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. . . And This Is What I Do for a Living
(x1,1 ∨ x1,2 ∨ x1,3 ∨ x1,4 ∨ x1,5 ∨ x1,6 ∨ x1,7) ∧ (x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4 ∨ x2,5 ∨ x2,6 ∨ x2,7) ∧ (x3,1 ∨ x3,2 ∨ x3,3 ∨ x3,4 ∨

x3,5 ∨ x3,6 ∨ x3,7) ∧ (x4,1 ∨ x4,2 ∨ x4,3 ∨ x4,4 ∨ x4,5 ∨ x4,6 ∨ x4,7) ∧ (x5,1 ∨ x5,2 ∨ x5,3 ∨ x5,4 ∨ x5,5 ∨ x5,6 ∨ x5,7) ∧ (x6,1 ∨

x6,2 ∨x6,3 ∨x6,4 ∨x6,5 ∨x6,6 ∨x6,7) ∧ (x7,1 ∨x7,2 ∨x7,3 ∨x7,4 ∨x7,5 ∨x7,6 ∨x7,7) ∧ (x8,1 ∨x8,2 ∨x8,3 ∨x8,4 ∨x8,5 ∨x8,6 ∨

x8,7) ∧ (¬x1,1 ∨¬x2,1) ∧ (¬x1,1 ∨¬x3,1) ∧ (¬x1,1 ∨¬x4,1) ∧ (¬x1,1 ∨¬x5,1) ∧ (¬x1,1 ∨¬x6,1) ∧ (¬x1,1 ∨¬x7,1) ∧ (¬x1,1 ∨

¬x8,1) ∧ (¬x2,1 ∨ ¬x3,1) ∧ (¬x2,1 ∨ ¬x4,1) ∧ (¬x2,1 ∨ ¬x5,1) ∧ (¬x2,1 ∨ ¬x6,1) ∧ (¬x2,1 ∨ ¬x7,1) ∧ (¬x2,1 ∨ ¬x8,1) ∧

(¬x3,1 ∨ ¬x4,1) ∧ (¬x3,1 ∨ ¬x5,1) ∧ (¬x3,1 ∨ ¬x6,1) ∧ (¬x3,1 ∨ ¬x7,1) ∧ (¬x3,1 ∨ ¬x8,1) ∧ (¬x4,1 ∨ ¬x5,1) ∧ (¬x4,1 ∨

¬x6,1) ∧ (¬x4,1 ∨ ¬x7,1) ∧ (¬x4,1 ∨ ¬x8,1) ∧ (¬x5,1 ∨ ¬x6,1) ∧ (¬x5,1 ∨ ¬x7,1) ∧ (¬x5,1 ∨ ¬x8,1) ∧ (¬x6,1 ∨ ¬x7,1) ∧

(¬x6,1∨¬x8,1) ∧ (¬x7,1∨¬x8,1) ∧ (¬x1,2∨¬x2,2) ∧ (¬x1,2∨¬x3,2) ∧ (¬x1,2∨¬x4,2) ∧ (¬x1,2∨¬x5,2) ∧ (¬x1,2∨¬x6,2) ∧

(¬x1,2∨¬x7,2) ∧ (¬x1,2∨¬x8,2) ∧ (¬x2,2∨¬x3,2) ∧ (¬x2,2∨¬x4,2) ∧ (¬x2,2∨¬x5,2) ∧ (¬x2,2∨¬x6,2) ∧ (¬x2,2∨¬x7,2) ∧

(¬x2,2∨¬x8,2) ∧ (¬x3,2∨¬x4,2) ∧ (¬x3,2∨¬x5,2) ∧ (¬x3,2∨¬x6,2) ∧ (¬x3,2∨¬x7,2) ∧ (¬x3,2∨¬x8,2) ∧ (¬x4,2∨¬x5,2) ∧

(¬x4,2∨¬x6,2) ∧ (¬x4,2∨¬x7,2) ∧ (¬x4,2∨¬x8,2) ∧ (¬x5,2∨¬x6,2) ∧ (¬x5,2∨¬x7,2) ∧ (¬x5,2∨¬x8,2) ∧ (¬x6,2∨¬x7,2) ∧

(¬x6,2∨¬x8,2) ∧ (¬x7,2∨¬x8,2) ∧ (¬x1,3∨¬x2,3) ∧ (¬x1,3∨¬x3,3) ∧ (¬x1,3∨¬x4,3) ∧ (¬x1,3∨¬x5,3) ∧ (¬x1,3∨¬x6,3) ∧

(¬x1,3∨¬x7,3) ∧ (¬x1,3∨¬x8,3) ∧ (¬x2,3∨¬x3,3) ∧ (¬x2,3∨¬x4,3) ∧ (¬x2,3∨¬x5,3) ∧ (¬x2,3∨¬x6,3) ∧ (¬x2,3∨¬x7,3) ∧

(¬x2,3 ∨ ¬x8,3) ∧ (¬x3,3 ∨ ¬x4,3) ∧ (¬x3,3 ∨ ¬x5,3) ∧ (¬x3,3 ∨ ¬x6,3) ∧ (¬x3,3 ∨ ¬x7,3) ∧ (¬x3,3 ∨ ¬x8,3) ∧ (¬x4,3 ∨

¬x5,3) ∧ (¬x4,3 ∨ ¬x6,3) ∧ (¬x4,3 ∨ ¬x7,3) ∧ (¬x4,3 ∨ ¬x8,3) ∧ (¬x5,3 ∨ ¬x6,3) ∧ (¬x5,3 ∨ ¬x7,3) ∧ (¬x5,3 ∨ ¬x8,3)∧
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Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula, is there a
satisfying assignment?
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Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?
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Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
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Three Simple Problems. . .

Colouring

Does the graph G = (V,E) have a
colouring with k colours such that all
neighbours have distinct colours?

Clique

Is there a clique in the graph G = (V,E)
with k vertices that are all pairwise
connected by edges in E?

Sat

Given propositional logic formula, is there a
satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems
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. . . with Huge Practical Implications

Some more examples of problems that can be encoded as propositional logic
formulas:

computer hardware verification
computer software testing
artificial intelligence
cryptography
bioinformatics
et cetera. . .

Leads to humongous formulas (100,000s or even 1,000,000s of variables)

Can we use computers to solve these problems efficiently?

Question mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)

Topic of intense research in computer science ever since 1960s
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Solving Logic Formulas in Practice

Enormous progress since the turn of the millennium on so-called SAT solvers
Today routinely used to solve large-scale real-world problems

But. . . There are also small formulas (just ∼100 variables) that are completely
beyond reach of even the very best SAT solvers

Best known SAT solving algorithms based on Davis-Putnam-Logemann-Loveland or
DPLL method from early 1960s (although with many clever optimizations)

Some natural questions:

How do these SAT solvers work?

How can they be so good in practice?

When they fail to be efficient, can we understand why?

It’s 2024 now — can we go beyond techniques from 1960s?
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Plan for Today

What we will cover today:

Define more precisely the computational problem

Give (slightly simplified) description of how modern SAT solvers work

Present tools to analyze SAT solver performance

Discuss how to extend SAT techniques to
0–1 integer linear programs and beyond
[in the pseudo-Boolean tutorials]

. . .And in the process also touch on some of the research
conducted in the Mathematical Insights into Algorithms
for Optimization (MIAO) group in Copenhagen and Lund
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Outline of Tutorial on Boolean Satisfiability (SAT) Solving

1 SAT solving
The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

2 Proof Complexity
Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

3 Future Research Directions
Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions
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SAT solving
Proof Complexity

Future Research Directions

The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Formal Description of Sat Problem

Variable x: takes value 1 (true) or 0 (false)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

For instance, what about our example formula?

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)
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SAT solving
Proof Complexity

Future Research Directions

The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

How to Solve the Sat Problem?

Let computer check all possible assignments! Isn’t this exactly the kind of monotone
routine work at which computers excel?

But how many cases to check?

Suppose formula has n variables

Each variable can be either true or false, so all in all get 2n different cases

If formula contains, say, one million variables, we get 21,000,000 cases (a number with
more than 300,000 digits)

To understand how large this number is, consider that even if every atom in the known universe
was a modern supercomputer that had been running at full speed ever since the beginning of
time some 13.7 billion years ago, all of them together would only have covered a completely
negligible fraction of these cases by now. So we really would not have time to wait for them to
finish. . .
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SAT solving
Proof Complexity

Future Research Directions

The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

An Interesting Feature of the Sat Problem

Deciding whether a satisfying assignment exists may take a long time

But if you happen to know a satisfying assignment, easy to convince someone else
that formula is satisfiable

How? Just give assignment — can be verified in linear time

So Sat problem might seem hard to solve, but verifying a solution is easy (not all
problems have this property — how do you verify a winning position in chess?)

The family of problems for which solutions are easy to check have a name: NP
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How to Solve the Sat Problem, Take 2

Sat problem can be used to describe any problem in NP — it is NP-complete
[Coo71, Lev73]

If you can solve Sat efficiently, then you can solve any problem in NP efficiently
(this is why Sat is so useful)

So how hard is it to solve Sat? (Brute force didn’t work, but it usually doesn’t —
maybe can do something smarter?)

We don’t know

This one of the million-dollar “Millennium Prize Problems” [Mil00] posed as key
challenges for mathematics in the new millennium

Widely believe to be impossible to solve efficiently on computer in the worst case,
but we really don’t know
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An Attempt at a Smarter Case Analysis: DPLL

Ok, but suppose you’re out there in reality and actually have to solve the problem — then
what do you do?

Chances are you’ll use some variant of the DPLL method developed by Davis, Putnam,
Logemann & Loveland [DP60, DLL62]

DPLL (somewhat simplified description)

If F contains empty clause (without literals), report “unsatisfiable” and return —
refer to as conflict

If F contains no clauses, report “satisfiable” and terminate

Otherwise pick some variable x in F

Set x = 0, simplify F and make recursive call

Set x = 1, simplify F and make recursive call

If result in both cases “unsatisfiable”, then report “unsatisfiable” and return
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A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when conflict reached

“Simplify formula” by (mentally) removing

satisfied clauses
falsified literals
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State-of-the-art SAT solvers: Ingredients

Many more ingredients in modern conflict-driven clause learning (CDCL) SAT solvers (as
pioneered in [BS97, MS99, MMZ+01]), e.g.:

Branching or decision heuristic (choice of pivot variables crucial)

When reaching leaf, compute explanation for conflict
and add to formula as new clause (clause learning)

Every once in a while, restart from beginning (but save computed info)

Preprocessing the formula before the search even starts

Let us discuss some of these ingredients
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Variable Assignment Heuristics

Unit propagation

Suppose current assignment ρ falsifies all literals in C = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk except one
(say ℓk) — C is unit under ρ

Then ℓk has to be true, so set it to true

Known as unit progagation or Boolean constraint progagation

Always propagate if possible — in modern solvers aim for ≈99% of assignments
being unit propagations

VSIDS (Variable state independent decaying sum)

When backtracking, score +1 for variables “causing conflict”

Also multiply all scores with factor κ < 1 — exponential filter rewarding variables
involved in recent conflicts

When no propagations, decide on variable with highest score
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Clause Learning

At conflict, want to add clause avoiding same part of search tree being explored again

Suppose we can compute that decisions x = 1, y = 0, z = 1 responsible for conflict

Then can add x ∨ y ∨ z to avoid these decisions being made again — decision
learning scheme (this idea goes all the way back to [SS77])

Nowadays, more sophisticated learning schemes starting with [MS99, MMZ+01]

Often described in terms of cuts in conflict graph

More helpful to view conflict analysis as syntactic derivation applied on clauses unit
propagating to conflict
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SAT solving
Proof Complexity

Future Research Directions

The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Decisions, Unit Propagations, and Conflict
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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SAT solving
Proof Complexity

Future Research Directions

The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)
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z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis for last two clauses over propagated variable:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict
level after last decision — learn and backjump
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The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)
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u
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⊥

x ∨ y

u ∨ x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Clause Database Reduction

In addition to learning clauses, also erase learned clauses that don’t seem useful

Modern solvers do this very aggressively

Speeds up CDCL search (in particular, unit propagation, which dominates running
time)

But erasing too aggressively can throw away clauses that would have made solver
terminate faster [EGG+18]

So potential trade-off between search speed and search quality

Except sometimes getting rid of clauses improves search quality too! [KN20]
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Restarts

Fairly frequently, start search all over (but keep learned clauses)

Original intuition: stuck in bad part of search tree — go somewhere else

Not the reason this is done now

Popular variables with high VSIDS scores get set again [MMZ+01]

Are even set to same values (phase saving) [PD07]

Current intution: improves the search by focusing on important variables

Restart at fixed intervals or (better) make adaptive restarts depending on “quality”
of learned clauses [AS09, AS12]

Jakob Nordström (UCPH & LU) Tutorial on Boolean Satisfiability (SAT) Solving SLOPPY ’24 22/44



SAT solving
Proof Complexity

Future Research Directions
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Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

Conflict-Driven Clause Learning in Pseudocode (Slightly Simplified)

CDCL(F )

1 D ← F ; // initialize clause database to contain formula

2 ρ← ∅ ; // initialize assignment trail to empty

3 forever do
4 if ρ falsifies some clause C ∈ D then
5 A← analyzeConflict(D, ρ, C) ;
6 if A = ⊥ then output UNSATISFIABLE and exit ;
7 else add learned clause A to D and backjump by shrinking ρ ;

8 else if exists clause C ∈ D unit propagating x to b ∈ {0, 1} under ρ then

9 add propagated assignment x
C
= b to ρ ;

10 else if time to restart then ρ← ∅ ;
11 else if time for clause database reduction then
12 erase (roughly) half of learned clauses in D \ F from D
13 else if all variables assigned then output SATISFIABLE and exit ;
14 else
15 use decision scheme to choose x and b and add assignment x

d
= b to ρ ;
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Conflict Analysis Pseudocode

analyzeConflict(D, ρ, Cconfl)

1 Clearn ← Cconfl ;
2 while Clearn not UIP clause and Clearn ̸= ⊥ do
3 ℓ← literal assigned last on trail ρ ;

4 if ℓ propagated and ℓ occurs in Clearn then
5 Creason ← reason(ℓ, ρ,D) ;
6 Clearn ← resolve(Clearn, Creason) ;

7 ρ← ρ \ {ℓ} ;
8 return Clearn ;

Jakob Nordström (UCPH & LU) Tutorial on Boolean Satisfiability (SAT) Solving SLOPPY ’24 24/44



SAT solving
Proof Complexity

Future Research Directions

The Satisfiability Problem
Davis-Putnam-Logemann-Loveland (DPLL) Method
Conflict-Driven Clause Learning (CDCL)

State-of-the-art SAT solvers: What About the Recipe?

List of ingredients again (not exhaustive):

Variable decisions & propagations

Conflict analysis

Restarts

Clause database reduction

Preprocessing

Some natural questions:

How best to combine these ingredients into a recipe?

When and why does this recipe work?

Why SAT solvers actually work so well is poorly understood

Plenty of research has been done to comprehend this better
(Among other places in the MIAO group)
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Lower Bounds for Resolution

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of CDCL SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2
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Resolution Proofs by Contradiction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses D1, D2 ∈ F by the
resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty clause (denoted ⊥)
from F by resolution

Such proof by contradiction also called resolution refutation
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DPLL and Resolution Proofs

A DPLL execution is essentially a resolution proof

Look at our example again

and apply resolution rule C1∨x C2∨x
C1∨C2

bottom-up
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DPLL Running Time and Tree-Like Resolution Proof Size

Can extract resolution proof from any DPLL execution

Requires an argument, of course, but not too hard to show

Such proof is tree-like — every derived clause used only once
(to use a clause twice, we have to derive it twice from scratch)

Hence, lower bounds on tree-like proof size in resolution ⇒
lower bounds on DPLL running time

Conflict-driven clause learning adds “shortcut edges” in tree, but still yields
resolution proof
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CDCL and Resolution Proofs

Obtain resolution proof. . . from our example CDCL execution by stringing together
conflict analyses:
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Lower Bounds for Resolution

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof (DAG-like, not tree-like) from CDCL execution

Again requires an argument, but you have seen enough in this lecture to be able to
fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics and optimizations that
we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning about propositional
logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but this gets complicated

and we don’t have time to go into details. . .
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Future Research Directions

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof complexity lower
bounds for (seemingly) “obvious” formulas
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Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Examples of Hard Formulas for Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
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Examples of Hard Formulas for Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd
Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander graphs —
“resolution cannot count mod 2”
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Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables

(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF formula almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Clique and VertexCover [BIS07] (though open questions remain [ABdR+21])

Zero-one designs [Spe10, VS10, MN14]

. . .

See Chapter 7 on Proof Complexity and SAT Solving in the Handbook of
Satisfiability for more details [BN21]
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Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables

(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF formula almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Clique and VertexCover [BIS07] (though open questions remain [ABdR+21])

Zero-one designs [Spe10, VS10, MN14]

. . .

See Chapter 7 on Proof Complexity and SAT Solving in the Handbook of
Satisfiability for more details [BN21]
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

Theoretical Lower Bounds and Practical Reality

If resolution so weak, how can CDCL SAT solvers be so good?

One answer: “tricky” formulas don’t show up too often in practice

Another area of intense research: Try to describe what properties of “real-life”
formulas make them easy or hard

But sometimes we would like to be able to solve also “tricky” formulas

Can we go beyond resolution?

Explore stronger methods of reasoning!

Algorithms based on such methods could potentially lead to exponential speed-ups
[stay tuned for following lectures. . . ]
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

Cutting Planes Proof System

Introduced in [CCT87] to model integer linear programming algorithm in [Gom63, Chv73]

Clauses translated to linear inequalities over the reals with integer coefficients

Example: x ∨ y ∨ z gets translated to x+ y + (1− z) ≥ 1
or equivalently x+ y − z ≥ 0

Derivation rules

Variable axioms
0 ≤ x ≤ 1

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

[c ∈ N+]

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B
Division

∑
caixi ≥ A∑

aixi ≥ ⌈A/c⌉
[c ∈ N+]
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

Cutting Planes Refutations of CNF Formulas

Translate CNF formula to set of 0-1 linear inequalities

Apply derivation rules

Derive 0 ≥ 1 ⇔ formula unsatisfiable

Also makes sense for more general 0-1 linear inequalities
(not just translations of CNF formulas)

Cutting planes can simulate resolution reasoning efficiently and is sometimes
exponentially stronger (e.g., for PHP, just count to see #pigeons > #holes)
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

Building SAT Solvers Based on Cutting Planes Reasoning?

So-called pseudo-Boolean solvers using cutting planes developed in [CK05, LP10, EN18]
Counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities [BLLM14, EN20], but
hard to make this work well enough in practice

Better to encode problem with 0-1 inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

So. . . Is There a Smarter Way Than Brute-Force to Solve Sat?

In theory, probably no. . .

Colouring, Clique, Sat, and 1000s other problems are “all the same” —
efficient algorithm for one can solve all (the problems are all NP-complete)

Widely believed impossible to construct algorithms that are always (a) efficient and
(b) correct (even in worst case)

Settling this question is one of Millennium Prize Problems: Are there efficient
algorithms for NP-complete problems?

In practice, definitely yes!

Real-world problems are usually not “worst-case” but highly structured

Fairly simple (but clever) methods work amazingly well amazingly often (though we
don’t really understand why)

Stark disconnect between theory and practice. . .
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

Research Goals in the MIAO Group (1/2)

Strengthen the mathematical analysis of algorithmic methods

Study methods of reasoning powerful enough to capture state-of-the-art algorithms
used in practice

Prove theorems about their power and limitations

E.g., resolution proof system captures CDCL reasoning

Construct stronger algorithms for combinatorial problems

Use insights into stronger mathematical methods of reasoning to build algorithms for
Sat and other combinatorial problems

Aiming for exponential speed-ups over state of the art

E.g., use cutting planes to build pseudo-Boolean solvers
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SAT solving
Proof Complexity

Future Research Directions

Understanding and Improving on the State of the Art
Pseudo-Boolean Solving and the Cutting Planes Method
Some Research Questions

Research Goals in the MIAO Group (2/2)

Improve understanding of efficient computation in practice

Use computational complexity theory to study “real-world” (not worst-case) problems

Combine theoretical study and empirical experiments

E.g., take “crafted formulas” with provable theoretical properties and investigate
correlation with practical solver performance

Certify correctness for modern combinatorial solvers

In many combinatorial optimization paradigms, state-of-the-art solvers are known to
be buggy

Develop methods to make solvers output not just answer but machine-verifiable
proof of correctness of this answer
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Some References for Further Reading

Handbook of Satisfiability
(Especially chapter 7 ,)

[BHvMW21]

Proof Complexity
by Jan Kraj́ıček

[Kra19]

And survey papers, slides, and videos at small www.jakobnordstrom.se
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Take-Home Message

Modern SAT solvers, although based on old and simple DPLL method, can be
enormously efficient in practice

SAT solving more of an art form than a science — theoretical understanding lagging
far behind

Can use proof complexity to analyze potential and limitations of SAT solvers

And to get inspirations for algorithms based on stronger methods of reasoning

Lots of challenging work for PhD students and postdocs
(we’re hiring!)

Thanks for listening!
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