Supercritical and Robust Trade-offs for Resolution Depth Versus Width and Weisfeiler-Leman

Jakob Nordström University of Copenhagen and Lund University

> SAT and Interactions Dagstuhl, October 13-18, 2024

What Is a Trade-off Result?

Take a computational model with two complexity measures μ , ν (e.g. μ = time and ν = space)

Robust \approx rectangle large

A New Kind of Trade-off [Razborov 2016]

Achieved through Hardness Condensation

- Take medium-hard input in variables $x_1, ..., x_n$
- «Compress» by substituting with variables $y_1, ..., y_m$
- But so that most of original hardness preserved
- Now measured in $m \ll n$
 - ⇒ Supercritical!

[Razborov '16, Razborov '17, Razborov '18, Berkholz-Nordström '20, Fleming-Pitassi-Robere '22, Berkholz-Nordström '23, ...]

But Supercritical in What?

All trade-offs supercritical in #variables only, except

[Berkholz '12, Beck-Nordström-Tang '13, Beame-Beck-Impagliazzo '16]

Our Work

Computation model: Resolution proof system

Complexity measures: width and depth (worst case ≤ #variables ≤ formula size)

Theorem

For any large enough k and c < k exist 4-CNF formulas such that

- formula size $s \approx n^c$
- exists proof in width k + 3
- but width $\langle k + c \rangle$ depth $s^{k/c}$ Supercritical in input size

Resolution Proof System

Goal: prove CNF formula unsatisfiable

Resolution rule:

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

```
size = #nodes = 11
width = max clause size = 4
depth = max path length = 5
```


Tseitin Formula: Encoding Handshake Lemma

Cylinder Graph: every vertex has edges N E S W, wraps around vertically

Variables: x_e for edge e

$$\sum_{e \ni v} x_e = 1 \mod 2 \quad \text{iff} \quad v = v_0$$

$$\begin{array}{l} \overline{x_N} \vee \underline{x_E} \vee x_S \vee x_W \\ x_N \vee \overline{x_E} \vee x_S \vee x_W \\ x_N \vee \underline{x_E} \vee \overline{x_S} \vee \underline{x_W} \\ x_N \vee \underline{x_E} \vee x_S \vee \overline{x_W} \end{array}$$

$$\begin{array}{c|c} x_N \vee \overline{x_E} \vee \overline{x_S} \vee \overline{x_W} \\ \overline{x_N} \vee x_E \vee \overline{x_S} \vee \overline{x_W} \\ \overline{x_N} \vee \overline{x_E} \vee x_S \vee \overline{x_W} \\ \overline{x_N} \vee \overline{x_E} \vee \overline{x_S} \vee x_W \end{array}$$

Substitution [Grohe-Lichter-Neuen-Schweitzer 2023]

Substitution [Grohe-Lichter-Neuen-Schweitzer 2023]

 \equiv_V : row $i \mod m_i$

Condensed Formula [Grohe-Lichter-Neuen-Schweitzer 2023]

Proof: By Analyzing the Cop-Robber Game

- Start: (k + c) cops, one robber at v_0
- In every round:
 - Lift a cop and signal a vertex v
 - Robber moves
 - Cop lands at v
- Ends when Robber is caught
- #cops \approx resolution width; #rounds \approx resolution depth

[Seymour-Thomas 93, Galesi-Talebanfard-Torán 18]

Cop Strategy

- With (k + c) cops, c small:
 - Place cops on middle column
 - March slowly towards where robber is
 - # rounds ≈ width of cylinder
- With 3k cops:
 - Binary search
 - # rounds ≈ logarithm of width of graph

Compressed Cop-Robber Game

- (k+c) cops, one robber at v_0
 - Lift a cop and signal a vertex v
 - Robber does a ≡-compressible move
 - Cop lands at [v]

[Grohe-Lichter-Neuen-Schweitzer 23]

Compressed Cop-Robber Game

- (k+c) cops, one robber at v_0
 - Lift a cop and signal a vertex v
 - Robber does a ≡-compressible move
 - Cop lands at [v]

[Grohe-Lichter-Neuen-Schweitzer 23]

How to Compress the Graph: The Moduli

- Fix $1 \le c \le k-2$
- Pick k coprime numbers $P_1, ..., P_k, |P_i| \approx n$

$$m_i \coloneqq (4k) \cdot P_i \cdots P_{i+c}$$

$$L \coloneqq \operatorname{lcm}\{m_i\} = (4k) \cdot P_1 \cdots P_k$$

• Compressed formula size $n^k \to n^{c+1}$

 \equiv_E : via adjacency list

Edge Equivalence

$$m_1 = 6$$
, $m_2 = 15$

Moves Translatable to Compressed Setting

$$|I| \le c + 1$$

$$a \qquad a + g_I$$

$$g_I \coloneqq \gcd(m_i: i \in I)$$

Idea for Robber Strategy

Slide between L, R using special moves translatable to compressed setting

Dangers of Robber Life: Separators

Slide between L, R using special moves

SEPARATOR WARNING

Robber Strategy

Keep away from potential vertex separators S

Survive roughly as long as on original cylinder

Motivation for Grohe et al.: Weisfeiler-Leman algorithm

Theorem [Grohe-Lichter-Neuen-Schweitzer 2023]

 \exists graph pairs such that (k + 1)-dimensional Weisfeiler-Leman algorithm can distinguish them, but only after $N^{\frac{k}{2}}$ iterations.

- dimension ≈ resolution width
- iterations ≈ resolution depth
- graph pair ≈ Tseitin [Berkholz-Nordström '16/'23]
- But GLNS23 yields no proof complexity results (because of "≈")₂₃

Our Result for Weisfeiler-Leman algorithm

Corollary (Weisfeiler-Leman)

For any $c \le k - 2$, \exists graph pairs of size N such that:

- dimension-(k + 1) WL can distinguish them
- dimension-(k + c) WL requires $N^{\frac{\kappa}{c+1}}$ iterations
- More robust trade-offs for Weisfeiler-Leman than GLNS23
- And thanks to robustness yields proof complexity consequences

Conclusion

- Depth-width tradeoff, supercritical in formula size
- Robust (somewhat): applies not only to minimal width
- Similar trade-offs obtained independently by Göös et al.
- Our results apply also to Weisfeiler-Leman algorithm

Open problems:

- Better robustness?
- Trade-offs size-depth, size-space? (stay tuned...)
- Can we compress other graphs than cylinders?

Thank you for your attention!