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Graph Colouring

Can vertices of graph G be coloured with k colours so that all neighbours
get distinct colours?

One of Karp’s 21 NP-complete problems
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Is Graph Colouring Hard?
Colouring seems hard even to approximate:
• If G k-colourable, best efficient algorithm uses k · Ω̃(n) colours [Halldorsson 93]
• If G 3-colourable, best algorithm uses n0.199··· colours [Kawarabayashi–Thorup 17]
• NP-hard to approximate within factor n1−𝜀 [Feige–Kilian 98, Zuckerman 07]

However, applied algorithms appear to do well:
• Backtracking and SAT-based algorithms

[San Segundo 12, Hebrard–Katsirelos 20, Heule–Karahalios–van Hoeve 22]
• Integer programming

[Mehortra–Trick 95, Gualandi–Malucelli 12]
• Algebraic algorithms

[DeLoera–Lee–Malkin–Margulies 08 & 11, DeLoera–Lee–Margulies–Onn 09,
DeLoera–Margulies–Pernpeinter–Riedl–Rolnick–Spencer–Stasi–Swenson 15]

Can we prove that graph colouring is hard for these algorithms?
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Hardness for Algebraic Algorithms

• Exponential lower bounds known for explicit graphs
[Lauria–Nordström 17, Atserias–Ochremiak 19]

• But obtained by reduction from other problems
• Graph colouring instances somewhat artificial

Perhaps graph colouring is easy on most graphs?

To rule this out, want average-case hardness results

SAT-based algorithms [Beame–Culberson–Mitchell–Moore 05]

Conflict-driven clause learning (CDCL) SAT solvers need exponential time
for k-colouring on random graphs for k ≥ 3
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Our Result

Theorem
Algorithms based on Hilbert’s Nullstellensatz and/or Gröbner bases require
exponential time to solve k-colouring on random graphs for k ≥ 3

Established via proof complexity:

• Formalise reasoning method in algorithm as a proof system
• Fast execution for graph G with chromatic number 𝜒(G) > k

⇒ short proof of statement “G is not k-colourable”
• Show that such short proofs do not exist
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Nullstellensatz Proof System

To show polynomials p1, . . . , pm in F[®x] have no common root in F, suffices to
find polynomials q1, . . . , qm in F[®x] such that

m∑
i=1

qi(®x) · pi(®x) = 1

This is a Nullstellensatz proof of unsatisfiability
[Beame–Impagliazzo–Krajíček–Pitassi–Pudlák 96]

Soundness: if such polynomials qi exist, then clearly {pi} have no common root

Completeness (Boolean variables): special case of Hilbert’s Nullstellensatz
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Polynomial Calculus Proof System [Clegg–Edmonds–Impagliazzo 96]

Dynamic version: given {p1, . . . , pm}, derive new polynomials using two rules

(linear combination)
p q

𝛼p + 𝛽q
𝛼, 𝛽 ∈ F

(multiplication)
p

x · p
x variable

Goal: derive polynomial 1

Polynomial calculus proof system models Gröbner basis computations

• Polynomial = linear combination of monomials
• Proof size: # monomials in derivation

Make proof system stronger by allowing dual variables xi for negative literals
[Alekhnovich–Ben-Sasson–Razborov–Wigderson 02]

• Proof degree: max total degree of polynomial in derivation
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Encoding k-Colouring as Polynomials

Variables xv,i = “vertex v gets colour i”, v ∈ V(G), i ∈ [k]

Axiom polynomials for graph G:
Each vertex gets a colour

∑k
i=1 xv,i − 1

Colours are unique xv,i · xv,i′ i ≠ i′

Distinct colours for neighbours xu,i · xv,i (u, v) ∈ E(G)
Variables are Boolean x2

v,i − xv,i

Common root of polynomials ⇔ k-colouring of G

Other important encoding used in computational algebra [Bayer 82]:
• Colours Xv are kth roots of unity {1, 𝜁, 𝜁2, · · · , 𝜁k−1} (assuming char(F) ∤ k)
• Linear substitution from Xv to xv,1, . . . , xv,k ⇒ (roughly) same proof degree
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More Formal Statement of Result

Theorem
For G random sparse graph on n vertices, with probability 1 − o(1) any
polynomial calculus proof of fact “G is not 3-colourable” has size exp (Ω(n))

• Lower bound holds over any field
• For both random regular graphs and Erdős–Rényi random graphs

(with appropriately chosen parameters)
• Obtained by showing Ω(n) degree lower bound
• Implies exponential size lower bound for Boolean encoding

[Impagliazzo–Pudlák–Sgall 99]
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Degree Lower Bound: Framework

Task: separate 1 from {polynomials derivable in degree D}

[Razborov 98]: suffices to find linear
R : F[®x] → F[®x] such that
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

Kernel of R overapproximates what is derivable
in degree D

Derivable in degree D

ker(R)
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Quick Recap: Polynomial Ideals

Given set of polynomials 𝒫, ideal ⟨𝒫⟩ is smallest set such that
• 𝒫 ⊆ ⟨𝒫⟩
• p, q ∈ ⟨𝒫⟩ ⇒ p + q ∈ ⟨𝒫⟩
• p ∈ ⟨𝒫⟩ ⇒ r · p ∈ ⟨𝒫⟩ for all polynomials r

Connection to polynomial calculus:
• ⟨𝒫⟩ contains all polynomial implied by 𝒫
• Which is exactly what is derivable by polynomial calculus
• 1 ∈ ⟨𝒫⟩ ⇔ ⟨𝒫⟩ = all polynomials ⇔ 𝒫 is unsatisfiable
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Polynomial Ideal Reductions

• Impose total order on monomials (with 1 smallest)
• Order polynomials by largest monomial (leading monomial)
• Reduction modulo ideal ⟨𝒫⟩: Operator R⟨𝒫⟩ : F[®x] → F[®x] defined as

R⟨𝒫⟩(q) := minimum polynomial in {q − r | r ∈ ⟨𝒫⟩}

Properties of R⟨𝒫⟩:
• well-defined
• linear
• ker

(
R⟨𝒫⟩

)
= ⟨𝒫⟩

• R2
⟨𝒫⟩ = R2

⟨𝒫⟩
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Example of Polynomial Reduction

Consider F[x, y] and ideal generated by {x + y}.

• Order x ≻ y extended to all monomials (lexicographically, say)
• ℛ⟨x+y⟩ maps xayb to (−1)aya+b
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Pseudo-reductions
Reduction operator R⟨𝒫⟩ satisfies properties postulated by Razborov!

Except R⟨𝒫⟩(1) = 0, since 𝒫 unsatisfiable. . .
So won’t get degree lower bounds from reduction modulo ⟨𝒫⟩

Fix: reduce modulo smaller ideals!

Alekhnovich-Razborov 03
• For each monomial m, reduce m modulo ideal of subset S(m) of axioms
• Extend to polynomials by linearity

Intuition:
• S(m) contains axioms “closely related” to variables in m
• R indistinguishable from polynomial ideal reduction in low degree, but R(1) ≠ 0
• Think of R as pseudo-reduction modulo fake ideal claiming that 𝒫 is satisfiable
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From Pseudo-reductions to Degree Lower Bounds

Recall that we want three properties from linear operator R:
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

This would show:
• All input axioms in 𝒫 are in ker(R)
• All polynomials derivable from 𝒫 in degree ≤ D are in ker(R)
• But 1 ∉ ker(R)
• So degree lower bound > D follows

14 / 26



From Pseudo-reductions to Degree Lower Bounds

Recall that we want three properties from linear operator R:
1 R(axiom) = 0
2 R(xp) = R(xR(p)) for any p of degree ≤ D − 1
3 R(1) ≠ 0

This would show:
• All input axioms in 𝒫 are in ker(R)
• All polynomials derivable from 𝒫 in degree ≤ D are in ker(R)
• But 1 ∉ ker(R)
• So degree lower bound > D follows

14 / 26



Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0

• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens
• Dream scenario: Show that there exists ideal ℐ such that

• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0

15 / 26



Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0
• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens

• Dream scenario: Show that there exists ideal ℐ such that
• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0

15 / 26



Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0
• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens
• Dream scenario: Show that there exists ideal ℐ such that

• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0

15 / 26



Getting Pseudo-reductions to Behave Well

• Concretely, for axiom polynomial p = m1 + m2 want R(p) = 0
• But pseudo-reduction

R(p) = R(m1) + R(m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)

reduces monomials modulo different ideals — lose control of what happens
• Dream scenario: Show that there exists ideal ℐ such that

• p ∈ ℐ for our axiom p = m1 + m2
• S(mi) ⊆ ℐ for i = 1, 2
• R⟨S(mi)⟩(mi) = Rℐ(mi) for i = 1, 2

• Then

R(p) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2) = Rℐ(m1) + Rℐ(m2) = Rℐ(m1 + m2) = 0
15 / 26



Why Aren’t We Done Already?

• All of this is old news. . .
• Proposed in [Alekhnovich–Razborov 03]
• Further developed in, e.g., [Galesi–Lauria 10a, 10b; Mikša–Nordström 15]

• Technical crux: Requires finding subset of axioms that can be “nicely isolated”
• For, e.g., pigeonhole principle (PHP), if some pigeons assigned to holes,

residual problem is still PHP instance
• But partial colouring propagates constraints throughout whole graph!?

• Average-case polynomial calculus lower bounds for colouring open since
[Beame–Culberson–Mitchell–Moore 05]

• Crucial new ideas in [Romero-Tunçel 22] — more about that later
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• Further developed in, e.g., [Galesi–Lauria 10a, 10b; Mikša–Nordström 15]

• Technical crux: Requires finding subset of axioms that can be “nicely isolated”
• For, e.g., pigeonhole principle (PHP), if some pigeons assigned to holes,

residual problem is still PHP instance
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Degree Lower Bounds for Colouring

• For colouring, associate to each monomial m a vertex set Vm

• Slightly abuse notation RVmi
to mean reduction modulo ideal generated by

axioms “induced graph G[Vmi] is k-colourable”
• Define R

( ∑
i cimi

)
B

∑
i ciRVmi

(mi)
• Technical challenge: construct Vm so that R satisfies required properties
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Vertex Set Vm

Say that monomial m = xu,2xv,3xw,1 mentions vertices u, v,w

Vertices Vm related to m
• Define closure Cl(U) ⊇ U of vertex sets U
• Set Vm := Cl({vertices mentioned in m})

Desired properties of closure:

1 Subset-preserving: U′ ⊆ Cl(U) ⇒ Cl(U′) ⊆ Cl(U)
2 Size-preserving: |U| ≤ D ⇒ |Cl(U)| = O(D)
3 Reduction-preserving: For any monomial m mentioning only vertices

in Cl(U) and any vertex set J of size O(D) it holds that
RCl(U)(m) = RCl(U)∪J(m)
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Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]

• ... in order-decreasing way: for each v in
J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26



Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]

• ... in order-decreasing way: for each v in
J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26



Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]

• ... in order-decreasing way: for each v in
J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26



Reduction-Preserving Property of Closure

Reduction-preserving: For any monomial m mentioning only vertices in Cl(U)
and any vertex set J of size O(D) it holds that RCl(U)(m) = RCl(U)∪J(m)

Reduction lemma [CdRNPR 23]

For fixed order on vertices (and variables), can
achieve this property if:
• each colouring of G[Cl(U)] can be extended

to G[Cl(U) ∪ J]
• ... in order-decreasing way: for each v in

J \ Cl(U), colour can be determined based
on colouring of {w ∈ Cl(U) : w < v}

19 / 26



Construction of Closure (1/2)

Sufficient to prevent certain structures in neighbourhood outside Cl(U) such as

1 Vertex with a larger neighbour in Cl(U)

2 Edge between neighbours of Cl(U)

3 Vertex with > 1 neighbour in Cl(U)

Similar structures identified in [Romero-Tunçel 22]
in colouring lower bound for large-girth graphs!
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Construction of Closure (2/2)

How to prevent bad structures in neighbourhood outside Cl(U):

Constructing the closure of set U

1 Start with given set U

2 Add all vertices reachable from current set
by order-decreasing paths in G

3 If type 2 or 3 structure, add offending
vertices to current set and go to 2

Let Cl(U) := final set

Not hard to show Cl(U) well-defined

, but what about size?
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Keeping the Closure Small Enough

Size lemma [CdRNPR 23]

For random n-vertex graph with max vertex degree d, it holds for any vertex
set U with |U| ≤ 2−dO(1) · n that

|Cl(U)| = O(|U|)

• Proof relies on “good” vertex order introduced by [Romero-Tunçel 22]:

Order vertices according to a valid colouring of G

• Chromatic number of random graph G is 𝜒(G) = O(d/log d) = O(1)
⇒ order-decreasing paths have length O(1)

22 / 26



Keeping the Closure Small Enough

Size lemma [CdRNPR 23]

For random n-vertex graph with max vertex degree d, it holds for any vertex
set U with |U| ≤ 2−dO(1) · n that

|Cl(U)| = O(|U|)

• Proof relies on “good” vertex order introduced by [Romero-Tunçel 22]:

Order vertices according to a valid colouring of G

• Chromatic number of random graph G is 𝜒(G) = O(d/log d) = O(1)
⇒ order-decreasing paths have length O(1)

22 / 26



Use any vertex order that respects colour classes
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Completing the Proof (Sketch) of the Colouring Lower Bound
Size lemma: |Cl(U)| = O(|U|) for all U of small size
• Intuition: Closure Cl(U) obtained from sequence of vertex sets

U ⊂ U1 ⊂ U2 ⊂ . . . of increasing edge density
• But random graph has bounded edge density everywhere

⇒ construction has to stop in O(1) rounds, so |Cl(U)| ≤
(
d𝜒(G))O(1) · |U|

Pseudo-reduction operator properties:
• R(axiom) = 0 since each axiom p mentions vertex set Up of size ≤ 2 and

R(m) = RCl(Up)(m) for each monomial m in p
• R(xp) = R(xR(p)) for all p of degree ≤ D − 1 since closure is size- and

reduction-preserving
• R(1) = 1 since Cl(∅) = ∅ and RCl(1)(·) hence does nothing
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Some Future Research Directions

1 Colouring lower bounds for other proof systems
• Sherali–Adams
• Sum-of-squares
• Cutting planes

2 Polynomial calculus lower bounds for other problems
• Graph homomorphism (generalization of colouring)
• Clique
• Dense linear order principle

3 Unified understanding of polynomial calculus lower bound techniques
• Including lower bounds depending on field characteristic

4 Connections between pseudo-reductions and other lower bound operators
• Designs for Nullstellensatz
• Pseudo-expectations for sums-of-squares
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Summing up
• Graph colouring notoriously hard problem in theory
• But applied algorithms can work surprisingly well in practice
• Can we rule out unconditionally that such algorithms solve NP-complete

problems in polynomial time?

• Our result: Linear degree lower bounds for polynomial calculus proofs for
random graphs

• Implies exponential average-case running times for state-of-the-art algebraic
algorithms

• Lots of good open problems for algebraic and semi-algebraic proof systems!
• Potential for synergies between proof complexity and algebraic complexity?

Thank you for your attention!
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