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Pseudo-Boolean?

Pseudo-Boolean (PB) function: f : {0, 1}n → R

Studied since 1960s in operations research and 0–1 integer linear programming [BH02]

Such function f can always be represented as multivariate polynomial of total degree ≤ n

Restriction for these lectures: f represented as linear form

Many problems expressible as optimizing value of linear pseudo-Boolean function under
linear pseudo-Boolean constraints
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Pseudo-Boolean vs. SAT
PB format richer than conjunctive normal form (CNF)

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧ (x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧ (x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)
∧ (x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧ (x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially stronger than conflict-driven clause
learning (CDCL)
Yet close enough to SAT to benefit from SAT solving advances
Also possible synergies with 0–1 integer linear programming (ILP)
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Outline of Tutorial on Pseudo-Boolean Solving

1 Preliminaries
Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

2 Conflict-Driven Pseudo-Boolean Solving
The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

3 More About Pseudo-Boolean Reasoning
Other Pseudo-Boolean Reasoning Rules
Challenges for Efficient PB Solving
Some Further References
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Linear Pseudo-Boolean Constraints and Normalized Form
For us, pseudo-Boolean constraints are always 0–1 integer linear constraints∑

i

aiℓi ▷◁ A

▷◁ ∈ {≥,≤, =, >, <}
ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Convenient to use normalized form [Bar95] (without loss of generality)∑
i

aiℓi ≥ A

constraint always greater-than-or-equal
ai, A ∈ N non-negative
A = deg(

∑
i aiℓi ≥ A) referred to as degree (of falsity)
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Solving SLOPPY ’24 6/46



Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Solving SLOPPY ’24 6/46



Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Solving SLOPPY ’24 6/46



Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Conversion to Normalized Form: Example
Normalized form used for convenience and without loss of generality

−x1 + 2x2 − 3x3 + 4x4 − 5x5 < 0

1 Make inequality non-strict

−x1 + 2x2 − 3x3 + 4x4 − 5x5 ≤ −1
2 Multiply by −1 to get greater-than-or-equal

x1 − 2x2 + 3x3 − 4x4 + 5x5 ≥ 1
3 Replace −ℓ by −(1− ℓ) [where we define x

.= x]

x1 − 2(1− x2) + 3x3 − 4(1− x4) + 5x5 ≥ 1
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

4 Replace “=” by two inequalities “≥” and “≤”
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Conversion to Normalized Form: Formal Details
Given linear form

∑
i aiℓi with

∑
i ai = W

Syntactic sugar Meaning∑
i aiℓi > A

∑
i aiℓi ≥ A + 1∑

i aiℓi ≤ A
∑

i aiℓi ≥W −A∑
i aiℓi < A

∑
i aiℓi ≥W −A + 1∑

i aiℓi = A
∑

i aiℓi ≥ A and∑
i aiℓi ≥W −A

In what follows:
Use syntactic sugar when convenient
Assume (implicit) normalization whenever it matters
Write .= for syntactic equality
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Notation for Operations on Constraints (1/2)

Given
constraints C1

.=
∑

i aiℓi ≥ A and C2
.=

∑
i biℓi ≥ B

linear form L
.=

∑
i cℓi

positive integer k ∈ N+

we will use notation:

C1 + C2
.=

∑
i(ai + bi) · ℓi ≥ A + B

C1 + L
.=

∑
i(ai + ci) · ℓi ≥ A

k · C1
.=

∑
i kai · ℓi ≥ kA

(assuming appropriate normalization whenever needed)
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Notation for Operations on Constraints (2/2)
Given constraint C

.=
∑

i aiℓi ≥ A with
∑

i ai = W

Negation
¬C

.=
∑

i aiℓi ≥W −A + 1
Reification

z ⇒ C
.= A · z +

∑
i aiℓi ≥ A

z ⇐ C
.= (W −A + 1) · z +

∑
i aiℓi ≥W −A + 1

z ⇔ C
.= z ⇒ C and z ⇐ C

Some calculations
C + ¬C

.= 0 ≥ 1
z ⇐ C

.= z ⇒ ¬C

deg(C) · (z ≥ 1) + (z ⇒ C) .= C

C + (z ⇐ C) .= deg(¬C) · z ≥ 1
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Linearization
Possible to linearize nonlinear pseudo-Boolean constraints∑k

i=1 aimi ≥ A

with
mi

.=
∏di

j=1 ℓi,j

For instance, using fresh variables yi we can write:∑k
i=1 aiyi ≥ A

di · yi +
∑di

j=1 ℓi,j ≥ di i ∈ [k]

yi +
∑di

j=1 ℓi,j ≥ 1 i ∈ [k]

We won’t go further into this in this presentation, though. . .
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Formulas, Decision Problems, and Optimization Problems
Pseudo-Boolean (PB) formula
Conjunction of pseudo-Boolean constraints
F

.= C1 ∧ C2 ∧ · · · ∧ Cm

Pseudo-Boolean Solving (PBS)
Decide whether F is satisfiable/feasible

Pseudo-Boolean Optimization (PBO)
Find satisfying assignment to F minimizing objective function

∑
i wiℓi

(Maximization: minimize −
∑

i wiℓi)

This lecture:
Focus on pseudo-Boolean solving
But not hard to extend to (simple) optimization algorithm
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Problems Expressed as PBO (1/2)
Input:

undirected graph G = (V, E)
weight function w : V → N+

Weighted maximum clique
min −

∑
v∈V w(v) · xv

xu + xv ≥ 1 (u, v) /∈ E

Weighted minimum vertex cover
min

∑
v∈V w(v) · xv

xu + xv ≥ 1 (u, v) ∈ E
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Some Problems Expressed as PBO (2/2)
Input:

sets S1, . . . , Sm ⊆ U
weight function w : U → N+

Weighted minimum hitting set
Find H ⊆ U such that

H ∩ Si ̸= ∅ for all i ∈ [m] (H is a hitting set)∑
h∈H w(h) is minimal

min
∑

e∈U w(e) · xe∑
e∈Si

xe ≥ 1 i ∈ [m]

Note: In all of these examples, the problem is to
optimize a linear function
subject to a CNF formula (all constraints are clausal)

Already expressive framework!
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More About Pseudo-Boolean Reasoning

Pseudo-Boolean Constraints
Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Problems

What we will discuss in the coming lectures:
1 Pseudo-Boolean (PB) solving and optimization
2 MaxSAT solving
3 Integer linear programming (ILP) — or, more generally,

mixed integer linear programming (MIP)

Rough conceptual difference:
PB/SAT: Focus on integral solutions, try to find optimal one
ILP/MIP: Find optimal non-integer solution; search for integral solutions nearby

Basic trade-off: Inference power vs. inference speed
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]
Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS99, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics
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Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

CDCL Main Loop Pseudocode
CDCL(F )

1 D ← F ; // initialize clause database to contain formula
2 ρ← ∅ ; // initialize assignment trail to empty
3 forever do
4 if ρ falsifies some clause C ∈ D then
5 A← analyzeConflict(D, ρ, C) ;
6 if A = ⊥ then output UNSATISFIABLE and exit ;
7 else add learned clause A to D and backjump by shrinking ρ ;
8 else if exists clause C ∈ D unit propagating x to b ∈ {0, 1} under ρ then
9 add propagated assignment x

C= b to ρ ;
10 else if time to restart then ρ← ∅ ;
11 else if time for clause database reduction then
12 erase (roughly) half of learned clauses in D \ F from D
13 else if all variables assigned then output SATISFIABLE and exit ;
14 else
15 use decision scheme to choose x and b and add assignment x

d= b to ρ ;
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The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

Conflict Analysis Pseudocode

analyzeConflict(D, ρ, Cconfl)

1 Clearn ← Cconfl ;
2 while Clearn not UIP clause and Clearn ̸= ⊥ do
3 ℓ← literal assigned last on trail ρ ;
4 if ℓ propagated and ℓ occurs in Clearn then
5 Creason ← reason(ℓ, ρ,D) ;
6 Clearn ← resolve(Clearn, Creason) ;
7 ρ← ρ \ {ℓ} ;
8 return Clearn ;
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Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

SAT-Based Approaches to Pseudo-Boolean Solving
Conversion to disjunctive clauses

Lazy approach: learn clauses from PB constraints
Sat4j [LP10] (one of versions in library)

Eager approach: re-encode to clauses and run CDCL
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

“Native” Pseudo-Boolean Conflict-Driven Search

Want to do “same thing” as in conflict-driven clause learning (CDCL) SAT solving but
with pseudo-Boolean constraints without re-encoding

Variable assignments
1 Always propagate forced assignment if possible
2 Otherwise make assignment using decision heuristic

At conflict
1 Do conflict analysis to derive new constraint
2 Add new constraint to constraint database
3 Backjump by rolling back decisions so that learned constraint propagates asserting

literal (flipping it to opposite value)
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Preliminaries
Conflict-Driven Pseudo-Boolean Solving
More About Pseudo-Boolean Reasoning

The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑

i aiℓi ≥ A

slack
(∑

i aiℓi ≥ A; ρ
)

=
∑

ℓi not falsified by ρ

ai −A

Consider C
.= x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned!
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Conflict-Driven Pseudo-Boolean Solving
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The Conflict-Driven Paradigm
Pseudo-Boolean Conflict Analysis Using Saturation
Pseudo-Boolean Conflict Analysis Using Division

Conflict Analysis Invariant
Consider example CDCL conflict analysis from SAT solving lecture
(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥
y ∨ z
trail ρ = {p, u, q, r, w, x, y, z}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate analysis when
explanation looks “nice”

“Nice” means asserting:
after backjump, some
variable guaranteed to flip
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Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x + y + z ≥ 1 y + z ≥ 1

x + 2y ≥ 1
(Recall z + z = 1)

Generalized resolution rule (from [Hoo88, Hoo92])
Positive linear combination so that some variable cancels

a1x1 +
∑

i≥2 aiℓi ≥ A b1x1 +
∑

i≥2 biℓi ≥ B∑
i≥2

(
c

a1
ai + c

b1
bi)ℓi ≥ c

a1
A + c

b1
B − c

[c = lcm(a1, b1)]
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Saturation
Actually, not quite the right constraint in mimicking of resolution

x + y + z ≥ 1 y + z ≥ 1
x + 2y ≥ 1

But clearly valid to conclude
x + 2y ≥ 1
x + y ≥ 1

Saturation rule ∑
i aiℓi ≥ A∑

i min{ai, A} · ℓi ≥ A

Sound over integers, not over reals (need such rules for SAT solving)
[Generalized resolution as defined in [Hoo88, Hoo92] includes fix above, but convenient here to make the
two separate steps explicit]
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Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) = C1 with C2 over x3 to get resolve(C1, C2, x3)

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3
x4 ≥ 1

Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
Not conflicting! Does not explain mistake in assignment
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What Went Wrong? And What to Do About It?
Accident report

Generalized resolution sound over the reals
Given ρ′ =

{
x1 = 0, x2 = 1

}
, over the reals have

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4 propagates x3 ≥ 1

2
C2

.= 2x1 + 2x2 + 2x3 ≥ 3 satisfied by x3 ≤ 1
2

So after resolving away x3 no conflict left!
Remedial action

Strengthen propagation to x3 ≥ 1 also over the reals
I.e., want reason C with slack(C; ρ′) = 0
Fix (non-obvious): Apply weakening

weaken(
∑

i aiℓi ≥ A, ℓj) .=
∑

i ̸=j aiℓi ≥ A− aj

to reason constraint and then saturate
Approach in [CK05] (goes back to observations in [Wil76])
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Try to Reduce the Reason Constraint
C1

.= 2x1 + 2x2 + 2x3 + x4 ≥ 4
C2

.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
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Try Again to Reduce the Reason Constraint. . .
C1

.= 2x1 + 2x2 + 2x3 + x4 ≥ 4
C2

.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Derived constraint shows setting x2 true was a mistake

Backjump propagates to conflict without solver making any decisions
Done! Next conflict analysis will derive contradiction
(Or, in practice, solver terminates immediately at conflict without decisions)
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Reason Reduction Using Saturation [CK05]
reduceSat(Creason, Clearn, ℓ, ρ)

1 while slack(resolve(Clearn, Creason, ℓ); ρ) ≥ 0 do
2 ℓ′ ← literal in Creason \ {ℓ} not falsified by ρ ;
3 Creason ← saturate(weaken(Creason, ℓ′)) ;
4 return Creason ;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Clearn; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — hit 0 when max #literals weakened
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Pseudo-Boolean Conflict Analysis Pseudocode
analyzePBconflict(D, ρ, Cconfl)

1 Clearn ← Cconfl ;
2 while Clearn not asserting and Clearn ̸= ⊥ do
3 ℓ← literal assigned last on trail ρ ;
4 if ℓ propagated and ℓ occurs in Clearn then
5 Creason ← reason(ℓ, ρ,D) ;
6 Creduced ← reduceSat(Creason, Clearn, ℓ, ρ) ;
7 Clearn ← resolve(Clearn, Creduced, ℓ) ;
8 Clearn ← saturate(Clearn) ;
9 ρ← ρ \ {ℓ} ;

10 return Clearn ;

Reduction of reason new compared to CDCL — otherwise same conflict analysis algorithm
Essentially conflict analysis used in Sat4j [LP10]
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Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑

i=1
xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures
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The Cutting Planes Proof System
Cutting planes from the theory literature [CCT87] doesn’t use saturation but instead
division (a.k.a. Chvátal-Gomory cut) and can be defined as having rules

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

Division
∑

i aiℓi ≥ A∑
i⌈ai/c⌉ℓi ≥ ⌈A/c⌉

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Explored for integer linear programming in CutSat [JdM13])
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Using Division to Reduce the Reason
C1

.= 2x1 + 2x2 + 2x3 + x4 ≥ 4
C2

.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible by propagating
literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
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Reason Reduction Using Division [EN18]
reduceDiv(Creason, Clearn, ℓ, ρ)

1 c← coeff (Creason, ℓ) ;
2 while slack(resolve(Clearn, divide(Creason, c), ℓ); ρ) ≥ 0 do
3 ℓj ← literal in Creason \ {ℓ} such that ℓj /∈ ρ and c ∤ coeff (C, ℓj) ;
4 Creason ← weaken(Creason, ℓj) ;
5 return divide(Creason, c) ;

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Clearn; ρ) < 0
2 slack is subadditive

Slack same after weakening ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
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Round-to-1 Reduction used in RoundingSat
Reduction method in RoundingSat [EN18] does maximal weakening right away

roundToOne(C, ℓ, ρ)

1 c← coeff (C, ℓ) ;
2 foreach literal ℓj in C do
3 if ℓj /∈ ρ and c ∤ coeff (C, ℓj) then
4 C ← weaken(C, ℓj) ;

5 return divide(C, c) ;

Guaranteed to work by same proof as before

And roundToOne also used more aggressively in conflict analysis
(though modifications of this explored in more recent versions of RoundingSat. . . )
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RoundingSat Conflict Analysis [EN18]

analyzePBconflictRS(D, ρ, Cconfl)

1 Clearn ← Cconfl ;
2 while Clearn contains no or multiple falsified literals on last level do
3 if no decisions in ρ then output UNSATISFIABLE and terminate ;
4 ℓ← literal assigned last on trail ρ ;
5 if ℓ propagated and ℓ occurs in Clearn then
6 Clearn ← roundToOne(Clearn, ℓ, ρ) ;
7 Creduced ← roundToOne(reason(ℓ, ρ,D), ℓ, ρ);
8 Clearn ← resolve(Clearn, Creduced, ℓ);
9 ρ← ρ \ {ℓ};

10 ℓ← literal in Clearn last falsified by ρ ;
11 return roundToOne(Clearn, ℓ, ρ) ;
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Division vs. Saturation

Higher conflict speed when PB reasoning doesn’t help [EN18]

Seems to perform better when PB reasoning crucial [EGNV18]

Keeps coefficients small — can (often) do fixed-precision arithmetic

But Sat4j still better for some circuit verification problems [LBD+20]

And it is still equally hard to detect propagation

Also, conflict analysis still degenerates to resolution for CNF inputs

Sometimes very poor performance even on infeasible 0–1 LPs!
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Challenges for Efficient PB Solving
Some Further References

Other PB Rules I: Cardinality Constraint Reduction
Given PB constraint

3x1 + 2x2 + x3 + x4 ≥ 4

can compute least #literals that have to be true

x1 + x2 + x3 + x4 ≥ 2

Galena [CK05] learns only cardinality constraints — easier to deal with

Cardinality constraint reduction rule∑
i aiℓi ≥ A∑

i : ai>0 ℓi ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Can be simulated with weakening + division
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Cardinality constraint reduction rule∑
i aiℓi ≥ A∑

i : ai>0 ℓi ≥ T
T = min

{
|I| : I ⊆ [n],

∑
i∈I ai ≥ A

}
Can be simulated with weakening + division
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Other PB Rules II: Strengthening
Strengthening by example:

Set x = 0 and propagate on constraints

x + y ≥ 1 x + z ≥ 1 y + z ≥ 1

y
x+y≥1= 1 and z

x+z≥1= 1 ⇒ y + z ≥ 1 oversatisfied by margin 1
Hence, can deduce constraint x + y + z ≥ 2

Strengthening rule (imported by [DG02] from operations research)
Suppose ℓ = 0 ⇒

∑
i aiℓi ≥ A oversatisfied by amount K

Then can deduce Kℓ +
∑

i aiℓi ≥ A + K

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work. . .
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Other PB Rules III: “Fusion Resolution”
Suppose have constraints

2x + 3y + 2z + w ≥ 3 2x + 3y + 2z + w ≥ 3
Then by eyeballing can conclude

3y + 2z + w ≥ 3

But only get from

“Fusion resolution” [Goc17]
aℓ +

∑
i biℓi ≥ B aℓ +

∑
i biℓi ≥ B′∑

i biℓi ≥ min{B, B′}

No obvious way for cutting planes to immediately derive this
Shows up in some tricky benchmarks in [EGNV18]Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Solving SLOPPY ’24 40/46
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Some PB Solving Challenges I: Input Format
1 CNF: PB solvers degenerate to CDCL for CNF inputs — how to harness power of

cutting planes in this setting?
Cardinality constraint detection proposed as preprocessing [BLLM14] or
inprocessing [EN20]
Has not (yet) been made competitive in practice

2 Linear programming: Sometimes very poor performance even on infeasible 0–1 LPs!
Unclear why — very easy for cutting planes in theory
Work on addressing this in [DGN21] by integrating LP solver

3 Preprocessing/presolving: Important in SAT solving and mixed integer
programming (MIP), but not done in PB solvers — why?

Follow up on preliminary work on PB preprocessing in [MLM09]?
Use presolver PaPILO [PaP] from MIP solver SCIP [SCI]?

4 Robustness: Make PB solvers less sensitive to presence of extra constraints
(anecdotally, CDCL solvers seem more stable)
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Some PB Solving Challenges II: Conflict Analysis
1 Choice of Boolean rule:

Division, saturation, other ILP cut rule, or select adaptively?
Try to avoid irrelevant literals? [LMMW20]

2 Many more degrees of freedom than in CDCL:
Skip resolution steps when slack very negative?
How aggressively to weaken reason in reduction step? [LMW20]
Learn general PB constraints or more limited form such as cardinality constraints?
How far to backjump when choice of several levels?
How large precision to use in integer arithmetic?

3 Do constraint minimization à la [SB09, HS09]?
4 How to assess quality of learned constraints?
5 Theoretical potential & limitations poorly understood [VEG+18]

Separations in power between different methods of PB reasoning?
In particular, is reasoning with division stronger than with saturation [GNY19]?
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Some PB Solving Challenges III: Solver Heuristics

Many heuristics copied from CDCL — maybe tailor more carefully to PB setting?
1 Variable selection: VSIDS [MMZ+01] or VMTF [Rya04] or something else?
2 Variable bumping: Consider different bumping score depending on

whether literal falsified,
whether literal cancels,
coefficient of literal and/or degree of constraint?

3 Phase saving: Standard as in [PD07], multiple phases [BF20], or something else?
4 Different “modes” for SAT-focused and UNSAT-focused search?
5 Local search for more efficient finding of solutions?

See [Wal20] for a first in-depth investigation of some of these questions
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Some PB Solving Challenges IV: Efficiency and Correctness

1 Efficient unit propagation for PB constraints is a major challenge — latest news in
[Dev20, NORZ24], but still much left to do

2 Efficient detection of assertiveness during conflict analysis

3 Efficient and concise proof logging for pseudo-Boolean solving (shameless self-plug:
ongoing work on pseudo-Boolean proof checker VeriPB [Ver, BMN22] in
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, BBN+23, BGMN23,
BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24])
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Some References for Further Reading (and Watching)

Handbook of Satisfiability [BHvMW21]
Chapter 7: Proof Complexity and

SAT Solving
Chapter 23: MaxSAT, Hard and

Soft Constraints
Chapter 24: Maximum Satisfiability
Chapter 28: Pseudo-Boolean and

Cardinality Constraints

Video tutorials on pseudo-Boolean solving
Presentations from today will be available at the
MIAO YouTube channel youtube.com/@MIAOresearch
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Summing up
Pseudo-Boolean framework expressive and powerful

Can be approached using successful conflict-driven paradigm from SAT solving

In theory, potential for exponential increase in performance
In practice, some highly nontrivial challenges regarding

Algorithm design
Efficient implementation
Theoretical understanding

But maybe also quite a bit of low-hanging fruit?
(And clause-based SAT solving took 50+ years to get right)

In any case, lots of fun questions to work on! ,

Thank you for your attention!
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[VEG+18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström. In between
resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT solving. In
Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing
(SAT ’18), volume 10929 of Lecture Notes in Computer Science, pages 292–310. Springer, July 2018.

[Ver] VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/software/VeriPB.

[Wal20] Romain Wallon. Pseudo-Boolean Reasoning and Compilation. PhD thesis, Université d’Artois, 2020.
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