
Certified MaxSAT Preprocessing

Hannes Ihalainen1 Andy Oertel2,3 Yong Kiam Tan4 Jeremias Berg1

Matti Järvisalo1 Magnus O. Myreen5 Jakob Nordström3,2

1University of Helsinki 2Lund University 3University of Copenhagen

4Institute for Infocomm Research (I2R), A*STAR 5Chalmers University of Technology

15th Pragmatics of SAT International Workshop
Pune, India

August 20, 2024

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 1 / 20



Our work on one slide

Success-story of SAT solving:
▶ Solvers are fast
▶ And they produce proofs

Certifying SAT-based optimization has remained a challenge
▶ Many proposals, e.g., [BLM07, LNOR11, MM11, MIB+19, FMSV20, PCH20, PCH21]
▶ Proof logging for state-of-the-art MaxSAT only very recently [VDB22, BBN+23, BBN+24]
▶ And only for main solver algorithm after preprocessing

Contribution of this work:
▶ Proof logging for standalone MaxSAT preprocessor
▶ Proofs for equioptimality (and equisatisfiability) with VERIPB
▶ Formally verified checker CAKEPB for the proofs

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 2 / 20



Our work on one slide

Success-story of SAT solving:
▶ Solvers are fast
▶ And they produce proofs

Certifying SAT-based optimization has remained a challenge
▶ Many proposals, e.g., [BLM07, LNOR11, MM11, MIB+19, FMSV20, PCH20, PCH21]
▶ Proof logging for state-of-the-art MaxSAT only very recently [VDB22, BBN+23, BBN+24]
▶ And only for main solver algorithm after preprocessing

Contribution of this work:
▶ Proof logging for standalone MaxSAT preprocessor
▶ Proofs for equioptimality (and equisatisfiability) with VERIPB
▶ Formally verified checker CAKEPB for the proofs

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 2 / 20



Our work on one slide

Success-story of SAT solving:
▶ Solvers are fast
▶ And they produce proofs

Certifying SAT-based optimization has remained a challenge
▶ Many proposals, e.g., [BLM07, LNOR11, MM11, MIB+19, FMSV20, PCH20, PCH21]
▶ Proof logging for state-of-the-art MaxSAT only very recently [VDB22, BBN+23, BBN+24]
▶ And only for main solver algorithm after preprocessing

Contribution of this work:
▶ Proof logging for standalone MaxSAT preprocessor
▶ Proofs for equioptimality (and equisatisfiability) with VERIPB
▶ Formally verified checker CAKEPB for the proofs

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 2 / 20



Our contribution

Proof logging for standalone MaxSAT
preprocessor MAXPRE

▶ 15+ different preprocessing
techniques certified with VERIPB

Updated VERIPB proof format
▶ Support for equioptimality (and

equisatisfiability) proofs

Formal verification with CAKEPB
▶ HOL4 proof assistant
▶ CAKEML tools

Experimental evaluation

Backbones

Bounded Variable Elimination

Bounded Variable Addition

Failed Literals

Variable Instantiation

Equivalent Literal Detection

Blocked Clause EliminationSubsumption Elimination

Unit Propagation

Self-Subsuming Resolution

Hidden Tautology Elimination

Hidden Literal Elimination

Subsumed Literal Elimination

Binary Core Removal

TrimMaxSAT

Structure-Based Labeling

Hardening

Intrinsic At-most-ones

Subsumed Label Elimination

Generalized Subsumed Label Elimination

Label Matching

SAT-based and MaxSAT-specific preprocessing techniques certified

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 3 / 20



Our contribution

Proof logging for standalone MaxSAT
preprocessor MAXPRE

▶ 15+ different preprocessing
techniques certified with VERIPB

Updated VERIPB proof format
▶ Support for equioptimality (and

equisatisfiability) proofs

Formal verification with CAKEPB
▶ HOL4 proof assistant
▶ CAKEML tools

Experimental evaluation

Backbones

Bounded Variable Elimination

Bounded Variable Addition

Failed Literals

Variable Instantiation

Equivalent Literal Detection

Blocked Clause EliminationSubsumption Elimination

Unit Propagation

Self-Subsuming Resolution

Hidden Tautology Elimination

Hidden Literal Elimination

Subsumed Literal Elimination

Binary Core Removal

TrimMaxSAT

Structure-Based Labeling

Hardening

Intrinsic At-most-ones

Subsumed Label Elimination

Generalized Subsumed Label Elimination

Label Matching

SAT-based and MaxSAT-specific preprocessing techniques certified

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 3 / 20



Our contribution

Proof logging for standalone MaxSAT
preprocessor MAXPRE

▶ 15+ different preprocessing
techniques certified with VERIPB

Updated VERIPB proof format
▶ Support for equioptimality (and

equisatisfiability) proofs

Formal verification with CAKEPB
▶ HOL4 proof assistant
▶ CAKEML tools

Experimental evaluation

Backbones

Bounded Variable Elimination

Bounded Variable Addition

Failed Literals

Variable Instantiation

Equivalent Literal Detection

Blocked Clause EliminationSubsumption Elimination

Unit Propagation

Self-Subsuming Resolution

Hidden Tautology Elimination

Hidden Literal Elimination

Subsumed Literal Elimination

Binary Core Removal

TrimMaxSAT

Structure-Based Labeling

Hardening

Intrinsic At-most-ones

Subsumed Label Elimination

Generalized Subsumed Label Elimination

Label Matching

SAT-based and MaxSAT-specific preprocessing techniques certified

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 3 / 20



Our contribution

Proof logging for standalone MaxSAT
preprocessor MAXPRE

▶ 15+ different preprocessing
techniques certified with VERIPB

Updated VERIPB proof format
▶ Support for equioptimality (and

equisatisfiability) proofs

Formal verification with CAKEPB
▶ HOL4 proof assistant
▶ CAKEML tools

Experimental evaluation

Backbones

Bounded Variable Elimination

Bounded Variable Addition

Failed Literals

Variable Instantiation

Equivalent Literal Detection

Blocked Clause EliminationSubsumption Elimination

Unit Propagation

Self-Subsuming Resolution

Hidden Tautology Elimination

Hidden Literal Elimination

Subsumed Literal Elimination

Binary Core Removal

TrimMaxSAT

Structure-Based Labeling

Hardening

Intrinsic At-most-ones

Subsumed Label Elimination

Generalized Subsumed Label Elimination

Label Matching

SAT-based and MaxSAT-specific preprocessing techniques certified

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 3 / 20



Traditional view of maximum satisfiability (MaxSAT)
Weighted CNF (WCNF) representation

Hard clauses
Weighted soft clauses

▶ ⟨(x̄2 ∨ x̄3),2⟩: “incur cost 2 if (x̄2 ∨ x̄3) is falsified”

Example of WCNF instance
F = (FH ,FS)
FH = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1)}
FS = {⟨(x1),1⟩, ⟨(x̄2 ∨ x̄3),2⟩}

Conversion using blocking variables

Fb = (F b
H ,F

b
S)

F b
H = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}

F b
S = {⟨(x1),1⟩, ⟨(x̄4),2⟩}

Same as satisfying F b
H while minimizing objective O = x̄1 + 2x4

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 4 / 20



Traditional view of maximum satisfiability (MaxSAT)
Weighted CNF (WCNF) representation

Hard clauses
Weighted soft clauses

▶ ⟨(x̄2 ∨ x̄3),2⟩: “incur cost 2 if (x̄2 ∨ x̄3) is falsified”

Example of WCNF instance
F = (FH ,FS)
FH = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1)}
FS = {⟨(x1),1⟩, ⟨(x̄2 ∨ x̄3),2⟩}

Conversion using blocking variables

Fb = (F b
H ,F

b
S)

F b
H = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}

F b
S = {⟨(x1),1⟩, ⟨(x̄4),2⟩}

Same as satisfying F b
H while minimizing objective O = x̄1 + 2x4

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 4 / 20



Traditional view of maximum satisfiability (MaxSAT)
Weighted CNF (WCNF) representation

Hard clauses
Weighted soft clauses

▶ ⟨(x̄2 ∨ x̄3),2⟩: “incur cost 2 if (x̄2 ∨ x̄3) is falsified”

Example of WCNF instance
F = (FH ,FS)
FH = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1)}
FS = {⟨(x1),1⟩, ⟨(x̄2 ∨ x̄3),2⟩}

Conversion using blocking variables
Fb = (F b

H ,F
b
S)

F b
H = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}

F b
S = {⟨(x1),1⟩, ⟨(x̄4),2⟩}

Same as satisfying F b
H while minimizing objective O = x̄1 + 2x4

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 4 / 20



Traditional view of maximum satisfiability (MaxSAT)
Weighted CNF (WCNF) representation

Hard clauses
Weighted soft clauses

▶ ⟨(x̄2 ∨ x̄3),2⟩: “incur cost 2 if (x̄2 ∨ x̄3) is falsified”

Example of WCNF instance
F = (FH ,FS)
FH = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1)}
FS = {⟨(x1),1⟩, ⟨(x̄2 ∨ x̄3),2⟩}

Conversion using blocking variables
Fb = (F b

H ,F
b
S)

F b
H = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}

F b
S = {⟨(x1),1⟩, ⟨(x̄4),2⟩}

Same as satisfying F b
H while minimizing objective O = x̄1 + 2x4

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 4 / 20



Modern objective-centric view of MaxSAT

Optimization variant of SAT
▶ CNF formula F
▶ Linear objective function O

Minimize value of O subject to F ,
Example:
F = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}
O = x̄1 + 2x4

There are three solutions:
τ1 = {x1 → 1, x2 → 1, x3 → 1, x4 → 1}
τ2 = {x1 → 0, x2 → 0, x3 → 0, x4 → 1}
τ3 = {x1 → 0, x2 → 0, x3 → 0, x4 → 0}

O(τ1) = 2, O(τ2) = 3, O(τ3) = 1

Applications in:
▶ Planning
▶ Scheduling
▶ Configuration
▶ Artificial intelligence
▶ Combinatorial problems
▶ Verification and security
▶ Bioinformatics
▶ . . .

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 5 / 20



Modern objective-centric view of MaxSAT

Optimization variant of SAT
▶ CNF formula F
▶ Linear objective function O

Minimize value of O subject to F ,
Example:
F = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}
O = x̄1 + 2x4

There are three solutions:
τ1 = {x1 → 1, x2 → 1, x3 → 1, x4 → 1}

τ2 = {x1 → 0, x2 → 0, x3 → 0, x4 → 1}
τ3 = {x1 → 0, x2 → 0, x3 → 0, x4 → 0}

O(τ1) = 2,

O(τ2) = 3, O(τ3) = 1

Applications in:
▶ Planning
▶ Scheduling
▶ Configuration
▶ Artificial intelligence
▶ Combinatorial problems
▶ Verification and security
▶ Bioinformatics
▶ . . .

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 5 / 20



Modern objective-centric view of MaxSAT

Optimization variant of SAT
▶ CNF formula F
▶ Linear objective function O

Minimize value of O subject to F ,
Example:
F = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}
O = x̄1 + 2x̄4

There are three solutions:
τ1 = {x1 → 1, x2 → 1, x3 → 1, x4 → 1}
τ2 = {x1 → 0, x2 → 0, x3 → 0, x4 → 1}

τ3 = {x1 → 0, x2 → 0, x3 → 0, x4 → 0}

O(τ1) = 2, O(τ2) = 3,

O(τ3) = 1

Applications in:
▶ Planning
▶ Scheduling
▶ Configuration
▶ Artificial intelligence
▶ Combinatorial problems
▶ Verification and security
▶ Bioinformatics
▶ . . .

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 5 / 20



Modern objective-centric view of MaxSAT

Optimization variant of SAT
▶ CNF formula F
▶ Linear objective function O

Minimize value of O subject to F ,
Example:
F = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}
O = x̄1 + 2x4

There are three solutions:
τ1 = {x1 → 1, x2 → 1, x3 → 1, x4 → 1}
τ2 = {x1 → 0, x2 → 0, x3 → 0, x4 → 1}
τ3 = {x1 → 0, x2 → 0, x3 → 0, x4 → 0}

O(τ1) = 2, O(τ2) = 3, O(τ3) = 1

Applications in:
▶ Planning
▶ Scheduling
▶ Configuration
▶ Artificial intelligence
▶ Combinatorial problems
▶ Verification and security
▶ Bioinformatics
▶ . . .

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 5 / 20



MaxSAT preprocessing

Simplify instance before solving
▶ Remove clauses
▶ Introduce new clauses
▶ Change the objective function

In MaxSAT solvers or by a standalone preprocessor

Input instance FORIG Preprocessed instance F PREP

Optimal solution τ to F PREPOptimal solution τR to FORIG

Preprocess (preprocessor)

Solve (solver)

Reconstruct (preprocessor)

Certified preprocessing: Verify equioptimality of FORIG and F PREP

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 6 / 20



MaxSAT preprocessing

Simplify instance before solving
▶ Remove clauses
▶ Introduce new clauses
▶ Change the objective function

In MaxSAT solvers or by a standalone preprocessor

Input instance FORIG Preprocessed instance F PREP

Optimal solution τ to F PREPOptimal solution τR to FORIG

Preprocess (preprocessor)

Solve (solver)

Reconstruct (preprocessor)

Certified preprocessing: Verify equioptimality of FORIG and F PREP

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 6 / 20



MaxSAT preprocessing

Simplify instance before solving
▶ Remove clauses
▶ Introduce new clauses
▶ Change the objective function

In MaxSAT solvers or by a standalone preprocessor

Input instance FORIG Preprocessed instance F PREP

Optimal solution τ to F PREPOptimal solution τR to FORIG

Preprocess (preprocessor)

Solve (solver)

Reconstruct (preprocessor)

Certified preprocessing: Verify equioptimality of FORIG and F PREP

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 6 / 20



Concrete workflow of MAXPRE MaxSAT preprocessor

1 Reading of input
2 Preprocessing on WCNF
3 Conversion to objective-centric
4 Preprocessing on objective-centric
5 Removing constant from the objective function + renaming variables
6 Writing of output

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 7 / 20



How to verify equioptimality

Preprocessor

P
roofchecker

✓/✗

Input instance FORIG Output instance FPREP

Proof

Proof shows how to derive F PREP from FORIG

▶ Add constraints
▶ Remove constraints
▶ Change the objective function

Proof checker verifies that
▶ All steps are sound (optimal cost is preserved)
▶ In the end, the database is identical to the output instance

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 8 / 20



How to verify equioptimality

Preprocessor

P
roofchecker

✓/✗

Input instance FORIG Output instance FPREP

Proof

Proof shows how to derive F PREP from FORIG

▶ Add constraints
▶ Remove constraints
▶ Change the objective function

Proof checker verifies that
▶ All steps are sound (optimal cost is preserved)
▶ In the end, the database is identical to the output instance

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 8 / 20



How to verify equioptimality

Preprocessor

P
roofchecker

✓/✗

Input instance FORIG Output instance FPREP

Proof

Proof shows how to derive F PREP from FORIG

▶ Add constraints
▶ Remove constraints
▶ Change the objective function

Proof checker verifies that
▶ All steps are sound (optimal cost is preserved)
▶ In the end, the database is identical to the output instance

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 8 / 20



Which proof system to use for MaxSAT?
MaxSAT: Formula in CNF

▶ Use SAT proof logging techniques (DRAT)?
⋆ We also have the objective function

▶ Extend SAT proof systems to MaxSAT?
⋆ Difficult for actual solvers to produce proofs

Objective-function essentially pseudo-Boolean
▶ Use pseudo-Boolean proof system
▶ PB not too far from MaxSAT

VERIPB simple but powerful, recent successes:
▶ Advanced SAT techniques [GN21, GMNO22, BGMN23]
▶ MaxSAT solving [VDB22, BBN+23, BBN+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24]
▶ Subgraph solving [GMM+20, GMN20, GMM+24]
▶ Presolving for 0-1 integer linear programming [HOGN24]
▶ Dynamic programming and decision diagrams [DMM+24]

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 9 / 20



Which proof system to use for MaxSAT?
MaxSAT: Formula in CNF

▶ Use SAT proof logging techniques (DRAT)?
⋆ We also have the objective function

▶ Extend SAT proof systems to MaxSAT?
⋆ Difficult for actual solvers to produce proofs

Objective-function essentially pseudo-Boolean
▶ Use pseudo-Boolean proof system
▶ PB not too far from MaxSAT

VERIPB simple but powerful, recent successes:
▶ Advanced SAT techniques [GN21, GMNO22, BGMN23]
▶ MaxSAT solving [VDB22, BBN+23, BBN+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24]
▶ Subgraph solving [GMM+20, GMN20, GMM+24]
▶ Presolving for 0-1 integer linear programming [HOGN24]
▶ Dynamic programming and decision diagrams [DMM+24]

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 9 / 20



Which proof system to use for MaxSAT?
MaxSAT: Formula in CNF

▶ Use SAT proof logging techniques (DRAT)?
⋆ We also have the objective function

▶ Extend SAT proof systems to MaxSAT?
⋆ Difficult for actual solvers to produce proofs

Objective-function essentially pseudo-Boolean
▶ Use pseudo-Boolean proof system
▶ PB not too far from MaxSAT

VERIPB simple but powerful, recent successes:
▶ Advanced SAT techniques [GN21, GMNO22, BGMN23]
▶ MaxSAT solving [VDB22, BBN+23, BBN+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24]
▶ Subgraph solving [GMM+20, GMN20, GMM+24]
▶ Presolving for 0-1 integer linear programming [HOGN24]
▶ Dynamic programming and decision diagrams [DMM+24]

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 9 / 20



VERIPB proof system [BGMN23, GN21]
Cutting planes method [CCT87]
ADDITION
3x1 + 2x̄2 + x3 ≥ 3 x3 + x̄4 ≥ 1

3x1 + 2x̄2 + 2x3 + x̄4 ≥ 4

DIVIDE (HERE BY 2)
3x1 + 2x̄2 + x3 ≥ 3⌈

3
2

⌉
x1 + x̄2 +

⌈
1
2

⌉
x3 ≥

⌈
3
2

⌉ etc.

Reverse unit propagation (RUP)

F = {x + y ≥ 1, x + ȳ ≥ 1} Introduce x ≥ 1,
x̄ ≥ 1 unit propagates to a conflict

Redundance-based strengthening

F = {x̄1 + x̄2 ≥ 1} Introduce x1 + x2 + x3 ≥ 2
witness ω = {x1 → x̄2, x3 → 1}

(Checked) deletion Delete a constraint only if we can rederive it

Update the objective function If we can prove OOLD = ONEW

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 10 / 20



VERIPB proof system [BGMN23, GN21]
Cutting planes method [CCT87]
ADDITION
3x1 + 2x̄2 + x3 ≥ 3 x3 + x̄4 ≥ 1

3x1 + 2x̄2 + 2x3 + x̄4 ≥ 4

DIVIDE (HERE BY 2)
3x1 + 2x̄2 + x3 ≥ 3⌈

3
2

⌉
x1 + x̄2 +

⌈
1
2

⌉
x3 ≥

⌈
3
2

⌉ etc.

Reverse unit propagation (RUP)

F = {x + y ≥ 1, x + ȳ ≥ 1} Introduce x ≥ 1,
x̄ ≥ 1 unit propagates to a conflict

Redundance-based strengthening

F = {x̄1 + x̄2 ≥ 1} Introduce x1 + x2 + x3 ≥ 2
witness ω = {x1 → x̄2, x3 → 1}

(Checked) deletion Delete a constraint only if we can rederive it

Update the objective function If we can prove OOLD = ONEW

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 10 / 20



VERIPB proof system [BGMN23, GN21]
Cutting planes method [CCT87]
ADDITION
3x1 + 2x̄2 + x3 ≥ 3 x3 + x̄4 ≥ 1

3x1 + 2x̄2 + 2x3 + x̄4 ≥ 4

DIVIDE (HERE BY 2)
3x1 + 2x̄2 + x3 ≥ 3⌈

3
2

⌉
x1 + x̄2 +

⌈
1
2

⌉
x3 ≥

⌈
3
2

⌉ etc.

Reverse unit propagation (RUP)

F = {x + y ≥ 1, x + ȳ ≥ 1} Introduce x ≥ 1,
x̄ ≥ 1 unit propagates to a conflict

Redundance-based strengthening

F = {x̄1 + x̄2 ≥ 1} Introduce x1 + x2 + x3 ≥ 2
witness ω = {x1 → x̄2, x3 → 1}

(Checked) deletion Delete a constraint only if we can rederive it

Update the objective function If we can prove OOLD = ONEW

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 10 / 20



VERIPB proof system [BGMN23, GN21]
Cutting planes method [CCT87]
ADDITION
3x1 + 2x̄2 + x3 ≥ 3 x3 + x̄4 ≥ 1

3x1 + 2x̄2 + 2x3 + x̄4 ≥ 4

DIVIDE (HERE BY 2)
3x1 + 2x̄2 + x3 ≥ 3⌈

3
2

⌉
x1 + x̄2 +

⌈
1
2

⌉
x3 ≥

⌈
3
2

⌉ etc.

Reverse unit propagation (RUP)

F = {x + y ≥ 1, x + ȳ ≥ 1} Introduce x ≥ 1,
x̄ ≥ 1 unit propagates to a conflict

Redundance-based strengthening

F = {x̄1 + x̄2 ≥ 1} Introduce x1 + x2 + x3 ≥ 2
witness ω = {x1 → x̄2, x3 → 1}

(Checked) deletion Delete a constraint only if we can rederive it

Update the objective function If we can prove OOLD = ONEW

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 10 / 20



VERIPB proof system [BGMN23, GN21]
Cutting planes method [CCT87]
ADDITION
3x1 + 2x̄2 + x3 ≥ 3 x3 + x̄4 ≥ 1

3x1 + 2x̄2 + 2x3 + x̄4 ≥ 4

DIVIDE (HERE BY 2)
3x1 + 2x̄2 + x3 ≥ 3⌈

3
2

⌉
x1 + x̄2 +

⌈
1
2

⌉
x3 ≥

⌈
3
2

⌉ etc.

Reverse unit propagation (RUP)

F = {x + y ≥ 1, x + ȳ ≥ 1} Introduce x ≥ 1,
x̄ ≥ 1 unit propagates to a conflict

Redundance-based strengthening

F = {x̄1 + x̄2 ≥ 1} Introduce x1 + x2 + x3 ≥ 2
witness ω = {x1 → x̄2, x3 → 1}

(Checked) deletion Delete a constraint only if we can rederive it

Update the objective function If we can prove OOLD = ONEW

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 10 / 20



Practical example:

Input instance (MaxSAT):

(x1 ∨ x2 ∨ x3)
(x̄2 ∨ x̄4 ∨ x̄5)
(x2 ∨ x4)
(x3 ∨ x̄5)
(x1 ∨ x̄5)
(x3 ∨ x̄4)

O = x1 + 2x3 + x̄5

In proof (pseudo-Boolean optimization):

x1 + x2 + x3 ≥ 1
x̄2 + x̄4 + x̄5 ≥ 1
x2 + x4 ≥ 1
x3 + x̄5 ≥ 1
x1 + x̄5 ≥ 1
x3 + x̄4 ≥ 1

O = x1 + 2x3 + x̄5

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 11 / 20



Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:

▶ F = {(x1 ∨ x2 ∨ x3)
1, (x̄2 ∨ x̄4 ∨ x̄5)

2, (x2 ∨ x4)
3, (x3 ∨ x̄5)

4, (x1 ∨ x̄5)
5, (x3 ∨ x̄4)

6}
▶ O = x1 + 2x3 + x̄5

Consider literals x2 and x̄4
Remove all clauses containing x2 or x4 (by fixing x2 = 1, x4 = 0)

Proof
Introduce x2 ≥ 1, ω = {x4 → 0, x2 → 1}
Introduce x̄4 ≥ 1, ω = {x4 → 0, x2 → 1}
Delete clauses where x4 or x2 appear (RUP)
Delete x2 ≥ 1, ω = {x2 → 1}
Delete x̄4 ≥ 1, ω = {x4 → 0}

red +1 x2 >= 1 ; x4 −> 0 x2 −> 1
core i d 7
red +1 ˜ x4 >= 1 ; x4 −> 0 x2 −> 1
core i d 8

de l i d 1
de l i d 2
de l i d 3
de l i d 6

de l i d 7 ; x2 −> 1
de l i d 8 ; x4 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 12 / 20



Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:

▶ F = {(x1 ∨ x2 ∨ x3)
1, (x̄2 ∨ x̄4 ∨ x̄5)

2, (x2 ∨ x4)
3, (x3 ∨ x̄5)

4, (x1 ∨ x̄5)
5, (x3 ∨ x̄4)

6}
▶ O = x1 + 2x3 + x̄5

Consider literals x2 and x̄4
Remove all clauses containing x2 or x4 (by fixing x2 = 1, x4 = 0)

Proof
Introduce x2 ≥ 1, ω = {x4 → 0, x2 → 1}
Introduce x̄4 ≥ 1, ω = {x4 → 0, x2 → 1}
Delete clauses where x4 or x2 appear (RUP)
Delete x2 ≥ 1, ω = {x2 → 1}
Delete x̄4 ≥ 1, ω = {x4 → 0}

red +1 x2 >= 1 ; x4 −> 0 x2 −> 1
core i d 7
red +1 ˜ x4 >= 1 ; x4 −> 0 x2 −> 1
core i d 8

de l i d 1
de l i d 2
de l i d 3
de l i d 6

de l i d 7 ; x2 −> 1
de l i d 8 ; x4 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 12 / 20



Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:

▶ F = {(x1 ∨ x2 ∨ x3)
1, (x̄2 ∨ x̄4 ∨ x̄5)

2, (x2 ∨ x4)
3, (x3 ∨ x̄5)

4, (x1 ∨ x̄5)
5, (x3 ∨ x̄4)

6}
▶ O = x1 + 2x3 + x̄5

Consider literals x2 and x̄4
Remove all clauses containing x2 or x4 (by fixing x2 = 1, x4 = 0)

Proof
Introduce x2 ≥ 1, ω = {x4 → 0, x2 → 1}
Introduce x̄4 ≥ 1, ω = {x4 → 0, x2 → 1}
Delete clauses where x4 or x2 appear (RUP)
Delete x2 ≥ 1, ω = {x2 → 1}
Delete x̄4 ≥ 1, ω = {x4 → 0}

red +1 x2 >= 1 ; x4 −> 0 x2 −> 1
core i d 7
red +1 ˜ x4 >= 1 ; x4 −> 0 x2 −> 1
core i d 8

de l i d 1
de l i d 2
de l i d 3
de l i d 6

de l i d 7 ; x2 −> 1
de l i d 8 ; x4 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 12 / 20



Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:

▶ F = {(x1 ∨ x2 ∨ x3)
1, (x̄2 ∨ x̄4 ∨ x̄5)

2, (x2 ∨ x4)
3, (x3 ∨ x̄5)

4, (x1 ∨ x̄5)
5, (x3 ∨ x̄4)

6}
▶ O = x1 + 2x3 + x̄5

Consider literals x2 and x̄4
Remove all clauses containing x2 or x4 (by fixing x2 = 1, x4 = 0)

Proof
Introduce x2 ≥ 1, ω = {x4 → 0, x2 → 1}
Introduce x̄4 ≥ 1, ω = {x4 → 0, x2 → 1}
Delete clauses where x4 or x2 appear (RUP)
Delete x2 ≥ 1, ω = {x2 → 1}
Delete x̄4 ≥ 1, ω = {x4 → 0}

red +1 x2 >= 1 ; x4 −> 0 x2 −> 1
core i d 7
red +1 ˜ x4 >= 1 ; x4 −> 0 x2 −> 1
core i d 8

de l i d 1
de l i d 2
de l i d 3
de l i d 6

de l i d 7 ; x2 −> 1
de l i d 8 ; x4 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 12 / 20



Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:

▶ F = {

(x1 ∨ x2 ∨ x3)
1, (x̄2 ∨ x̄4 ∨ x̄5)

2, (x2 ∨ x4)
3,

(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5

, (x3 ∨ x̄4)
6

}
▶ O = x1 + 2x3 + x̄5

Consider literals x2 and x̄4
Remove all clauses containing x2 or x4 (by fixing x2 = 1, x4 = 0)

Proof
Introduce x2 ≥ 1, ω = {x4 → 0, x2 → 1}
Introduce x̄4 ≥ 1, ω = {x4 → 0, x2 → 1}
Delete clauses where x4 or x2 appear (RUP)
Delete x2 ≥ 1, ω = {x2 → 1}
Delete x̄4 ≥ 1, ω = {x4 → 0}

red +1 x2 >= 1 ; x4 −> 0 x2 −> 1
core i d 7
red +1 ˜ x4 >= 1 ; x4 −> 0 x2 −> 1
core i d 8

de l i d 1
de l i d 2
de l i d 3
de l i d 6

de l i d 7 ; x2 −> 1
de l i d 8 ; x4 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 12 / 20



Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:

▶ F = {

(x1 ∨ x2 ∨ x3)
1, (x̄2 ∨ x̄4 ∨ x̄5)

2, (x2 ∨ x4)
3,

(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5

, (x3 ∨ x̄4)
6

}
▶ O = x1 + 2x3 + x̄5

Consider literals x2 and x̄4
Remove all clauses containing x2 or x4 (by fixing x2 = 1, x4 = 0)

Proof
Introduce x2 ≥ 1, ω = {x4 → 0, x2 → 1}
Introduce x̄4 ≥ 1, ω = {x4 → 0, x2 → 1}
Delete clauses where x4 or x2 appear (RUP)
Delete x2 ≥ 1, ω = {x2 → 1}
Delete x̄4 ≥ 1, ω = {x4 → 0}

red +1 x2 >= 1 ; x4 −> 0 x2 −> 1
core i d 7
red +1 ˜ x4 >= 1 ; x4 −> 0 x2 −> 1
core i d 8

de l i d 1
de l i d 2
de l i d 3
de l i d 6

de l i d 7 ; x2 −> 1
de l i d 8 ; x4 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 12 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5, (x̄5)
10}

▶ O = x1

+ 2x3

+ x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {

(x3 ∨ x̄5)
4,

(x1 ∨ x̄5)
5, (x̄5)

10}
▶ O = x1

+ 2x3

+ x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {

(x3 ∨ x̄5)
4,

(x1 ∨ x̄5)
5, (x̄5)

10}
▶ O = x1

+ 2x3

+ x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Overhead of proof logging

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

timelimit

memout

tim
elim

it

m
em

o
u
t

MaxPRE without proof logging (s)

M
a
x
P
R
E

w
it
h
p
ro
o
f
lo
gg
in
g
(s
)

unweighted
weighted

Overhead of proof logging 46% (geometric mean)

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 14 / 20



Overhead of formally verified proof checking

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104
memout

MaxPRE with proof logging (s)

V
e
r
iP

B
+

C
a
k
e
P
B

fu
ll
ch
ec
k
in
g
(s
)

unweighted
weighted

Formally verified checking 113 times slower than preprocessing (geometric mean)

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 15 / 20



Discussion of performance

Putting things in perspective
Preprocessing only small part of solving time
So even pretty bad overhead can be negligible in the grand scheme of things
Still, it is an important challenge to make proof checking faster

Potential for improvements
Lots of software engineering-level things to improve
Faster unit propagation
Binary proof format
But this is not the full story

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 16 / 20



Discussion of performance

Putting things in perspective
Preprocessing only small part of solving time
So even pretty bad overhead can be negligible in the grand scheme of things
Still, it is an important challenge to make proof checking faster

Potential for improvements
Lots of software engineering-level things to improve
Faster unit propagation
Binary proof format
But this is not the full story

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 16 / 20



Difference between SAT and MaxSAT preprocessing?

SAT preprocessing techniques
Are fast for the preprocessor
But generate lots of proofs, which take time to write
These proofs then take lots of time to check

MaxSAT preprocessing techniques
Generate proofs at much slower rate
And so cause less overhead for proof checking

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 17 / 20



Difference between SAT and MaxSAT preprocessing?

SAT preprocessing techniques
Are fast for the preprocessor
But generate lots of proofs, which take time to write
These proofs then take lots of time to check

MaxSAT preprocessing techniques
Generate proofs at much slower rate
And so cause less overhead for proof checking

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 17 / 20



Taking a closer look at the proof checking overhead. . .

10−1 100 101 102 103 104
10−1

100

101

102

103

104

timeout

memout

tim
eo

u
t

m
em

o
u
t

VeriPB checking without elaboration (s)

V
e
r
iP

B
ch
ec
k
in
g
w
it
h
el
a
b
or
at
io
n
(s
)

unweighted
weighted

10−1 100 101 102 103 104
10−1

100

101

102

103

104 timeout

memout

tim
eo

u
t

m
em

o
u
t

unverified checking time (s)

ve
ri
fi
ed

ch
ec
k
in
g
ti
m
e
(s
)

unweighted
weighted

Formal verification is not the bottleneck
Elaborating proof to formally verified format causes no major slowdown for VERIPB
Nor is CAKEPB verified checking massively slower than VERIPB unverified checking

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 18 / 20



So why is proof checking for MaxSAT preprocessing slow?

Unverified proof checking with VERIPB seems like the main bottleneck
Again, lots of engineering could (and should) be done here
Focus has been on expanding the reach of proof logging to completely new domains

Checked deletion steps take a lot of time
Perhaps not entirely unreasonable
Equioptimality and equisatisfiability are strong guarantees that don’t come for free

But the final variable renaming at the end can take half of the total time!?
Using redundance & checked deletion for this is a very heavy hammer
Maybe have dedicated rule stating the obvious that variable names don’t matter?
Related earlier observation for objective update: Stating not the new objective ONEW

but the difference ONEW − OOLD speeds up proof logging dramatically

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 19 / 20



So why is proof checking for MaxSAT preprocessing slow?

Unverified proof checking with VERIPB seems like the main bottleneck
Again, lots of engineering could (and should) be done here
Focus has been on expanding the reach of proof logging to completely new domains

Checked deletion steps take a lot of time
Perhaps not entirely unreasonable
Equioptimality and equisatisfiability are strong guarantees that don’t come for free

But the final variable renaming at the end can take half of the total time!?
Using redundance & checked deletion for this is a very heavy hammer
Maybe have dedicated rule stating the obvious that variable names don’t matter?
Related earlier observation for objective update: Stating not the new objective ONEW

but the difference ONEW − OOLD speeds up proof logging dramatically

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 19 / 20



So why is proof checking for MaxSAT preprocessing slow?

Unverified proof checking with VERIPB seems like the main bottleneck
Again, lots of engineering could (and should) be done here
Focus has been on expanding the reach of proof logging to completely new domains

Checked deletion steps take a lot of time
Perhaps not entirely unreasonable
Equioptimality and equisatisfiability are strong guarantees that don’t come for free

But the final variable renaming at the end can take half of the total time!?
Using redundance & checked deletion for this is a very heavy hammer
Maybe have dedicated rule stating the obvious that variable names don’t matter?
Related earlier observation for objective update: Stating not the new objective ONEW

but the difference ONEW − OOLD speeds up proof logging dramatically

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 19 / 20



So why is proof checking for MaxSAT preprocessing slow?

Unverified proof checking with VERIPB seems like the main bottleneck
Again, lots of engineering could (and should) be done here
Focus has been on expanding the reach of proof logging to completely new domains

Checked deletion steps take a lot of time
Perhaps not entirely unreasonable
Equioptimality and equisatisfiability are strong guarantees that don’t come for free

But the final variable renaming at the end can take half of the total time!?
Using redundance & checked deletion for this is a very heavy hammer
Maybe have dedicated rule stating the obvious that variable names don’t matter?
Related earlier observation for objective update: Stating not the new objective ONEW

but the difference ONEW − OOLD speeds up proof logging dramatically

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 19 / 20



Conclusion
Our contribution:

VERIPB proof logging for standalone MaxSAT preprocessor
▶ 15+ preprocessing techniques implemented in MAXPRE

Proofs of equioptimality
▶ First practical tool for even verifying equisatisfiability

Formally verified end-to-end proof checking with CAKEPB

Future work:
Implement more features

▶ solution reconstruction
▶ proof trimming
▶ proof composition

Optimize proof checker
Provide efficient proof logging to even more combinatorial optimization paradigms!

Thank you for your attention!

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 20 / 20



Conclusion
Our contribution:

VERIPB proof logging for standalone MaxSAT preprocessor
▶ 15+ preprocessing techniques implemented in MAXPRE

Proofs of equioptimality
▶ First practical tool for even verifying equisatisfiability

Formally verified end-to-end proof checking with CAKEPB

Future work:
Implement more features

▶ solution reconstruction
▶ proof trimming
▶ proof composition

Optimize proof checker
Provide efficient proof logging to even more combinatorial optimization paradigms!

Thank you for your attention!

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 20 / 20



Conclusion
Our contribution:

VERIPB proof logging for standalone MaxSAT preprocessor
▶ 15+ preprocessing techniques implemented in MAXPRE

Proofs of equioptimality
▶ First practical tool for even verifying equisatisfiability

Formally verified end-to-end proof checking with CAKEPB

Future work:
Implement more features

▶ solution reconstruction
▶ proof trimming
▶ proof composition

Optimize proof checker
Provide efficient proof logging to even more combinatorial optimization paradigms!

Thank you for your attention!
Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 20 / 20



Bibliography I
[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided

MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29),
volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.
Certifying without loss of generality reasoning in solution-improving maximum satisfiability. In Proceedings of
the 30th International Conference on Principles and Practice of Constraint Programming (CP ’24), September
2024. To appear.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and symmetry
breaking for combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August
2023. Preliminary version in AAAI ’22.

[BLM07] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial Intelligence,
171(8-9):606–618, 2007.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, November 1987.

[DMM+24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov.
Pseudo-Boolean reasoning about states and transitions to certify dynamic programming and decision diagram
algorithms. In Proceedings of the 30th International Conference on Principles and Practice of Constraint
Programming (CP ’24), September 2024. To appear.

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 21 / 20



Bibliography II
[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using

pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),
pages 1486–1494, February 2020.

[FMSV20] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. MaxSAT resolution and subcube sums. In
Proceedings of the 23rd International Conference on Theory and Applications of Satisfiability Testing
(SAT ’20), volume 12178 of Lecture Notes in Computer Science, pages 295–311. Springer, July 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333
of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.
End-to-end verification for subgraph solving. In Proceedings of the 368h AAAI Conference on Artificial
Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes:
Solving with certified solutions. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 22 / 20



Bibliography III
[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In

Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming
(CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August
2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for
pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs), pages
16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February
2021.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based presolve
reductions for 0–1 integer linear programs. In Proceedings of the 21st International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24), volume
14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May 2024.

[LNOR11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodrı́guez-Carbonell. A framework for certified
Boolean branch-and-bound optimization. Journal of Automated Reasoning, 46(1):81–102, 2011.

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 23 / 20



Bibliography IV
[MIB+19] António Morgado, Alexey Ignatiev, Marı́a Luisa Bonet, João P. Marques-Silva, and Samuel R. Buss.

DRMaxSAT with MaxHS: First contact. In Proceedings of the 22nd International Conference on Theory and
Applications of Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages
239–249. Springer, July 2019.

[MM11] António Morgado and João Marques-Silva. On validating Boolean optimizers. In Proceedings of the 23rd IEEE
International Conference on Tools with Artificial Intelligence, (ICTAI ’11), pages 924–926, 2011.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of the
29th International Conference on Principles and Practice of Constraint Programming (CP ’23), volume 280 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In
Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of Lecture Notes in Computer Science,
pages 38–55. Springer, May 2024.

[PCH20] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Towards bridging the gap between SAT and Max-SAT
refutations. In Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence
(ICTAI ’20), pages 137–144, November 2020.

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 24 / 20



Bibliography V
[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof builder for Max-SAT. In Proceedings of the

24th International Conference on Theory and Applications of Satisfiability Testing (SAT ’21), volume 12831 of
Lecture Notes in Computer Science, pages 488–498. Springer, July 2021.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings
of the 16th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR ’22),
volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 25 / 20


