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1 Mixed Integer Linear Programming (MIP)
MIP Preliminaries
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Evaluation and Conclusions
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An Acknowledgement and an Apology

The MIP material relies heavily on the presentation Computational Mixed-Integer
Programming by Ambros Gleixner at the Casa Matemática Oaxaca (CMO) workshop
Theory and Practice of Satisfiability Solving in 2018 (https://tinyurl.com/MIPtutorial)

A bit too many references are still missing — see Gleixner’s slides for full details

Another excellent source of resources are the webpages from the summer school
Computational Optimization at Work in 2024 (https://co-at-work.zib.de)
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Mixed Integer Linear Programming

Mixed integer linear program
Minimize

∑
j ajxj

Subject to
∑

j ai,jxj ≤ Ai, i = 1, . . . , m

xj ∈ N for j = 1, . . . , n

xj ∈ R≥0 for j = n + 1, . . . , N

Linear constraints
Integer-valued variables
Real-valued variables
Linear objective function

No real-valued variables:
integer linear program (ILP)
0 ≤ xj ≤ 1 for all j: 0-1 ILP
Vacuous objective

∑
j 0 · xj : decision problem

But MIP makes most sense for optimization
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Two Differences Compared to SAT/PB

Academia vs. industry
Best solvers are commercial and closed-source
E.g., CPLEX [CPL] (historically), Gurobi [Gur], and FICO Xpress [FIC]
Academic solvers like SCIP [SCI] and HiGHS [HiG] are excellent but not as good

Search vs. backtracking
SAT/PB: Fast decisions; careful, slow(er) conflict analysis
MIP: Lots of time & effort on decisions; backtracking not so advanced
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

MIP Solving at a High Level

1 Preprocessing (called presolving)

2 Linear programming + branch-and-bound

3 Add cutting planes ruling out infeasible LP-solutions
(branch-and-cut method going back to [Gom58])

4 Heuristics for quickly finding good feasible solutions

Far from exhaustive list. . .
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Linear Programming Relaxation

Linear Programming Relaxation (LPR)
Minimize

∑
j ajxj

Subject to
∑

j ai,jxj ≤ Ai, i = 1, . . . , m

xj ∈ N for j = 1, . . . , n xj ∈ R≥0 for j = 1, . . . , n

xj ∈ R≥0 for j = n + 1, . . . , N

Fast to solve (just linear programming)
LP solution x∗ yields lower bound
Or, if x∗ “accidentally” feasible, have optimal solution
Use simplex algorithm

many LP calls for same problem with different variable bounds
need efficient hot restarts
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

LP-Based Branch-and-Bound
Branch-and-bound
Choose integer-valued xj and B ∈ N

Solve MIP plus constraint xj ≥ B

Solve MIP plus constraint xj ≤ B − 1

Creates (growing) branch-and-bound tree of subproblems
Prune subproblem/node when

LP is infeasible
LP bound > incumbent (current best solution)

Branch on
Variables
General linear constraints (powerful but difficult)
Corresponds to stabbing planes proof system [BFI+18]
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Branch-and-Cut
General cutting plane method

1 Solve LP relaxation
2 If solution x∗ feasible for MIP ⇒ found optimum
3 Otherwise generate and add constraint

∑
j bjxj ≤ B that is

valid for MIP
violated by LP solution x∗

4 Repeat from the top

Pseudo-Boolean solving rules division and saturation are examples of cut rules

Branch-and-cut
Run branch-and-bound
But in each subproblem, use cutting plane method to repeatedly solve LP relaxation
and add cut
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Example Cut 1: Knapsack Cover Cut
Given constraint ∑

j∈I

ajxj ≤ A

for xj ∈ {0, 1} and aj , A ∈ N+

Find minimal cover C ⊆ I such that∑
j∈C aj > A∑

j∈C\{i} aj ≤ A for all i ∈ C

Then can derive ∑
j∈C xj ≤ |C| − 1

(In cutting planes proof system, weaken & divide
∑

j∈I ajxj ≥ −A +
∑

j∈I aj to get
disjunctive clause

∑
j∈C xj ≥ 1)
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Example Cut 2: Mixed Integer Rounding (MIR) Cut
Mixed integer rounding (MIR) cut [MW01] applied to (normalized) pseudo-Boolean
constraint ∑

i aiℓi ≥ A

with divisor d ∈ N+ produces constraint∑
i

(
min(ai mod d, A mod d) +

⌊ai
d

⌋
(A mod d)

)
ℓi ≥

⌈
A
d

⌉
(A mod d)

Concretely, MIR cut with divisor 3 applied on
x + 2y + 3z + 4w + 5u ≥ 5

(so (A mod d) = (5 mod 3) = 2) yields
x + 2y + 2z + 3w + 4u ≥ 4

For comparison, division by 3 and multiplication by 2 produces
2x + 2y + 2z + 4w + 4u ≥ 4
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Presolving

Presolving is a topic for a full separate lecture or two
(well, like most other aspects of MIP solving that we touch on. . . )

Important for performance (but not quite as important as in CDCL SAT solving?)

Some simple (but efficient) techniques:
Substitution of fixed variables
Normalization of constraints: divide integer constraints by gcd on left-hand side and
round on right-hand side
Probing: tentatively assign binary variables and propagate
Dominance test: remove constraints implied by other constraints

For more details, see talk by Gleixner https://tinyurl.com/MIPtutorial
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

MIP Conflict Analysis
MIP conflict analysis [Ach07] analogous to CDCL, but

operate on clausal reasons extracted from constraints
not on constraints themselves

Exponential loss in power!

Pigeonhole principle ∑n
j=1 xi,j ≥ 1 i ∈ [n + 1]∑n+1
i=1 xi,j ≤ 1 j ∈ [n]

Conflict analysis with clausal reasons ⇒ same as resolution on CNF encoding ⇒
exponential lower bound in [Hak85] applies
Perhaps a bit stupid example—solved immediately, since LP relaxation is infeasible. . .
But can find other, more interesting benchmarks where MIP conflict analysis seems to
really suffer from this problem [DGN21]
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Branching Heuristics
Dual gain
Given LP solution x∗, branch on xj such that xj ≥

⌈
x∗

j

⌉
and xj ≤

⌊
x∗

j

⌋
both provide

good lower bound increase

Look ahead (strong branching)
Consider all free variables xj

Solve LP for all branching decisions xj ≥
⌈
x∗

j

⌉
and xj ≤

⌊
x∗

j

⌋
Pick variable yielding strongest bound increases

Look back
Compute estimate on gains based on past branching history (pseudo-costs)

Keep also other statistics about variables to guide search
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Additional Techniques

Node Selection

How to grow search tree?

Depth-first search (DFS): keeps cost for simplex calls small
[corresponds to what SAT and PB solvers always do]

Best bound search (BBS): Focus on improving lower bound
(dual bound)

Best estimate search (BES): Focus on improving solution
(primal bound)

Combine BBS and BES with DFS plunges to exploit simplex hot restarts
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Primal Heuristics

Improve solution (primal bound)
Guide remaining search

Example: Relaxation-enforced neighbourhood search
1 Solve LP relaxation to get x∗

2 Fix values of all xj such that x∗
j ∈ N

3 For xj with fractional solution, reduce domain to xj ∈ {
⌊
x∗

j

⌋
,
⌈
x∗

j

⌉
}

4 Solve new subproblem

Example of “fix-and-MIP” local neighbourhood search heuristic
(Note that, interestingly, this turns ILP into 0-1 ILP subproblem)
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And More. . .

1 Decomposition
Branch-and-price / column generation
Bender’s decomposition
[Core-guided and IHS search similar in spirit to logic-based Benders
decomposition [HO03]]

2 Symmetry handling
Via graph automorphism
Or dedicated symmetry detection (commercial solvers)

3 Extended formulations (with new variables and constraints)
4 Parallelization
5 Restarts

Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 17/36



Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

MIP Preliminaries
Branch-and-Bound and Branch-and-Cut
Additional Techniques

Numerics and Correctness
Numerics

Use floating point for efficiency reasons
Can lead to rounding errors
Exact MIP solvers like [CKSW13, EG23]

are significantly slower
don’t support the full range of state-of-the-art techniques

Proof logging / certification
Currently not available for state-of-the-art MIP solvers
Though known that even best commercial solvers sometimes give wrong results
Some work on proof logging in [CGS17, EG23] — challenges:

How to capture wide diversity of techniques?
What is a convenient format?
How to generate proofs efficiently on-the-fly?
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Some Interesting MIP Questions
1 Develop better heuristics to branch on general linear constraints

(cf. stabbing planes [BFI+18])
2 Design stronger conflict analysis operating directly on linear constraints

(borrowing ideas from native pseudo-Boolean solvers)
[Recent work [MBGN23, MSB+24]]

3 Provide rigorous understanding of MIP solver performance
4 Develop families of theory benchmarks and computational complexity results for

them (cf. interaction between SAT solving and proof complexity [BN21])
5 Steal pseudo-Boolean proof logging ideas and techniques and use for MIP solving

[Recent work [DEGH23, HOGN24]]
6 Steal best MIP ideas and techniques and use for pseudo-Boolean solving!?

[Next and final topic]
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Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Combining Pseudo-Boolean Solving and Mixed Integer Programming

Pseudo-Boolean solvers
Sophisticated conflict analysis using cutting planes method
Sometimes terrible performance even when LP relaxation infeasible [EGNV18]

Mixed integer linear programming solvers
Powerful search
Exploits information from LP relaxations
Rich variety of cut generation routines
But conflict analysis not so great. . .

Why not merge the two to get the best of both worlds of pseudo-Boolean conflict-driven
search and MIP-style branch-and-cut?
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Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Balance Time Allocation for PB and LP Solving?

High-level idea: Give pseudo-Boolean solver access to LP solver

First challenge:
1 Using LP solver as preprocessor not sufficient

Pseudo-Boolean formulas can have feasible LP relaxations
but quickly turn infeasible after just a couple of decisions
Some such benchmarks very hard for PB solvers [EGNV18]

2 Consulting LP solver before each variable decision impractical
Pseudo-Boolean solving based on rapid alternation of decisions and propagations
Solving an LP relaxation is orders of magnitude slower

Need to carefully balance time allocation for PB solver and LP solver
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Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Backtracking from LP Infeasibility?

What to do if LP solver call shows LP relaxation infeasible under current trail?
Obviously, PB solver should backtrack
But can only do conflict analysis on violated pseudo-Boolean constraint
And PB solver blissfully unaware of any conflict. . .

More subtle issue:
Efficient LP solvers use inexact floating-point arithmetic
How to incorporate LP solver inferences into Boolean solver that must maintain
perfectly sound reasoning?

Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 22/36



Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Backtracking from LP Infeasibility?

What to do if LP solver call shows LP relaxation infeasible under current trail?
Obviously, PB solver should backtrack
But can only do conflict analysis on violated pseudo-Boolean constraint
And PB solver blissfully unaware of any conflict. . .

More subtle issue:
Efficient LP solvers use inexact floating-point arithmetic
How to incorporate LP solver inferences into Boolean solver that must maintain
perfectly sound reasoning?

Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 22/36



Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
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Sharing of Cut Constraints?

Cut constraints from LP solver
When LP relaxation feasible, MIP solver generates cut constraint to remove the
found LP solution
Should such constraints be shared with the PB solver?

Cut constraints from PB solver
PB solvers learns new constraints at high rate from conflict analysis
These learned constraints can also be viewed as cuts
Should such constraints be passed from PB solver to LP solver?
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Report on Proof-of-Concept PB-LP Integration [DGN21]
1 Interleave LP solving within conflict-driven PB search

Limit LP time by enforcing total #LP pivots ≤ #PB conflicts
Only run LP solver when this condition holds
Abort if > P pivots in single LP call; but if so also double limit P to avoid wasted LP
calls in future

2 When LP solver detects that LP relaxation infeasible
Farkas’ lemma ⇒ violated linear combination of constraints
Use this Farkas constraint as starting point for conflict analysis
Computed using exact arithmetic, so no rounding errors
But might not be violated — if so, ignore and continue PB search

3 When LP solver finds solution to LP relaxation
Generate MIP-style Gomory cut
Share constraint to tighten search space on both PB and LP side
Try to use LP solution to guide PB search (e.g., variable decisions)

4 Also explore letting PB solver pass learned constraints to LP solver
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(What We Need from) Farkas Lemma [Far02]

Pseudo-Boolean Farkas Lemma
Given

Pseudo-Boolean formula F = {C1, . . . , Cm},
partial assignment ρ,

such that LP relaxation of residual formula F↾ρ infeasible
Then ∃ coefficients ki ∈ N such that linear combination∑m

i=1 ki · Ci

is violated by ρ, i.e.,
slack

(∑m
i=1 ki · Ci; ρ

)
< 0

Observed in [MM04] that
∑m

i=1 ki · Ci is valid starting point for PB conflict analysis
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Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Relation to MIP Solvers with Conflict Analysis?
MIP solvers also combine constraint propagation and SAT-style clause learning with LP
solving

Implemented in SCIP [ABKW08]
And also in closed-source solvers (see [AW13])

Important to understand similarities and differences — let’s give high-level description of
PB search and conflict analysis phrased in MIP language

Pseudo-Boolean search
1 Make decision to assign free variable to 0 or 1
2 Propagate all assignments implied by some linear constraint until saturation
3 If no contradiction, go to step 1
4 Otherwise some constraint C violated ⇒ trigger conflict analysis
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PB Conflict Analysis “in MIP Language”
Pseudo-Boolean conflict analysis (simplified description)

1 Find reason constraint R responsible for propagating last variable x in violated
constraint C to “wrong value”

2 Apply division/saturation to generate (globally valid) cut Rcut propagating x to
{0, 1}-value (over the reals)

3 Set D := smallest integer linear combination of Rcut and C for which x cancels —
D violated by current solvers assignment with x removed

4 Unless D satisfies termination criterion (assertiveness), set C := D and go to step 1
5 Learn assertive D, i.e., add to solver database of constraints
6 Backjump by undoing further assignments in reverse chronological order until D is

no longer violated
7 Switch back to search phase
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Comparison to MIP Propagation and Conflict Analysis
Propagation in SCIP

Fast, simple propagation in PB solvers
Plus powerful, but slower, method of solving LP relaxations

Conflict analysis in SCIP [Ach07]
Perform derivation not on reason constraints R as described above
Instead use disjunctive clauses extracted from reason constraints via conflict graph
Incurs exponential loss in power compared to operating on actual linear constraints
(follows from [BKS04, CCT87, Hak85])

Arithmetic
SCIP uses floating point
Reasoning steps in pseudo-Boolean solver computed with exact integer arithmetic
No issues with possible rounding errors
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Experimental Results for Knapsack Benchmarks [Pis05]

RoundingSat (RS) enhanced with
LP solver SoPlex (SPX)
(from SCIP)
Gomory cuts (GC)
shared learned PB cuts (LC)

compared to other solvers
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Experimental Results for PB and MIPLIB Benchmarks
RoundingSat (RS) run on PB and 0-1 ILP instances with

LP solver (+SPX)
plus Gomory cuts (+GC)
plus sharing cuts learned by PB solver (+LC)

compared to other solvers

# instances solved (to optimality for optimization problems)
Highlighting 1st, 2nd, and 3rd best

SCIP RS +SPX +GC +LC Sat4j NaPS
PB16dec (1783) 1123 1472 1453 1452 1451 1432 1400
PB16opt (1600) 1057 862 988 986 993 776 896
MIPdec (556) 264 203 263 261 259 169 170
MIPopt (291) 125 78 101 102 102 62 65
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Performance of Integrated PB-LP Solver
1 Best of both worlds?

At least well-rounded performance
Hybrid PB-LP solver always competitive with best solver
Pretty dramatic improvements for optimization problems compared to pseudo-Boolean
state of the art
SCIP is hard to beat, but also pulls quite a few extra tricks that we haven’t
implemented (like problem-type-specific approaches)

2 Adding LP solving causes performance loss on PB decision instances
Worse results on satisfiable instances
Better search (lower conflict count) but slower — doesn’t pay off in terms of running
time

3 Sharing Gomory cuts and learned cuts not so helpful
Except for knapsack benchmarks, where they help a lot
And maybe we could/should fine-tune how sharing is done?
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Usefulness/Usage of Constraints

Estimate usefulness of different types of constraints
Proxy: how often used in conflict analysis?
Certainly not perfect measure
But hopefully tells us something interesting

Farkas constraints
More useful than regular learned constraints for optimization problems
Not so for decision problems

Constraints learned after Farkas-based conflicts
Less useful than regular learned constraints
But big spread in usage measurements
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Pseudo-Boolean Solver Performance: Balancing the Picture
To provide fuller view, should also be mentioned that RoundingSat can outperform
commercial MIP solvers by 1-2 orders of magnitude for problems such as, e.g.,

matching of children with adoptive families [DGG+19]
automated planning using binarized neural networks (BNNs) [SS18]

as reported by authors of these papers

See also our paper [SDNS20] on problems involving BNNs

RoundingSat seems particularly good for “big-M constraints” like

Az +
∑

i aiℓi ≥ A

encoding z ⇒
∑

i aiℓi ≥ A

Coefficient A of z can be very large compared to ai’s ⇒ LP relaxation quite uninformative
Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 33/36



Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Pseudo-Boolean Solver Performance: Balancing the Picture
To provide fuller view, should also be mentioned that RoundingSat can outperform
commercial MIP solvers by 1-2 orders of magnitude for problems such as, e.g.,

matching of children with adoptive families [DGG+19]
automated planning using binarized neural networks (BNNs) [SS18]

as reported by authors of these papers

See also our paper [SDNS20] on problems involving BNNs

RoundingSat seems particularly good for “big-M constraints” like

Az +
∑

i aiℓi ≥ A

encoding z ⇒
∑

i aiℓi ≥ A

Coefficient A of z can be very large compared to ai’s ⇒ LP relaxation quite uninformative
Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 33/36



Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Pseudo-Boolean Solver Performance: Balancing the Picture
To provide fuller view, should also be mentioned that RoundingSat can outperform
commercial MIP solvers by 1-2 orders of magnitude for problems such as, e.g.,

matching of children with adoptive families [DGG+19]
automated planning using binarized neural networks (BNNs) [SS18]

as reported by authors of these papers

See also our paper [SDNS20] on problems involving BNNs

RoundingSat seems particularly good for “big-M constraints” like

Az +
∑

i aiℓi ≥ A

encoding z ⇒
∑

i aiℓi ≥ A

Coefficient A of z can be very large compared to ai’s ⇒ LP relaxation quite uninformative
Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 33/36



Mixed Integer Linear Programming (MIP)
Combining PB and MIP Techniques

Some Challenges When Integrating PB and LP Solving
A Proof-of-Concept Hybrid PB-LP Solver
Evaluation and Conclusions

Future Research Directions for PB-LP Integration (1/2)
1 Fine-tune heuristics

Improved LP-based cut generation?
Smarter sharing of PB constraints with LP solver?
Dynamic allocation of PB and LP solving time based on contributions?

2 Understand better how constraints from LP solver contribute
Why are Farkas constraints so useful?
But constraints learned from Farkas conflicts not useful?

3 Make more intelligent use in pseudo-Boolean solver of information from solutions to
LP relaxations

4 Use MIP presolving in pseudo-Boolean solvers

5 Use MIR cuts and/or other MIP cut rules to improve conflict analysis [MBGN23]
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Future Research Directions for PB-LP Integration (2/2)

6 Combine LP solver with core-guided search or IHS approach
7 Improve pseudo-Boolean search

RoundingSat-like solving with LP integration and/or core-guided search or IHS seems
to be state of the art for pseudo-Boolean optimization
But solver much better on unsatisfiable instances (proving optimality) than on
satisfiable ones (finding solutions)

8 Export pseudo-Boolean conflict analysis to MIP
[Ongoing work in [MBGN23, MSB+24]]

9 Develop hybrid PB-LP solver to solve 0-1 MIP problems à la Bender
PB solver decides on Boolean variables and propagates
LP solver takes care of real-valued variables
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Take-Away Message (for This and the Other Tutorials)

Revolution in performance last two decades in
Boolean satisfiability (SAT) solving
Mixed integer linear programming (MIP)

More recent addition: Cutting-planes-based pseudo-Boolean conflict-driven search
Quite different approaches

Complementary strengths
Clear potential for synergies

Lots of exciting research waiting to be done! ,

We’re hiring! See www.jakobnordstrom.se/openings

Thanks for sticking till the end!
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[DGG+19] Maxence Delorme, Sergio Garćıa, Jacek Gondzioa, Jörg Kalcsics, David Manlove, and William
Pettersson. Mathematical models for stable matching problems with ties and incomplete lists. European
Journal of Operational Research, 277(2):426–441, September 2019.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear
programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55, October 2021.
Preliminary version in CPAIOR ’20.

[EG23] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. Mathematical Programming, 197(2):793–812, February 2023.

Jakob Nordström (UCPH & LU) Tutorial on MIP Solving and Pseudo-Boolean Optimization SLOPPY ’24 39/36

https://www.ibm.com/products/ilog-cplex-optimization-studio


References IV
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