ADDING DUAL VARIABLES TO ALGEBRAIC REASONING
FOR GATE-LEVEL MULTIPLIER VERIFICATION

Daniela Kaufmann' Paul Beame? Armin Biere® Jakob Nordstrém®*®
'Johannes Kepler University, Linz, Austria

2University of Washington, Seattle, WA, USA

3 Albert-Ludwigs-University Freiburg, Germany

“4University of Copenhagen, Denmark

5Lund University, Sweden

13th Pragmatics of SAT workshop
Haifa, Israel

August 1, 2022

X jn@di.ku.dk

ADDING DUAL VARIABLES TO ALGEBRAIC REASONING
FOR GATE-LEVEL MULTIPLIER VERIFICATION

Daniela Kaufmann' Paul Beame? Armin Biere® Jakob Nordstrém®*®
'Johannes Kepler University, Linz, Austria

2University of Washington, Seattle, WA, USA

3 Albert-Ludwigs-University Freiburg, Germany

“4University of Copenhagen, Denmark

5Lund University, Sweden

13th Pragmatics of SAT workshop
Haifa, Israel

August 1, 2022

X jn@di.ku.dk

Thanks to Daniela for the slides!

Bugs in hardware are expensive!

Circuit verification prevents issues like the famous Pentium FDIV bug

s[3]

Multiplier verification

Given: Gate-level integer multiplier for fixed bit-width
Input format: AND-Inverter Graph

Question: For all possible a;,b; € B :

(2a1 + ao) * (2b1 + bo) = 8s3 + 4s2 + 281 + s07 ’ 2 H 4 ‘ ’ 8 H 6 ‘

Formal Verification Techniques

Satisfiability Checking (SAT)
B SAT 2016 Competition

B Exponential running time for solvers

Formal Verification Techniques

Satisfiability Checking (SAT)
B SAT 2016 Competition

B Exponential running time for solvers

Theorem Proving
B Used in industry
B Requires manual effort

B Automated techniques rely on hierarchical
information

Formal Verification Techniques

Satisfiability Checking (SAT)
B SAT 2016 Competition

B Exponential running time for solvers

Theorem Proving
B Used in industry
B Requires manual effort

B Automated techniques rely on hierarchical
information

Decision Diagrams
B First technique to detect Pentium bug

B Rely on manual decomposition

Formal Verification Techniques

Satisfiability Checking (SAT) Decision Diagrams
B SAT 2016 Competition B First technique to detect Pentium bug
B Exponential running time for solvers B Rely on manual decomposition
Theorem Proving Algebraic Approach
B Used in industry B Dramatic progress since 2015
B Requires manual effort B Polynomial encoding
B Automated techniques rely on hierarchical B Automated approach

information B Works for non-trivial multiplier designs

Basic Idea of Algebraic Approach

Multiplier Polynomials

B={

x — ag * by,
y —ai *by,
S0 — T *Y,

}

Specification l

Ideal Membership

2n—1

; 2's; —

i=0 i=0

For more details on circuit verification using computer algebra, see, e.g., [Kaufmann, 2020]

From Circuits to Polynomials

Gate polynomials G(C) C Z[X]

—s3 +l2a —l22 +a1by

—s2 + l2g —l20 + lislic —l1s —lig + 1
—s1 +l20 —lis +lializ —l1a — iz + 1
—so0 + lio —li6 + l1al12

—lag + laglaa —l2g —l2a +1 —l1a + aob1

—l26 + la2l16 — l22 —l16 + 1 —l12 + a1bo

—l24 + l22l16 —l10 + aobo

From Circuits to Polynomials

Gate polynomials G(C) C Z[X]

—s3 +l2a —l22 +a1by

—s2 + l2g —l20 + lislic —l1s —lig + 1
—s1 +l20 —lis +lializ —l1a — iz + 1
—so0 + lio —li6 + l1al12

—lag + laglaa —l2g —l2a +1 —l14 + agby

—l26 + la2l16 — l22 —l16 + 1 —l12 + a1bo

—l24 + l22l16 —l10 + aobo

Boolean axioms / value constraints B(C') C Z[X]

ay,ap €B —a?-i—al, —a%-&-am
bi,bo € B —b3 + by, —bg + bo

From Circuits to Polynomials

Gate polynomials G(C) C Z[X]

—s3 +l2a —l22 +a1by

—s2 + l2g —l20 + lislic —l1s —lig + 1
—s1 +l20 —lis +lializ —l1a — iz + 1
—so0 + lio —li6 + l1al12

—lag + laglaa —l2g —l2a +1 —l14 + agby

—l26 + la2l16 — l22 —l16 + 1 —l12 + a1bo

—l24 + l22l16 —l10 + aobo

Boolean axioms / value constraints B(C') C Z[X]

ay,ap €B —a?-i—al, —ag-&-am
b1,bo € B —b3 + b1, —b2 +bo

Specification S,, € Z[X]

8s3 + 4s2 + 2s1 + so — 4bia1 — 2bjag — 2bpa1 — boao
a[0] b[0]

Verification Technique

Verification algorithm

2n—1 n—1 n—1
Reduce specification » ~ 2's; — (Z Qiai> <Z Qibi> by elements of G(C') U B(C)
1=0 1=0 1=0

based on fixed variable order until no further reduction possible
Then: C'is multiplier < final remainder zero

Easy: Multipliers containing a ripple-carry adder
Hard: Multipliers containing a generate-and-propagate adder, e.g., carry-lookahead adder

Multiplier — Ripple-Carry Adder

Multiplier — Carry-Lookahead Adder

Multiplier — Carry-Lookahead Adder

PR PR) s)

@ @

0‘@ @3@ DG olc
& [

A e | ola @ol|lle—E

=) () (ot =S G W) (w9 (i
2C
o W) (o) () | (@ (S | G IOIO DIOIC

= =
G oy G G (o3 | (e \ @D Gy G DICIC
DECRCNICONG)| (o) (o) (im DICOIC
st
w DIORORE OIS 0
b o 0 o DIOIONE Ty Loy Qe i
S OIOICICONNG D B OGS DIC

w0) Ca DIC 16 DIOIOIC D) Lo e 0) Lo s

Multiplier — Carry-Lookahead Adder

0
®
€
®

i

o wse) (i
D D DIOIC) () G
D

w D D m) i) (1 s
)) e) Qe D

) () (Gow) Cros W) G) N N~ () Tew e

w0) Ca DIC o) Gy G Coo) _(2o)) 0 T Tes) (m)N. 0 ew) s s

OR Gates

o=o02Vlp
02 = 01 \/ll
01 =13 Vi

—o0+ 02 + lo — 0210,
—o02 + 01+ 11 — o1y,
—o01 + U3+ 12 —l3l2

0

0y

OR Gates

o
0=02Vlp —o4o02+ly— 02, % I
o2 =01Vl —o2+o01+1l1—oily, 0
01 =13Vl —o1+I1l3+12—13ls)
L

o=lo+ 11 —loly + 12 —lolo — lila + lolila + 13 — lols — l1lz + lol1l3 — l2l3 + lolalz + l1l2l3 — lolilals

15 = 2* — 1 monomials

OR Gates

o
0=02Vlp —o4o02+ly— 02, % I
o2 =01Vl —o2+o01+1l1—oily, 0
01 =13Vl —o1+I1l3+12—13ls)
L

o=lo+ 11 —loly + 12 —lolo — lila + lolila + 13 — lols — l1lz + lol1l3 — l2l3 + lolalz + l1l2l3 — lolilals
15 = 2* — 1 monomials

n OR Gates = 2" — 1 monomials

Previous Approach: SAT & Computer Algebra

abO

Ap—1,- .-, 00 b1, ..

J J

Partial Product Generation

Partial Product Accumulation

T Ym Lo Yo Cin,
T T TT]
Final Stage Adder
Cm+1 Sp, e sh
Lo l |
S2n—1 S2n—2 L. Sk41 Sk..-So

Adder Substitution

m Ym

[Kaufmann et al., 2019]

7b0

ap—1, .-, 00 bn717~~~

J |

Partial Product Generation

Partial Product Accumulation
lo Yo Cin

Iy ! Ll
Ripple Carry Adder

:

Cm+1
[
S2n—1 S2n—2

/
Sm

L]

P

Previous Approach: SAT & Computer Algebra

[Kaufmann et al., 2019]

Ap—1,- .-, 00 bn1,-..,bo ap—1, .-, 00 bn1,--.,bo
Partial Product Generation Partial Product Generation
Partial Product Accumulation L Partial Product Accumulation
Adder Substitution I
T Ymy LA Zo Yo Cin, T Ym s 0 Yo Cin

"f"l; 1 ﬁsﬁ.:u e T T T L h

Final Stage Adder

[T T T]

/
Cm+1 Spy, e So Cm+1

[| | [N |

Son—1 S2n—2 .. Sk+1 Sk ---50 SAT Son—1 S2n—2 ... Sk+1 Sk ---50

Ripple Carry Adder

Previous Approach: SAT & Computer Algebra

[Kaufmann et al., 2019]

Ap—1y-..,00

J J

bn-t,. ..

7b0

Partial Product Generation

Partial Product Accumulation

T Ym

e i i

Final Stage Adder

To Yo Cin

-

Cm+1

l

S2n—1 S2n—2

| ! |

/ /
Sm S0

I N |

Sk+1 Sk ---S0

Adder Substitut

B

Computer Algebra

Ap—1,.--

) Qo bn717~~~7b0

J |

Partial Product Generation

Partial Product Accumulation

n

SAT

T Ym lo Yo Cin,
e I, T T
Ripple Carry Adder
Crmt1 Sy .. s}
Ll l l
S52n—1 S2n—2 ona

©

Problem: Proof Certificates

52 81 8 IR
2 S1 S0 sh &) sh
Complex Adder Simple Adder

il A

il 1

ZTms Yms - -+ L0, Y0, Cin

Partial Product Accumulation

Partial Product Generation

T T

An—1,---,00 bu—1,...,bo

Computer
Algebra

Il
DRUP

Practical
Algebraic
Calculus

Y

%DRUP y

PAC

)

Possible to simulate DRUP proofs in PAC, but does not scale [Kaufmann et al., 2020]

Contributions of Our DATE 22 Paper [Kaufmann et al., 2022]

Encoding
B Dual variables

B Compact representation of polynomials

Novel carry rewriting method
B Uses dual encoding

B Tail substitutions

IWI No need for SAT solver
b L

e, |

| Uniform practical algebraic calculus (PAC) certificate
O

1st Contribution: Dual Variables

Provide more compact notation for inverters

() (L) ()
W ®& W & W @&

I3 =101 Nl ly =11 N~y ls = =l1 A~y
—ls +lily —la—lLla+ 1 —ls+hlo—li—l+1

1st Contribution: Dual Variables
Provide more compact notation for inverters

Dual variables
Whenever two variables [;, f; € {0, 1} satisfy f; = 1 — [;, we have f; = dual(l;)

I3 =101 Nl ly =11 N~y ls = —l1 A~y
—ls +lily —la— ULl + 1 —ls+hlo—li—l+1

=3+ 11l —la+ULf —ls+ fif2

Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...

Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...

B Often with dual variables [Alekhnovich et al., 2000] to avoid annoying blow-up when encoding
and reasoning with CNF formulas

Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...

B Often with dual variables [Alekhnovich et al., 2000] to avoid annoying blow-up when encoding
and reasoning with CNF formulas

B Polynomial calculus without dual variables exponentially weaker [de Rezende et al., 2021]

Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...

B Often with dual variables [Alekhnovich et al., 2000] to avoid annoying blow-up when encoding
and reasoning with CNF formulas

B Polynomial calculus without dual variables exponentially weaker [de Rezende et al., 2021]

B What we see here is exactly this problem in practice

Detour: Proof Complexity

B Practical algebraic calculus well-studied under the name polynomial calculus [Clegg et al.,
1996, Razborov, 1998, Impagliazzo et al., 1999, Buss et al., 2001, Alekhnovich and Razborov,
2003, Galesi and Lauria, 2010, Beck et al., 2013, Bonacina and Galesi, 2015, MikSa and
Nordstrom, 2015] ...

B Often with dual variables [Alekhnovich et al., 2000] to avoid annoying blow-up when encoding
and reasoning with CNF formulas

B Polynomial calculus without dual variables exponentially weaker [de Rezende et al., 2021]
B What we see here is exactly this problem in practice

B Theory suggests: use dual variables!

OR Gates

o=o02Vlp
02 = 01 \/ll
01 =13 Vi

—o0+ 02 + lo — 0210,
—o02 + 01+ 11 — o1y,
—o01 + U3+ 12 —l3l2

0

0y

OR Gates

o
o=02Vl —0+4o02+lo— 02l %
0o =01Vl —o2+o01+UL —oily, b
01 =Il3Viy —o1+I1ls+ 12— 13l oy,
L

o=lo+ 1l —loli + 12 —lolo — Lila + lolila + 13 — lols — lils + lolils — lals + lolals + Lilals — lolilals

o=1— fofifaf3

Practical Difficulty

Key Method for polynomial inference: Grébner basis algorithm

Relies on reduction method based on fixed variable order that will immediately eliminate one of each
pair of dual variables

Practice: During verification, always reduce specification by the dual constraint —f; — I; + 1 of a
gate variable I; before reducing by its gate constraint
Has the effect that all occurrences of f; in the specification will be flipped to I; before reducing I;

Problem: Compact representation is unfolded

Practical Difficulty

Key Method for polynomial inference: Grébner basis algorithm

Relies on reduction method based on fixed variable order that will immediately eliminate one of each
pair of dual variables

Practice: During verification, always reduce specification by the dual constraint —f; — I; + 1 of a
gate variable I; before reducing by its gate constraint
Has the effect that all occurrences of f; in the specification will be flipped to I; before reducing I;

Problem: Compact representation is unfolded

= Need dedicated preprocessing techniques to keep compact representation

Calculating with Dual Variables

Proposition 1.
For all Boolean variables I; and their dual representation dual(l;) = f; we have [;f; =0

“l; and dual(l;) cannot be 1 at the same time”

Proposition 2.
For all Boolean variables I; and their dual representation dual(l;) = f; we have ; + f; =1

“l; and dual(l;) add up to 1”

Dual Mergeable

Call m; and my dual mergeable iff m, = cf;7 and ms = cl;7 for ¢ constant, = term
Call monomial dmerge(m, m2) = c7 their dual merge

Dual Mergeable

Call m; and m» dual mergeable iff m, = c¢f;7 and ma = ¢l;7 for ¢ constant, 7 term

Call monomial dmerge(m., m2) = cr their dual merge

Algorithm: Merging monomials(p)

1
2
3
4
5
6
7
8
9

10

Input : Polynomial p
Output: Simplified polynomial r
q « sort-degree-lex(p); r + 0;
while ¢ # 0 do
g1 < lm(q); t + tail(q); simplify « L;
while ¢ # 0 and deg(g;) = deg(lt(t)) and —simplify do
qt < 1t(t);
if g; and ¢; are dual mergeable then
q < q—q — gt + dmerge(qi, gt);
simplify <— T;
else t < t—gq¢;

if = simplifythen r <~ r+¢q ;¢ q—q;

11 return sort-lex(r);

Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

qo =lifafs +lifels +llafs+ fifo+la 7r=0

Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

qo =lifafs +lifels +llafs+ fifo+la 7r=0
Q1=l1lzf3+f1f2+m+l2 r=0

Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

qo =lifafs +lifels +llafs+ fifo+la 7r=0
Q1=l1lzf3+f1f2+m+l2 r=0
@ =fifet+lfe+12 r=lhlafs3

Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

qo =lifafs +lifels +llafs+ fifo+la 7r=0
Q1=l1lzf3+f1f2+m+l2 r=0
@ =fifet+lfe+12 r=lhlafs3

qs3 =+12 r=Ullaf3

Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

qo =lifafs +lifels +llafs+ fifo+la 7r=0

Q1=l1lzf3+f1f2+m+l2 r=0
@ =fifet+lfe+12 r=lhlafs3
qs = + 12 r=Ullaf3

Q= r=lhlsfs

Example of Dual Mergeable Monomials

Letp =lifofs + lifols + lilafs + f1fa + 12 € Z[l1, 12,13, f1, f2, f3]
Write ¢; to denote polynomial g after iteration ¢ (with dual merges indicated)

g =Ubfofs+lfols+lilafs+ fifo+ 12
@ =Ublafs+ fife +m+ l2
@ =fifet+lfe+12

113=+12
g =1
g5 =0

r=20
r=20
r=hlafs
r=lhlafs
r=lilafs

r=Uhlafs+1

2nd Contribution: Tail Substitution

Allows to introduce sharing on larger topological levels
Considerp = f — g and p1,...ps in Z[X]:

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —h1+gog192 D4 :=—hz+ 192
D5 := —h2 + 939495 pe := —ha + g3gs

2nd Contribution: Tail Substitution

Allows to introduce sharing on larger topological levels
Considerp = f — g and p1,...ps in Z[X]:

p1 = —f 4+ hiho p2 := —g + h3hagogs
p3 = —h1 +gog192 pa:=—hs+g192
D5 := —h2 + 939495 pe := —ha + g3gs

Have to reduce p by polynomials ps, ..., pe to obtain p = 0:

2nd Contribution: Tail Substitution

Allows to introduce sharing on larger topological levels
Considerp = f — g and p1,...ps in Z[X]:

p1 = —f 4+ hiho p2 := —g + h3hagogs
p3 = —h1 +gog192 pa:=—hs+g192
D5 := —h2 + 939495 pe := —ha + g3gs

Have to reduce p by polynomials p4, . .., ps to obtain p = 0:
f—g%
h1h2 — g p_z)
hiha — hshagogs =%
gogi1g2ha — hahagogs 2%
gog192h2 — g1g2hagogs ~>
909192939495 — g1g2hagogs —
909192939495 — gog1g293gags = 0

Tail Substitution in Action

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —h1+gog192 pa:=—hs+g192
ps = —h2 + ¢39495 D6 ‘= —ha + g394

Reduce p = f — g by polynomials p1, ..., ps to obtain p = 0

20

Tail Substitution in Action

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —hi1 4+ gogig2 pa:=—hz+ g192
ps = —h2 + 939495 D6 ‘= —ha + g3g94

Reduce p = f — g by polynomials p1, ..., ps to obtain p =0

Since tail(p4) | tail(ps) and tail(ps) | tail(ps), we can derive:

p3 = —h1 +h3go ps:= —ha+ hags

20

Tail Substitution in Action

p1:=—f+ hiho p2 := —g + h3hagogs

p3 = —hi1 4+ gogigz pa:= —hz+ g192
ps = —h2 + ¢39495 D6 ‘= —ha + g394

Reduce p = f — g by polynomials p1, ..., ps to obtain p =0

Since tail(p4) | tail(ps) and tail(ps) | tail(ps), we can derive:
p3 = —h1 +h3go ps:= —ha+ hags
Then substitute tails of ps, ps in pa:

p1:=—f+hiha p2:=—g+ hiho

20

Tail Substitution in Action

p1:=—f+ hiho p2 := —g + h3hagogs
p3 = —hi1 4+ gogigz pa:= —hz+ g192
ps = —h2 + ¢39495 D6 ‘= —ha + g394

Reduce p = f — g by polynomials p1, ..., ps to obtain p =0

Since tail(p4) | tail(ps) and tail(ps) | tail(ps), we can derive:

p3 = —h1+hsgo ps:= —he+ hags
Then substitute tails of ps, ps in pa:

p1:=—f+hiha p2:=—g+hiha

Hence we have to reduce p only by p; and p; to derive p =0
Somewhat reminiscent of degree-bounded Grébner basis reduction in [Clegg et al., 1996]

Carry Rewriting

Goal: Rewrite encoding of carry look-ahead unit into a ripple-carry unit, which can easily be verified
using computer algebra

Algorithm: Carry-Rewriting

Input : Circuit C in AlG format

Output: Carry-rewritten Grébner basis of C
1 F « Mark-final-stage-adder(C);

2 G < Dual-Polynomial-Encoding(F);

3 H «+ Polynomial-Encoding(C'\ F);

4 G <+ Eliminate-Pure-Positive-Variables(G);
5 G < Tail-Substitution(G);

6 G « Carry-Unfolding(G);

7 return GU H

21

Carry Unfolding

Proposition 3.
Let —I; + o7 for 1 < i < k be a given set of polynomials, with I; € X and o, 7; € [X]. Assume

VE o fi = dual(l;). Then [1, fi=1—o(1 = [1F_,(1 — 7).

Excerpt of carry-lookahead adder, with z;,y; being the ith inputs of the adder, c¢;+1,¢; denoting
carries, and p; being the polynomial encoding of z; & v;:

—cCit1 + fafsfefr, —ci+ fifafs, —lv+ xiys,
—ls + pils, —l5 + pila, —ls+ pila

Using carry unfolding for ¢;+1, we are able to derive

—civ1 + frpici — fops + fr, —ci+ fifafs —lr +ziy

22

TeluMA

B Integration of dual variables into AMULET 2.0 [Kaufmann et al., 2019]
B Identifies final-stage adders

B Applies carry rewriting automatically

B On-the-fly generation of proof certificates in PAC format

Published version and experimental data available at:
http://fmv.jku.at/teluma
Maintained version available at:

https://github.com/d-kfmnn/teluma

23

http://fmv.jku.at/teluma
https://github.com/d-kfmnn/teluma

Evaluation: Multiplier Verification

Verification of 192 unsigned 64-bit multipliers

200

175+

—_

[A

o
L

J—

[\

ot
L

50 1

Number of solved instances
—
o
o

25 1

TeluMA
AMulet2(11]
RevSCA-2.0[16)
DyPoSub[17]
ABC-based|[5]

100

10!

102

CPU time, time limit = 300sec

24

Evaluation: Proof Certificates

[Kaufmann et al., 2019]

[Kaufmann et al., 2020]

Our approach

architecture | n || DRUP | PAC PAC PAC

#rules | #rules total (s) #rules total (s) #rules total(s)
sp-ar-cl 32|/ 14927 | 33834 1| 1597897 164 || 60336 0
sp-bd-ks [32| 17528 | 34958 1 817956 28 || 54116 0
sp-dt-If 32 || 3138| 33451 1 321720 51| 47835 0
bp-ct-bk |32 || 2276| 27312 1 217128 3|| 36356 0
bp-wt-cl 32|/ 46502 | 30561 21(/5536176 3375|| 114665 2
sp-ar-cl 64 || 65317 | 139338 8 - TO || 289632 4
sp-bd-ks |64 || 44921 | 142138 6| 1440943 7411214378 3
sp-dt-If 64 || 28772 | 138539 6 816572 19 || 192805 2
bp-ct-bk |64 || 19891 | 105579 5 459262 15| 136 703 2
bp-wt-cl 64 (142199 | 118573 19 - TO || 774044 24

All benchmarks generated by Arithmetic Model Generator [Homma et al., 2006] TO = 3600 sec

25

Conclusion & Future Work

Contributions:
B Inclusion of dual variables
B Novel tail substitution scheme
B Carry rewriting technique

Results:
B Speed-up in verification of complex multiplier circuits
B Uniform PAC proof certificate

Future directions:
B Generalization to more general circuit verification
B Grdébner basis algorithm with dual variables?!
B Pseudo-Boolean solving for circuit verification? [Liew et al., 2020]
B More cross-fertilization between theory and practice!

26

Conclusion & Future Work

Contributions:
B Inclusion of dual variables
B Novel tail substitution scheme
B Carry rewriting technique

Results:
B Speed-up in verification of complex multiplier circuits
B Uniform PAC proof certificate

Future directions:
B Generalization to more general circuit verification
B Grdébner basis algorithm with dual variables?!
B Pseudo-Boolean solving for circuit verification? [Liew et al., 2020]
B More cross-fertilization between theory and practice!

Thank you for your attention!

26

References |

[Alekhnovich et al., 2000] Alekhnovich, M., Ben-Sasson, E., Razborov, A. A., and Wigderson, A. (2000).

Space complexity in propositional calculus.

In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC '00), pages 358-367.
[Alekhnovich and Razborov, 2003] Alekhnovich, M. and Razborov, A. A. (2003).

Lower bounds for polynomial calculus: Non-binomial case.

Proceedings of the Steklov Institute of Mathematics, 242:18-35.
[Beck et al., 2013] Beck, C., Nordstrém, J., and Tang, B. (2013).

Some trade-off results for polynomial calculus.

In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC ’13), pages 813—-822.
[Bonacina and Galesi, 2015] Bonacina, I. and Galesi, N. (2015).

A framework for space complexity in algebraic proof systems.

Journal of the ACM, 62(3):23:1-23:20.

27

References Il

[Buss et al., 2001] Buss, S. R., Grigoriev, D., Impagliazzo, R., and Pitassi, T. (2001).
Linear gaps between degrees for the polynomial calculus modulo distinct primes.
Journal of Computer and System Sciences, 62(2):267-289.

[Clegg et al., 1996] Clegg, M., Edmonds, J., and Impagliazzo, R. (1996).
Using the Groebner basis algorithm to find proofs of unsatisfiability.
In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC ’96), pages 174—183.
[de Rezende et al., 2021] de Rezende, S. F,, Lauria, M., Nordstrém, J., and Sokolov, D. (2021).
The power of negative reasoning.
In Proceedings of the 36th Annual Computational Complexity Conference (CCC '21), volume 200 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 40:1-40:24.
[Galesi and Lauria, 2010] Galesi, N. and Lauria, M. (2010).
Optimality of size-degree trade-offs for polynomial calculus.
ACM Transactions on Computational Logic, 12(1):4:1-4:22.

28

References il

[Homma et al., 2006] Homma, N., Watanabe, Y., Aoki, T., and Higuchi, T. (2006).
Formal Design of Arithmetic Circuits Based on Arithmetic Description Language.
IEICE Transactions, 89-A(12):3500—3509.

[Impagliazzo et al., 1999] Impagliazzo, R., Pudlék, P, and Sgall, J. (1999).
Lower bounds for the polynomial calculus and the Grébner basis algorithm.
Computational Complexity, 8(2):127—144.

[Kaufmann, 2020] Kaufmann, D. (2020).
Formal Verification of Multiplier Circuits using Computer Algebra.
PhD thesis, Informatik, Johannes Kepler University Linz.
[Kaufmann et al., 2022] Kaufmann, D., Beame, P., Biere, A., and Nordstrém, J. (2022).

Adding dual variables to algebraic reasoning for circuit verification.
In Proceedings of the 25th Design, Automation and Test in Europe Conference (DATE '22), pages 1435—1440.

29

References IV

[Kaufmann et al., 2019] Kaufmann, D., Biere, A., and Kauers, M. (2019).
Verifying large multipliers by combining SAT and computer algebra.
In Proceedings of the 19th Conference on Formal Methods in Computer-Aided Design (FMCAD ’19), pages
28-36.
[Kaufmann et al., 2020] Kaufmann, D., Biere, A., and Kauers, M. (2020).
From DRUP to PAC and back.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE '20), pages
654—657.
[Liew et al., 2020] Liew, V., Beame, P., Devriendt, J., Elffers, J., and Nordstrém, J. (2020).
Verifying properties of bit-vector multiplication using cutting planes reasoning.

In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (FMCAD ’20), pages
194-204.

30

References V

[Mik§a and Nordstrém, 2015] Miksa, M. and Nordstrém, J. (2015).
A generalized method for proving polynomial calculus degree lower bounds.
In Proceedings of the 30th Annual Computational Complexity Conference (CCC °15), volume 33 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 467—-487.
[Razborov, 1998] Razborov, A. A. (1998).
Lower bounds for the polynomial calculus.
Computational Complexity, 7(4):291-324.

31

