
Graph Colouring Is Hard on Average for
Polynomial Calculus and Nullstellensatz

Jakob Nordström

University of Copenhagen and Lund University

IRN CLoVe Workshop on Complexity Theory
University of Copenhagen

January 8, 2025

Joint work with Jonas Conneryd, Susanna de Rezende, Shuo Pang, and Kilian Risse

Thanks for the slides!

Graph Colouring Is Hard on Average for
Polynomial Calculus and Nullstellensatz

Jakob Nordström

University of Copenhagen and Lund University

IRN CLoVe Workshop on Complexity Theory
University of Copenhagen

January 8, 2025

Joint work with Jonas Conneryd, Susanna de Rezende, Shuo Pang, and Kilian Risse
Thanks for the slides!

Graph Colouring

Can vertices of graph G be coloured with k colours so that all neighbours
get distinct colours?

One of Karp’s 21 NP-complete problems

1 / 26

Graph Colouring

Can vertices of graph G be coloured with k colours so that all neighbours
get distinct colours?

One of Karp’s 21 NP-complete problems

1 / 26

Is Graph Colouring Hard?
Colouring seems hard even to approximate:
• If G k-colourable, best efficient algorithm uses k · Ω̃(n) colours [Halldorsson 93]
• If G 3-colourable, best algorithm uses n0.199··· colours [Kawarabayashi–Thorup 17]
• NP-hard to approximate within factor n1−𝜀 [Feige–Kilian 98, Zuckerman 07]

However, applied algorithms appear to do well:
• Backtracking and SAT-based algorithms

[San Segundo 12, Hebrard–Katsirelos 20, Heule–Karahalios–van Hoeve 22]
• Integer programming

[Mehortra–Trick 95, Gualandi–Malucelli 12]
• Algebraic algorithms

[DeLoera–Lee–Malkin–Margulies 08 & 11, DeLoera–Lee–Margulies–Onn 09,
DeLoera–Margulies–Pernpeinter–Riedl–Rolnick–Spencer–Stasi–Swenson 15]

Can we prove that graph colouring is hard for these algorithms?

2 / 26

Is Graph Colouring Hard?
Colouring seems hard even to approximate:
• If G k-colourable, best efficient algorithm uses k · Ω̃(n) colours [Halldorsson 93]
• If G 3-colourable, best algorithm uses n0.199··· colours [Kawarabayashi–Thorup 17]
• NP-hard to approximate within factor n1−𝜀 [Feige–Kilian 98, Zuckerman 07]

However, applied algorithms appear to do well:
• Backtracking and SAT-based algorithms

[San Segundo 12, Hebrard–Katsirelos 20, Heule–Karahalios–van Hoeve 22]
• Integer programming

[Mehortra–Trick 95, Gualandi–Malucelli 12]
• Algebraic algorithms

[DeLoera–Lee–Malkin–Margulies 08 & 11, DeLoera–Lee–Margulies–Onn 09,
DeLoera–Margulies–Pernpeinter–Riedl–Rolnick–Spencer–Stasi–Swenson 15]

Can we prove that graph colouring is hard for these algorithms?

2 / 26

Is Graph Colouring Hard?
Colouring seems hard even to approximate:
• If G k-colourable, best efficient algorithm uses k · Ω̃(n) colours [Halldorsson 93]
• If G 3-colourable, best algorithm uses n0.199··· colours [Kawarabayashi–Thorup 17]
• NP-hard to approximate within factor n1−𝜀 [Feige–Kilian 98, Zuckerman 07]

However, applied algorithms appear to do well:
• Backtracking and SAT-based algorithms

[San Segundo 12, Hebrard–Katsirelos 20, Heule–Karahalios–van Hoeve 22]
• Integer programming

[Mehortra–Trick 95, Gualandi–Malucelli 12]
• Algebraic algorithms

[DeLoera–Lee–Malkin–Margulies 08 & 11, DeLoera–Lee–Margulies–Onn 09,
DeLoera–Margulies–Pernpeinter–Riedl–Rolnick–Spencer–Stasi–Swenson 15]

Can we prove that graph colouring is hard for these algorithms?
2 / 26

Hardness for Algebraic Algorithms

• Exponential lower bounds known for explicit graphs
[Lauria–Nordström 17, Atserias–Ochremiak 19]

• But obtained by reduction from other problems
• Graph colouring instances somewhat artificial

Perhaps graph colouring is easy on most graphs?

To rule this out, want average-case hardness results

SAT-based algorithms [Beame–Culberson–Mitchell–Moore 05]

Conflict-driven clause learning (CDCL) SAT solvers need exponential time
for k-colouring on random graphs for k ≥ 3

3 / 26

Hardness for Algebraic Algorithms

• Exponential lower bounds known for explicit graphs
[Lauria–Nordström 17, Atserias–Ochremiak 19]

• But obtained by reduction from other problems
• Graph colouring instances somewhat artificial

Perhaps graph colouring is easy on most graphs?

To rule this out, want average-case hardness results

SAT-based algorithms [Beame–Culberson–Mitchell–Moore 05]

Conflict-driven clause learning (CDCL) SAT solvers need exponential time
for k-colouring on random graphs for k ≥ 3

3 / 26

Hardness for Algebraic Algorithms

• Exponential lower bounds known for explicit graphs
[Lauria–Nordström 17, Atserias–Ochremiak 19]

• But obtained by reduction from other problems
• Graph colouring instances somewhat artificial

Perhaps graph colouring is easy on most graphs?

To rule this out, want average-case hardness results

SAT-based algorithms [Beame–Culberson–Mitchell–Moore 05]

Conflict-driven clause learning (CDCL) SAT solvers need exponential time
for k-colouring on random graphs for k ≥ 3

3 / 26

Our Result

Theorem
Algorithms based on Hilbert’s Nullstellensatz and/or Gröbner bases require
exponential time to solve k-colouring on random graphs for k ≥ 3

Established via proof complexity:

• Formalise reasoning method in algorithm as a proof system
• Fast execution for graph G with chromatic number 𝜒(G) > k

⇒ short proof of statement “G is not k-colourable”
• Show that such short proofs do not exist

4 / 26

Our Result

Theorem
Algorithms based on Hilbert’s Nullstellensatz and/or Gröbner bases require
exponential time to solve k-colouring on random graphs for k ≥ 3

Established via proof complexity:

• Formalise reasoning method in algorithm as a proof system
• Fast execution for graph G with chromatic number 𝜒(G) > k

⇒ short proof of statement “G is not k-colourable”
• Show that such short proofs do not exist

4 / 26

Nullstellensatz Proof System

To show polynomials p1, . . . , pm in F[®x] have no common root in F, suffices to
find polynomials q1, . . . , qm in F[®x] such that

m∑
i=1

qi(®x) · pi(®x) = 1

This is a Nullstellensatz proof of unsatisfiability
[Beame–Impagliazzo–Krajíček–Pitassi–Pudlák 96]

Soundness: if such polynomials qi exist, then clearly {pi} have no common root

Completeness (Boolean variables): special case of Hilbert’s Nullstellensatz

5 / 26

Nullstellensatz Proof System

To show polynomials p1, . . . , pm in F[®x] have no common root in F, suffices to
find polynomials q1, . . . , qm in F[®x] such that

m∑
i=1

qi(®x) · pi(®x) = 1

This is a Nullstellensatz proof of unsatisfiability
[Beame–Impagliazzo–Krajíček–Pitassi–Pudlák 96]

Soundness: if such polynomials qi exist, then clearly {pi} have no common root

Completeness (Boolean variables): special case of Hilbert’s Nullstellensatz

5 / 26

Polynomial Calculus Proof System [Clegg–Edmonds–Impagliazzo 96]

Dynamic version: given {p1, . . . , pm}, derive new polynomials using two rules

(linear combination)
p q

𝛼p + 𝛽q
𝛼, 𝛽 ∈ F

(multiplication)
p

x · p
x variable

Goal: derive polynomial 1

Polynomial calculus proof system models Gröbner basis computations

• Polynomial = linear combination of monomials
• Proof size: # monomials in derivation

Make proof system stronger by allowing dual variables xi for negative literals
[Alekhnovich–Ben-Sasson–Razborov–Wigderson 02]

• Proof degree: max total degree of polynomial in derivation

6 / 26

Polynomial Calculus Proof System [Clegg–Edmonds–Impagliazzo 96]

Dynamic version: given {p1, . . . , pm}, derive new polynomials using two rules

(linear combination)
p q

𝛼p + 𝛽q
𝛼, 𝛽 ∈ F

(multiplication)
p

x · p
x variable

Goal: derive polynomial 1

Polynomial calculus proof system models Gröbner basis computations

• Polynomial = linear combination of monomials
• Proof size: # monomials in derivation

Make proof system stronger by allowing dual variables xi for negative literals
[Alekhnovich–Ben-Sasson–Razborov–Wigderson 02]

• Proof degree: max total degree of polynomial in derivation

6 / 26

Polynomial Calculus Proof System [Clegg–Edmonds–Impagliazzo 96]

Dynamic version: given {p1, . . . , pm}, derive new polynomials using two rules

(linear combination)
p q

𝛼p + 𝛽q
𝛼, 𝛽 ∈ F

(multiplication)
p

x · p
x variable

Goal: derive polynomial 1

Polynomial calculus proof system models Gröbner basis computations

• Polynomial = linear combination of monomials
• Proof size: # monomials in derivation

Make proof system stronger by allowing dual variables xi for negative literals
[Alekhnovich–Ben-Sasson–Razborov–Wigderson 02]

• Proof degree: max total degree of polynomial in derivation
6 / 26

Encoding k-Colouring as Polynomials

Variables xv,i = “vertex v gets colour i”, v ∈ V(G), i ∈ [k]

Axiom polynomials for graph G:
Each vertex gets a colour

∑k
i=1 xv,i − 1

Colours are unique xv,i · xv,i′ i ≠ i′

Distinct colours for neighbours xu,i · xv,i (u, v) ∈ E(G)
Variables are Boolean x2

v,i − xv,i

Common root of polynomials ⇔ k-colouring of G

Other important encoding used in computational algebra [Bayer 82]:
• Colours Xv are kth roots of unity {1, 𝜁, 𝜁2, · · · , 𝜁k−1} (assuming char(F) ∤ k)
• Linear substitution from Xv to xv,1, . . . , xv,k ⇒ (roughly) same proof degree

7 / 26

Encoding k-Colouring as Polynomials

Variables xv,i = “vertex v gets colour i”, v ∈ V(G), i ∈ [k]

Axiom polynomials for graph G:
Each vertex gets a colour

∑k
i=1 xv,i − 1

Colours are unique xv,i · xv,i′ i ≠ i′

Distinct colours for neighbours xu,i · xv,i (u, v) ∈ E(G)
Variables are Boolean x2

v,i − xv,i

Common root of polynomials ⇔ k-colouring of G

Other important encoding used in computational algebra [Bayer 82]:
• Colours Xv are kth roots of unity {1, 𝜁, 𝜁2, · · · , 𝜁k−1} (assuming char(F) ∤ k)
• Linear substitution from Xv to xv,1, . . . , xv,k ⇒ (roughly) same proof degree

7 / 26

Encoding k-Colouring as Polynomials

Variables xv,i = “vertex v gets colour i”, v ∈ V(G), i ∈ [k]

Axiom polynomials for graph G:
Each vertex gets a colour

∑k
i=1 xv,i − 1

Colours are unique xv,i · xv,i′ i ≠ i′

Distinct colours for neighbours xu,i · xv,i (u, v) ∈ E(G)
Variables are Boolean x2

v,i − xv,i

Common root of polynomials ⇔ k-colouring of G

Other important encoding used in computational algebra [Bayer 82]:
• Colours Xv are kth roots of unity {1, 𝜁, 𝜁2, · · · , 𝜁k−1} (assuming char(F) ∤ k)
• Linear substitution from Xv to xv,1, . . . , xv,k ⇒ (roughly) same proof degree

7 / 26

More Formal Statement of Result

Theorem
For G random sparse graph on n vertices, with probability 1 − o(1) any
polynomial calculus proof of fact “G is not 3-colourable” has size exp (Ω(n))

• Lower bound holds over any field
• For both random regular graphs and Erdős–Rényi random graphs

(with appropriately chosen parameters)
• Obtained by showing Ω(n) degree lower bound
• Implies exponential size lower bound for Boolean encoding

[Impagliazzo–Pudlák–Sgall 99]

8 / 26

More Formal Statement of Result

Theorem
For G random sparse graph on n vertices, with probability 1 − o(1) any
polynomial calculus proof of fact “G is not 3-colourable” has size exp (Ω(n))

• Lower bound holds over any field
• For both random regular graphs and Erdős–Rényi random graphs

(with appropriately chosen parameters)

• Obtained by showing Ω(n) degree lower bound
• Implies exponential size lower bound for Boolean encoding

[Impagliazzo–Pudlák–Sgall 99]

8 / 26

More Formal Statement of Result

Theorem
For G random sparse graph on n vertices, with probability 1 − o(1) any
polynomial calculus proof of fact “G is not 3-colourable” has size exp (Ω(n))

• Lower bound holds over any field
• For both random regular graphs and Erdős–Rényi random graphs

(with appropriately chosen parameters)
• Obtained by showing Ω(n) degree lower bound
• Implies exponential size lower bound for Boolean encoding

[Impagliazzo–Pudlák–Sgall 99]

8 / 26

Degree Lower Bound: Framework

Task: separate 1 from {polynomials derivable in degree D}

[Razborov 98]: suffices to find linear
R : F[®x] → F[®x] such that
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

Kernel of R overapproximates what is derivable
in degree D

Derivable in degree D

ker(R)

9 / 26

Degree Lower Bound: Framework

Task: separate 1 from {polynomials derivable in degree D}

[Razborov 98]: suffices to find linear
R : F[®x] → F[®x] such that
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

Kernel of R overapproximates what is derivable
in degree D

Derivable in degree D

ker(R)

9 / 26

Degree Lower Bound: Framework

Task: separate 1 from {polynomials derivable in degree D}

[Razborov 98]: suffices to find linear
R : F[®x] → F[®x] such that
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

Kernel of R overapproximates what is derivable
in degree D

Derivable in degree D
ker(R)

9 / 26

Quick Recap: Polynomial Ideals

Given set of polynomials 𝒫, ideal ⟨𝒫⟩ is smallest set such that
• 𝒫 ⊆ ⟨𝒫⟩
• p, q ∈ ⟨𝒫⟩ ⇒ p + q ∈ ⟨𝒫⟩
• p ∈ ⟨𝒫⟩ ⇒ r · p ∈ ⟨𝒫⟩ for all polynomials r

Connection to polynomial calculus:
• ⟨𝒫⟩ contains all polynomial implied by 𝒫
• Which is exactly what is derivable by polynomial calculus
• 1 ∈ ⟨𝒫⟩ ⇔ ⟨𝒫⟩ = all polynomials ⇔ 𝒫 is unsatisfiable

10 / 26

Quick Recap: Polynomial Ideals

Given set of polynomials 𝒫, ideal ⟨𝒫⟩ is smallest set such that
• 𝒫 ⊆ ⟨𝒫⟩
• p, q ∈ ⟨𝒫⟩ ⇒ p + q ∈ ⟨𝒫⟩
• p ∈ ⟨𝒫⟩ ⇒ r · p ∈ ⟨𝒫⟩ for all polynomials r

Connection to polynomial calculus:
• ⟨𝒫⟩ contains all polynomial implied by 𝒫
• Which is exactly what is derivable by polynomial calculus
• 1 ∈ ⟨𝒫⟩ ⇔ ⟨𝒫⟩ = all polynomials ⇔ 𝒫 is unsatisfiable

10 / 26

Polynomial Ideal Reductions

• Impose total order on monomials (with 1 smallest)
• Order polynomials by largest monomial (leading monomial)
• Reduction modulo ideal ⟨𝒫⟩: Operator R⟨𝒫⟩ : F[®x] → F[®x] defined as

R⟨𝒫⟩(q) := minimum polynomial in {q − r | r ∈ ⟨𝒫⟩}

Properties of R⟨𝒫⟩:
• well-defined
• linear
• ker

(
R⟨𝒫⟩

)
= ⟨𝒫⟩

• R2
⟨𝒫⟩ = R2

⟨𝒫⟩

11 / 26

Polynomial Ideal Reductions

• Impose total order on monomials (with 1 smallest)
• Order polynomials by largest monomial (leading monomial)
• Reduction modulo ideal ⟨𝒫⟩: Operator R⟨𝒫⟩ : F[®x] → F[®x] defined as

R⟨𝒫⟩(q) := minimum polynomial in {q − r | r ∈ ⟨𝒫⟩}

Properties of R⟨𝒫⟩:
• well-defined
• linear
• ker

(
R⟨𝒫⟩

)
= ⟨𝒫⟩

• R2
⟨𝒫⟩ = R2

⟨𝒫⟩

11 / 26

Example of Polynomial Reduction

Consider F[x, y] and ideal generated by {x + y}.

• Order x ≻ y extended to all monomials (lexicographically, say)
• ℛ⟨x+y⟩ maps xayb to (−1)aya+b

12 / 26

Pseudo-reductions
Reduction operator R⟨𝒫⟩ satisfies properties postulated by Razborov!

Except R⟨𝒫⟩(1) = 0, since 𝒫 unsatisfiable. . .
So won’t get degree lower bounds from reduction modulo ⟨𝒫⟩

Fix: reduce modulo smaller ideals!

Alekhnovich-Razborov 03
• For each monomial m, reduce m modulo ideal of subset S(m) of axioms
• Extend to polynomials by linearity

Intuition:
• S(m) contains axioms “closely related” to variables in m
• R indistinguishable from polynomial ideal reduction in low degree, but R(1) ≠ 0
• Think of R as pseudo-reduction modulo fake ideal claiming that 𝒫 is satisfiable

13 / 26

Pseudo-reductions
Reduction operator R⟨𝒫⟩ satisfies properties postulated by Razborov!
Except R⟨𝒫⟩(1) = 0, since 𝒫 unsatisfiable. . .
So won’t get degree lower bounds from reduction modulo ⟨𝒫⟩

Fix: reduce modulo smaller ideals!

Alekhnovich-Razborov 03
• For each monomial m, reduce m modulo ideal of subset S(m) of axioms
• Extend to polynomials by linearity

Intuition:
• S(m) contains axioms “closely related” to variables in m
• R indistinguishable from polynomial ideal reduction in low degree, but R(1) ≠ 0
• Think of R as pseudo-reduction modulo fake ideal claiming that 𝒫 is satisfiable

13 / 26

Pseudo-reductions
Reduction operator R⟨𝒫⟩ satisfies properties postulated by Razborov!
Except R⟨𝒫⟩(1) = 0, since 𝒫 unsatisfiable. . .
So won’t get degree lower bounds from reduction modulo ⟨𝒫⟩

Fix: reduce modulo smaller ideals!

Alekhnovich-Razborov 03
• For each monomial m, reduce m modulo ideal of subset S(m) of axioms
• Extend to polynomials by linearity

Intuition:
• S(m) contains axioms “closely related” to variables in m
• R indistinguishable from polynomial ideal reduction in low degree, but R(1) ≠ 0
• Think of R as pseudo-reduction modulo fake ideal claiming that 𝒫 is satisfiable

13 / 26

Pseudo-reductions
Reduction operator R⟨𝒫⟩ satisfies properties postulated by Razborov!
Except R⟨𝒫⟩(1) = 0, since 𝒫 unsatisfiable. . .
So won’t get degree lower bounds from reduction modulo ⟨𝒫⟩

Fix: reduce modulo smaller ideals!

Alekhnovich-Razborov 03
• For each monomial m, reduce m modulo ideal of subset S(m) of axioms
• Extend to polynomials by linearity

Intuition:
• S(m) contains axioms “closely related” to variables in m
• R indistinguishable from polynomial ideal reduction in low degree, but R(1) ≠ 0
• Think of R as pseudo-reduction modulo fake ideal claiming that 𝒫 is satisfiable

13 / 26

From Pseudo-reductions to Degree Lower Bounds

Recall that we want three properties from linear operator R:
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

This would show:
• All input axioms in 𝒫 are in ker(R)
• All polynomials derivable from 𝒫 in degree ≤ D are in ker(R)
• But 1 ∉ ker(R)
• So degree lower bound > D follows

14 / 26

From Pseudo-reductions to Degree Lower Bounds

Recall that we want three properties from linear operator R:
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

This would show:
• All input axioms in 𝒫 are in ker(R)
• All polynomials derivable from 𝒫 in degree ≤ D are in ker(R)
• But 1 ∉ ker(R)
• So degree lower bound > D follows

14 / 26

Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0

• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens
• Dream scenario: Show that there exists ideal ℐ such that

• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0

15 / 26

Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0
• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens

• Dream scenario: Show that there exists ideal ℐ such that
• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0

15 / 26

Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0
• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens
• Dream scenario: Show that there exists ideal ℐ such that

• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0

15 / 26

Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0
• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens
• Dream scenario: Show that there exists ideal ℐ such that

• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0
15 / 26

Why Aren’t We Done Already?

• All of this is old news. . .
• Proposed in [Alekhnovich–Razborov 03]
• Further developed in, e.g., [Galesi–Lauria 10a, 10b; Mikša–Nordström 15]

• Technical crux: Requires finding subset of axioms that can be “nicely isolated”
• For, e.g., pigeonhole principle (PHP), if some pigeons assigned to holes,

residual problem is still PHP instance
• But partial colouring propagates constraints throughout whole graph!?

• Average-case polynomial calculus lower bounds for colouring open since
[Beame–Culberson–Mitchell–Moore 05]

• Crucial new ideas in [Romero-Tunçel 22] — more about that later

16 / 26

Why Aren’t We Done Already?

• All of this is old news. . .
• Proposed in [Alekhnovich–Razborov 03]
• Further developed in, e.g., [Galesi–Lauria 10a, 10b; Mikša–Nordström 15]

• Technical crux: Requires finding subset of axioms that can be “nicely isolated”
• For, e.g., pigeonhole principle (PHP), if some pigeons assigned to holes,

residual problem is still PHP instance
• But partial colouring propagates constraints throughout whole graph!?

• Average-case polynomial calculus lower bounds for colouring open since
[Beame–Culberson–Mitchell–Moore 05]

• Crucial new ideas in [Romero-Tunçel 22] — more about that later

16 / 26

Why Aren’t We Done Already?

• All of this is old news. . .
• Proposed in [Alekhnovich–Razborov 03]
• Further developed in, e.g., [Galesi–Lauria 10a, 10b; Mikša–Nordström 15]

• Technical crux: Requires finding subset of axioms that can be “nicely isolated”
• For, e.g., pigeonhole principle (PHP), if some pigeons assigned to holes,

residual problem is still PHP instance
• But partial colouring propagates constraints throughout whole graph!?

• Average-case polynomial calculus lower bounds for colouring open since
[Beame–Culberson–Mitchell–Moore 05]

• Crucial new ideas in [Romero-Tunçel 22] — more about that later

16 / 26

Why Aren’t We Done Already?

• All of this is old news. . .
• Proposed in [Alekhnovich–Razborov 03]
• Further developed in, e.g., [Galesi–Lauria 10a, 10b; Mikša–Nordström 15]

• Technical crux: Requires finding subset of axioms that can be “nicely isolated”
• For, e.g., pigeonhole principle (PHP), if some pigeons assigned to holes,

residual problem is still PHP instance
• But partial colouring propagates constraints throughout whole graph!?

• Average-case polynomial calculus lower bounds for colouring open since
[Beame–Culberson–Mitchell–Moore 05]

• Crucial new ideas in [Romero-Tunçel 22] — more about that later

16 / 26

Degree Lower Bounds for Colouring

• For colouring, associate to each monomial m a vertex set Vm

• Slightly abuse notation RVmi
to mean reduction modulo ideal generated by

axioms “induced graph G[Vmi] is k-colourable”
• Define R

(∑
i cimi

)
B

∑
i ciRVmi

(mi)
• Technical challenge: construct Vm so that R satisfies required properties

17 / 26

Vertex Set Vm

Say that monomial m = xu,2xv,3xw,1 mentions vertices u, v,w

Vertices Vm related to m
• Define closure Cl(U) ⊇ U of vertex sets U
• Set Vm := Cl({vertices mentioned in m})

Desired properties of closure:

1 Subset-preserving: U′ ⊆ Cl(U) ⇒ Cl(U′) ⊆ Cl(U)
2 Size-preserving: |U| ≤ D ⇒ |Cl(U)| = O(D)
3 Reduction-preserving: For any monomial m mentioning only vertices

in Cl(U) and any vertex set J of size O(D) it holds that
RCl(U)(m) = RCl(U)∪J(m)

18 / 26

Vertex Set Vm

Say that monomial m = xu,2xv,3xw,1 mentions vertices u, v,w

Vertices Vm related to m
• Define closure Cl(U) ⊇ U of vertex sets U
• Set Vm := Cl({vertices mentioned in m})

Desired properties of closure:

1 Subset-preserving: U′ ⊆ Cl(U) ⇒ Cl(U′) ⊆ Cl(U)
2 Size-preserving: |U| ≤ D ⇒ |Cl(U)| = O(D)
3 Reduction-preserving: For any monomial m mentioning only vertices

in Cl(U) and any vertex set J of size O(D) it holds that
RCl(U)(m) = RCl(U)∪J(m)

18 / 26

Vertex Set Vm

Say that monomial m = xu,2xv,3xw,1 mentions vertices u, v,w

Vertices Vm related to m
• Define closure Cl(U) ⊇ U of vertex sets U
• Set Vm := Cl({vertices mentioned in m})

Desired properties of closure:

1 Subset-preserving: U′ ⊆ Cl(U) ⇒ Cl(U′) ⊆ Cl(U)
2 Size-preserving: |U| ≤ D ⇒ |Cl(U)| = O(D)
3 Reduction-preserving: For any monomial m mentioning only vertices

in Cl(U) and any vertex set J of size O(D) it holds that
RCl(U)(m) = RCl(U)∪J(m)

18 / 26

Vertex Set Vm

Say that monomial m = xu,2xv,3xw,1 mentions vertices u, v,w

Vertices Vm related to m
• Define closure Cl(U) ⊇ U of vertex sets U
• Set Vm := Cl({vertices mentioned in m})

Desired properties of closure:

1 Subset-preserving: U′ ⊆ Cl(U) ⇒ Cl(U′) ⊆ Cl(U)
2 Size-preserving: |U| ≤ D ⇒ |Cl(U)| = O(D)
3 Reduction-preserving: For any monomial m mentioning only vertices

in Cl(U) and any vertex set J of size O(D) it holds that
RCl(U)(m) = RCl(U)∪J(m)

18 / 26

Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]

• ... in order-decreasing way: for each v in
J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26

Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]

• ... in order-decreasing way: for each v in
J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26

Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]

• ... in order-decreasing way: for each v in
J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26

Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]
• ... in order-decreasing way: for each v in

J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26

Construction of Closure (1/2)

Sufficient to prevent certain structures in neighbourhood outside Cl(U) such as

1 Vertex with a larger neighbour in Cl(U)

2 Edge between neighbours of Cl(U)

3 Vertex with > 1 neighbour in Cl(U)

Similar structures identified in [Romero-Tunçel 22]
in colouring lower bound for large-girth graphs!

20 / 26

Construction of Closure (1/2)

Sufficient to prevent certain structures in neighbourhood outside Cl(U) such as

1 Vertex with a larger neighbour in Cl(U)

2 Edge between neighbours of Cl(U)

3 Vertex with > 1 neighbour in Cl(U)

Similar structures identified in [Romero-Tunçel 22]
in colouring lower bound for large-girth graphs!

20 / 26

Construction of Closure (1/2)

Sufficient to prevent certain structures in neighbourhood outside Cl(U) such as

1 Vertex with a larger neighbour in Cl(U)

2 Edge between neighbours of Cl(U)

3 Vertex with > 1 neighbour in Cl(U)

Similar structures identified in [Romero-Tunçel 22]
in colouring lower bound for large-girth graphs!

20 / 26

Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U

2 Add all vertices reachable from current set
by order-decreasing paths in G

3 If type 2 or 3 structure, add offending
vertices to current set and go to 2

Let Cl(U) := final set

Not hard to show Cl(U) well-defined

, but what about size?

21 / 26

Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U
2 Add all vertices reachable from current set

by order-decreasing paths in G

3 If type 2 or 3 structure, add offending
vertices to current set and go to 2

Let Cl(U) := final set

Not hard to show Cl(U) well-defined

, but what about size?

21 / 26

Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U
2 Add all vertices reachable from current set

by order-decreasing paths in G
3 If type 2 or 3 structure, add offending

vertices to current set and go to 2

Let Cl(U) := final set

Not hard to show Cl(U) well-defined

, but what about size?

21 / 26

Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U
2 Add all vertices reachable from current set

by order-decreasing paths in G
3 If type 2 or 3 structure, add offending

vertices to current set and go to 2
Let Cl(U) := final set

Not hard to show Cl(U) well-defined

, but what about size?

21 / 26

Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U
2 Add all vertices reachable from current set

by order-decreasing paths in G
3 If type 2 or 3 structure, add offending

vertices to current set and go to 2
Let Cl(U) := final set

Not hard to show Cl(U) well-defined

, but what about size?

21 / 26

Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U
2 Add all vertices reachable from current set

by order-decreasing paths in G
3 If type 2 or 3 structure, add offending

vertices to current set and go to 2
Let Cl(U) := final set

Not hard to show Cl(U) well-defined, but what about size?
21 / 26

Keeping the Closure Small Enough

Size lemma [CdRNPR 23]

For random n-vertex graph with max vertex degree d, it holds for any vertex
set U with |U| ≤ 2−dO(1) · n that

|Cl(U)| = O(|U|)

• Proof relies on “good” vertex order introduced by [Romero-Tunçel 22]:

Order vertices according to a valid colouring of G

• Chromatic number of random graph G is 𝜒(G) = O(d/log d) = O(1)
⇒ order-decreasing paths have length O(1)

22 / 26

Keeping the Closure Small Enough

Size lemma [CdRNPR 23]

For random n-vertex graph with max vertex degree d, it holds for any vertex
set U with |U| ≤ 2−dO(1) · n that

|Cl(U)| = O(|U|)

• Proof relies on “good” vertex order introduced by [Romero-Tunçel 22]:

Order vertices according to a valid colouring of G

• Chromatic number of random graph G is 𝜒(G) = O(d/log d) = O(1)
⇒ order-decreasing paths have length O(1)

22 / 26

Use any vertex order that respects colour classes

23 / 26

Completing the Proof (Sketch) of the Colouring Lower Bound
Size lemma: |Cl(U)| = O(|U|) for all U of small size
• Intuition: Closure Cl(U) obtained from sequence of vertex sets

U ⊂ U1 ⊂ U2 ⊂ . . . of increasing edge density
• But random graph has bounded edge density everywhere

⇒ construction has to stop in O(1) rounds, so |Cl(U)| ≤
(
d𝜒(G))O(1) · |U|

Pseudo-reduction operator properties:
• R(axiom) = 0 since each axiom p mentions vertex set Up of size ≤ 2 and

R(m) = RCl(Up)(m) for each monomial m in p
• R(xp) = R(xR(p)) for all p of degree ≤ D − 1 since closure is size- and

reduction-preserving
• R(1) = 1 since Cl(∅) = ∅ and RCl(1)(·) hence does nothing

24 / 26

Completing the Proof (Sketch) of the Colouring Lower Bound
Size lemma: |Cl(U)| = O(|U|) for all U of small size
• Intuition: Closure Cl(U) obtained from sequence of vertex sets

U ⊂ U1 ⊂ U2 ⊂ . . . of increasing edge density
• But random graph has bounded edge density everywhere

⇒ construction has to stop in O(1) rounds, so |Cl(U)| ≤
(
d𝜒(G))O(1) · |U|

Pseudo-reduction operator properties:
• R(axiom) = 0 since each axiom p mentions vertex set Up of size ≤ 2 and

R(m) = RCl(Up)(m) for each monomial m in p
• R(xp) = R(xR(p)) for all p of degree ≤ D − 1 since closure is size- and

reduction-preserving
• R(1) = 1 since Cl(∅) = ∅ and RCl(1)(·) hence does nothing

24 / 26

Some Future Research Directions

1 Colouring lower bounds for other proof systems
• Sherali–Adams
• Sum-of-squares
• Cutting planes

2 Polynomial calculus lower bounds for other problems
• Graph homomorphism (generalization of colouring)
• Clique
• Dense linear order principle

3 Unified understanding of polynomial calculus lower bound techniques
• Including lower bounds depending on field characteristic

4 Connections between pseudo-reductions and other lower bound operators
• Designs for Nullstellensatz
• Pseudo-expectations for sums-of-squares

25 / 26

Some Future Research Directions

1 Colouring lower bounds for other proof systems
• Sherali–Adams
• Sum-of-squares
• Cutting planes

2 Polynomial calculus lower bounds for other problems
• Graph homomorphism (generalization of colouring)
• Clique
• Dense linear order principle

3 Unified understanding of polynomial calculus lower bound techniques
• Including lower bounds depending on field characteristic

4 Connections between pseudo-reductions and other lower bound operators
• Designs for Nullstellensatz
• Pseudo-expectations for sums-of-squares

25 / 26

Some Future Research Directions

1 Colouring lower bounds for other proof systems
• Sherali–Adams
• Sum-of-squares
• Cutting planes

2 Polynomial calculus lower bounds for other problems
• Graph homomorphism (generalization of colouring)
• Clique
• Dense linear order principle

3 Unified understanding of polynomial calculus lower bound techniques
• Including lower bounds depending on field characteristic

4 Connections between pseudo-reductions and other lower bound operators
• Designs for Nullstellensatz
• Pseudo-expectations for sums-of-squares

25 / 26

Some Future Research Directions

1 Colouring lower bounds for other proof systems
• Sherali–Adams
• Sum-of-squares
• Cutting planes

2 Polynomial calculus lower bounds for other problems
• Graph homomorphism (generalization of colouring)
• Clique
• Dense linear order principle

3 Unified understanding of polynomial calculus lower bound techniques
• Including lower bounds depending on field characteristic

4 Connections between pseudo-reductions and other lower bound operators
• Designs for Nullstellensatz
• Pseudo-expectations for sums-of-squares

25 / 26

Summing up
• Graph colouring notoriously hard problem in theory
• But applied algorithms can work surprisingly well in practice
• Can we rule out unconditionally that such algorithms solve NP-complete

problems in polynomial time?

• Our result: Linear degree lower bounds for polynomial calculus proofs for
random graphs

• Implies exponential average-case running times for state-of-the-art algebraic
algorithms

• Lots of good open problems for algebraic and semi-algebraic proof systems!
• Potential for synergies between proof complexity and algebraic complexity?

Thank you for your attention!

26 / 26

Summing up
• Graph colouring notoriously hard problem in theory
• But applied algorithms can work surprisingly well in practice
• Can we rule out unconditionally that such algorithms solve NP-complete

problems in polynomial time?
• Our result: Linear degree lower bounds for polynomial calculus proofs for

random graphs
• Implies exponential average-case running times for state-of-the-art algebraic

algorithms

• Lots of good open problems for algebraic and semi-algebraic proof systems!
• Potential for synergies between proof complexity and algebraic complexity?

Thank you for your attention!

26 / 26

Summing up
• Graph colouring notoriously hard problem in theory
• But applied algorithms can work surprisingly well in practice
• Can we rule out unconditionally that such algorithms solve NP-complete

problems in polynomial time?
• Our result: Linear degree lower bounds for polynomial calculus proofs for

random graphs
• Implies exponential average-case running times for state-of-the-art algebraic

algorithms
• Lots of good open problems for algebraic and semi-algebraic proof systems!

• Potential for synergies between proof complexity and algebraic complexity?

Thank you for your attention!

26 / 26

Summing up
• Graph colouring notoriously hard problem in theory
• But applied algorithms can work surprisingly well in practice
• Can we rule out unconditionally that such algorithms solve NP-complete

problems in polynomial time?
• Our result: Linear degree lower bounds for polynomial calculus proofs for

random graphs
• Implies exponential average-case running times for state-of-the-art algebraic

algorithms
• Lots of good open problems for algebraic and semi-algebraic proof systems!
• Potential for synergies between proof complexity and algebraic complexity?

Thank you for your attention!

26 / 26

Summing up
• Graph colouring notoriously hard problem in theory
• But applied algorithms can work surprisingly well in practice
• Can we rule out unconditionally that such algorithms solve NP-complete

problems in polynomial time?
• Our result: Linear degree lower bounds for polynomial calculus proofs for

random graphs
• Implies exponential average-case running times for state-of-the-art algebraic

algorithms
• Lots of good open problems for algebraic and semi-algebraic proof systems!
• Potential for synergies between proof complexity and algebraic complexity?

Thank you for your attention!
26 / 26

