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Bugs in hardware are expensive!

Circuit verification prevents issues like the famous Pentium FDIV bug

s[3]

Multiplier verification

Given: Gate-level integer multiplier for fixed bit-width
Input format: AND-Inverter Graph

Question: For all possible a;,b; € B :

(2a1 + ao) * (2b1 + bo) = 8s3 + 4s2 + 281 + s07 ’ 2 H 4 ‘ ’ 8 H 6 ‘
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Formal Verification Techniques

Satisfiability Checking (SAT) Decision Diagrams
B SAT 2016 Competition B First technique to detect Pentium bug
B Exponential running time for solvers B Rely on manual decomposition
Theorem Proving Algebraic Approach
B Used in industry B Dramatic progress since 2015
B Requires manual effort B Polynomial encoding
B Automated techniques rely on hierarchical B Automated approach

information B Works for non-trivial multiplier designs



Basic Idea of Algebraic Approach

Multiplier Polynomials

B={

x — ag * by,
y —ai *by,
S0 — T *Y,

}

Specification l

Ideal Membership

2n—1

; 2's; —

i=0 i=0

For more details on circuit verification using computer algebra, see, e.g., [Kaufmann, 2020]



From Circuits to Polynomials

Gate polynomials G(C) C Z[X]

—s3 +l2a —l22 +a1by

—s2 + l2g —l20 + lislic —l1s —lig + 1
—s1 +l20 —lis +lializ —l1a — iz + 1
—so0 + lio —li6 + l1al12

—lag + laglaa —l2g —l2a +1 —l1a + aob1

—l26 + la2l16 — l22 —l16 + 1 —l12 + a1bo

—l24 + l22l16 —l10 + aobo
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From Circuits to Polynomials

Gate polynomials G(C) C Z[X]

—s3 +l2a —l22 +a1by

—s2 + l2g —l20 + lislic —l1s —lig + 1
—s1 +l20 —lis +lializ —l1a — iz + 1
—so0 + lio —li6 + l1al12

—lag + laglaa —l2g —l2a +1 —l14 + agby

—l26 + la2l16 — l22 —l16 + 1 —l12 + a1bo

—l24 + l22l16 —l10 + aobo

Boolean axioms / value constraints B(C') C Z[X]

ay,ap €B —a?-i—al, —ag-&-am
b1,bo € B —b3 + b1, —b2 +bo

Specification S,, € Z[X]

8s3 + 4s2 + 2s1 + so — 4bia1 — 2bjag — 2bpa1 — boao
a[0] b[0]




Verification Technique

Verification algorithm

2n—1 n—1 n—1
Reduce specification » ~ 2's; — (Z Qiai> <Z Qibi> by elements of G(C') U B(C)
1=0 1=0 1=0

based on fixed variable order until no further reduction possible
Then: C'is multiplier < final remainder zero

Easy: Multipliers containing a ripple-carry adder
Hard: Multipliers containing a generate-and-propagate adder, e.g., carry-lookahead adder



Multiplier — Ripple-Carry Adder
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Multiplier — Carry-Lookahead Adder
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OR Gates

o=o02Vlp
02 = 01 \/ll
01 =13 Vi

—o0+ 02 + lo — 0210,
—o02 + 01+ 11 — o1y,
—o01 + U3+ 12 —l3l2

0

0y




OR Gates
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OR Gates

o
0=02Vlp —o4o02+ly— 02, % I
o2 =01Vl —o2+o01+1l1—oily, 0
01 =13Vl —o1+I1l3+12—13ls )
L

o=lo+ 11 —loly + 12 —lolo — lila + lolila + 13 — lols — l1lz + lol1l3 — l2l3 + lolalz + l1l2l3 — lolilals
15 = 2* — 1 monomials

n OR Gates = 2" — 1 monomials



Previous Approach: SAT & Computer Algebra
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[Kaufmann et al., 2019]
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[Kaufmann et al., 2019]
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Problem: Proof Certificates

52 81 8 IR
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Possible to simulate DRUP proofs in PAC, but does not scale [Kaufmann et al., 2020]



Contributions of Our DATE 22 Paper [Kaufmann et al., 2022]

Encoding
B Dual variables

B Compact representation of polynomials

Novel carry rewriting method
B Uses dual encoding

B Tail substitutions

IWI No need for SAT solver
b L

e, |

| Uniform practical algebraic calculus (PAC) certificate
O




1st Contribution: Dual Variables

Provide more compact notation for inverters

() (L) ()
W ®& W & W @&

I3 =101 Nl ly =11 N~y ls = =l1 A~y
—ls +lily —la—lLla+ 1 —ls+hlo—li—l+1



1st Contribution: Dual Variables
Provide more compact notation for inverters

Dual variables
Whenever two variables [;, f; € {0, 1} satisfy f; = 1 — [;, we have f; = dual(l;)

I3 =101 Nl ly =11 N~y ls = —l1 A~y
—ls +lily —la— ULl + 1 —ls+hlo—li—l+1

=3+ 11l —la+ULf —ls+ fif2



Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...
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Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...

B Often with dual variables [Alekhnovich et al., 2000] to avoid annoying blow-up when encoding
and reasoning with CNF formulas

B Polynomial calculus without dual variables exponentially weaker [de Rezende et al., 2021]
B What we see here is exactly this problem in practice

B Theory suggests: use dual variables!



OR Gates

o=o02Vlp
02 = 01 \/ll
01 =13 Vi
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Practical Difficulty

Key Method for polynomial inference: Grébner basis algorithm

Relies on reduction method based on fixed variable order that will immediately eliminate one of each
pair of dual variables

Practice: During verification, always reduce specification by the dual constraint —f; — I; + 1 of a
gate variable I; before reducing by its gate constraint
Has the effect that all occurrences of f; in the specification will be flipped to I; before reducing I;

Problem: Compact representation is unfolded



Practical Difficulty

Key Method for polynomial inference: Grébner basis algorithm

Relies on reduction method based on fixed variable order that will immediately eliminate one of each
pair of dual variables

Practice: During verification, always reduce specification by the dual constraint —f; — I; + 1 of a
gate variable I; before reducing by its gate constraint
Has the effect that all occurrences of f; in the specification will be flipped to I; before reducing I;

Problem: Compact representation is unfolded

= Need dedicated preprocessing techniques to keep compact representation



Calculating with Dual Variables

Proposition 1.
For all Boolean variables I; and their dual representation dual(l;) = f; we have [;f; =0

“l; and dual(l;) cannot be 1 at the same time”

Proposition 2.
For all Boolean variables I; and their dual representation dual(l;) = f; we have ; + f; =1

“l; and dual(l;) add up to 1”



Dual Mergeable

Call m; and my dual mergeable iff m, = cf;7 and ms = cl;7 for ¢ constant, = term
Call monomial dmerge(m, m2) = c7 their dual merge



Dual Mergeable

Call m; and m» dual mergeable iff m, = c¢f;7 and ma = ¢l;7 for ¢ constant, 7 term

Call monomial dmerge(m., m2) = cr their dual merge

Algorithm: Merging monomials(p)

1
2
3
4
5
6
7
8
9

10

Input : Polynomial p
Output: Simplified polynomial r
q « sort-degree-lex(p); r + 0;
while ¢ # 0 do
g1 < lm(q); t + tail(q); simplify « L;
while ¢ # 0 and deg(g;) = deg(lt(t)) and —simplify do
qt < 1t(t);
if g; and ¢; are dual mergeable then
q < q—q — gt + dmerge(qi, gt );
simplify <— T;
else t < t—gq¢;

if = simplifythen r <~ r+¢q ;¢ q—q;

11 return sort-lex(r);




Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

qo =lifafs +lifels +llafs+ fifo+la 7r=0
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Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

g =Ubfofs+lfols+lilafs+ fifo+ 12
@ =Ublafs+ fife +m+ l2
@ =fifet+lfe+12

113=+12
g =1
g5 =0

r=20
r=20
r=hlafs
r=lhlafs
r=lilafs

r=Uhlafs+1



2nd Contribution: Tail Substitution

Allows to introduce sharing on larger topological levels
Considerp = f — g and p1,...ps in Z[X]:

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —h1+gog192 D4 :=—hz+ 192
D5 := —h2 + 939495 pe := —ha + g3gs
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2nd Contribution: Tail Substitution

Allows to introduce sharing on larger topological levels
Considerp = f — g and p1,...ps in Z[X]:

p1 = —f 4+ hiho p2 := —g + h3hagogs
p3 = —h1 +gog192 pa:=—hs+g192
D5 := —h2 + 939495 pe := —ha + g3gs

Have to reduce p by polynomials p4, . .., ps to obtain p = 0:
f—g%
h1h2 — g p_z)
hiha — hshagogs =%
gogi1g2ha — hahagogs 2%
gog192h2 — g1g2hagogs ~>
909192939495 — g1g2hagogs —
909192939495 — gog1g293gags = 0



Tail Substitution in Action

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —h1+gog192 pa:=—hs+g192
ps = —h2 + ¢39495 D6 ‘= —ha + g394

Reduce p = f — g by polynomials p1, ..., ps to obtain p = 0
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ps = —h2 + ¢39495 D6 ‘= —ha + g394

Reduce p = f — g by polynomials p1, ..., ps to obtain p =0
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Tail Substitution in Action

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —hi1 4+ gogigz pa:= —hz+ g192
ps = —h2 + ¢39495 D6 ‘= —ha + g394

Reduce p = f — g by polynomials p1, ..., ps to obtain p =0

Since tail(p4) | tail(ps) and tail(ps) | tail(ps), we can derive:

p3 = —h1+hsgo ps:= —he+ hags
Then substitute tails of ps, ps in pa:

p1:=—f+hiha p2:=—g+hiha

Hence we have to reduce p only by p; and p; to derive p =0
Somewhat reminiscent of degree-bounded Grébner basis reduction in [Clegg et al., 1996]



Carry Rewriting

Goal: Rewrite encoding of carry look-ahead unit into a ripple-carry unit, which can easily be verified
using computer algebra

Algorithm: Carry-Rewriting

Input : Circuit C in AlG format

Output: Carry-rewritten Grébner basis of C
1 F « Mark-final-stage-adder(C);

2 G < Dual-Polynomial-Encoding(F);

3 H «+ Polynomial-Encoding(C'\ F);

4 G <+ Eliminate-Pure-Positive-Variables(G);
5 G < Tail-Substitution(G);

6 G « Carry-Unfolding(G);

7 return GU H

21



Carry Unfolding

Proposition 3.
Let —I; + o7 for 1 < i < k be a given set of polynomials, with I; € X and o, 7; € [X]. Assume

VE o fi = dual(l;). Then [1, fi=1—o(1 = [1F_,(1 — 7).

Excerpt of carry-lookahead adder, with z;,y; being the ith inputs of the adder, c¢;+1,¢; denoting
carries, and p; being the polynomial encoding of z; & v;:

—cCit1 + fafsfefr, —ci+ fifafs, —lv+ xiys,
—ls + pils, —l5 + pila, —ls+ pila

Using carry unfolding for ¢;+1, we are able to derive

—civ1 + frpici — fops + fr, —ci+ fifafs —lr +ziy

22



TeluMA

B Integration of dual variables into AMULET 2.0 [Kaufmann et al., 2019]
B Identifies final-stage adders

B Applies carry rewriting automatically

B On-the-fly generation of proof certificates in PAC format

Published version and experimental data available at:
http://fmv.jku.at/teluma
Maintained version available at:

https://github.com/d-kfmnn/teluma

23
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Evaluation: Multiplier Verification

Verification of 192 unsigned 64-bit multipliers
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Evaluation: Proof Certificates

[Kaufmann et al., 2019]

[Kaufmann et al., 2020]

Our approach

architecture | n || DRUP | PAC PAC PAC

#rules | #rules total (s) #rules total (s) #rules total(s)
sp-ar-cl 32|/ 14927 | 33834 1| 1597897 164 || 60336 0
sp-bd-ks [ 32| 17528 | 34958 1 817956 28 || 54116 0
sp-dt-If 32 || 3138| 33451 1 321720 51| 47835 0
bp-ct-bk |32 || 2276| 27312 1 217128 3|| 36356 0
bp-wt-cl 32|/ 46502 | 30561 21(/5536176 3375|| 114665 2
sp-ar-cl 64 || 65317 | 139338 8 - TO || 289632 4
sp-bd-ks |64 || 44921 | 142138 6| 1440943 7411214378 3
sp-dt-If 64 || 28772 | 138539 6 816572 19 || 192805 2
bp-ct-bk |64 || 19891 | 105579 5 459262 15| 136 703 2
bp-wt-cl 64 (142199 | 118573 19 - TO || 774044 24

All benchmarks generated by Arithmetic Model Generator [Homma et al., 2006] TO = 3600 sec
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Conclusion & Future Work

Contributions:
B Inclusion of dual variables
B Novel tail substitution scheme
B Carry rewriting technique

Results:
B Speed-up in verification of complex multiplier circuits
B Uniform PAC proof certificate

Future directions:
B Generalization to more general circuit verification
B Grdébner basis algorithm with dual variables?!
B Pseudo-Boolean solving for circuit verification? [Liew et al., 2020]
B More cross-fertilization between theory and practice!
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Conclusion & Future Work

Contributions:
B Inclusion of dual variables
B Novel tail substitution scheme
B Carry rewriting technique

Results:
B Speed-up in verification of complex multiplier circuits
B Uniform PAC proof certificate

Future directions:
B Generalization to more general circuit verification
B Grdébner basis algorithm with dual variables?!
B Pseudo-Boolean solving for circuit verification? [Liew et al., 2020]
B More cross-fertilization between theory and practice!

Thank you for your attention!
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