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Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

The Success of Combinatorial Solving (and the Dirty Little Secret)

Astounding progress last couple of decades on combinatorial solvers for, e.g.:
▶ Boolean satisfiability (SAT) solving and optimization [BHvMW21]
▶ Constraint programming [RvBW06]
▶ Mixed integer linear programming [AW13, BR07]
▶ Satisfiability modulo theories (SMT) solving [BHvMW21]

Solvers very fast, but sometimes wrong (even most mature ones in industry and
academia) [BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Only currently realistic solution: Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Combinatorial Solving and Optimization Proof Logging To the Rescue

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Combinatorial Solving and Optimization Proof Logging To the Rescue

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!
Asking for both perhaps a little bit too good to be true?

Earlier proof logging approaches for SAT, MaxSAT, constraint programming, et cetera have
struggled with this trade-off (and failed to master it)
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Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in proof logging for SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Review basic set-up for proof logging beyond SAT
2 Discuss a highly non-obvious application: Subgraph solving
3 Describe a fully formally verified pipeline for such graph problems
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Pseudo-Boolean Proof Logging The Basic Set-up

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker
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Pseudo-Boolean Proof Logging The Basic Set-up

Proof Language: Pseudo-Boolean Constraints

Proof consists of 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)
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Pseudo-Boolean Proof Logging The Basic Set-up

Some Types of Pseudo-Boolean Constraints

1 Disjunctive clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Proof Logging Going Beyond Pseudo-Boolean Problems

Successful Applications of VeriPB Proof Logging

Surprisingly, pseudo-Boolean reasoning is sufficient to efficiently certify wide range of
combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
▶ Gaussian elimination [GN21]
▶ symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22]
4 Subgraph solving [GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24]
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Pseudo-Boolean Proof Logging Going Beyond Pseudo-Boolean Problems

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program
just do proof logging [basically: add print statements to solver code]

Otherwise
do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
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Pseudo-Boolean Proof Logging Going Beyond Pseudo-Boolean Problems

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker
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Pseudo-Boolean Proof Logging Going Beyond Pseudo-Boolean Problems

Proof Logging with Formally Verified Checking: Full Workflow

Proof
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Checker
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Subgraph Solving Pseudo-Boolean Proof Logging for Subgraph Solving

Subgraph Problems and the Glasgow Subgraph Solver

Some important subgraph problems
Maximum clique in a given graph
Subgraph isomorphism of pattern graph in target graph
Maximum common connected subgraph of two given graphs

The Glasgow Subgraph Solver [ADH+19, GSS]
State-of-the-art solver for such problems
Sometimes the only solver returning an answer
Can we trust that such an answer is correct?
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Subgraph Solving Pseudo-Boolean Proof Logging for Subgraph Solving

Pseudo-Boolean Proof Logging for Subgraph Solving

All reasoning steps in Glasgow Subgraph Solver can be formalized efficiently in the cutting
planes proof system [GMN20, GMM+20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs

Let’s see how this works for subgraph isomorphism
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Subgraph Solving Pseudo-Boolean Proof Logging for Subgraph Solving

The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )
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Subgraph Solving Pseudo-Boolean Proof Logging for Subgraph Solving

Subgraph Isomorphism as a 0–1 Integer Linear Program

Pattern graph P with V (P) = {a, b, c, . . .}
Target graph T with V (T ) = {u, v, w, . . .}
No loops (for simplicity)

0–1 integer linear (pseudo-Boolean) encoding∑
v∈V (T )

xa,v = 1 [every pattern vertex a maps somewhere]

∑
b∈V (P)

xb,u ≥
∣∣V (P)

∣∣ − 1 [mapping is one-to-one on target vertices]

xa,u +
∑

v∈N(u)
xb,v ≥ 1 [pattern edge (a, b) maps to target edge (u, v)]
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Subgraph Solving Pseudo-Boolean Proof Logging for Subgraph Solving

Degree Preprocessing Example (Vertex a Cannot Map to Vertex u)

a

b

c

d

e u

v

w

Sum up all constraints & divide by 3 to obtain
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a
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c

d

e u

v

w
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xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa,u ≥ 1
xa,u ≥ 1
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Subgraph Solving End-to-End Formal Verification

Workflow for Subgraph Solvers with Pseudo-Boolean Proof Logging

Graph File(s)

Graph Solver

Untrusted
Encoding

Augmented
Proof

Checker

✓?

VeriPB

Previous workflow

Problem solved!
Modern graph solvers are complex
Cannot trust (or maybe even understand) the code
But now we have pseudo-Boolean proof
logging [GMN20, GMM+20]

Or is it. . .
Can we trust the proof checker?
And how do we know the 0–1 ILP encoding is
correct?
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Subgraph Solving End-to-End Formal Verification

End-to-End Verification Workflow

Graph File(s)

Graph Solver

Untrusted
Encoding

Augmented
Proof

Checker

✓?

Verified
Encoder

Verified
Encoding

VeriPB

CakePBGraph

CakePB

New workflowPrevious workflow

Verified workflow:
1 Encode problem using formally

verified encoder
2 Elaborate augmented proof to

kernel proof
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Subgraph Solving End-to-End Formal Verification

Proof Elaboration

Two versions of the VeriPB proof format:
Augmented proof contains helpful, powerful rules for easier proof logging
Kernel proof has restricted subset of proof rules that are easier to check

How to get kernel proof?
VeriPB can elaborate an augmented proof to a kernel proof

Jakob Nordström (UCPH & LU) End-to-End Verification for Subgraph Solving Pragmatics of SAT ’24 19/24



Subgraph Solving End-to-End Formal Verification

Proof Elaboration

Two versions of the VeriPB proof format:
Augmented proof contains helpful, powerful rules for easier proof logging
Kernel proof has restricted subset of proof rules that are easier to check

How to get kernel proof?
VeriPB can elaborate an augmented proof to a kernel proof

Jakob Nordström (UCPH & LU) End-to-End Verification for Subgraph Solving Pragmatics of SAT ’24 19/24



Subgraph Solving End-to-End Formal Verification

End-to-End Verification Workflow (cont.)

Graph File(s)

Graph Solver

Untrusted
Encoding

Augmented
Proof

Checker

✓?

Elaborator

Kernel Proof

Verified
Encoder

Verified
Encoding

Verified
Checker

✓ Trusted
Conclusion

VeriPB

CakePBGraph

CakePB

New workflowPrevious workflow

Verified workflow:
1 Encode problem using formally

verified encoder
2 Elaborate augmented proof to

kernel proof
3 Check kernel proof using

formally verified checker
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Subgraph Solving Trusted Base

Can We Trust This Workflow?

The following needs to be trusted or closely inspected:
Higher-order logic (HOL) definitions of input parser and problems

▶ easy to check
HOL model of CakeML environment and correspondence to real system

▶ validated extensively
HOL4 theorem prover, including logic, implementation, and execution environment

▶ well established

Gives the highest assurance standard for formally verified checker CakePB
(https://gitlab.com/MIAOresearch/software/cakepb)
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Subgraph Solving Trusted Base

Extensible Checking Framework

Other Domains

Graph File(s)

✓ Trusted Conclusion

Other Encoders

Subgraph Isomorphism
Max Clique

Max CIS
Max CCIS

Conclusion Translator

PB Encoding

PB Conclusion

PB Normalizer

Norm. PB Encoding

PB Proof Checker

Externally
Generated

Kernel Proof

CakePB
(common backend)

CakePBGraph
(various frontends)

Common backend: Performs reasoning on 0–1 ILP (a.k.a. pseudo-Boolean encoding)
Frontend: Translates specific problem class into 0–1 ILP and back
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Future Research Directions
Proof processing

Trimming proof while verifying (as in DRAT-trim [HHW13a])
Solution reconstruction
Composition of proofs

Proof logging for other combinatorial problems
Automated planning (building on [ERH17, ERH18])

Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

SMT solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC+23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,
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Summing up

Combinatorial solving and optimization is a true success story
But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern
Certifying solvers producing machine-verifiable proofs of correctness seems like the most
promising (or only) approach
Cutting planes reasoning with pseudo-Boolean constraints hits a sweet spot between
simplicity and expressivity (for much more general problems)
Can be combined with formal methods to yield end-to-end verification
Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!
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