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From Decision to Optimization Problems
So far in this series of tutorials we have talked about:

deciding satisfiability of formulas in conjunctive normal form (CNF)
generalizing this problem, and algorithms for it, to 0–1 integer linear programs (ILP)

Many ways of extending this to (linear) optimization problems:
Hard and soft constraints
Maximum satisfiability (MaxSAT) and Weighted Boolean optimization (WBO)
Constraints with preferences among solutions
Weighted constraint satisfaction problems (WSCP)
Optimization of linear objective function subject to CNF/pseudo-Boolean formula
Pseudo-Boolean optimization (PBO) or 0–1 integer linear programming (0–1 ILP)

We will focus on MaxSAT and PBO viewed as 0–1 ILP minimization problems
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Recap: Some Problems Expressed as PBO (1/2)
Input:

undirected graph G = (V, E)
weight function w : V → N+

Weighted maximum clique
min −

∑
v∈V w(v) · xv

xu + xv ≥ 1 (u, v) /∈ E

Weighted minimum vertex cover
min

∑
v∈V w(v) · xv

xu + xv ≥ 1 (u, v) ∈ E
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Recap: Some Problems Expressed as PBO (2/2)
Input:

sets S1, . . . , Sm ⊆ U
weight function w : U → N+

Weighted minimum hitting set
Find H ⊆ U such that

H ∩ Si ̸= ∅ for all i ∈ [m] (H is a hitting set)∑
h∈H w(h) is minimal

min
∑

e∈U w(e) · xe∑
e∈Si

xe ≥ 1 i ∈ [m]

Note: In all of these examples, the problem is to
optimize a linear function
subject to a CNF formula (all constraints are clausal)

Without loss of generality, this is what a MaxSAT problem is (as we will soon see)
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Outline of Tutorial on Pseudo-Boolean Optimization

1 Basics of MaxSAT and Pseudo-Boolean Optimization
Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

2 Core-Directed UNSAT-SAT Search
Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

3 Some Open Problems
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

Classic Definition of MaxSAT Problem
Pseudo-Boolean optimization and MaxSAT solving intimately connected, so let’s start
with traditional description of MaxSAT problem

Weighted partial MaxSAT problem
Input: Soft clauses C1, . . . , Cm with weights wi ∈ N+, i ∈ [m]

Hard clauses Cm+1, . . . , CM

Goal: Find assignment ρ such that
• for all hard clauses Cm+1, . . . , CM it holds that ρ(Cj) = 1
• ρ maximizes

∑
ρ(Ci)=1,i∈[m] wi

All hard clauses must be satisfied
Maximize weight of satisfied soft clauses = minimize penalty of falsified soft clauses
From now on, MaxSAT is a minimization problem
Write (C)w for clause C with weight w (w =∞ for hard clause)
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

From MaxSAT to Pseudo-Boolean Optimization
MaxSAT instance

(x)5

(y ∨ z)4

(y ∨ z)3

(x∨ y ∨ z)∞

(x∨ y ∨ z)∞

PBO instance
min 5b1 + 4b2 + 3b3

b1 + x ≥ 1
b2 + y + z ≥ 1
b3 + y + z≥ 1
x + y + z ≥ 1
x + y + z ≥ 1

Add fresh variable bi to each soft clause Ci and minimize
∑

i wibi

So-called blocking variable transformation
Variables bi are blocking or relaxation variables

Optimal solution ρ = {x = 0, y = 1, z = 0} with penalty 3
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

From Pseudo-Boolean Optimization to MaxSAT/WBO
“MaxSAT instance” but with PB constraints:
Weighted Boolean Optimization [MMP09]

PBO instance
min

∑n
i=1 wiℓi

C1

C2
...

CM

MaxSAT/WBO instance

(ℓ1)w1

...
(ℓn)wn

(C1)∞
...

(CM )∞
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

Flavours of MaxSAT

Partial MaxSAT: Hard and soft clauses

MaxSAT: Only soft clauses

Unweighted MaxSAT: Same weight for soft clauses (w.l.o.g. 1)

Weighted MaxSAT: Different weights for soft clauses

4 different subproblems
But most current solvers deal with the most general problem
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

Main Approaches for MaxSAT (and Pseudo-Boolean Optimization)

1 Linear search SAT-UNSAT (LSU) (or solution-improving search)
2 Core-guided search
3 Implicit hitting set (IHS) algorithm

Will describe all of these algorithms as trying to
minimize

∑n
i=1 wiℓi

subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

(possibly clausal)

List above not exhaustive — omits, e.g., branch-and-bound MaxSAT [LXC+21]
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

Linear Search SAT-UNSAT (LSU) Algorithm

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Set ρbest = ∅ and repeat the following:
1 Run SAT/PB solver
2 If solver returns UNSATISFIABLE, output ρbest and terminate
3 Otherwise, let ρbest := returned solution ρ

4 Add solution-improving constraint
∑n

i=1 wiℓi ≤ −1 +
∑n

i=1 wi · ρ(ℓi)
5 Start over from the top
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

Linear Search Toy Example
1 Given PB formula F and objective function min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6
2 Solver run on F returns ρ1 = {x1 =x2 =x3 =x6 =0; x4 =x5 =1}
3 Yields objective value 0 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 1 + 6 · 0 = 9, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 8

4 Solver run on F plus this new constraint returns
ρ2 = {x1 =x3 =x5 =x6 =0; x2 =x4 =1}

5 Yields objective value 6, so add

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≤ 5

6 Now solver returns UNSATISFIABLE
7 Hence, minimum value of objective function subject to F is 6
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7 Hence, minimum value of objective function subject to F is 6
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

CNF Encoding of Solution-Improving Constraint

For SAT solver, need CNF encoding of solution-improving constraint∑n
i=1 wiℓi ≤ −1 +

∑n
i=1 wi · ρ(ℓi)

Lots of work on how to do this in smart ways
Encodings like dynamic polynomial watchdog [PRB18] state of the art
More sophisticated than purely linear search

For pseudo-Boolean solver, no re-encoding needed — solution-improving constraint can
be added as-is

But also no access to auxiliary variables from CNF encodings
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Problem Definition
Maximum Satisfiability (MaxSAT) Solving
Solution-Improving SAT-UNSAT Search

Linear vs. Binary Search?
What if we run binary search instead of linear search?
Conventional wisdom appears to be that linear search is better

Two possible explanations:
1 In theory, objective value could decrease by just 1 every time — in practice, tend to

get much larger jumps
2 Potentially very different cost for

SAT calls (feasible instances where solver will find solution)
UNSAT calls (where solver determines no solution exists)

Properties of linear search SAT-UNSAT:
Can get some decent solution quickly, even if not optimal one
Important for anytime solving (when time is limited and something is better than
nothing)
But get no estimate of how good the solution is
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Quick Detour: Running Solvers with Assumptions
Given

CNF or pseudo-Boolean formula F

partial assignment σ

can run SAT or pseudo-Boolean solver on F with assumptions σ

Solver works exactly as before, except when making decisions
Start by assigning variables in σ

When all of σ taken care of, switch to standard decision heuristic

Solver outputs
either solution extending σ

or explanation (clause/pseudo-Boolean inequality referred to as core constraint) why
assumptions σ inconsistent with F

Explanation obtained by simple modification of conflict analysis (decision learning scheme)
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Pseudo-Boolean Conflict Analysis Using Decision Learning Scheme
Precondition: Trail ρ has led to conflict Cconfl ∈ D

decisionLearningPB(D, ρ, Cconfl)

1 Clearn ← Cconfl ;
2 ρdec← all decisions in ρ ;
3 while ρ ̸= ∅ and Clearn ̸= ⊥ do
4 ℓ← literal assigned last on trail ρ ;
5 if ℓ propagated and ℓ occurs in Clearn then
6 Creason ← reason(ℓ, ρ,D) ;
7 Creduced ← reduce(Creason, Clearn, ℓ,ρ∪ ρdec) ;
8 Clearn ← resolve(Clearn, Creduced, ℓ) ;
9 ρ← ρ \ {ℓ} ;

10 return Clearn ;

Postcondition: Learned constraint Clearn is violated by decisions ρdec
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Solving with Assumptions and Decision Learning Scheme

Given assumptions σ with S = |ρ|

Assumptions and decision learning scheme for CDCL
Run standard CDCL but with first S decisions coming from σ

When conflict reached at level ≤ S, switch to decision learning scheme and
return learned constraint

Assumptions and decision learning scheme for pseudo-Boolean solving
Can reach level ≤ S during conflict analysis even for conflict at level S′ > S

If this happens, switch to decision learning scheme on-the-fly?
Or only when conflict reached at level ≤ S? (Will happen next conflict)
Or keep going as long as conflict level decreases?
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

To see where name comes from, consider MaxSAT instance with ℓi as blocking variables
Core-guided search sets valbest = 0 and repeats the following:

1 Run SAT solver with assumptions ℓi = 0 for all ℓi in objective function
2 If solver returns SATISFIABLE, output valbest and terminate
3 Otherwise learn clause over assumption variables, say ℓ1 ∨ · · · ∨ ℓk

4 Means that soft clauses K = {C1, . . . , Ck} form a core — can’t satisfy K and all
hard constraints

5 Introduce new counter variables zj ⇔
∑k

i=1 ℓi ≥ j
6 Update objective function and valbest using

∑k
i=1 ℓi = 1 +

∑k
j=2 zj to cancel at least

one literal ℓi

7 Start over from top with updated objective function
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 18/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search for Pseudo-Boolean Optimization
Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of ℓi as markers for soft clauses
— they are just literals in objective function

And rewriting very convenient — just use PB constraints without re-encoding

Core-guided pseudo-Boolean search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 19/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search for Pseudo-Boolean Optimization
Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of ℓi as markers for soft clauses
— they are just literals in objective function

And rewriting very convenient — just use PB constraints without re-encoding

Core-guided pseudo-Boolean search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 19/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search for Pseudo-Boolean Optimization
Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of ℓi as markers for soft clauses
— they are just literals in objective function

And rewriting very convenient — just use PB constraints without re-encoding

Core-guided pseudo-Boolean search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 19/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search for Pseudo-Boolean Optimization
Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of ℓi as markers for soft clauses
— they are just literals in objective function

And rewriting very convenient — just use PB constraints without re-encoding

Core-guided pseudo-Boolean search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 19/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search for Pseudo-Boolean Optimization
Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of ℓi as markers for soft clauses
— they are just literals in objective function

And rewriting very convenient — just use PB constraints without re-encoding

Core-guided pseudo-Boolean search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example
Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 19/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search for Pseudo-Boolean Optimization
Original core-guided idea from [FM06]; see [MHL+13] for survey

Core-guided search is kind of UNSAT-SAT linear search
Updating objective with new variables: OLL algorithm — used in

answer set programming [AKMS12]
MaxSAT solving [MDM14]

In general pseudo-Boolean setting, no need to think of ℓi as markers for soft clauses
— they are just literals in objective function

And rewriting very convenient — just use PB constraints without re-encoding

Core-guided pseudo-Boolean search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Let us try to explain by concrete example
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search Toy Example (1/5)
1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 (1)
2 Set valbest = 0 and run solver on F with assumptions x1 = x2 = . . . = x6 = 0
3 Suppose solver returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4 (2)
4 Round to nicer-to-work-with cardinality core constraint

x2 + x3 + x4 + x5 ≥ 2 (3)
5 Introduce new, fresh counter variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4 (4a)
y3 ≥ y4 (4b)

to enforce that yj means “x2 + x3 + x4 + x5 ≥ j”
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Core-Guided Search Toy Example (2/5)

6 Multiply (4a) by 2 to get

4 + 2y3 + 2y4 − 2x2 − 2x3 − 2x4 − 2x5 = 0

and add to objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

in (1) to cancel x2 and get updated, equivalent objective function

min x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 + 4 (5)

7 Update valbest = 4 and run solver on F assuming ℓ = 0 for all literals ℓ in rewritten
objective (5)
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Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search Toy Example (3/5)

9 Suppose solver returns the clausal core constraint

x4 + x5 + x6 + y3 ≥ 1 (6)

10 Introduce new variables z2, z3, z4 and the constraints

x4 + x5 + x6 + y3 = 1 + z2 + z3 + z4 (7a)
z2 ≥ z3 (7b)
z3 ≥ z4 (7c)

to enforce that zj means “x4 + x5 + x6 + y3 ≥ j”
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Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search Toy Example (4/5)

10 Multiply (7a) by 2 to get

2 + 2z2 + 2z3 + 2z4 − 2x4 − 2x5 − 2x6 − 2y3 = 0

and add to rewritten objective

min x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 + 4

in (5) to get 3rd equivalent objective

min x1 + x3 + x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 + 6 (8)

11 Update valbest = 6 and run solver on F assuming ℓ = 0 for all literals ℓ in rewritten
objective (8)
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Core-Guided Search Toy Example (5/5)

15 Suppose solver reports it is possible to achieve

ρ = {x1 =x3 =x5 =x6 =y4 =z2 =z3 =z4 =0} (9)

16 Under assignment (9) the equality (4a) simplifies to

x2 + x4 = 2 + y3 (10)

which can hold only if y3 =0 and x2 =x4 =1, and this also satisfies (7a).
17 Hence, have recovered optimal solution yielding objective value 6

(as in solution-improving search example before)
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Properties of (Pure) Core-Guided Search

Can get decent lower bounds on solution quickly

Helps to cut off parts of search space “too good to be true”

But find no actual solution until the final, optimal one

Also, no estimate of how good the lower bound is

Linear search much better at finding solutions — how to get the best of both worlds?

Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 25/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
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Weight Stratification [ABGL12]

Suppose objective function is

x1 + 2x2 + 3x3 + 11x4 + 12x5 + 13x6 + 101x7 + 102x8 + 103x9

Focus on variables with largest weight in objective:
1 First assume x7 = x8 = x9 = 0 and try to get core
2 If this fails, assume x4 = x5 = x6 = x7 = x8 = x9 = 0 and try to get core
3 Only then assume all of objective function is 0

What do we gain from this?
More compact core yielding larger increase of lower bound, or
Decent solution found early on
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Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Disjoint Cores and Weight-Aware Core Extraction
Consider our core-guided toy example with objective function

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

and assumptions x1 = x2 = x3 = . . . = x6 = 0 yielding core 3x2 + 2x3 + x4 + x5 ≥ 4
rounded to cardinality constraint x2 + x3 + x4 + x5 ≥ 2

Disjoint cores [DB11, DB13, Sai15]
Remove variables in core found
Call solver with remaining assumptions x1 = x6 = 0

Weight-aware core extraction [BJ17]
Remove only variables that cancel in objective rewriting, in our case x2

Call solver with assumptions x1 = x3 = x4 = x5 = x6 = 0

Find more independent cores that contribute to larger increase of lower bound
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Improving the Core Constraints
Suppose solver returns a core

∑
i aiℓi ≥ A (where in MaxSAT ai = A = 1)

Core exhaustion [IMM19]
Define counter variable

yA+1 ⇔
∑

i

aiℓi ≥ A + 1

Run solver with assumption yA+1 = 0
If solver returns UNSATISFIABLE, can strengthen core

Core trimming/minimization [Mar10, MIM15]
Choose different literals ℓj∗

Check if
∑

i ̸=j∗ aiℓi ≥ A still core
Straightforward for clauses — less obvious how this would work for PB constraints
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Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Lazy Counter Variables for Cores [MJML14, DGD+21]
Consider again core-guided toy example with first core 3x2 + 2x3 + x4 + x5 ≥ 4 rounded
to cardinality constraint x2 + x3 + x4 + x5 ≥ 2
Eager counter variables

Add all counter variables y3 and y4 and constraints

x2 + x3 + x4 + x5 = 2 + y3 + y4

y3 ≥ y4

Lazy counter variables
Add y3 defined by

y3 ⇔ x2 + x3 + x4 + x5 ≥ 3
Only introduce y4 ⇔ x2 + x3 + x4 + x5 ≥ 4 when y3 cancels in rewritten objective
Rewriting of objective can introduce huge numbers of variables, slowing down solver
Adding variables lazily only when needed speeds things up
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Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Combining Core-Guided and Solution-Improving Search

Core boosting [BDS19]
Start with core-guided search to get good lower bound estimate
Then switch to solution-improving search to find optimal solution

Hybrid/interleaving search [ADMR15]
Switch back and forth repeatedly between core-guided and solution-improving search
Cumbersome in CNF-based solver
But fairly cheap (and efficient) in native pseudo-Boolean solver [DGD+21]
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Some More Parameters to Play with (Not Exhaustive List)

1 Adjust phase saving

2 Detect intrinsic at-most-1 constraints [IMM19]

3 Rewrite the objective with non-cardinality core constraints [JBJ24]

4 Avoid storing solution-improving constraint in solver database [SBJ21, SBJ22]
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Theoretical Analysis of Core-Guided Search?

Lower bound computed by core-guided search
Core-guided search provides lower bound estimate based on cores found
Can be viewed as optimum of LP relaxation of problem to minimize objective given
cores and counter variable definitions [Kat23]

Inference strength of core-guided search?
Extension variables very strong in theory — no proof complexity lower bounds
So far hard to leverage this power in practice
But core-guided search provides principled way of introducing extension variables
And is very structured — possible to analyze power of this method with proof
complexity?
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Evaluation of Core-Guided Pseudo-Boolean Solver in [DGD+21]
RoundingSat with core-guided (CG) and linear SAT-UNSAT search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best

PB16opt MIPopt KNAP CRAFT
(1600) (291) (783) (985)

Hybrid (interleave CG & LSU) 968 78 306 639
HybridCl (w/ clausal cores) 937 75 298 618
HybridNL (w/ non-lazy variables) 936 70 186 607
HybridClNL (w/ both) 917 67 203 612
RoundingSat (only LSU) 853 75 341 309
Coreguided (only CG) 911 61 43 595
Coreboosted (10% CG, then LSU) 959 80 344 580
Sat4j 773 61 373 105
NaPS 896 65 111 345
SCIP 1057 125 765 642

Significant improvement over PB state of the art, but MIP solver SCIP still better
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Core-Guided Pseudo-Boolean Solving for PB16 benchmarks [DGD+21]

Cumulative plot for solver performance
on PB16 optimization benchmarks

Also including
stratfication (strat)
disjoint/independent cores (ind)
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PB16 (higher is better, 1600 instances)
SCIP (1057 solved)
hybrid (968)
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NaPS (896)
RoundingSat (853)
Sat4J (773)

Jakob Nordström (UCPH & LU) Tutorial on Conflict-Driven Pseudo-Boolean Optimization SLOPPY ’24 34/46



Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Basic Core-Guided Search
Advanced Core-Guided Search Techniques
Implicit Hitting Set (IHS) and Abstract Cores

Implicit Hitting Set (IHS) Algorithm (1/2)

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

(suppose for now clausal constraints)

As in core-guided search, use solving with assumptions, but maintain collection K of
learned core clauses

C1
.= ℓ1,1 ∨ ℓ1,2 ∨ · · · ∨ ℓ1,k1

C2
.= ℓ2,1 ∨ ℓ2,2 ∨ · · · ∨ ℓ2,k2

...
Cs

.= ℓs,1 ∨ ℓs,2 ∨ · · · ∨ ℓs,ks
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Implicit Hitting Set (IHS) Algorithm (2/2)

Set K = ∅ and repeat the following:
1 Run optimization solver to compute minimum hitting set for K, i.e., H = {ℓi} s.t.

H ∩ C ̸= ∅ for all C ∈ K (H is hitting set)∑
ℓi∈H wi minimal among H with this property.

2 Run decision solver on F with assumptions {ℓj = 0 | ℓj /∈ H}
3 If decision solver found solution, it must be optimal (since hitting set is optimal), so

return solution with value
∑

ℓi∈H wi

4 Otherwise, decision solver returns new core Cs+1 — add it to K and start over
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More About the Hitting Sets

Minimality is actually not needed except in the very final step

Save time by computing “decent” hitting sets earlier on in the search
(good enough to improve currently best solution)

How to find hitting set?
This is itself a pseudo-Boolean optimization problem

Run integer linear programming (ILP) solver [standard approach]
Or pseudo-Boolean solver?
Or local search?!
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Combine IHS with Pseudo-Boolean Optimization?

IHS and PB Optimization
In pseudo-Boolean setting, cores will not be subsets of clauses but PB constraints
C1, . . . , Cs over objective function literals
“Hitting set” H is partial assignment guaranteed to satisfy all constraints C1, . . . , Cs

Want to find minimum-cost set H of literals (w.r.t. objective function) with this
property

Explored by CoReO group in Helsinki in [SBJ21, SBJ22]
Using RoundingSat version in [DGN21] as pseudo-Boolean decision solver
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IHS Algorithm for PB Optimization (Simplified)

Minimize
∑n

i=1 wiℓi

Subject to collection of PB constraints F = C1 ∧ · · · ∧ Cm

Set K = ∅ and repeat the following:
1 Run optimization solver to minimize

∑n
i=1 wiℓi under K, yielding solution ρ to

objective variables
2 Run decision solver with assumptions ρ on decision problem F

3 If decision solver returns SATISFIABLE, we have found optimal solution extending ρ
with value

∑n
i=1 wi · ρ(ℓi)

4 Otherwise, decision solver returns new core C — add it to K and start over from top
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IHS Toy Example (1/2)
1 Given same PB formula F and objective function

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

2 For
K1 = ∅

optimization solver returns minimal solution ρ1 = {x1 = x2 = . . . = x6 = 0}
3 Decision solver run with assumptions ρ1 returns PB core constraint

3x2 + 2x3 + x4 + x5 ≥ 4

4 For
K2 = {3x2 + 2x3 + x4 + x5 ≥ 4}

optimization solver returns minimal solution
ρ2 = {x2 = x3 = 1; x1 = x4 = x5 = x6 = 0}
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IHS Toy Example (2/2)
5 Decision solver run with assumptions ρ′

2 = {x1 = x4 = x5 = x6 = 0}
returns PB core constraint

x2 + x4 + x5 + x6 ≥ 2

6 For
K3 = {3x2 + 2x3 + x4 + x5 ≥ 4, x2 + x4 + x5 + x6 ≥ 2}

optimization solver returns minimal solution
ρ3 = {x2 = x4 = 1; x1 = x3 = x5 = x6 = 0}

7 Decision solver run with assumptions ρ′
3 = {x1 = x3 = x5 = x6 = 0} returns

SATISFIABLE
8 Hence, we have found an optimal solution with objective value 6 (as for

solution-improving search and core-guided search)
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Comparison of Core-Guided Search and Implicit Hitting Set
Suppose solver with assumptions returns core

C
.= x1 + x2 + x3 + x4 ≥ 2

Core-guided search
Introduce new variables by
x1 + x2 + x3 + x4 = 2 + y3 + y4

Ignore all xi with smallest weight in next
call (cancelled when objective rewritten)
Instead assume that “somehow
x1 + x2 + x3 + x4 ≤ 2 holds”
(i.e., assume y3 = 0)
Lower bound estimate in rewritten objective
from LP relaxation of cores [Kat23]

Implicit Hitting Set
Add C to collection of cores K
Find concrete assignment satisfying
all of K as cheaply as possible
Get lower bound estimate from
actual 0–1 solution for cores, not
from LP relaxation
Try that candidate solution as
starting point for next call to
decision solver
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Competitive Advantages of Core-Guided vs. Implicit Hitting Set

IHS and core-guided approaches for MaxSAT seem orthogonal [Bac21]

For MaxSAT problems with many interchangeable soft clauses core-guided often
better (i.e., when it is not important exactly which of these clauses picked up by the
core constraints)

For MaxSAT problems with many distinct weights, IHS appears better

Theoretical relations between IHS and core-guided search?
Provide a more precise theoretical comparison of IHS and core-guided search with
simulations and/or separations

(Some theoretical work on related problems in, e.g., [FMSV20, MIB+19])
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Abstract Cores for MaxSAT [BBP20]
Combination of implicit hitting set and core-guided search:

Run solver with assumption to collect cores C
.= ℓ1 + ℓ2 + · · ·+ ℓk ≥ 1

Identify “interesting literal set” L

maybe literals in C
or literals appearing in many different cores

Introduce same counter variables as for core-guided OLL rewriting

yj ⇔
∑

ℓ∈L ℓ ≥ j

Solve weighted hitting set problem over cores + definitions of counter variables
Assumptions for next round:

use solution to hitting set (as in standard IHS)
plus set non-propagated counter variables to 0

How could/should this be generalized to pseudo-Boolean setting?
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Introduce same counter variables as for core-guided OLL rewriting

yj ⇔
∑

ℓ∈L ℓ ≥ j

Solve weighted hitting set problem over cores + definitions of counter variables
Assumptions for next round:

use solution to hitting set (as in standard IHS)
plus set non-propagated counter variables to 0

How could/should this be generalized to pseudo-Boolean setting?
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Basics of MaxSAT and Pseudo-Boolean Optimization
Core-Directed UNSAT-SAT Search

Some Open Problems

Challenges and Opportunities for Pseudo-Boolean Optimization (PBO)
1 Make pseudo-Boolean optimization better known

Personal observation: Most MaxSAT applications seem to be naturally described as
pseudo-Boolean optimization problem + PB-to-CNF translation
Why not use pseudo-Boolean optimization directly?!

2 Make PBO competitive on CNF formulas
Since many problems already encoded in CNF, improve PB solver performance on CNF
Could on-the-fly cardinality detection [EN20] help?

3 Integrate IHS, core-guided, solution-improving search, . . .
Present algorithms in unified framework
Make it possible to switch dynamically and easily between different approaches
Attempt in [IBJ24], but fixed concrete approach after algorithm instantiation

4 Leverage ideas from mixed integer programming (MIP)
Next and final lecture. . .
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Summing up
MaxSAT problems can be attacked with combination of powerful tools

Core-guided solving
Implicit hitting set (IHS) solving
Integer linear programming

Approaches with complementary strengths — room for exploiting synergies?
Lifting core-guided and IHS algorithms to pseudo-Boolean setting presents
opportunities and challenges

No need for CNF re-encoding
More powerful pseudo-Boolean reasoning
But also slower than clausal reasoning
And more degrees of freedom in algorithm design — more choices needed to get right

Many interesting questions to explore — and rich pickings of low-hanging fruit?

Thank you for your attention!
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