some other proof systems:

Sherali–Adams and sums of squares ←→ LP and SDP hierarchies
Stabbing planes ←→ integer linear programming
Extended resolution ←→ SAT pre- and inprocessing

Proof complexity useful to

Analyse state-of-the-art algorithms (and provide methods for certifying correctness!)
Give ideas for new approaches
Provide a fun playground for theory-practice interaction! (And we’re hiring!)

Thank you for your attention!
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[DLMM08] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Hilbert’s Nullstellensatz and an
algorithm for proving combinatorial infeasibility. In Proceedings of the 21st International Symposium
on Symbolic and Algebraic Computation (ISSAC ’08), pages 197–206, July 2008.
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