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Our work on one slide

Success-story of SAT solving:
▶ Solvers are fast
▶ And they produce proofs

Certifying SAT-based optimization has remained a challenge
▶ Many proposals, e.g., [BLM07, LNOR11, MM11, MIB+19, FMSV20, PCH20, PCH21]
▶ Proof logging for state-of-the-art MaxSAT only very recently [VDB22, BBN+23, BBN+24]
▶ And only for main solver algorithm after preprocessing

Contribution of this work:
▶ Proof logging for standalone MaxSAT preprocessor
▶ Proofs for equioptimality (and equisatisfiability) with VERIPB
▶ Formally verified checker CAKEPB for the proofs
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Our contribution

Proof logging for standalone MaxSAT
preprocessor MAXPRE

▶ 15+ different preprocessing
techniques certified with VERIPB

Updated VERIPB proof format
▶ Support for equioptimality (and

equisatisfiability) proofs

Formal verification with CAKEPB
▶ HOL4 proof assistant
▶ CAKEML tools

Experimental evaluation

Backbones

Bounded Variable Elimination

Bounded Variable Addition

Failed Literals

Variable Instantiation

Equivalent Literal Detection

Blocked Clause EliminationSubsumption Elimination

Unit Propagation

Self-Subsuming Resolution

Hidden Tautology Elimination

Hidden Literal Elimination

Subsumed Literal Elimination

Binary Core Removal

TrimMaxSAT

Structure-Based Labeling

Hardening

Intrinsic At-most-ones

Subsumed Label Elimination

Generalized Subsumed Label Elimination

Label Matching

SAT-based and MaxSAT-specific preprocessing techniques certified
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Traditional view of maximum satisfiability (MaxSAT)
Weighted CNF (WCNF) representation

Hard clauses
Weighted soft clauses

▶ ⟨(x̄2 ∨ x̄3),2⟩: “incur cost 2 if (x̄2 ∨ x̄3) is falsified”

Example of WCNF instance
F = (FH ,FS)
FH = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1)}
FS = {⟨(x1),1⟩, ⟨(x̄2 ∨ x̄3),2⟩}

Conversion using blocking variables

Fb = (F b
H ,F

b
S)

F b
H = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}

F b
S = {⟨(x1),1⟩, ⟨(x̄4),2⟩}

Same as satisfying F b
H while minimizing objective O = x̄1 + 2x4
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Modern objective-centric view of MaxSAT

Optimization variant of SAT
▶ CNF formula F
▶ Linear objective function O

Minimize value of O subject to F ,
Example:
F = {(x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1), (x̄2 ∨ x̄3 ∨ x4)}
O = x̄1 + 2x4

There are three solutions:
τ1 = {x1 → 1, x2 → 1, x3 → 1, x4 → 1}
τ2 = {x1 → 0, x2 → 0, x3 → 0, x4 → 1}
τ3 = {x1 → 0, x2 → 0, x3 → 0, x4 → 0}

O(τ1) = 2, O(τ2) = 3, O(τ3) = 1

Applications in:
▶ Planning
▶ Scheduling
▶ Configuration
▶ Artificial intelligence
▶ Combinatorial problems
▶ Verification and security
▶ Bioinformatics
▶ . . .
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MaxSAT preprocessing

Simplify instance before solving
▶ Remove clauses
▶ Introduce new clauses
▶ Change the objective function

In MaxSAT solvers or by a standalone preprocessor

Input instance FORIG Preprocessed instance F PREP

Optimal solution τ to F PREPOptimal solution τR to FORIG

Preprocess (preprocessor)

Solve (solver)

Reconstruct (preprocessor)

Certified preprocessing: Verify equioptimality of FORIG and F PREP
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Concrete workflow of MAXPRE MaxSAT preprocessor

1 Reading of input
2 Preprocessing on WCNF
3 Conversion to objective-centric
4 Preprocessing on objective-centric
5 Removing constant from the objective function + renaming variables
6 Writing of output
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How to verify equioptimality

Preprocessor

P
roofchecker

✓/✗

Input instance FORIG Output instance FPREP

Proof

Proof shows how to derive F PREP from FORIG

▶ Add constraints
▶ Remove constraints
▶ Change the objective function

Proof checker verifies that
▶ All steps are sound (optimal cost is preserved)
▶ In the end, the database is identical to the output instance
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Which proof system to use for MaxSAT?
MaxSAT: Formula in CNF

▶ Use SAT proof logging techniques (DRAT)?
⋆ We also have the objective function

▶ Extend SAT proof systems to MaxSAT?
⋆ Difficult for actual solvers to produce proofs

Objective-function essentially pseudo-Boolean
▶ Use pseudo-Boolean proof system
▶ PB not too far from MaxSAT

VERIPB simple but powerful, recent successes:
▶ Advanced SAT techniques [GN21, GMNO22, BGMN23]
▶ MaxSAT solving [VDB22, BBN+23, BBN+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24]
▶ Subgraph solving [GMM+20, GMN20, GMM+24]
▶ Presolving for 0-1 integer linear programming [HOGN24]
▶ Dynamic programming and decision diagrams [DMM+24]
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VERIPB proof system [BGMN23, GN21]
Cutting planes method [CCT87]
ADDITION
3x1 + 2x̄2 + x3 ≥ 3 x3 + x̄4 ≥ 1

3x1 + 2x̄2 + 2x3 + x̄4 ≥ 4

DIVIDE (HERE BY 2)
3x1 + 2x̄2 + x3 ≥ 3⌈

3
2

⌉
x1 + x̄2 +

⌈
1
2

⌉
x3 ≥

⌈
3
2

⌉ etc.

Reverse unit propagation (RUP)

F = {x + y ≥ 1, x + ȳ ≥ 1} Introduce x ≥ 1,
x̄ ≥ 1 unit propagates to a conflict

Redundance-based strengthening

F = {x̄1 + x̄2 ≥ 1} Introduce x1 + x2 + x3 ≥ 2
witness ω = {x1 → x̄2, x3 → 1}

(Checked) deletion Delete a constraint only if we can rederive it

Update the objective function If we can prove OOLD = ONEW
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Practical example:

Input instance (MaxSAT):

(x1 ∨ x2 ∨ x3)
(x̄2 ∨ x̄4 ∨ x̄5)
(x2 ∨ x4)
(x3 ∨ x̄5)
(x1 ∨ x̄5)
(x3 ∨ x̄4)

O = x1 + 2x3 + x̄5

In proof (pseudo-Boolean optimization):

x1 + x2 + x3 ≥ 1
x̄2 + x̄4 + x̄5 ≥ 1
x2 + x4 ≥ 1
x3 + x̄5 ≥ 1
x1 + x̄5 ≥ 1
x3 + x̄4 ≥ 1

O = x1 + 2x3 + x̄5
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Practical example: Autarky detection / Subsumed literal elimination
Consider the MaxSAT instance:
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Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5}
▶ O = x1 + 2x3 + x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {(x3 ∨ x̄5)
4, (x1 ∨ x̄5)

5, (x̄5)
10}

▶ O = x1

+ 2x3

+ x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {

(x3 ∨ x̄5)
4,

(x1 ∨ x̄5)
5, (x̄5)

10}
▶ O = x1

+ 2x3

+ x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Practical example: Hardening
Continue with the formula

▶ F = {

(x3 ∨ x̄5)
4,

(x1 ∨ x̄5)
5, (x̄5)

10}
▶ O = x1

+ 2x3

+ x̄5

There is a solution τ = {x1 → 0, x3 → 0, x5 → 0}, O(τ) = 1
▶ Definitely no optimal solution sets x3 = 1
▶ We can fix x3 = 0

Proof
Introduce x̄3 ≥ 1, ω = {x1 → 0, x3 → 0, x5 → 0}
Remove x3 from the objective function
Remove x3 from the clauses

▶ Introduce x̄5 ≥ 1 (RUP)
▶ Delete (x3 ∨ x̄5)

Delete x̄3 ≥ 1, ω = {x3 → 0}

red +1 ˜ x3 >= 1 ; x1 −> 0 x3 −> 0 x5 −> 0
core i d 9

obju d i f f −2 x3

rup 1 ˜ x5 >= 1 ;
core i d 10
de l i d 4

de l i d 9 ; x3 −> 0

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 13 / 20



Overhead of proof logging
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Overhead of proof logging 46% (geometric mean)
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Overhead of formally verified proof checking

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104
memout

MaxPRE with proof logging (s)

V
e
r
iP

B
+

C
a
k
e
P
B

fu
ll
ch
ec
k
in
g
(s
)

unweighted
weighted

Formally verified checking 113 times slower than preprocessing (geometric mean)
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Discussion of performance

Putting things in perspective
Preprocessing only small part of solving time
So even pretty bad overhead can be negligible in the grand scheme of things
Still, it is an important challenge to make proof checking faster

Potential for improvements
Lots of software engineering-level things to improve
Faster unit propagation
Binary proof format
But this is not the full story
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Difference between SAT and MaxSAT preprocessing?

SAT preprocessing techniques
Are fast for the preprocessor
But generate lots of proofs, which take time to write
These proofs then take lots of time to check

MaxSAT preprocessing techniques
Generate proofs at much slower rate
And so cause less overhead for proof checking
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Taking a closer look at the proof checking overhead. . .
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Formal verification is not the bottleneck
Elaborating proof to formally verified format causes no major slowdown for VERIPB
Nor is CAKEPB verified checking massively slower than VERIPB unverified checking

Jakob Nordström (UCPH & LU) Certified MaxSAT Preprocessing Pragmatics of SAT ’24 18 / 20



So why is proof checking for MaxSAT preprocessing slow?

Unverified proof checking with VERIPB seems like the main bottleneck
Again, lots of engineering could (and should) be done here
Focus has been on expanding the reach of proof logging to completely new domains

Checked deletion steps take a lot of time
Perhaps not entirely unreasonable
Equioptimality and equisatisfiability are strong guarantees that don’t come for free

But the final variable renaming at the end can take half of the total time!?
Using redundance & checked deletion for this is a very heavy hammer
Maybe have dedicated rule stating the obvious that variable names don’t matter?
Related earlier observation for objective update: Stating not the new objective ONEW

but the difference ONEW − OOLD speeds up proof logging dramatically
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Conclusion
Our contribution:

VERIPB proof logging for standalone MaxSAT preprocessor
▶ 15+ preprocessing techniques implemented in MAXPRE

Proofs of equioptimality
▶ First practical tool for even verifying equisatisfiability

Formally verified end-to-end proof checking with CAKEPB

Future work:
Implement more features

▶ solution reconstruction
▶ proof trimming
▶ proof composition

Optimize proof checker
Provide efficient proof logging to even more combinatorial optimization paradigms!

Thank you for your attention!
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171(8-9):606–618, 2007.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, November 1987.
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