Narrow Proofs May Be Spacious: Separating Space and Width in Resolution

Jakob Nordström

jakobn@kth.se

Royal Institute of Technology (KTH) Stockholm, Sweden

"New Directions in Proof Complexity" April 10-13, 2006 Isaac Newton Institute, Cambridge

Executive Summary of Talk (1 / 2)

Resolution: proof system for refuting CNF formulas Perhaps *the* most studied system in proof complexity Also used in many real-world automated theorem provers

- Haken (1985): exponential lower bound on proof length (# clauses in a resolution proof)
- Ben-Sasson & Wigderson (1999): strong correlation between proof length and proof width (size of largest clause in proof)
- Results on width lead to question whether other complexity measures could yield interesting insights as well

Executive Summary of Talk (2 / 2)

- Esteban & Torán (1999): proof space (maximal # clauses in memory while verifying proof)
- Many lower bounds for space proven All turned out to match width bounds! Coincidence?
- Atserias & Dalmau (2003): space ≥ width constant for k-CNF formulas
- Problem left open: Do space and width coincide or not?

We resolve this question: separation of space and width

Outline

- Background
 - Definition of Resolution
 - Overview of Previous Work
- Pebble Games and Resolution
 - Pebble Games
 - Pebbling Contradictions
 - Resolution Refutations of Pebbling Contradictions
- A Separation of Space and Width
 - Interpreting Clauses as Pebbles
 - Many Pebbles Imply Many Clauses
 - The Induced Black-White Pebble Game
 - Putting It All Together
- Conclusion and Open Problems

Some Notation and Terminology

- Literal a: variable x or its negation \overline{x}
- Clause $C = a_1 \lor ... \lor a_k$: set of literals At most k literals: k-clause
- CNF formula F = C₁ ∧ . . . ∧ C_m: set of clauses k-CNF formula: CNF formula consisting of k-clauses (assume k fixed)
- F ⊨ D: semantical implication, α(F) true ⇒ α(D) true for all truth value assignments α
- $[n] = \{1, 2, ..., n\}$

Sequence of sets of clauses, or clause configurations, $\{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ such that $\mathbb{C}_0 = \emptyset$ and \mathbb{C}_t follows from \mathbb{C}_{t-1} by:

Download
$$\mathbb{C}_t = \mathbb{C}_{t-1} \cup \{C\}$$
 for clause $C \in F$ (axiom)

Erasure $\mathbb{C}_t = \mathbb{C}_{t-1} \setminus \{C\}$ for clause $C \in \mathbb{C}_{t-1}$

Inference $\mathbb{C}_t = \mathbb{C}_{t-1} \cup \{C \lor D\}$ for clause $C \lor D$ inferred from $C \lor x, D \lor \overline{x} \in \mathbb{C}_{t-1}$ by resolution rule

$$\frac{C \vee x \quad D \vee \overline{x}}{C \vee D}$$

Resolution refutation of F:

Derivation $\pi : F \vdash 0$ of empty clause 0 from F, i.e., $0 \in \mathbb{C}_7$


```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{\tau}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

\begin{array}{c} \textit{Download} \ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{\textit{C}\}\ \text{for clause}\ \textit{C}\in\textit{F}\ (\text{axiom}) \\ \textit{Erasure}\ \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{\textit{C}\}\ \text{for clause}\ \textit{C}\in\mathbb{C}_{t-1} \\ \textit{Inference}\ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{\textit{C}\lor\textit{D}\}\ \text{for clause}\ \textit{C}\lor\textit{D}\ \text{inferred} \end{array}
```

$$\frac{C \vee x \quad D \vee \overline{x}}{C \vee D}$$

Resolution refutation of *F*:

Derivation $\pi : F \vdash 0$ of empty clause 0 from F, i.e., $0 \in \mathbb{C}_7$

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{	au}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

Parabox{1.5}{$D$} by: Parabox{1.5}{$D$} for clause Parabox{1.5}{$C$} for clause Parabox{1.5}{$C
```

$$\frac{C \vee x \quad D \vee x}{C \vee D}$$

Resolution refutation of *F*:

Derivation $\pi : F \vdash 0$ of empty clause 0 from F, i.e., $0 \in \mathbb{C}_7$

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{\tau}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

\begin{array}{c} \textit{Download} & \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{\textit{C}\} \text{ for clause } \textit{C}\in\textit{F} \text{ (axiom)} \\ \textit{Erasure } & \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{\textit{C}\} \text{ for clause } \textit{C}\in\mathbb{C}_{t-1} \\ \textit{Inference } & \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{\textit{C}\lor\textit{D}\} \text{ for clause } \textit{C}\lor\textit{D} \text{ inferred } \\ \textit{from } \textit{C}\lor\textit{x},\textit{D}\lor\overline{\textit{x}}\in\mathbb{C}_{t-1} \text{ by resolution rule} \end{array}
```

$$\frac{C \vee x \quad D \vee \overline{x}}{C \vee D}$$

Resolution refutation of F: Derivation $\pi: F \vdash 0$ of empty clause 0 from F, i.e., $0 \in \mathbb{C}$.

Sequence of sets of clauses, or clause configurations, $\{\mathbb{C}_0,\dots,\mathbb{C}_{\tau}\}$ such that $\mathbb{C}_0=\emptyset$ and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: $Parabox{1.5}{$D$ ownload} \ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{C\} \ \text{for clause} \ C\in F \ (axiom) \ Erasure \ \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{C\} \ \text{for clause} \ C\in\mathbb{C}_{t-1} \ Inference \ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{C\vee D\} \ \text{for clause} \ C\vee D \ \text{inferred} \ \text{from} \ C\vee x, D\vee \overline{x}\in\mathbb{C}_{t-1} \ \text{by resolution rule} \$

$$\frac{C \vee x \quad D \vee \overline{x}}{C \vee D}$$

Resolution refutation of F:

Derivation $\pi: F \vdash 0$ of empty clause 0 from F, i.e., $0 \in \mathbb{C}_{\tau}$

Length, Width and Space

- Length $L(\pi)$ of resolution refutation $\pi : F \vdash 0$ # distinct clauses in all of π
- Width W(π) of resolution refutation π : F ⊢ 0
 # literals in largest clause in π
- Space $Sp(\pi)$ of resolution refutation $\pi : F \vdash 0$ # clauses in largest clause configuration $\mathbb{C}_t \in \pi$

Length, Width and Space of Refuting F

Length of refuting F is

$$L(F \vdash 0) = \min_{\pi: F \vdash 0} \{L(\pi)\}$$

Width of refuting F is

$$W(F \vdash 0) = \min_{\pi: F \vdash 0} \{W(\pi)\}$$

Space of refuting F is

$$Sp(F \vdash 0) = \min_{\pi: F \vdash 0} \{Sp(\pi)\}$$

$$L(F \vdash 0) \leq 2^{(\# \text{ variables in } F + 1)}$$

$$W(F \vdash 0) \leq \# \text{ variables in } F$$

 $Sp(F \vdash 0) \leq min(\# variables in F, \# clauses in F) + \mathcal{O}(1)$

Cambridge, April 10-13, 2006

Length, Width and Space of Refuting F

Length of refuting F is

$$L(F \vdash 0) = \min_{\pi: F \vdash 0} \{L(\pi)\}$$

Width of refuting F is

$$W(F \vdash 0) = \min_{\pi: F \vdash 0} \{W(\pi)\}$$

Space of refuting F is

$$Sp(F \vdash 0) = \min_{\pi: F \vdash 0} \{Sp(\pi)\}$$

$$L(F \vdash 0) \leq 2^{(\# \text{ variables in } F + 1)}$$

$$W(F \vdash 0) \leq \# \text{ variables in } F$$

$$Sp(F \vdash 0) \leq min(\# variables in F, \# clauses in F) + \mathcal{O}(1)$$

Connection between Length and Width

A resolution proof in small width is necessarily short. For a proof in width w, $(2 \cdot |Vars(F)|)^w$ is an upper bound on the number of possible clauses.

There is a kind of converse to this:

Theorem (Ben-Sasson & Wigderson 1999)

The width of refuting a k-CNF formula F over n variables is

$$W(F \vdash 0) = \mathcal{O}\left(\sqrt{n\log L(F \vdash 0)}\right).$$

This bound on width in terms of length is essentially optimal (Bonet & Galesi 1999).

Connection between Space and Width

All previously shown lower bounds on space coincide with lower bounds on width—true in general?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that

$$Sp(F \vdash 0) \geq W(F \vdash 0) - \mathcal{O}(1).$$

But do space and width always coincide?

Or is there a k-CNF formula family $\{F_n\}_{n=1}^{\infty}$ such that $Sp(F_n \vdash 0) = \omega(W(F_n \vdash 0))$?

Pebbles Games on Graphs

One-player game played on directed acyclic graphs (DAGs)

- Devised for studying programming languages and compiler construction
- Have found a variety of applications in complexity theory

Conventions

- V(G) denote the vertices of a DAG G
- vertices with indegree 0 are sources
- vertices with outdegree 0 are targets

This talk: Only consider DAGs with single target *z* and all non-source vertices having indegree 2

Formal Definition of Pebble Game

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble can be placed on v.
- A black pebble can always be removed from any vertex.
- A white pebble can always be placed on any empty vertex.
- If all immediate predecessors of a white-pebbled vertex v are pebbled, the white pebble on v can be removed.

Goal: reach $\mathbb{P}_{\tau} = (\{z\}, \emptyset)$ using few pebbles

Formal Definition of Pebble Game

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble can be placed on v.
- A black pebble can always be removed from any vertex.
- A white pebble can always be placed on any empty vertex.
- If all immediate predecessors of a white-pebbled vertex v are pebbled, the white pebble on v can be removed.

Goal: reach $\mathbb{P}_{\tau} = (\{z\}, \emptyset)$ using few pebbles

Formal Definition of Pebble Game

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble can be placed on v.
- A black pebble can always be removed from any vertex.
- A white pebble can always be placed on any empty vertex.
- If all immediate predecessors of a white-pebbled vertex v are pebbled, the white pebble on v can be removed.

Goal: reach $\mathbb{P}_{\tau} = (\{z\}, \emptyset)$ using few pebbles

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, Ø)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, Ø)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching $(\{z\},\emptyset)$ using black pebbles only $(W_t = \emptyset \text{ for all } t)$

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, Ø)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, Ø)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z},∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z},∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching $(\{z\},\emptyset)$ using black pebbles only $(W_t = \emptyset \text{ for all } t)$

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z},∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ({z}, ∅)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z},∅) using black pebbles only (W_t = ∅ for all t)

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ($\{z\},\emptyset$)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

Pebbling Price of Binary Trees

Let T_h denote complete binary tree of height h considered as DAG with edges directed towards root

• Pebbling price of T_h is

$$Peb(T_h) = h + 2$$

Black-white pebbling price of T_h is

$$BW$$
-Peb $(T_h) = \left\lfloor \frac{h}{2} \right\rfloor + 3 = \Omega(h)$

(Lengauer & Tarjan 1980)

Definition of Pebbling Contradiction

Pebbling contradiction: CNF formula encoding pebble game on DAG *G* with sources *S*, unique target *z* and all non-source vertices having indegree 2

Associate *d* variables v_1, \ldots, v_d with every vertex $v \in V(G)$

The dth degree pebbling contradiction Peb_G^d over G is the conjunction of the following clauses:

- $\bigvee_{i=1}^{d} s_i$ for all $s \in S$ (source axioms)
- $\overline{u}_i \vee \overline{v}_j \vee \bigvee_{l=1}^d w_l$ for all $i, j \in [d]$ and all $w \in V(G) \setminus S$, where u, v are the two predecessors of w (pebbling axioms)
- \overline{z}_i for all $i \in [d]$ (target axioms)

Pebbling Contradiction $Peb_{\Pi_2}^2$ for Pyramid of Height 2

Pebbling Contradiction $Peb_{\Pi_2}^2$ for Pyramid of Height 2

Pebbling Contradiction $Peb_{\Pi_2}^2$ for Pyramid of Height 2

Pebbling Contradictions Easy w.r.t. Length and Width

 Peb_G^d is an unsatisfiable (2+d)-CNF formula with

- $d \cdot |V(G)|$ variables
- $\mathcal{O}(d^2 \cdot |V(G)|)$ clauses

Can be refuted by deriving $\bigvee_{i=1}^{d} v_i$ for all $v \in V(G)$ inductively in topological order and resolving with target axioms \overline{z}_i , $i \in [d]$

It follows that

$$\bullet L(F \vdash 0) = \mathcal{O}(d^2 \cdot |V(G)|)$$

$$\bullet W(F \vdash 0) = \mathcal{O}(d)$$

(Ben-Sasson et al. 2000)

What about Pebbling Contradictions and Space?

Upper bounds:

- Arbitrary DAGs G optimal black pebbling of G + proof from previous slide: $Sp(Peb_G^d \vdash 0) \leq Peb(G) + \mathcal{O}(1)$
- Binary trees T_h improvement by Esteban & Torán (2003): $Sp(Peb_{T_h}^2 \vdash 0) \leq \left\lceil \frac{2h+1}{3} \right\rceil + 3 = \frac{2}{3}Peb(T_h) + \mathcal{O}(1)$
- Only one variable / vertex
 Ben-Sasson (2002): $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$ for arbitrary G

No lower bounds on space for $d \ge 2$ previously known

Interpreting Clauses as Pebbles Many Pebbles Imply Many Clauses The Induced Black-White Pebble Game Putting It All Together

Our Results

Theorem

Let $Peb_{T_h}^d$ denote the pebbling contradiction of degree $d \geq 2$ defined over the complete binary tree of height h. Then the space of refuting $Peb_{T_h}^d$ in resolution is $Sp(Peb_{T_h}^d \vdash 0) = \Theta(h)$.

Corollary

For all $k \ge 4$, there is a family of k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Proof Idea

Prove lower bounds on space of $\pi : Peb_G^d \vdash 0$ by

- Interpreting clause configurations $\mathbb{C}_t \in \pi$ in terms of black and white pebbles on G
- ② Showing that if \mathbb{C}_t induces N black and white pebbles it contains at least N clauses (if $d \geq 2$)
- **3** Establishing that $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ induces black-white pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_\tau\}$ (works only for binary trees T_h)

Then some $\mathbb{C}_t \in \pi$ must induce $BW ext{-}Peb(T_h)$ pebbles $|\mathbb{C}_t| \geq BW ext{-}Peb(T_h) = \Omega(h)$ \exists $Sp(Peb_{T_h}^d \vdash 0) = \Omega(h)$

Proof Idea

Prove lower bounds on space of $\pi : Peb_G^d \vdash 0$ by

- Interpreting clause configurations $\mathbb{C}_t \in \pi$ in terms of black and white pebbles on G
- ② Showing that if \mathbb{C}_t induces N black and white pebbles it contains at least N clauses (if $d \ge 2$)
- **3** Establishing that $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ induces black-white pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_\tau\}$ (works only for binary trees T_h)

Then some $\mathbb{C}_t \in \pi$ must induce $BW\text{-}Peb(T_h)$ pebbles

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Empty start configuration

Source

١.	P_1
2	~

n

Source Source q_1

3. r_1 4.

Source S_1 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**

8. \overline{Z}_1 Target

 p_1

Download axiom 1: p_1

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

 p_1

Download axiom 1: p₁

Source

- p_1
- 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**

8. \overline{Z}_1 Target

Download axiom 2: q_1

- 1. p_1 Source 2. q_1 Source
- $\begin{array}{ccc} 2. & q_1 & \text{Source} \\ 3. & r_1 & \text{Source} \end{array}$
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

q.

Download axiom 2: q_1

١.	ρ_1	Source
2.	q_1	Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling
6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7.
$$\overline{u}_1 \lor \overline{v}_1 \lor v_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{bmatrix}
p_1 \\
q_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1
\end{bmatrix}$$

Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- 1. p_1 Source 2. q_1 Source
- $\begin{array}{ccc} 2. & q_1 & \text{Source} \\ 3. & r_1 & \text{Source} \end{array}$
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{array}{c|c} p_1 \\ q_1 \\ \overline{p}_1 \vee \overline{q}_1 \vee u_1 \end{array}$$

Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$\begin{bmatrix}
p_1 \\
q_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1
\end{bmatrix}$$

Infer
$$\overline{q}_1 \lor u_1$$
 from p_1 and $\overline{p}_1 \lor \overline{q}_1 \lor u_1$

1.
$$p_1$$
 Source Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{array}{c} p_1 \\ q_1 \\ \overline{p}_1 \vee \overline{q}_1 \vee u_1 \\ \overline{q}_1 \vee u_1 \end{array}$$

Infer
$$\overline{q}_1 \lor u_1$$
 from p_1 and $\overline{p}_1 \lor \overline{q}_1 \lor u_1$

- p_1
- Source Source q_1
- 3. r_1 4. S_1

- Source Source
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**
- 8. \overline{Z}_1 Target

$$\begin{array}{l}
\rho_1 \\
q_1 \\
\overline{\rho}_1 \vee \overline{q}_1 \vee u_1 \\
\overline{q}_1 \vee u_1
\end{array}$$

Infer
$$\overline{q}_1 \lor u_1$$
 from p_1 and $\overline{p}_1 \lor \overline{q}_1 \lor u_1$

- 1. *p*₁
 - 2. q_1 Source
- 3. *r*₁ 4. *s*₁

Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

Erase clause p₁

- 1. p_1 Source
- 2. q_1 Source Source
- 3. r_1 Source 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$\begin{array}{l}
q_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1 \\
\overline{q}_1 \vee u_1
\end{array}$$

Erase clause p₁

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{array}{l}
q_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1 \\
\overline{q}_1 \vee u_1
\end{array}$$

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- 1. p_1 Source
- 2. q_1 Source Source
- 3. r_1 Source 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$\frac{q_1}{\overline{q}_1} \vee u_1$$

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Source

- p_1
- 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\frac{q_1}{\overline{q}_1} \vee u_1$$

Infer u₁ from q_1 and $\overline{q}_1 \vee u_1$

- 1. *p*₁
- 2. *q*₁
- 3. *r*₁
- 4. *s*₁
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. *Z*₁

- Source Source
- Source
- Source Pebbling
- Pebbling
- Pebbling
- Target

Infer u_1 from q_1 and $\overline{q}_1 \vee u_1$

- 1. *p*₁
- 2. q₁
- 3. *r*₁
- 4. s_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. *Z*₁

Source Source

Source

Source

Pebbling Pebbling

Pebbling

Target

Infer u_1 from q_1 and $\overline{q}_1 \lor u_1$

- p_1
- 2. Source q_1
- 3. r_1 4. S_1

Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

$$\frac{q_1}{\overline{q}_1} \lor u_1$$
 u_1

Erase clause q1

- p_1
- 2. Source q_1
- 3. r_1 4. S_1

Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

Erase clause q₁

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ Pebbling

8. \overline{z}_1 Target

$$q_1 \lor u_1$$
 u_1

Erase clause $\overline{q}_1 \vee u_1$

1. *p*₁ 2. *q*₁ Source Source

3. r_1

Source

4. s₁

Source Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. *z*₁

Target

 u_1

Erase clause $\overline{q}_1 \vee u_1$

 p_1

*r*₁

 S_1

- Source 2. Source q_1
- 3. 4.

8.

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - \overline{Z}_1

Pebbling Target

Download axiom 3: r_1

Source p_1

2. Source q_1

3. Source r_1

4. S_1 Source 5. Pebbling

 $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**

8. \overline{Z}_1 Target

Download axiom 3: r_1

- 1. *p*₁
- 2. q_1
- 3. *r*₁
- 4.
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Source Source

Source

Source

Pebbling Pebbling

Pebbling

Target

71 1 51

Download axiom 4: s₁

- 1. p_1 Source 2. q_1 Source
- 2. q_1 Source 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling Target

Download axiom 4: s₁

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 $\begin{bmatrix}
u_1 \\
r_1 \\
s_1 \\
\overline{r}_1 \vee \overline{s}_1 \vee v_1
\end{bmatrix}$

Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1.	p_1	Source
2.	q_1	Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling
6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8. \overline{z}_1 Target

$$\begin{bmatrix}
u_1 \\
r_1 \\
s_1 \\
\overline{r}_1 \vee \overline{s}_1 \vee v_1
\end{bmatrix}$$

Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\begin{bmatrix} u_1 \\ r_1 \\ s_1 \\ \overline{r}_1 \vee \overline{s}_1 \vee v_1 \end{bmatrix}$$

Infer $\overline{s}_1 \vee v_1$ from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1.
$$p_1$$
 Source 2. q_1 Source

$$3. r_1 \qquad \qquad \text{Source}$$

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{array}{c|c} u_1 \\ r_1 \\ \hline s_1 \\ \hline r_1 \lor \overline{s}_1 \lor v_1 \\ \hline \overline{s}_1 \lor v_4 \\ \end{array}$$

Infer
$$\overline{s}_1 \vee v_1$$
 from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$\begin{array}{c|c} U_1 \\ r_1 \\ S_1 \\ \hline r_1 \lor \overline{S}_1 \lor V_1 \\ \hline \overline{S}_1 \lor V_4 \end{array}$$

Infer $\overline{s}_1 \vee v_1$ from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Ι.	ρ_1	Source
2.	<i>Q</i> ₁	Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling 8. \overline{z}_1 Target

$$\begin{bmatrix} U_1 \\ r_1 \\ S_1 \\ \overline{r}_1 \vee \overline{s}_1 \vee v_1 \\ \overline{s}_1 \vee v_1 \end{bmatrix}$$

Erase clause r₁

- p_1
- Source q_1
- 3. r_1 4. S_1

Source Source

Source

- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**

8. \overline{Z}_1 Target

Erase clause r₁

- 1. p_1 Source
- 2. q_1 Source
- 3. r_1 Source 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8.
$$\overline{z}_1$$
 Target

$$u_1 \\ s_1 \\ \overline{r}_1 \vee \overline{s}_1 \vee v_1 \\ \overline{s}_1 \vee v_1$$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- **Pebbling**

8. \overline{Z}_1 Target

$$u_1$$
 s_1
 $\overline{s}_1 \lor v_1$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source 4. s_1 Source
- 4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$U_1$$
 S_1
 $\overline{S}_1 \lor V_1$

Infer v_1 from s_1 and $\overline{s}_1 \vee v_1$

Source

- p_1 2.
- Source q_1 3. Source r_1
- 4. S_1

- Source Pebbling
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\begin{array}{c|c} u_1 \\ s_1 \\ \hline \overline{s}_1 \lor v_1 \\ \hline v_1 \end{array}$$

Infer v₁ from s_1 and $\overline{s}_1 \vee v_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**

8. \overline{Z}_1 Target

- Source p_1 2.
- Source q_1 3. Source r_1
- 4. S_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{Z}_1

$$\begin{bmatrix} u_1 \\ \mathbf{s_1} \\ \overline{\mathbf{s}}_1 \vee v_1 \\ v_1 \end{bmatrix}$$

Erase clause s1

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**
- 8. \overline{Z}_1
- Target

$$\frac{u_1}{\overline{s}_1} \lor v_1$$

Erase clause s₁

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\begin{array}{c|c} u_1 \\ \hline \overline{s}_1 \lor v_1 \\ v_1 \end{array}$$

Erase clause $\overline{s}_1 \vee v_1$

- p_1
- 2. Source q_1
- 3. r_1 4. S_1

Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling **Pebbling**
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

8. \overline{Z}_1 Target

 U_1 V_1

Erase clause $\overline{s}_1 \vee v_1$

Ι.	P_1	Source
2.	q_1	Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebblin

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{array}{c|c}
u_1 \\
v_1 \\
\overline{u}_1 \vee \overline{v}_1 \vee z_1
\end{array}$$

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Ι.	p_1	Source
2	CI4	Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source
5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\begin{array}{cc}
u_1 \\
v_1 \\
\overline{u}_1 \vee \overline{v}_1 \vee z_1
\end{array}$$

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source 4. s_1 Source
- 4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

Infer $\overline{v}_1 \lor z_1$ from u_1 and $\overline{u}_1 \lor \overline{v}_1 \lor z_1$

- 1. p_1 Source 2. q_1 Source
- 3. r_1 Source 4. s_1 Source
- 4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$\begin{bmatrix} u_1 \\ v_1 \\ \overline{u}_1 \vee \overline{v}_1 \vee z_1 \\ \overline{v}_1 \vee z_1 \end{bmatrix}$$

Infer $\overline{v}_1 \lor z_1$ from u_1 and $\overline{u}_1 \lor \overline{v}_1 \lor z_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4.

 S_1

- Source Source
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$u_1 \\ v_1 \\ \overline{u}_1 \vee \overline{v}_1 \vee z_1 \\ \overline{v}_1 \vee z_1$$

Infer
$$\overline{v}_1 \lor z_1$$
 from u_1 and $\overline{u}_1 \lor \overline{v}_1 \lor z_1$

- p_1
- 2. Source q_1
- 3. r_1 4. S_1
- Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**

8. \overline{Z}_1 Target

Erase clause u1

- p_1
- Source Source q_1
- 3. r_1

4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\begin{array}{c}
v_1 \\
\overline{u}_1 \vee \overline{v}_1 \vee z_1 \\
\overline{v}_1 \vee z_1
\end{array}$$

Erase clause u₁

- 1. p_1 Source
- 2. q_1 Source
- 3. r_1 Source
- 4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

$$\begin{bmatrix}
v_1 \\
\overline{v}_1 \lor \overline{v}_1 \lor z_1 \\
\overline{v}_1 \lor z_1
\end{bmatrix}$$

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Source

- 1. *p*₁
- 2. q_1 Source
- 3. *r*₁ 4. *s*₁

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ P 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ P
 - Pebbling

8. \overline{z}_1

$$\frac{v_1}{\overline{v}_1} \vee z_1$$

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

2. q_1 Source Source

3. r_1 Source 4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\frac{v_1}{\overline{v}_1} \lor z_1$$

Infer z_1 from v_1 and $\overline{v}_1 \vee z_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\frac{V_1}{\overline{V}_1} \lor Z_1$$
 $\frac{Z_1}{\overline{V}_1}$

Infer Z₁ from v_1 and $\overline{v}_1 \vee z_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\frac{v_1}{\overline{v}_1} \lor z_1$$
 z_1

Infer z₁ from v_1 and $\overline{v}_1 \vee z_1$

- p_1
- 2. Source q_1
- 3. r_1

4. S_1 Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling **Pebbling**
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1 Target

Erase clause v₁

- p_1
- Source 2. Source q_1
- 3. r_1

Source Source

4. S_1 5.

- Pebbling
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
 - Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- **Pebbling**

8. \overline{Z}_1 Target

Erase clause v₁

1. *p*₁

Source Source

2. *q*₁ 3. *r*₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ 8. \overline{z}_1

Target

$$\overline{V}_1 \lor Z_1$$
 Z_1

Erase clause $\overline{v}_1 \vee z_1$

 p_1

Source

2. q_1

 r_1

Source Source

3. 4. S_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{Z}_1

Target

 Z_1

Erase clause $\overline{V}_1 \vee Z_1$

1. *p*₁ 2. *a*₁

Source Source

2. *q*₁ 3. *r*₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. Z₁

Target

∠1 <u>Z</u>1

Download axiom 8: \overline{z}_1

- 1. *p*₁
- 2. q_1 Source
- 3. *r*₁ 4. *s*₁

Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - Pebbling

8. \overline{z}_1

Target

∠1 Z₁

Download axiom 8: \overline{z}_1

1. *p*₁ 2. *a*₁ Source Source

2. *q*₁ 3. *r*₁

Source

4. S₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. <u>₹</u>1

Target

Infer 0 fror z_1 and \overline{z}_1

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

$$\overline{Z}_1$$
 \overline{Z}_1
 0

Infer 0 from z_1 and \overline{z}_1

Source

Source

- p_1
- 2. Source q_1
- 3. r_1
- 4. S_1 Source Pebbling
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

Infer 0 from z_1 and \overline{z}_1

Informal Description of Induced Pebbles

Intuition

 $\mathbb{C}_t \vDash \bigvee_{i=1}^d v_i \Leftrightarrow \mathsf{Black}$ pebble on v with no white pebbles below

Black pebble on v with white pebbles on W below \Leftrightarrow Single black pebble on v by assuming black pebbles on $W \Leftrightarrow \mathbb{C}_t \cup \{\bigvee_{i=1}^d w_i \mid w \in W\} \models \bigvee_{i=1}^d v_i \Leftrightarrow$

For d = 1, we would like to get clause configuration—pebble correspondence:

$$\mathbb{C}_{t} = \begin{bmatrix} \overline{u}_{1} \vee \overline{w}_{1} \vee z_{1} \\ \overline{p}_{1} \vee \overline{q}_{1} \vee r_{1} \\ v_{1} \end{bmatrix} \quad p($$

Induced Pebbles and Clause Configuration Size

- Formalizing this yields interpretation of clause configuration C_t derived from Peb_G^d in terms of pebbles on G
- Hope that resolution proof $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ will correspond to black-white pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ of G under this interpretation
- But to get lower bound on space from this we need to show that

 \mathbb{C}_t induces many pebbles \Downarrow \mathbb{C}_t contains many clauses

1. *p*₁ 2. *a*₁

Source Source

2. q_1 3. r_1

Source

4. s_1

Source

5. k

 $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling Target

8. \overline{z}_1

rgei

Empty start configuration

Source p_1

2. Source q_1

3. Source r_1

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$ **Pebbling** 8.

 \overline{Z}_1 Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

 p_1

Source Source

2. q_1 3. r_1

Source

4. S_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$ \overline{Z}_1 8.

Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. p_1 2. q_1

Source Source

3. r_1

Source

4. s₁

Source Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1 \overline{r}_1 \vee \overline{s}_1 \vee v_1$$

Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. p_1 2. q_1

Source Source

3. r_1

Source

4. s_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

 $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

 $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

8. \overline{Z}_1

Target

Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. *p*₁ 2. *q*₁

Source Source

3. r₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$
 from $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ and $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ Pebbling

8. \overline{z}_1 Target

Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$
 from $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ and $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. *p*₁ 2. *q*₁

Source Source

2. *q* 3. *r*₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling Pebbling

8. \overline{Z}_1

Target

$$\overline{u}_1 \lor \overline{v}_1 \lor z_1
\overline{r}_1 \lor \overline{s}_1 \lor v_1
\overline{r}_1 \lor \overline{s}_1 \lor \overline{u}_1 \lor z_1$$

Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$
 from $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ and $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\frac{\overline{U}_1 \vee \overline{V}_1 \vee Z_1}{\overline{r}_1 \vee \overline{s}_1 \vee V_1}
\overline{r}_1 \vee \overline{s}_1 \vee \overline{U}_1 \vee Z_1$$

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Source

2. Source q_1

3. Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$ Pebbling

8. \overline{Z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee v_1
\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\frac{\overline{r}_1 \vee \overline{s}_1 \vee v_1}{\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1}$$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1.
$$p_1$$
 Source

2. Source q_1

3. Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$ Pebbling

8. \overline{Z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee u_1$$

Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee u_1$$

Infer
$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ and $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\begin{array}{l}
\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1
\end{array}$$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Infer $\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$ from $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ and $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ Pebbling 8. \overline{z}_1 Target

$$\frac{\overline{p}_1 \vee \overline{q}_1 \vee u_1}{\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1}$$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

 $\frac{\overline{p}_1 \vee \overline{q}_1 \vee u_1}{\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1}$

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1. <i>p</i> ₁	Source
--------------------------	--------

2. q_1 Source Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Download axiom 1: p₁

1.
$$p_1$$
 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

$$p_1$$

Download axiom 1: p_1

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Infer
$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1.
$$p_1$$
 Source 2. q_1 Source

2.
$$q_1$$
 Source Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1 \\
p_1 \\
\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

Infer
$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 p_1
 $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

Infer
$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

Source

2. Source q_1

3. Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{Z}_1 Target

$$\frac{\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1}{p_1}$$

$$\frac{\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1}{p_1}$$

Erase clause
$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

 p_1

Source Source

2. *q*₁ 3. *r*₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ 8. \overline{z}_1 Pebbling Target

 $\overline{q}_1 \lor \overline{r}_1 \lor \overline{s}_1 \lor z_1$

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\frac{\overset{\boldsymbol{\rho}}{1}}{\overline{q}_1} \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

Erase clause p₁

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Erase clause p₁

Source

1. p_1 Source

2. *q*₁

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

Download axiom 2: q1

1.
$$\rho_1$$
 2. a_1

Source Source

 q_1 3. r_1

Source

4. S_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$ \overline{Z}_1

Pebbling Target

8.

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

$$q_1$$

Download axiom 2: q_1

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \lor \overline{v}_1 \lor z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

$$q_1$$

Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from q_1 and $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1
q_1
\overline{r}_1 \vee \overline{s}_1 \vee z_1$$

Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from q_1 and $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

Source Source

2.
$$q_1$$
 3. r_1

Source

Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$

Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$

Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$

 $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$ q_1 $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

Pebbling

8.
$$\overline{z}_1$$

Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from q_1 and $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

2. q_1 Source 3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\frac{\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1}{q_1} \\
\overline{r}_1 \vee \overline{s}_1 \vee z_1$$

Erase clause $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

ρ₁
 q₁

Source Source

3. r_1

Source

4. s₁

Source Pebbling

5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{z}_1

Target

 $rac{q_1}{\overline{r}_1 \vee \overline{s}_1 \vee z_1}$

Erase clause q₁

 p_1

Source Source

2. q_1 3. r_1

Source

4. S_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ \overline{Z}_1

Target

8.

 $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

1. *p*₁ 2. *q*₁

Source Source

3. r-

Source

4. s_1

Source Pebbling

5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1

Download axiom 3: r_1

Source Source q_1

3. Source r_1

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 \overline{Z}_1 8. Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1

Download axiom 3: r_1

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. Z1

Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1

Infer
$$\overline{s}_1 \vee z_1$$
 from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1
 $\overline{s}_1 \vee z_1$

Infer
$$\overline{s}_1 \lor z_1$$
 from r_1 and $\overline{r}_1 \lor \overline{s}_1 \lor z_1$

Source Source

2.
$$q_1$$
 3. r_1

Source

Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$

Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$

Pebbling Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$

Target

8.
$$\overline{z}_1$$

rarget

$$\begin{array}{c}
\overline{r}_1 \vee \overline{s}_1 \vee z_1 \\
\underline{r}_1 \\
\overline{s}_1 \vee z_1
\end{array}$$

Infer
$$\overline{s}_1 \lor z_1$$
 from r_1 and $\overline{r}_1 \lor \overline{s}_1 \lor z_1$

*p*₁
 *a*₁

Source Source

2. *q*₁ 3. *r*₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{Z}_1

Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1
 $\overline{s}_1 \vee z_1$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

1. *p*₁ 2. *a*₁

Source Source

2. *q*₁ 3. *r*₁

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ 8. \overline{z}_1

Target

 r_1 $\overline{s}_1 \lor z_1$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

 p_1 2. q_1 Source Source

3. r_1 Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ \overline{Z}_1

Target

8.

 p_1 2. q_1 Source Source

3. r_1

Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

 \overline{Z}_1 8.

Target

$$\overline{s}_1 \vee z_1$$

Erase clause r₁

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. S_1

Source Pebbling

5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling Target

8. \overline{z}_1

Target

Download axiom 4: s₁

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

$$\overline{S}_1 \vee Z_1$$

 S_1

Download axiom 4: s₁

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{z}_1

Target

 p_1 2. q_1 Source Source

3. r_1 Source

4. S_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Target

 \overline{Z}_1 8.

Infer z₁ from s_1 and $\overline{s}_1 \vee z_1$

1. *p*₁ 2. *a*₁

Source Source

2. q_1 3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Target

8. \overline{z}_1

... 9 ° °

 s_1

 Z_1

Infer
$$z_1$$
 from s_1 and $\overline{s}_1 \vee z_1$

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{Z}_1

Target

$$\overline{s}_1 \vee z_1$$

 S_1

 Z_1

Erase clause $\overline{s}_1 \vee z_1$

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s_1

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling Target

8. \overline{z}_1 Target

S-Z-

Erase clause $\overline{s}_1 \vee z_1$

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ 8. \overline{z}_1

Target

s

Erase clause s₁

Source p_1

2. Source q_1

3. Source r_1

4. S_1 Source 5.

 $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling** 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 \overline{Z}_1 8. Target

*Z*₁

Erase clause s₁

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s_1

Source Pebbling

5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

Download axiom 8: \overline{z}_1

 p_1 2. q_1 Source Source

3. r_1 Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling Target

 \overline{Z}_1 8.

Download axiom 8: \overline{z}_1

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

Infer 0 from \overline{z}_1 and z_1

 p_1 2. q_1 Source Source

3. r_1 Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Target

 \overline{Z}_1 8.

Infer 0 from \overline{z}_1 and z_1

 p_1 2. q_1 Source Source

3. r_1 Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ \overline{Z}_1 8.

Target

Infer 0 from \overline{z}_1 and z_1

But Many Pebbles \Rightarrow Many Clause for d > 1

This "top-down" proof in space 3 generalizes to any DAG G

- In terms of our induced pebble configurations:
 white pebbles are free for d = 1!
- In a sense, this is exactly why $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$
- But for d > 1 variables per vertex we can prove that # clauses ≥ # induced pebbles

- Erasures can lead to large blocks of pebbles suddenly disappearing—need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex
- White pebbles can always be removed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Backward" pebbling moves possible—white pebbles may slide upwards and black pebbles slide downwards (reversal moves)

- Erasures can lead to large blocks of pebbles suddenly disappearing—need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex
- White pebbles can always be removed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Backward" pebbling moves possible—white pebbles may slide upwards and black pebbles slide downwards (reversal moves)

- Erasures can lead to large blocks of pebbles suddenly disappearing—need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex
- White pebbles can always be removed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Backward" pebbling moves possible—white pebbles may slide upwards and black pebbles slide downwards (reversal moves)

- Erasures can lead to large blocks of pebbles suddenly disappearing—need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex
- White pebbles can always be removed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Backward" pebbling moves possible—white pebbles may slide upwards and black pebbles slide downwards (reversal moves)

Pebbling Price in Labelled Pebble Game

Reversal moves might seem harmless

Move pebbles "in wrong direction" \Rightarrow should be possible to eliminate without affecting pebbling price

- This intuition is wrong—reversal rule is fatal
- Destroys pebbling price for general graphs (for instance for pyramids)
- But for binary trees T_h we still have a pebbling price $\Omega(h)$

Pebbling Price in Labelled Pebble Game

Reversal moves might seem harmless

Move pebbles "in wrong direction" \Rightarrow should be possible to eliminate without affecting pebbling price

- This intuition is wrong—reversal rule is fatal
- Destroys pebbling price for general graphs (for instance for pyramids)

• But for binary trees T_h we still have a pebbling price $\Omega(h)$

Main Theorem

Theorem

The space of refuting the pebbling contradiction of degree $d \ge 2$ over the complete binary tree of height h in resolution is $Sp(Peb_{T_h}^d \vdash 0) = \Theta(h)$.

Proof sketch.

- Upper bound easy (use "black-pebbling" resolution proof)
- For lower bound, let $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ be refutation of $Peb^d_{T_b}$ in minimal space
- Then there is some $\mathbb{C}_t \in \pi$ that induces $\Omega(h)$ pebbles in T_h
- Thus $Sp(\pi) \ge |\mathbb{C}_t| \ge \#$ pebbles induced by $\mathbb{C}_t = \Omega(h)$.

A Separation of Space and Width in Resolution

Corollary

For all $k \ge 4$, there is a family of k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Proof.

We know $W(Peb_G^d \vdash 0) = \mathcal{O}(d)$ for all G.

Fix $d \ge 2$, let $F_n = Peb_{T_h}^d$ for $h = \lfloor \log(n+1) \rfloor$ and use the Main Theorem.

Conclusion

- First lower bound on space in resolution which is not the consequence of a lower bound on width but instead separates the two measures
- Answers an open question in several previous papers
- We believe that it should be possible to strengthen this result in (at least) two ways

Open Problems

Generalize to arbitrary DAGs

Conjecture 1

For G an arbitrary DAG and $d \ge 2$ it holds that $Sp(Peb_G^d \vdash 0) = \Omega(BW-Peb(G))$.

Would yield almost optimal separation $\Omega(n/\log n)$ between space and width—best conceivable is $\Omega(n)$

② Generalize to k-DNF resolution proof systems $\mathfrak{Res}(k)$ and prove space hierarchy

Conjecture 2

$$Sp_{\mathfrak{Res}(k+1)}ig(Peb_{T_h}^{k+1}\vdash 0ig)=\mathcal{O}(1) \ \mathrm{but} \ Sp_{\mathfrak{Res}(k)}ig(Peb_{T_h}^{k+1}\vdash 0ig)=\Omega(h).$$

Open Problems

Generalize to arbitrary DAGs

Conjecture 1

For G an arbitrary DAG and $d \ge 2$ it holds that $Sp(Peb_G^d \vdash 0) = \Omega(BW-Peb(G))$.

Would yield almost optimal separation $\Omega(n/\log n)$ between space and width—best conceivable is $\Omega(n)$

② Generalize to k-DNF resolution proof systems $\Re \mathfrak{es}(k)$ and prove space hierarchy

Conjecture 2

$$Sp_{\mathfrak{Res}(k+1)}ig(Peb_{T_h}^{k+1}dash0ig)=\mathcal{O}(1) ext{ but } Sp_{\mathfrak{Res}(k)}ig(Peb_{T_h}^{k+1}dash0ig)=\Omega(h).$$

References

Full-length version of this paper published as ECCC Technical Report TR05-066

Available at

eccc.uni-trier.de/eccc-reports/2005/TR05-066/

Extended abstract to appear in STOC '06

Thank you for your attention!