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Conflict-driven search for O-1ILP

an example-driven intro

+x+y—22>0
—y+z—v=>0
—z4+v—w >0
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z,y,z,v,w+— {0,1}
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Conflict-driven Search Loop
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Conflict-driven Search Loop
tz+y—22>0
—y+z—v>0
* Conflict: some constraintin ¢ falsifiedbya — 2z + ¢y —w >0
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Conflict-driven Search Loop
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Conflict-driven Search Loop

e Only if unit propagation +r+y—22>0
did not lead to a conflict —yt+z—v> 0

= if no unassigned

variable left, return SAT —ztv—-—w=>0
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop
0>0

e Conflict: some constraint in ¢ falsified by a 0>0
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Conflict-driven Search Loop
0>0
0>0

—1—w>0

+14+w>1
Decide unassigned| , — {w =0,y =1,
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Unit * no |
Propag * yes

Learn constraint
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Conflict-driven Search Loop

e From falsified constraint and reasons leading 020
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop
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Conflict-driven Search Loop

Decide una55|gned
l varlable

Nno
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p opagati ¥ yes

BackJump
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Conflict-driven Search Loop

e Learning constraints pushes search forward

Decide una55|gned
varlable
4 no

Umt — Confl|ct7

propagat|on

yes
BackJump

25



Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second

Decide una55|gned
varlable
4 no

o Lﬁam;tmn _> Conflict?
propag * yes

BackJump

25



Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second
e Highly optimized unit propagation

Decide una55|gned
varlable
4 no

o Lﬁam:a:tmn _> Conflict?
propag * yes

BackJump

25



Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second
e Highly optimized unit propagation
e First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZMO01]

Decide una55|gned
varlable
4 no

o Liam:a:tmn _> Conflict?
propag * yes

Backjump

25



Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second

e Highly optimized unit propagation

e First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZMO01]
e Generalized to pseudo-Boolean (PB) solving [CK05,5506,LP10,EN18]

= many variations possible

Decide una55|gned
varlable
4 no

o Liam:a:tmn _> Conflict?
propag * yes

_ _Learn constraint_| 4= here be dragons
(different from MIP)
Backjump
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B e In practice: PB solvers timeout on
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= unit propagation is local

T.Y. 2.0, W —> 1 :
Y, 2, U, {O’ } = wrong constraints are learned

How about integrating an LP solver?
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Linear Programming (LP) solver

minimize cC X
subject to Ax <b
and x>0




Linear Programming (LP) solver

e |nput:

= |P relaxation of ¢
= variable bounds a
= objective function

minimize C X
subject to Ax <b
‘y and x>0




Linear Programming (LP) solver

e |nput:

= |P relaxation of ¢
= variable bounds a
= objective function

e QOutput: either minimize ctx
= optimal rational solution subject to Ax <b
= Farkas multipliers ‘y and x>0

o define a positive linear
combination of constraints
in ¢, falsified by a




Conflict-driven search loop

with LP solver call
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Conflict-driven search loop

with LP solver call
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Conflict-driven search loop

with LP solver call
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Conflict-driven search loop

with LP solver call
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variable

Nno

. . " Extract Farkas
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4 no
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Conflict-driven search loop

with LP solver call

Decide unassigned
variable

Nno

. . " Extract Farkas
Rational infeasibility?

yes multipliers

Query LP solver

4 no
Umt — Conﬂlct7
Propagatlon

yes
Learn Farkas
constraint

Backjump
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Rational infeasibility example

t+tat+zxz+y—2z22>0
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Rational infeasibility example

Farkas multipliers

+a+xz+y—22>0 xl1

-2z —v >0 X1
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Rational infeasibility example

Farkas multipliers

+a+xz+y—22>0 xl1

-2z —v >0 X1

+a+b>1
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Two technical hurdles

e |P solvers are slow compared to conflict-driven search loop

= |imit calls to LP solver

= |imit LP solver running time

= deterministic measure: balance #conflicts in conflict-
driven solver to #pivots in LP solver
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Two technical hurdles

e |P solvers are slow compared to conflict-driven search loop

= |imit calls to LP solver

= |imit LP solver running time

= deterministic measure: balance #conflicts in conflict-
driven solver to #pivots in LP solver

e |P solver uses inexact floating point arithmetic

= |earned constraint must be implied by ¢

= recalculate Farkas constraint with exact arithmetic
= verify Farkas constraint is still conflicting

= post-process Farkas constraint to eliminate noise



Further ideas

e Every once in a while, run LP solver to completion at root
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Further ideas

e Every once in a while, run LP solver to completion at root

= yse (optimal) rational solution as value heuristic
= generate Chvatal-Gomory (CG) cuts

o add to both LP solver and learned constraint set

e Generate "deep" Chvatal-Gomory cuts from internal
search nodes

m valid at root node, so safe to add as learned constraint
e Add learned constraints as cuts to the LP solver

31



Working implementation

e PB solver RoundingSat [EN18]

= Strong ILP constraint learning
= Performed well in past PB competitions

e | P solver SoPlex [ZIB]

= SCIP's native LP solver
m State-of-the-art open source

32



Design choices

#pivots/#conflicts < 1

CG cut parallelism check

for decision instances, minimize sum of
variables in SoPlex

for pure CNFs, deactivate LP techniques
128 bit precision to calculate CG cuts
and Farkas constraints

33



Experiments!

Compare state-of-the-art

RoundingSat
Sat4]

NaPS

SCIP

e Gurobi

e CPLEX

to implementations

e RS+SPX
e RS+SPX+GC
o RS+SPX+GC+LC
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Solve time (s)

domset- hexgrld 05 (19 instances)

r T T T T ﬂ?ﬁﬂ?ﬁ‘******
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Instance size: size of dominating set
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Knapsack (higher is better, 783 instances)
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PBlodec (higher is better, 1783 instances)
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MiplibO1Dec (higher is better, 556 instances)
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MiplibO1Opt (higher is better, 291 instances)
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Number of solved instances

MiplibO1Opt (higher is better, 291 instances)
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Solve time (s)

composed pebbling php pyramid (48 instances)
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Solve time (s)

composed pebbling php pyramid (48 instances)
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Related work

e Some SAT-based solvers use LP solver to decide
specialized constraints

= LCG-Glucose: network-flow propagation
= SMT: deciding linear theory
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Related work

e Some SAT-based solvers use LP solver to decide
specialized constraints

= LCG-Glucose: network-flow propagation
= SMT: deciding linear theory

e |n the end, SAT-based solvers only learn clauses

= exponentially weaker than learning 0-1
linear constraints

m Farkas constraints, Chvatal-Gomory cuts, PB
learned constraints: all are used for
conflict-driven learning
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Summary

Conflict-driven search for 0-1 ILPs
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Summary

Conflict-driven search for 0-1 ILPs

Generates cuts from search conflicts
Does not always find short refutations for rational infeasibility
Allows sound & efficient integration with LP solver

Is further improved by value heuristic & Gomory cut generation

Experiments approach best of both worlds

Thanks for your attention!
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