
Leveraging Computational Complexity Theory
for Provably Correct Combinatorial Optimization

Jakob Nordström

University of Copenhagen
and Lund University

2023 North American Annual Meeting
of the Association for Symbolic Logic

March 25, 2023

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 1/46

The Success Story of Combinatorial Solving and Optimization

Rich field of mathematics and computer science
Impact in other areas of science and also industry, e.g.:

airline scheduling
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Computationally very challenging problems (NP-complete or worse)
Lots of effort last couple of decades spent on developing sophisticated so-called
combinatorial solvers that often work surprisingly well in practice

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 2/46

The Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22]

Even worse: No way of knowing for sure when errors happen

Solvers even get feasibility of solutions wrong (though this should be
straightforward!)

But how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 3/46

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 4/46

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 4/46

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 4/46

Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 5/46

Proof Logging with Certifying Solvers: Workflow

Checker
Proof

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 5/46

Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 5/46

Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker
✓/✗

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 5/46

Proof Logging Wishlist

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 6/46

Proof Logging Wishlist

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 6/46

Proof Logging Wishlist

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 6/46

Proof Logging Wishlist

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 6/46

Proof Logging Wishlist

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 6/46

This Talk

Proof logging for combinatorial optimization is possible!

Only need propositional logic

Represent constraints as 0–1 integer linear inequalities

Formalize reasoning using extended resolution [Tse68] and cutting planes [CCT87]
proof systems

Add well-chosen strengthening rules [Goc22, GN21, BGMN22]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Making constructive use of computational complexity theory!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 7/46

https://gitlab.com/MIAOresearch/software/VeriPB

This Talk

Proof logging for combinatorial optimization is possible!

Only need propositional logic

Represent constraints as 0–1 integer linear inequalities

Formalize reasoning using extended resolution [Tse68] and cutting planes [CCT87]
proof systems

Add well-chosen strengthening rules [Goc22, GN21, BGMN22]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Making constructive use of computational complexity theory!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 7/46

https://gitlab.com/MIAOresearch/software/VeriPB

This Talk

Proof logging for combinatorial optimization is possible!

Only need propositional logic

Represent constraints as 0–1 integer linear inequalities

Formalize reasoning using extended resolution [Tse68] and cutting planes [CCT87]
proof systems

Add well-chosen strengthening rules [Goc22, GN21, BGMN22]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Making constructive use of computational complexity theory!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 7/46

https://gitlab.com/MIAOresearch/software/VeriPB

Outline of This Talk

1 Combinatorial Optimization and Proof Logging
Combinatorial Solving and Optimization
Proofs
Proof Logging

2 Proof Logging for Boolean Satisfiability (SAT) Solving
Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

3 Beyond SAT
Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 8/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (1/2)

Boolean satisfiability (SAT)
Decide if exists satisfying assignment to conjunctive normal form (CNF) formula

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

SAT-based optimization (MaxSAT)
Minimize 0–1 linear expression

p + q + 2r + 3u + 5w

subject to constraints in a CNF formula

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 9/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (1/2)

Boolean satisfiability (SAT)
Decide if exists satisfying assignment to conjunctive normal form (CNF) formula

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

SAT-based optimization (MaxSAT)
Minimize 0–1 linear expression

p + q + 2r + 3u + 5w

subject to constraints in a CNF formula

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 9/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (2/2)

Mixed integer linear programming (MIP)
Minimize

∑
i wixi subject to Ax ≥ b

Variables xi Boolean, integral, or real-valued

Constraint programming (CP)
Also non-Boolean variables
More expressive constraints (e.g., all-different)

Satisfiability modulo theories (SMT)
Propositional logic formula with variables express statements in theories, e.g.:

uninterpreted functions
linear arithmetic
arrays

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 10/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (2/2)

Mixed integer linear programming (MIP)
Minimize

∑
i wixi subject to Ax ≥ b

Variables xi Boolean, integral, or real-valued

Constraint programming (CP)
Also non-Boolean variables
More expressive constraints (e.g., all-different)

Satisfiability modulo theories (SMT)
Propositional logic formula with variables express statements in theories, e.g.:

uninterpreted functions
linear arithmetic
arrays

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 10/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (2/2)

Mixed integer linear programming (MIP)
Minimize

∑
i wixi subject to Ax ≥ b

Variables xi Boolean, integral, or real-valued

Constraint programming (CP)
Also non-Boolean variables
More expressive constraints (e.g., all-different)

Satisfiability modulo theories (SMT)
Propositional logic formula with variables express statements in theories, e.g.:

uninterpreted functions
linear arithmetic
arrays

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 10/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Computational Complexity of Combinatorial Problems

These problems are NP-complete [Coo71, Lev73] or worse

Believed to require exponential time in the worst case [IP01, CIP09]

Proving such lower bounds is the goal of computational complexity theory [GW08]

Has not stopped practitioners from solving problems very efficiently in practice
(often, not always)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 11/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

What Is a Proof? (From a Computational Perspective)
Claim: “N is the product of two primes” (think N = 25957, say)
What is an acceptable proof of such a claim?

“Left to the listener. (Just factor and check yourself!)”
No! Not known how to factor large integers efficiently
Much of modern crypto rests on assumption that this is hard [RSA78]
25957 ≡ 1 (mod 2) 25957 ≡ 19 (mod 99) 25957 ≡ 202 (mod 255)
25957 ≡ 1 (mod 3) 25957 ≡ 0 (mod 101) 25957 ≡ 0 (mod 257)
25957 ≡ 2 (mod 5) 25957 ≡ 1 (mod 103) 25957 ≡ 57 (mod 259)...

...
...

OK, but maybe even a bit of overkill
“25957 = 101 · 257; check yourself that these are primes.”
Concise! Primality easy to check [Mil76, Rab80, AKS04]

Key demand: Proofs should be short but efficiently verifiable
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 12/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

What Is a Proof? (From a Computational Perspective)
Claim: “N is the product of two primes” (think N = 25957, say)
What is an acceptable proof of such a claim?

“Left to the listener. (Just factor and check yourself!)”
No! Not known how to factor large integers efficiently
Much of modern crypto rests on assumption that this is hard [RSA78]
25957 ≡ 1 (mod 2) 25957 ≡ 19 (mod 99) 25957 ≡ 202 (mod 255)
25957 ≡ 1 (mod 3) 25957 ≡ 0 (mod 101) 25957 ≡ 0 (mod 257)
25957 ≡ 2 (mod 5) 25957 ≡ 1 (mod 103) 25957 ≡ 57 (mod 259)...

...
...

OK, but maybe even a bit of overkill
“25957 = 101 · 257; check yourself that these are primes.”
Concise! Primality easy to check [Mil76, Rab80, AKS04]

Key demand: Proofs should be short but efficiently verifiable
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 12/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

What Is a Proof? (From a Computational Perspective)
Claim: “N is the product of two primes” (think N = 25957, say)
What is an acceptable proof of such a claim?

“Left to the listener. (Just factor and check yourself!)”
No! Not known how to factor large integers efficiently
Much of modern crypto rests on assumption that this is hard [RSA78]
25957 ≡ 1 (mod 2) 25957 ≡ 19 (mod 99) 25957 ≡ 202 (mod 255)
25957 ≡ 1 (mod 3) 25957 ≡ 0 (mod 101) 25957 ≡ 0 (mod 257)
25957 ≡ 2 (mod 5) 25957 ≡ 1 (mod 103) 25957 ≡ 57 (mod 259)...

...
...

OK, but maybe even a bit of overkill
“25957 = 101 · 257; check yourself that these are primes.”
Concise! Primality easy to check [Mil76, Rab80, AKS04]

Key demand: Proofs should be short but efficiently verifiable
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 12/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

What Is a Proof? (From a Computational Perspective)
Claim: “N is the product of two primes” (think N = 25957, say)
What is an acceptable proof of such a claim?

“Left to the listener. (Just factor and check yourself!)”
No! Not known how to factor large integers efficiently
Much of modern crypto rests on assumption that this is hard [RSA78]
25957 ≡ 1 (mod 2) 25957 ≡ 19 (mod 99) 25957 ≡ 202 (mod 255)
25957 ≡ 1 (mod 3) 25957 ≡ 0 (mod 101) 25957 ≡ 0 (mod 257)
25957 ≡ 2 (mod 5) 25957 ≡ 1 (mod 103) 25957 ≡ 57 (mod 259)...

...
...

OK, but maybe even a bit of overkill
“25957 = 101 · 257; check yourself that these are primes.”
Concise! Primality easy to check [Mil76, Rab80, AKS04]

Key demand: Proofs should be short but efficiently verifiable
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 12/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof System

Proof system for formal language L [CR79] of “true claims”:

Deterministic algorithm P (x, π) that runs in time polynomial in |x| and |π| such that
for all x ∈ L there exists a string π (a proof) such that P (x, π) = 1
for all x ̸∈ L it holds for all strings π that P (x, π) = 0

Proof π usually sequence of lines, each line following from previous lines
Think of P as “proof checker”

Note that proof π can be very large compared to x
Only have to achieve polynomial running time in |x| + |π|
Goal of proof complexity: establish lower bounds on proof size

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 13/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof System

Proof system for formal language L [CR79] of “true claims”:

Deterministic algorithm P (x, π) that runs in time polynomial in |x| and |π| such that
for all x ∈ L there exists a string π (a proof) such that P (x, π) = 1
for all x ̸∈ L it holds for all strings π that P (x, π) = 0

Proof π usually sequence of lines, each line following from previous lines
Think of P as “proof checker”

Note that proof π can be very large compared to x
Only have to achieve polynomial running time in |x| + |π|
Goal of proof complexity: establish lower bounds on proof size

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 13/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof System

Proof system for formal language L [CR79] of “true claims”:

Deterministic algorithm P (x, π) that runs in time polynomial in |x| and |π| such that
for all x ∈ L there exists a string π (a proof) such that P (x, π) = 1
for all x ̸∈ L it holds for all strings π that P (x, π) = 0

Proof π usually sequence of lines, each line following from previous lines
Think of P as “proof checker”

Note that proof π can be very large compared to x
Only have to achieve polynomial running time in |x| + |π|
Goal of proof complexity: establish lower bounds on proof size

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 13/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof Logging with Certifying Solvers: Practical Requirements

Proof

Input Answer
Solver

Checker
✓/✗

Proof logging should
work for existing algorithms
incur minimal overhead
only use what solver “already knows”

Proof checking should
scale linearly with solver running time
not require knowledge of inner workings of solver
be very easy (so that proof checker can be trusted, or even formally verified)

Fully automated process — no proof assistants
Higher-order logics too complicated and/or too slow(?)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 14/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof Logging with Certifying Solvers: Practical Requirements

Proof

Input Answer
Solver

Checker
✓/✗

Proof logging should
work for existing algorithms
incur minimal overhead
only use what solver “already knows”

Proof checking should
scale linearly with solver running time
not require knowledge of inner workings of solver
be very easy (so that proof checker can be trusted, or even formally verified)

Fully automated process — no proof assistants
Higher-order logics too complicated and/or too slow(?)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 14/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof Logging with Certifying Solvers: Practical Requirements

Proof

Input Answer
Solver

Checker
✓/✗

Proof logging should
work for existing algorithms
incur minimal overhead
only use what solver “already knows”

Proof checking should
scale linearly with solver running time
not require knowledge of inner workings of solver
be very easy (so that proof checker can be trusted, or even formally verified)

Fully automated process — no proof assistants
Higher-order logics too complicated and/or too slow(?)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 14/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Sales Pitch for Proof Logging

1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability
8 Can validate computer-generated proofs in mathematics [HK17]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 15/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Sales Pitch for Proof Logging

1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability
8 Can validate computer-generated proofs in mathematics [HK17]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 15/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Proof Logging Story So Far

Huge success for Boolean satisfiability (SAT) solving
Proof formats such as

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]

Compulsory DRAT proof logging in main track of SAT competition

But has remained out of reach for stronger combinatorial solving paradigms

And, in fact, even for advanced SAT solving techniques such as
cardinality detection
parity reasoning
symmetry breaking

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 16/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Proof Logging Story So Far

Huge success for Boolean satisfiability (SAT) solving
Proof formats such as

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]

Compulsory DRAT proof logging in main track of SAT competition

But has remained out of reach for stronger combinatorial solving paradigms

And, in fact, even for advanced SAT solving techniques such as
cardinality detection
parity reasoning
symmetry breaking

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 16/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Proof Logging Story So Far

Huge success for Boolean satisfiability (SAT) solving
Proof formats such as

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]

Compulsory DRAT proof logging in main track of SAT competition

But has remained out of reach for stronger combinatorial solving paradigms

And, in fact, even for advanced SAT solving techniques such as
cardinality detection
parity reasoning
symmetry breaking

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 16/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

The Boolean Satisfiability (SAT) Problem
Variable x: takes value true (=1) or false (=0)
Literal ℓ: variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)
Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The SAT problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 17/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment

For unsatisfiability: a sequence of clauses
Each clause follows “obviously” from everything we know so far
Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 18/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C
except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 19/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 20/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Reverse Unit Propagation (RUP)

To make this into a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Backtrack clauses from DPLL solver generate RUP proofs
True also for learned clauses in modern conflict-driven clause learning (CDCL)
SAT solvers [MS96, BS97, MMZ+01]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 21/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Reverse Unit Propagation (RUP)

To make this into a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Backtrack clauses from DPLL solver generate RUP proofs
True also for learned clauses in modern conflict-driven clause learning (CDCL)
SAT solvers [MS96, BS97, MMZ+01]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 21/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Reverse Unit Propagation (RUP)

To make this into a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Backtrack clauses from DPLL solver generate RUP proofs
True also for learned clauses in modern conflict-driven clause learning (CDCL)
SAT solvers [MS96, BS97, MMZ+01]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 21/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Writing Proofs in the DRAT Format

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 22/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Writing Proofs in the DRAT Format

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Formula in DIMACS
p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 22/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Writing Proofs in the DRAT Format

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Formula in DIMACS
p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 22/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Writing Proofs in the DRAT Format

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Formula in DIMACS
p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥

DPLL Proof in DRAT
6 7 0
6 -7 0
6 0
-6 0
0

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 22/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

More Ingredients in Proof Logging for SAT

Fact
RUP proofs are shorthand for so-called resolution proofs

See [BN21] for more on this and connections to SAT solving

But RUP and resolution aren’t enough for preprocessing, inprocessing, and some other
kinds of reasoning

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 23/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Extension Variables

Suppose SAT solver preprocessor wants to introduce new, fresh variable a encoding

a ↔ (x ∧ y)

Extended resolution: allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be fine, so long as a doesn’t appear anywhere previously

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the
DRAT proof logging system

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 24/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Why Aren’t We Done?

Practical limitations of SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently
Clausal proofs can’t easily reflect what other algorithms do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Can support proof logging for

Graph reasoning without knowing what a graph is
Constraint programming without knowing, e.g., what an integer variable is
Advanced SAT techniques so far beyond reach for efficient DRAT proof logging

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 25/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Why Aren’t We Done?

Practical limitations of SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently
Clausal proofs can’t easily reflect what other algorithms do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Can support proof logging for

Graph reasoning without knowing what a graph is
Constraint programming without knowing, e.g., what an integer variable is
Advanced SAT techniques so far beyond reach for efficient DRAT proof logging

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 25/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 26/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 27/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Proof System [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈

A
c

⌉

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 28/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Proof System [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈

A
c

⌉

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 28/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Proof System [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈

A
c

⌉

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 28/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Proof System [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈

A
c

⌉

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 28/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Proof System [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈

A
c

⌉

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 28/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y + 2z + 2z ≥ 9

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y + 2 ≥ 9

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 2 1

3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 29/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Pseudo-Boolean Proofs

For satisfiable instances: just specify a satisfying assignment

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of)
OPB format [RM16]

Each constraint follows “obviously” from what is known so far
Either implicitly, by (generalization of) RUP. . .
Or by an explicit cutting planes derivation. . .
Or by (generalization of) extension rule

Final constraint is 0 ≥ 1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 30/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Graph Solving and Constraint Programming
Pseudo-Boolean proof logging can also certify reasoning in

graph solving for clique, subgraph isomorphism, and maximum common
connected subgraph [GMN20, GMM+20] without knowing anything about

vertices
edges
neighbours

constraint programming [EGMN20, GMN22] without knowing anything about
non-Boolean variables
arrays
tables

Caveat: Need input pre-translated into 0–1 integer linear program
Such translations should be formally verified (work in progress)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 31/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Graph Solving and Constraint Programming
Pseudo-Boolean proof logging can also certify reasoning in

graph solving for clique, subgraph isomorphism, and maximum common
connected subgraph [GMN20, GMM+20] without knowing anything about

vertices
edges
neighbours

constraint programming [EGMN20, GMN22] without knowing anything about
non-Boolean variables
arrays
tables

Caveat: Need input pre-translated into 0–1 integer linear program
Such translations should be formally verified (work in progress)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 31/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Graph Solving and Constraint Programming
Pseudo-Boolean proof logging can also certify reasoning in

graph solving for clique, subgraph isomorphism, and maximum common
connected subgraph [GMN20, GMM+20] without knowing anything about

vertices
edges
neighbours

constraint programming [EGMN20, GMN22] without knowing anything about
non-Boolean variables
arrays
tables

Caveat: Need input pre-translated into 0–1 integer linear program
Such translations should be formally verified (work in progress)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 31/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use extension rule to introduce new variables

a≥k ⇔
∑

i 2i · ai ≥ k k · a≥k +
∑

i 2i · ai ≥ k(∑
i 2i − k + 1

)
· a≥k +

∑
i 2i · ai ≥

∑
i 2i − k + 1

a=k ⇔ (a≥k ∧ a≥k+1) 2 · a=k + a≥k + a≥k+1 ≥ 2
a=k + a≥k + a≥k+1 ≥ 1

(with definitions represented as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 32/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use extension rule to introduce new variables

a≥k ⇔
∑

i 2i · ai ≥ k k · a≥k +
∑

i 2i · ai ≥ k(∑
i 2i − k + 1

)
· a≥k +

∑
i 2i · ai ≥

∑
i 2i − k + 1

a=k ⇔ (a≥k ∧ a≥k+1) 2 · a=k + a≥k + a≥k+1 ≥ 2
a=k + a≥k + a≥k+1 ≥ 1

(with definitions represented as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 32/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use extension rule to introduce new variables

a≥k ⇔
∑

i 2i · ai ≥ k k · a≥k +
∑

i 2i · ai ≥ k(∑
i 2i − k + 1

)
· a≥k +

∑
i 2i · ai ≥

∑
i 2i − k + 1

a=k ⇔ (a≥k ∧ a≥k+1) 2 · a=k + a≥k + a≥k+1 ≥ 2
a=k + a≥k + a≥k+1 ≥ 1

(with definitions represented as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 32/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use extension rule to introduce new variables

a≥k ⇔
∑

i 2i · ai ≥ k k · a≥k +
∑

i 2i · ai ≥ k(∑
i 2i − k + 1

)
· a≥k +

∑
i 2i · ai ≥

∑
i 2i − k + 1

a=k ⇔ (a≥k ∧ a≥k+1) 2 · a=k + a≥k + a≥k+1 ≥ 2
a=k + a≥k + a≥k+1 ≥ 1

(with definitions represented as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 32/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1
v=1 ≥ 0

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1
v=1 ≥ 0

0 ≥ 1
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 33/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Other Constraint Programming Reasoning

Efficient proof logging support for
Table constraints
Arrays
Problem reformulations
Backtracking during search
Et cetera. . .

Not at all trivial to implement
Lots of work left to get to full-fledged constraint programming solver
But so far everything has been possible to do [EGMN20, GMN22]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 34/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Other Constraint Programming Reasoning

Efficient proof logging support for
Table constraints
Arrays
Problem reformulations
Backtracking during search
Et cetera. . .

Not at all trivial to implement
Lots of work left to get to full-fledged constraint programming solver
But so far everything has been possible to do [EGMN20, GMN22]

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 34/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Actual Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F iff there is a substitution ω (mapping variables to
truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Witness ω should be specified, and implication be efficiently verifiable (which is the
case, e.g., if all constraints in (F ∧ C)↾ω are RUP)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 35/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Actual Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F iff there is a substitution ω (mapping variables to
truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Witness ω should be specified, and implication be efficiently verifiable (which is the
case, e.g., if all constraints in (F ∧ C)↾ω are RUP)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 35/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Actual Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F iff there is a substitution ω (mapping variables to
truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Witness ω should be specified, and implication be efficiently verifiable (which is the
case, e.g., if all constraints in (F ∧ C)↾ω are RUP)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 35/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive
2a + x + y ≥ 2 a + x + y ≥ 1

using condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾ω

Choose ω = {a 7→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾ω

Choose ω = {a 7→ 1} — F untouched; new constraint satisfied
¬(a + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence 2a + x + y ≥ 2 remains satisfied
after forcing a to be true

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 36/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive
2a + x + y ≥ 2 a + x + y ≥ 1

using condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾ω

Choose ω = {a 7→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾ω

Choose ω = {a 7→ 1} — F untouched; new constraint satisfied
¬(a + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence 2a + x + y ≥ 2 remains satisfied
after forcing a to be true

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 36/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive
2a + x + y ≥ 2 a + x + y ≥ 1

using condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾ω

Choose ω = {a 7→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾ω

Choose ω = {a 7→ 1} — F untouched; new constraint satisfied
¬(a + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence 2a + x + y ≥ 2 remains satisfied
after forcing a to be true

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 36/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive
2a + x + y ≥ 2 a + x + y ≥ 1

using condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾ω

Choose ω = {a 7→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾ω

Choose ω = {a 7→ 1} — F untouched; new constraint satisfied
¬(a + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence 2a + x + y ≥ 2 remains satisfied
after forcing a to be true

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 36/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive
2a + x + y ≥ 2 a + x + y ≥ 1

using condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾ω

Choose ω = {a 7→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾ω

Choose ω = {a 7→ 1} — F untouched; new constraint satisfied
¬(a + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence 2a + x + y ≥ 2 remains satisfied
after forcing a to be true

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 36/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Optimization Problems

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 37/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Optimization Problems

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 37/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Optimization Problems

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 37/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 38/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 38/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 38/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 38/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 38/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Redundance and Dominance Rules

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 39/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Redundance and Dominance Rules

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 39/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 40/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 41/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 41/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 41/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 41/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 41/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

The Challenge of Symmetries

Symmetries can be crucial for optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Adding rules for symmetric reasoning as in [TD20] breaks extension rule

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 42/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

The Challenge of Symmetries

Symmetries can be crucial for optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Adding rules for symmetric reasoning as in [TD20] breaks extension rule

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 42/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

The Challenge of Symmetries

Symmetries can be crucial for optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Adding rules for symmetric reasoning as in [TD20] breaks extension rule

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 42/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Viewing Symmetry as an Optimization Problem

Deal with symmetries by switching focus to optimization

Invent objective function
∑n

i=1 2i · xi) corresponding to lexicographic order

Now dominance-based strengthening = symmetry breaking!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 43/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Symmetry Elimination Example: Crystal Maze Puzzle

Human modellers might add:
A < G (mirror vertically)
A < B (mirror horizontally)
A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without repetition; adjacent
circles cannot have consecutive numbers

Can derive these constraints inside the proof rather than adding to input
Witness ω: symmetry
Order: Lexicographic (A, B, . . . , H)
No group theory required!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 44/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Symmetry Elimination Example: Crystal Maze Puzzle

Human modellers might add:
A < G (mirror vertically)
A < B (mirror horizontally)
A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without repetition; adjacent
circles cannot have consecutive numbers

Can derive these constraints inside the proof rather than adding to input
Witness ω: symmetry
Order: Lexicographic (A, B, . . . , H)
No group theory required!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 44/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Symmetry Elimination Example: Crystal Maze Puzzle

Human modellers might add:
A < G (mirror vertically)
A < B (mirror horizontally)
A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without repetition; adjacent
circles cannot have consecutive numbers

Can derive these constraints inside the proof rather than adding to input
Witness ω: symmetry
Order: Lexicographic (A, B, . . . , H)
No group theory required!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 44/46

Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Symmetry Elimination Example: Crystal Maze Puzzle

Human modellers might add:
A < G (mirror vertically)
A < B (mirror horizontally)
A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without repetition; adjacent
circles cannot have consecutive numbers

Can derive these constraints inside the proof rather than adding to input
Witness ω: symmetry
Order: Lexicographic (A, B, . . . , H)
No group theory required!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 44/46

Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in
[GMNO22, VDB22, BBN+23])
General constraint programming (work in [EGMN20, GMN22])
Mixed integer linear programming (work in [CGS17, EG21])

Logic and formal verification
Formally verified proof checking
Formally verified problem encoding/translation
Higher-order logic for more efficient handling of repetitive proof fragments?
SMT proof logging using stronger logics?

And more. . .
Lots of challenging problems and interesting ideas!
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 45/46

Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in
[GMNO22, VDB22, BBN+23])
General constraint programming (work in [EGMN20, GMN22])
Mixed integer linear programming (work in [CGS17, EG21])

Logic and formal verification
Formally verified proof checking
Formally verified problem encoding/translation
Higher-order logic for more efficient handling of repetitive proof fragments?
SMT proof logging using stronger logics?

And more. . .
Lots of challenging problems and interesting ideas!
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 45/46

Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in
[GMNO22, VDB22, BBN+23])
General constraint programming (work in [EGMN20, GMN22])
Mixed integer linear programming (work in [CGS17, EG21])

Logic and formal verification
Formally verified proof checking
Formally verified problem encoding/translation
Higher-order logic for more efficient handling of repetitive proof fragments?
SMT proof logging using stronger logics?

And more. . .
Lots of challenging problems and interesting ideas!
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 45/46

Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in
[GMNO22, VDB22, BBN+23])
General constraint programming (work in [EGMN20, GMN22])
Mixed integer linear programming (work in [CGS17, EG21])

Logic and formal verification
Formally verified proof checking
Formally verified problem encoding/translation
Higher-order logic for more efficient handling of repetitive proof fragments?
SMT proof logging using stronger logics?

And more. . .
Lots of challenging problems and interesting ideas!
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 45/46

Summing up
Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like a
promising approach

Requires powerful but simple proof systems — need for “computationally efficient
logic”

Cutting planes with strengthening rules operating on 0–1 linear inequalities seems
to hit a sweet spot

Potential for stronger logics and formal verification methods?

Thank you for your attention!
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 46/46

Summing up
Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like a
promising approach

Requires powerful but simple proof systems — need for “computationally efficient
logic”

Cutting planes with strengthening rules operating on 0–1 linear inequalities seems
to hit a sweet spot

Potential for stronger logics and formal verification methods?

Thank you for your attention!
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 46/46

References I

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An
introduction to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference
on Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes
in Computer Science, pages 727–736. Springer, August 2018.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, September 2004.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization,
pages 449–481. Springer, 2013.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. Submitted manuscript, March 2023.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 47/46

References II

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and
dominance breaking for combinatorial optimisation. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI ’22), pages 3698–3707, February 2022.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd
edition, February 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT
and QBF solvers. In Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer
Science, pages 44–57. Springer, July 2010.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results:
Beyond satisfiability, and towards constraint programming. Tutorial at the 28th International
Conference on Principles and Practice of Constraint Programming. Slides available at
http://www.jakobnordstrom.se/presentations/, August 2022.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Biere et al.
[BHvMW21], chapter 7, pages 233–350.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 48/46

http://www.jakobnordstrom.se/presentations/

References III

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A
look back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
February 2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI ’97), pages 203–208, July 1997.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended
resolution. In Proceedings of the 22nd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages
71–89. Springer, July 2019.

[BvdKM+21] Péter Biró, Joris van de Klundert, David F. Manlove, William Pettersson, Tommy Andersson, Lisa
Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, Aline Hemke, Rachel
Johnson, Xenia Klimentova, Dirk Kuypers, Alessandro Nanni Costa, Bart Smeulders, Frits C. R.
Spieksma, Maŕıa O. Valent́ın, and Ana Viana. Modelling and optimisation in European kidney
exchange programmes. European Journal of Operational Research, 291(2):447–456, June 2021.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 49/46

References IV

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer
Science, pages 220–236. Springer, August 2017.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of
small depth circuits. In Revised Selected Papers from the 4th International Workshop on
Parameterized and Exact Computation (IWPEC ’09), volume 5917 of Lecture Notes in Computer
Science, pages 75–85. Springer, September 2009.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 50/46

References V

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound
approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution
proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in
Computer Science, pages 118–135. Springer, April 2017.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC ’71), pages 151–158, May 1971.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, March 1979. Preliminary version in STOC ’74.

[DBB17] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’17), volume 10491 of
Lecture Notes in Computer Science, pages 83–100. Springer, August 2017.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 51/46

References VI

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Proceedings of the 19th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’16), volume 9710 of Lecture Notes in Computer
Science, pages 104–122. Springer, July 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201–215, 1960.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. In Proceedings of the 22nd International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 52/46

References VII

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In
Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice of
Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 53/46

References VIII

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’03), pages
886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean
Reasoning. PhD thesis, Lund University, Lund, Sweden, June 2022. Available at
https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation
at KTH Royal Institute of Technology. Slides available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 54/46

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

References IX

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

[GSVW14] Maria Garcia de la Banda, Peter J. Stuckey, Pascal Van Hentenryck, and Mark Wallace. The
future of optimization technology. Constraints, 19(2):126–138, April 2014.

[GW08] Oded Goldreich and Avi Wigderson. Computational complexity. In Timothy Gowers, June
Barrow-Green, and Imre Leader, editors, The Princeton Companion to Mathematics, chapter
IV.20, pages 575–604. Princeton University Press, 2008.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction
(CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June
2013.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 55/46

References X

[HHW15] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing symmetry breaking in
DRAT proofs. In Proceedings of the 25th International Conference on Automated Deduction
(CADE-25), volume 9195 of Lecture Notes in Computer Science, pages 591–606. Springer,
August 2015.

[HK17] Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Communications of the
ACM, 60(8):70–79, August 2017.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, March 2001. Preliminary version in CCC ’99.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism
problems faster through clique neighbourhood constraints. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August
2021.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy peredachi informatsii,
9(3):115–116, 1973. In Russian. Available at http://mi.mathnet.ru/ppi914.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 56/46

http://mi.mathnet.ru/ppi914

References XI

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, December 1976. Preliminary version in STOC ’75.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney donation in the UK:
Algorithms and experimentation. In Proceedings of the 11th International Symposium on
Experimental Algorithms (SEA ’12), volume 7276 of Lecture Notes in Computer Science, pages
271–282. Springer, June 2012.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm for satisfiability.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’96), pages 220–227, November 1996.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 57/46

References XII

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, February 1980.

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for the
competitions of pseudo-Boolean solvers. Revision 2324. Available at
http://www.cril.univ-artois.fr/PB16/format.pdf, January 2016.

[RSA78] Ron L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[TD20] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. On certifying the UNSAT result of
dynamic symmetry-handling-based SAT solvers. Constraints, 25(3–4):251–279, December 2020.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko, editor,
Structures in Constructive Mathematics and Mathematical Logic, Part II, pages 115–125.
Consultants Bureau, New York-London, 1968.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 58/46

http://www.cril.univ-artois.fr/PB16/format.pdf

References XIII

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International
Symposium on Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at
http://isaim2008.unl.edu/index.php?page=proceedings.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver.
In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 59/46

http://isaim2008.unl.edu/index.php?page=proceedings

	Intro
	MainTalk
	Combinatorial Optimization and Proof Logging
	Combinatorial Solving and Optimization
	Proofs
	Proof Logging

	Proof Logging for Boolean Satisfiability (SAT) Solving
	Boolean Satisfiability (SAT)
	Unit Propagation, DPLL, and CDCL
	Pseudo-Boolean-Reasoning

	Beyond SAT
	Constraint Programming
	Strengthening Rules and Optimization
	Symmetry Handling

	Conclusion
	Appendix

