Learn to Relax:
Integrating Integer Linear
Programming with
Conflict-Driven Search

Jo Devriendt T*, Ambros Gleixner %, Jakob Nordstrom *°
Acknowledgement: Jan Elffers t*
T Lund University, Sweden

¥ Zuse Institut Berlin, Germany
* University of Copenhagen, Denmark
° KTH Royal Institute of Technology, Sweden
jn@di.ku.dk
Slides by Jo Devriendt

Conflict-driven search for O-1ILP

an example-driven intro

+x+y—22>0
—y+z—v=>0
—z4+v—w >0
—x+z+w>1

z,y,z,v,w+— {0,1}

Conflict-driven Search Loop

Unit
propagation

Conflict-driven Search Loop

e Given 0-1 ILP program ¢ and current
assignment q, if a constraint ¢ € ¢ would
be falsified by assuming x=0 (resp. x=1),
extend a with x=1 (resp. x=0)

Unit
propagation

Conflict-driven Search Loop

e Given 0-1 ILP program ¢ and current
assignment q, if a constraint ¢ € ¢ would
be falsified by assuming x=0 (resp. x=1),
extend a with x=1 (resp. x=0)

e propagate until fixpoint

Unit
propagation

Conflict-driven Search Loop

tz+y—22>0

—y+z—v>0

e Given 0-1 ILP program ¢ and current oty —w >0
assignment a, if a constraint ¢ € ¢ would _

be falsified by assuming x=0 (resp. x=1), —Tz+z+w=>1

extend a with x=1 (resp. x=0)
e propagate until fixpoint

Unit
propagation

Conflict-driven Search Loop

+x+y—22>0
—y+z—v>0
. Givgn 0-1ILP program ¢ qnd current —zdv—w>0
assignment q, if a constraint ¢ € ¢ would
be falsified by assuming x=0 (resp. x=1), —Tz+z+w=>1
extend a with x=1 (resp. x=0)
e propagate until fixpoint a={}

Unit
propagation

Conflict-driven Search Loop

+x+y—22>0
—y+z—v>0
. Givgn 0-1ILP program ¢ qnd current —zdv—w>0
assignment q, if a constraint ¢ € ¢ would
be falsified by assuming x=0 (resp. x=1), —Tz+z+w=>1
extend a with x=1 (resp. x=0)
e propagate until fixpoint a={}

currently no unit

propagation

Conflict-driven Search Loop
tz+y—22>0
—y+z—v>0
* Conflict: some constraintin ¢ falsifiedbya — 2z + ¢y —w >0

—zz+z+w>1

a={}

m—— CONflict?
propagation

Conflict-driven Search Loop

+r+y—22>0
—y+z—v=>0
—z4+v—w=>0
—z+z4+w>1

Decide u.nassigned o — {}
l variable
no
Unit *
. ——) CONflict?
propagation

Conflict-driven Search Loop

e Only if unit propagation +r+y—22>0
did not lead to a conflict —yt+z—v> 0

= if no unassigned

variable left, return SAT —ztv—-—w=>0

—zz+z+w>1

D _
ecide una55|gned o — {}
varlable
no
Unit 4
_ m——) CONflict?
propagation

Conflict-driven Search Loop

e Only if unit propagation +r+y—22>0
did not lead to a conflict —yt+z—v> 0

= if no unassigned >0
variable left, return SAT —Ztv—w2

e Resume unit propagation —z+z+w=>1

Decide una55|gned o — {}
varlable
no
Unit *
. ——) CONflict?
propagation

Conflict-driven Search Loop

e Only if unit propagation +r+y—22>0
did not lead to a conflict —yt+z—v> 0

= if no unassigned S
variable left, return SAT —z+v—w=>0

e Resume unit propagation —z+z+w=>1

Decide una55|gned o — {w _ O}
varlable
no
Unit *
. ——) CONflict?
propagation

Conflict-driven Search Loop
+y—22>0
—y+z—v>0
—z4+v—w>0
+z4+w>1

Decide unassigned o — {w _ O}
l variable
no
Unit *
: ——) CONflict?
propagation

Conflict-driven Search Loop
+y—22>0
—y+z—v>0
—z4+v—w>0
+z4+w>1

Decide unassigned o — {w _ O}
l variable
no
Unit *
. — Conflict?
propagation

Conflict-driven Search Loop
+y—22>0
—y+z—v>0
—z4+v—w>0
+z4+w>1

Decide unassigned| ,, — { — 0.y = 1
no
Unit *
. ——) CONflict?
propagation

Conflict-driven Search Loop
1—2>0
—14+z—v>0
—z4+v—w>0
+z4+w>1

Decide unassigned| o, — { — 0.y = 1
no
Unit *
: ——) CONflict?
propagation

10

Conflict-driven Search Loop
1—2>0

—14+z—v>0

—z4+v—w=>0
+z4+w>1

Decide unassigned| o, — { — 0.y = 1
no
Unit *
: ——) CONflict?
propagation

10

Conflict-driven Search Loop

1—2>0
—14+z—v>0
—z4+v—w=>0
+z4+w>1
varlable
z—lv—O}

Nno
Unit *
propagation

11

Conflict-driven Search Loop
0>0
0>0

—1—w>0
+14+w>1

Decide una55|gned o — w =0,y =1,
varlable
I A z=1,v =0}
no
——) Conflict?
propagation

12

Conflict-driven Search Loop
0>0

e Conflict: some constraint in ¢ falsified by a 0>0

—1—w>0

+14+w>1

Decide una55|gned o — {w =0,y =1
varlable ’ ’
“ z=1,v =0}
no
propagation

13

Conflict-driven Search Loop
0>0
0>0

—1—w>0

+14+w>1
Decide unassigned| , — {w =0,y =1,

variable . O}
I z2=1,v =

Unit * no |
Propag * yes

Learn constraint

14

Conflict-driven Search Loop

e From falsified constraint and reasons leading 020
up to conflict, construct learned constraint 0>0
= implied by ¢, should prevent same conflict @
+14+w>1

Decide unassigned| o — {2 = 0.y = 1

z=1,v=0

Unit * no | }
ropagation ——) CoNflict?
propag * yes

Learn constraint

14

Conflict-driven Search Loop

. >
e From falsified constraint and reasons leading 020
up to conflict, construct learned constraint 0>0
impli houl t flict
= implied by o, s o.u d prevent same conflic @
e Add learned constraint to ¢
= — |earned constraint database +14+w>1

Decide unassigned| , — {w =0,y =1
variable ’ ’

I A z=1,v =0}
, no
propagation ¥ ye

S

Learn constraint

14

Conflict-driven Search Loop

. . . — 2z >
e From falsified constraint and reasons leading T T Y “Z 0
up to conflict, construct learned constraint —y+z—v>0

= implied by ¢, should prevent same conflict
— — >
e Add learned constraint to ¢ z+v—w=>0

» — learned constraint database —z+z+w=>1

Decide unassigned| , — {w =0,y =1
variable ’ ’
I A z=1,v =0}
, no
propagation ¥ ye

S

Learn constraint

15

Conflict-driven Search Loop
tz+y—22>0

e From falsified constraint and reasons leading
up to conflict, construct learned constraint

= implied by ¢, should prevent same conflict

e Add learned constraint to ¢
» — learned constraint database —z+z+w=>1

Decide unassigned| o — {2 = 0.y = 1
I A z=1,v =0}
, no
propagation ¥ ye

S

Learn constraint

15

Conflict-driven Search Loop
tz+y—22>0

e From falsified constraint and reasons leading
up to conflict, construct learned constraint

= implied by ¢, should prevent same conflict
e Add learned constraint to ¢
= — |earned constraint database

Decide unassigned
l variable

no

Unit *

, ——) CONflict?

propagation ¥ ye

S

Learn constraint

15

Conflict-driven Search Loop

+r+y—22>0
—y+z—v=>0
—z4+v—w=>0
—z+z4+w>1
Decide una55|gned a={r=0.y=1
* z=1,v =0}
no
Umt ——) CONflict?
propagatlon It yes —y—w >0

BackJump

16

Conflict-driven Search Loop

+z+y—22>0
e Backtrack based on learned constraint —y+z—v>0

—z4+v—w>0

—z+z4+w>1
Decide una55|gned a={r=0.y=1
* z=1,v =0}
no
Umt ——) CONflict?
propagatlon It yes —y—w >0

BackJump

16

Conflict-driven Search Loop

+z+y—22>0
e Backtrack based on learned constraint —y+z—v>0

e Resume unit propagation
—z4+v—w>0

—z+z4+w>1
Decide una55|gned a={r=0.y=1
* z=1,v =0}
no
Umt ——) CONflict?
propagatlon It yes —y—w >0

BackJump

16

Conflict-driven Search Loop

+z+y—22>0
e Backtrack based on learned constraint —y+z—v>0

e Resume unit propagation
—z4+v—w>0

—rz+z+w>1
D -
ecide una55|gned o — {}
varlable
no
Unlt *
m——) CONflict?
propagatlon I yes —y—w >0

BackJump

17

Conflict-driven Search Loop

+r+y—22>0
—y+z—v=>0
—z4+v—w=>0
—z+z4+w>1
Decide una55|gned o — {}
varlable
no
Unlt *
— Confl|ct7
propagatlon —y—w >0

yes
BackJump

18

Conflict-driven Search Loop

+r+y—22>0

—y+z—v=>0

—z4+v—w=>0

—z+z4+w>1
varlable

Unlt * o

— Confl|ct7
propagatlon —y—w=>0

yes
BackJump

18

Conflict-driven Search Loop

+xr—22>0

+z—v>0

—z+v>0

—x+z>1
varlable

Unlt * no

— Confl|ct7
propagatlon —y—w=>0

yes
BackJump

19

Conflict-driven Search Loop

+xr—22>0
+z—v>0
—z+v>0

rt+z2>1 |
Decide una55|gned a={y=0,w=0}
varlable

4 no

Un|t — Confl|ct7
propagatlon —y—w >0

yes
BackJump

20

Conflict-driven Search Loop

—-1>0
1—v>0
—14+v2>0
1>1
Decide una55|gned a={y=0,w=0,
varlable
A r=0,z=1}
no
Un't — Confl|ct7
propagatlon —y—w >0

yes
BackJump

21

Conflict-driven Search Loop

 —1>0

1—v>0
—14+v2>0
1>1
Decide una55|gned a={y=0,w=0,
varlable
A r=0,z=1}
no
Un't — Conﬂlct7
propagatlon —y—w >0

yes
BackJump

22

Conflict-driven Search Loop

+r+y—22>0
—y+z—v>0
—z4+v—w=>0
—rx+z+w>1
Decide una55|gned a={y=0,w=0,
varlable
A r=0,z=1}
no
Un't —- Confl|ct7
propagatlon —y—w >0

yes
BackJump

23

Conflict-driven Search Loop

dr+y—2>0

—y+z—v>0
—z4+v—w>0

ztz+w>T
Decide una55|gned a={y=0,w=0,
varlable

r=0,2z=1}
Unlt $ o

— Confl|ct7
propagatlon —y—w=>0

yes
BackJump

23

Conflict-driven Search Loop
‘/@
0>1 —y+tz—v=0
—z4+v—w>0
\@

Decide una igned o — —0.w=0
e s G R

fno r=0,z=1}

Umt — Conflict7
propagatlon —y—w >0

yes
BackJump

23

Conflict-driven Search Loop
‘/@
UNSATIT 0 >1 —ytz-v=20
—z4+v—w>0
\@

Decide una igned o — —0.w=0
e s G R

fno r=0,z=1}

Umt — Conflict7
propagatlon —y—w >0

yes
BackJump

24

Conflict-driven Search Loop

Decide una55|gned
l varlable

Nno
Unlt *
p opagati ¥ yes

BackJump

25

Conflict-driven Search Loop

e Learning constraints pushes search forward

Decide una55|gned
varlable
4 no

Umt — Confl|ct7

propagat|on

yes
BackJump

25

Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second

Decide una55|gned
varlable
4 no

o Lﬁam;tmn _> Conflict?
propag * yes

BackJump

25

Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second
e Highly optimized unit propagation

Decide una55|gned
varlable
4 no

o Lﬁam:a:tmn _> Conflict?
propag * yes

BackJump

25

Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second
e Highly optimized unit propagation
e First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZMO01]

Decide una55|gned
varlable
4 no

o Liam:a:tmn _> Conflict?
propag * yes

Backjump

25

Conflict-driven Search Loop

e Learning constraints pushes search forward
e Thousands of conflicts per second

e Highly optimized unit propagation

e First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZMO01]
e Generalized to pseudo-Boolean (PB) solving [CK05,5506,LP10,EN18]

= many variations possible

Decide una55|gned
varlable
4 no

o Liam:a:tmn _> Conflict?
propag * yes

_ _Learn constraint_| 4= here be dragons
(different from MIP)
Backjump

25

Another look at our example...

+r4+y—22>0
—yt+z—v=>0
—z4+v—w>0
—xrx+z4+w>1

z,y,z,v,w+— {0,1}

Another look at our example...

e |t's rationally infeasible!

+r4+y—22>0
—yt+z—v=>0
—z4+v—w>0
—xrx+z4+w>1

z,y,z,v,w+— {0,1}

26

Another look at our example...

e |t's rationally infeasible!

+r+Yy—2z > 0 e Could be solved without search
—y+z—v2>0
—z4+v—w>0
—xrx+z4+w>1

w7y7z7fv7w — {07 1}

26

Another look at our example...

e |t's rationally infeasible!
+tr+y—22>0 e Could be solved without search

e |n theory: rationally infeasible

— —v >

y+z—-v=2 0 programs are easy for conflict-
—z4+v—w>0 driven PB search
—Tz+z+w>1

z,y,z,v,w+— {0,1}

26

Another look at our example...

+r+y—22>0
—yt+z—v=>0
—z4+v—w>0
—xrx+z4+w>1

z,y,z,v,w+— {0,1}

It's rationally infeasible!

Could be solved without search

In theory: rationally infeasible
programs are easy for conflict-
driven PB search

In practice: PB solvers timeout on
certain rationally infeasible
programs [EGNV18]

= unit propagation is local
= wrong constraints are learned

26

Another look at our example...

e |t's rationally infeasible!

tx+y—22>20 e Could be solved without search
—y+z—w > () e |n theory: rationallyinfeasiple
programs are easy for conflict-
— 24+ v—w >0 driven PB search
B e In practice: PB solvers timeout on
—r+z+w>1 certain rationally infeasible

programs [EGNV18]

= unit propagation is local

T.Y. 2.V, W —> 1 :
Y, 2, U, {O’ } = wrong constraints are learned

How about integrating an LP solver?

26

Another look at our example...

e |t's rationally infeasible!

tx+y—22>20 e Could be solved without search
—y+z—w > () e |n theory: rationallyinfeasiple
programs are easy for conflict-
— 24+ v—w >0 driven PB search
B e In practice: PB solvers timeout on
—r+z+w>1 certain rationally infeasible

programs [EGNV18]

= unit propagation is local

T.Y. 2.0, W —> 1 :
Y, 2, U, {O’ } = wrong constraints are learned

How about integrating an LP solver?
*

our work 26

Linear Programming (LP) solver

minimize cC X
subject to Ax <b
and x>0

Linear Programming (LP) solver

e |nput:

= |P relaxation of ¢
= variable bounds a
= objective function

minimize C X
subject to Ax <b
‘y and x>0

Linear Programming (LP) solver

e |nput:

= |P relaxation of ¢
= variable bounds a
= objective function

e QOutput: either minimize ctx
= optimal rational solution subject to Ax <b
= Farkas multipliers ‘y and x>0

o define a positive linear
combination of constraints
in ¢, falsified by a

Conflict-driven search loop

with LP solver call

Decide unassigned
variable

4 no
> Umtt —>Conﬂict7
ropagation ¥ yes

Backjump

28

Conflict-driven search loop

with LP solver call

Decide unassigned
variable

Rational infeasibility?

Query LP solver

4 no
5 Umtt —>Conﬂict7
ropagation * yes

Backjump

28

Conflict-driven search loop

with LP solver call

Decide unassigned
variable

no
Rational infeasibility?

Query LP solver

4 no
5 Umtt —>Conﬂict7
ropagation * yes

Backjump

28

Conflict-driven search loop

with LP solver call

Decide unassigned
variable

Nno

. . " Extract Farkas
Rational infeasibility?

yes multipliers

Query LP solver

4 no
Umt — Conﬂlct7
Propagatlon

yes
Backjump

28

Conflict-driven search loop

with LP solver call

Decide unassigned
variable

Nno

. . " Extract Farkas
Rational infeasibility?

yes multipliers

Query LP solver

4 no
Umt — Conﬂlct7
Propagatlon

yes
Learn Farkas
constraint

Backjump

28

Rational infeasibility example

t+tat+zxz+y—2z22>0
+b—y+z—v>0
—z4+v—w>0
—xrz+z4+w>1
+a—b>0

Rational infeasibility example

Rational infeasibility example

Farkas multipliers

+a+xz+y—22>0 xl1

-2z —v >0 X1

29

Rational infeasibility example

Farkas multipliers

+a+xz+y—22>0 xl1

-2z —v >0 X1

+a+b>1

29

Two technical hurdles

Two technical hurdles

e |P solvers are slow compared to conflict-driven search loop

= |imit calls to LP solver

= |imit LP solver running time

= deterministic measure: balance #conflicts in conflict-
driven solver to #pivots in LP solver

30

Two technical hurdles

e |P solvers are slow compared to conflict-driven search loop

= |imit calls to LP solver

= |imit LP solver running time

= deterministic measure: balance #conflicts in conflict-
driven solver to #pivots in LP solver

e |P solver uses inexact floating point arithmetic

= |earned constraint must be implied by ¢

= recalculate Farkas constraint with exact arithmetic
= verify Farkas constraint is still conflicting

= post-process Farkas constraint to eliminate noise

Further ideas

e Every once in a while, run LP solver to completion at root

31

Further ideas

e Every once in a while, run LP solver to completion at root
= yse (optimal) rational solution as value heuristic

31

Further ideas

e Every once in a while, run LP solver to completion at root

= yse (optimal) rational solution as value heuristic
= generate Chvatal-Gomory (CG) cuts

o add to both LP solver and learned constraint set

31

Further ideas

e Every once in a while, run LP solver to completion at root

= yse (optimal) rational solution as value heuristic
= generate Chvatal-Gomory (CG) cuts

o add to both LP solver and learned constraint set

e Generate "deep" Chvatal-Gomory cuts from internal
search nodes

m valid at root node, so safe to add as learned constraint

31

Further ideas

e Every once in a while, run LP solver to completion at root

= yse (optimal) rational solution as value heuristic
= generate Chvatal-Gomory (CG) cuts

o add to both LP solver and learned constraint set

e Generate "deep" Chvatal-Gomory cuts from internal
search nodes

m valid at root node, so safe to add as learned constraint
e Add learned constraints as cuts to the LP solver

31

Working implementation

e PB solver RoundingSat [EN18]

= Strong ILP constraint learning
= Performed well in past PB competitions

e | P solver SoPlex [ZIB]

= SCIP's native LP solver
m State-of-the-art open source

32

Design choices

#pivots/#conflicts < 1

CG cut parallelism check

for decision instances, minimize sum of
variables in SoPlex

for pure CNFs, deactivate LP techniques
128 bit precision to calculate CG cuts
and Farkas constraints

33

Experiments!

Compare state-of-the-art

RoundingSat
Sat4]

NaPS

SCIP

e Gurobi

e CPLEX

to implementations

e RS+SPX
e RS+SPX+GC
o RS+SPX+GC+LC

34

Solve time (s)

domset- hexgrld 05 (19 instances)

r T T T T ﬂ?ﬁﬂ?ﬁ‘******
X SCIP (19 solved)
103 - >< RoundingSat (9)
] -+ Sat4) (2)
X NaPS (19)
102 5
101'5 ><
X
10° 5
:—I— ><
1071 4 w ey 2 0 0 00 060 000 00 600

20 30 40 50 60 70 80
Instance size: size of dominating set

35

domset hexgrld 05 (19 instances)

Solve time (s)

>< ® SCIP (19 solved)

X RoundingSat (9)
RS+SPX (19)
>< RS+SPX+GC (19)
>~ RS+SPX+GC+LC (19)
—+ Sat4) (2)
NaPS (19)

X

20 30 40 50 60 70 80
Instance size: size of dominating set

700 A

600 -

Number of solved instances

100 -

500 -

300 -

200 A

Knapsack (higher is better, 783 instances)

— SCIP (765 solved)
—-= RoundingSat (153)
- == Sat4] (125)

NaPS (105)

—
.—"J‘ =
——-."— - :-——f _____ -
— :-—- ________
—— .f-"':—-:—-—'-_
— — —’:—--—_’
-
_-“
B E— T T L | T | |
-1 10° 101 102 10°

Timeout limit (s)

37

Knapsack (higher is better, 783 instances)

700 -
6004 e
“wo o et
1 2
©) wne®
T 500 - —— SCIP (765 solved)
c —-- RoundingSat (153)
I RS+SPX (554)
> 400 7 RS+SPX+GC (642)
>
w | D ETRRE RS+SPX+GC+LC (666)
; 300 - ——- Sat4) (125)
IEJ NaPS (105)
= 200 |
100 - mEn T T S =
O I I E— ‘ T T ™ T T T
101 100 10! 102 103

Timeout limit (s)

38

PBlodec (higher is better, 1783 instances)

14004 — SCIP (1.092 solved) /-,_,-__.
—-= RoundingSat (1502) .
-—- Sat4) (1240) .=

1200 - NaPS (1027) 7
n .
)
c
& 1000 A
n
k=
D
U 800 -
6 .
n
© 600 -
)
O
5
= 400 T

200 -

O T UL L | T T T] T L LA
1071 10° 101 102

[PBCOMP] Timeout limit (s)

39

PBlodec (higher is better, 1783 instances)

-----/-—"’-"|
1400] ‘/-,.f‘
P ATSLAS
‘,./‘)
1200 - _,-/ “““““ _e”
()] /‘/ ‘‘‘‘‘‘ ’¢’J’
§ A ”7/
& 1000 A P J ”_’,4.¢ -
g > o 7 =t —'” ’/’/
@
g 800 - o
o et
n
©
- 600 A SCIP (1092 solved)
IEJ e —-= RoundingSat (1502)
7
= 400 A /J RS+SPX (1489)
t RS+SPX+GC (1435)
/-’ ----- RS+SPX+GC+LC (1432)
200 - K ——- Sat4) (1240)
_____) NaPS (1027)
O T T LA T LR LA T LR |
1071 100 101 102 103

[PBCOMP]

Timeout limit (s)

40

PB1l6opt (higher is better, 1600 instances)

10007 —— scIp (1030 solved)
—-= RoundingSat (844)
—-—- Sat4) (709)

800 - NaPS (884)
0
O
(@
©
I,
=
= 600 -
)]
>
5
wn
S
. 400 A
()]
O
&
)
=2

200 -

O T L LR T L L LI T LI | T L L LR
101 10° 101 102 103

[PBCOMP] Timeout limit (s)

PB1l6opt (higher is better, 1600 instances)

1000 -

800 -
n
Q
©)
(@
©
ry
=
= 600 -
Q
>
5]
n
g 400 - —— SCIP (1030 solved)
IEJ —-= RoundingSat (844)
E RS+SPX (959)

500 - RS+SPX+GC (947)

----- RS+SPX+GC+LC (951)
- -~ Sat4] (709)
NaPS (884)
O T UL | T LA T LR | T LR |
1071 100 101 102 103

[PBCOMP] Timeout limit (s)

MiplibO1Dec (higher is better, 556 instances)

250 -

— SCIP (251 solved)

—-= RoundingSat (173)

- == Sat4] (152)

200 NaPS (71)
0
c e
i ./"'J.
(V)]
-E 150_ - -
© -
Q
>
©
wn
© 100 A
()}
o)
-
>
=
50 +
OI T 1 T T T L L LI T L LR T — 1 T T
10-1 10° 101 102 103

[MIPLIB]

Timeout limit (s)

43

MiplibO1Dec (higher is better, 556 instances)

250 -
— SCIP (251 solved)
—-= RoundingSat (173)
RS+SPX (242)
200 RS+SPX+GC (245)
g | e RS+SPX+GC+LC (242)
S —-—- Sat4) (152) T
@ NaPS (71) —7
-E 150 N) ,——__‘
go] -
Q __—"'—_-'
> -
)
wn
© 100 -
Q
o]
£
)
=
50 -
,f
4
’
¥ 4
’__J
OI T 1 T T T T T] T T
101 10° 101! 102 103

[MIPLIB]

Timeout limit (s)

44

MiplibO1Opt (higher is better, 291 instances)

120 A
—— SCIP (121 solved)
—-- RoundingSat (62)
1004 ——- Sat4] (56)

NaPS (64)

Number of solved instances

O T T lllllll T T lllllll T T lllllll T T lllllll
101 10° 10! 102 103

[MIPLIB] Timeout limit (s)

Number of solved instances

MiplibO1Opt (higher is better, 291 instances)

120 A
— SCIP (121 solved)

—-= RoundingSat (62)

100 - RS+SPX (93)
RS+SPX+GC (92)

------ RS+SPX+GC+LC (93)

804 —-- Sat4)(56)

NaPS (64)

0 ——r ————rrry —————
101 10° 101 102

[MIPLIB] Timeout limit (s)

LI |

103

46

Solve time (s)

composed pebbling php pyramid (48 instances)

ﬁ—rﬁ'{ﬁﬁﬂ:‘mﬁwmmm
o
10° - o O
] ° o9
—+ ©
o
o0
102 4 %
i . "
ol °
° XX
101 - ° o %%
: o
01_ o >%2< ® SCIP (13 solved)
° X ® Gurobi (7)
10° 5 S e ><>< ® CPLEX (21)
| e _?_."' N4 % RoundingSat (48)
" -+ Sat4) (8)
10-1 1 MBRX/ HaPs>)
10 20 30 40 50

Instance size:

height of pyramid

47

Solve time (s)

composed pebbling php pyramid (48 instances)

10° 5

102 -

107 -

10° -

(bbb dddd bbb dddddddddddd ’7’,’,’,’,’,’,’,’,’,;
¢ Y
@ ® YYYY
o

1071 -

o9
+ L 9_))—
o o o>_>_>_
® o
° " o YY\%X ® SCIP (13 solved)
o ® Gurobi (7)
o ® CPLEX (21)
® T [28)_>_Y3$é< X RoundingSat (48)
° %‘ %X v RS+SPX (48)
_ ¢ \;}% RS+SPX+GC (38)
| et ™ K > RS+SPX+GC+LC (38)
: 0. %(-+ Sat4) (8)
' NaPS (11)
T ete % %Y | | | ,
10 20 30 40 50

Instance size: height of pyramid

48

Related work

e Some SAT-based solvers use LP solver to decide
specialized constraints

= LCG-Glucose: network-flow propagation
= SMT: deciding linear theory

49

Related work

e Some SAT-based solvers use LP solver to decide
specialized constraints

= LCG-Glucose: network-flow propagation
= SMT: deciding linear theory

e |n the end, SAT-based solvers only learn clauses

= exponentially weaker than learning 0-1
linear constraints

m Farkas constraints, Chvatal-Gomory cuts, PB
learned constraints: all are used for
conflict-driven learning

49

Summary

Conflict-driven search for 0-1 ILPs

50

Summary

Conflict-driven search for 0-1 ILPs

e Generates cuts from search conflicts

50

Summary

Conflict-driven search for 0-1 ILPs

e (Generates cuts from search conflicts
e Does not always find short refutations for rational infeasibility

50

Summary

Conflict-driven search for 0-1 ILPs

e (Generates cuts from search conflicts
e Does not always find short refutations for rational infeasibility
e Allows sound & efficient integration with LP solver

50

Summary

Conflict-driven search for 0-1 ILPs

Generates cuts from search conflicts

Does not always find short refutations for rational infeasibility
Allows sound & efficient integration with LP solver

Is further improved by value heuristic & Gomory cut generation

50

Summary

Conflict-driven search for 0-1 ILPs

Generates cuts from search conflicts
Does not always find short refutations for rational infeasibility
Allows sound & efficient integration with LP solver

Is further improved by value heuristic & Gomory cut generation

Experiments approach best of both worlds

50

Summary

Conflict-driven search for 0-1 ILPs

Generates cuts from search conflicts
Does not always find short refutations for rational infeasibility
Allows sound & efficient integration with LP solver

Is further improved by value heuristic & Gomory cut generation

Experiments approach best of both worlds

Thanks for your attention!

50

References

[MS96] GRASP - a new search algorithm for satisfiability - Marques-Silva, Sakallah

[BS97] Using CSP lookback techniques to solve real-world SAT instances -
Bayardo, Schrag

[MMZZMO01] Chaff: Engineering an efficient SAT solver - Moskewicz, Madigan,
Zhao, Zhang, Malik

[PO4] Where are the hard knapsack problems? - Pisinger

[CKO5] A fast pseudo-Boolean constraint solver - Chai, Kuehlmann
[SS06] Pueblo: A hybrid pseudo-Boolean SAT solver - Sheini, Sakallah
[LP10] The Sat4j library, release 2.2 - Le Berre, Parrain

[EN18] Divide and conquer: Towards faster pseudo-boolean solving - Elffers,
Nordstrom

[EGNV18] Using Combinatorial Benchmarks to Probe the Reasoning Power of
pseudo-Boolean Solvers - Elffers, Giraldez-Cru, Nordstrom, Vinyals

[ZIB] SoPlex - soplex.zib.de
[PBCOMP] Latest PB competition - www.cril.univ-artois.fr/PB16/
[MIPLIB] The Mixed Integer Programming Library - miplib.zib.de

51

