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What Is a Trade-off Result?

Hworst

Take a computational model with
two complexity measures u, v
(e.g. u = time and v = space)
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Robust = rectangle large



A New Kind of Trade-off |Razborov 2016]
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Achieved through Hardness Condensation

* Take medium-hard input in
variables x4, ..., x,,

* «Compress» by substituting
with variables yq, ..., i,

* Butso that most of original -
hardness preserved Y1 Y2 Vm-1Vm

* Now measuredinm <K n

= Supercritical!

[Razborov ‘16, Razborov ‘17, Razborov ‘18, Berkholz-Nordstrom ‘20, Fleming-Pitassi-Robere 22,
Berkholz-Nordstrom ‘23, ...]



But Supercritical in What?

>V

Vworst (#Vars) Vworst(#Vars) Vyorst(size)

All trade-offs supercritical in #variables only, except

[Berkholz ‘12,
Beck-Nordstrom-Tang ‘13,
Beame-Beck-Impagliazzo ‘16]



Our Work

Computation model: Resolution proof system
Complexity measures: width and depth (worst case < #variables < formula size)

Theorem
For any large enough k and ¢ < k exist 4-CNF formulas such that
» formula size s = n®
* exists proof in width k + 3
° ' k/C Su 1 -
but width < k + ¢ = depth s percritical in input sjze




Resolution Proof System

wvwvr || zvyvz |z |5 |[w][a)

Goal: prove CNF formula unsatisfiable \ x/

[ uvwvVvVyvVvz ]
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Resolution rule:

[uVWVy
CVax DVzx
CvVvVD
size = #nodes =11
width = max clause size = 4
depth =max pathlength =5



Tseitin Formula: Encoding Handshake Lemma

vo‘

Cylinder Graph:  every vertex has edges N E S W, wraps around vertically

Variables: x. for edge e

er=1mod2 iff v=y,

esv

Xy VXgVxgVxy
Xy VXgVXgV Xy
Xy VXEVXgV Xy
Xy VXEVXsVXy

Xy VEEV RSV Ty

Iy Vg VTV Ty
Iy VIV asV Ty

Xy VX5 VX V Xy




Substitution |Grohe-Lichter-Neuen-Schweitzer 202 3]

Y1 )2 Ym-1 Ym

Structured 1dentification




Substitution |Grohe-Lichter-Neuen-Schweitzer 202 3]

=y: row [ mod m;



Condensed Formula [Grohe-Lichter-Neuen-Schweitzer 2023]

Vo
1@ ? ® ® L
2
+ o—© *—©
k
............................................................................................................. 6 B i
Left L =~ n¥ Right
(4k) (4k)

z Vi =1mod 2 iff [v] = [vo]
le]3[v]
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Proof: By Analyzing the Cop-Robber Game
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* Start: (k + ¢) cops, one robber at v,
* In every round:

— Lift a cop and signal a vertex v

— Robber moves

— Cop lands at v

Ends when Robber 1s caught
#cops = resolution width; #rounds = resolution depth

[Seymour-Thomas 93, Galesi-Talebanfard-Tordn 18]
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Cop Strategy
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M Y Y M

* With (k + ¢) cops, ¢ small:
— Place cops on middle column
— March slowly towards where robber 1s
— # rounds = width of cylinder

*  With 3k cops:
— Binary search
— # rounds = logarithm of width of graph
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Compressed Cop-Robber Game
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* (k + c¢) cops, one robber at v,

— Lift a cop and signal a vertex v
— Robber does a =-compressible move
— Cop lands at [v]

[Grohe-Lichter-Neuen-Schweitzer 23]
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Compressed Cop-Robber Game
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* (k + c¢) cops, one robber at v,

— Lift a cop and signal a vertex v
— Robber does a =-compressible move

— Cop lands at [v]

[Grohe-Lichter-Neuen-Schweitzer 23]

15



How to Compress the Graph: The Moduli

1 ?..
2

+CC ®
k

4k

Fixl1<c<k-2

Pick k coprime numbers P;, ..., P, |P;| = n

m; = (4k) - Py Py,

L:=lecm{m;} = (4k) - P, --- P,

Compressed formula size n

k

—n

c+1

4k
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=g via adjacency list
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Edge Equivalence
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mq = 6, m-
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Moves Translatable to Compressed Setting

- }
I <c+1

g; =gcd(m;: i € 1)

19



Idea for Robber Strategy

Slide between L, R using special moves
translatable to compressed setting

AN AN AN A I
|V VL VI V) ‘
o
©_9
C6EC6E66EC e
AR 1
¢ ¢ C C © U U C

Cop-free column
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Dangers of Robber Life: Separators

N
7 -
AN 1

Slide between L, R using special moves

SEPARATOR WARNING
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Robber Strategy

Lo\

©_9

N

~Z T
AN 1

Keep away from potential vertex separators S

Survive roughly as long as on original cylinder
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Motivation for Grohe et al.: Weisfeiler-Leman algorithm

Theorem [Grohe-Lichter-Neuen-Schweitzer 2023 ]

3 graph pairs such that (k + 1)-dimensional Weisfeiler-Leman
k

algorithm can distinguish them, but only after Nz iterations.

* dimension = resolution width
* 1terations = resolution depth
* graph pair = Tseitin [Berkholz-Nordstrom 16/'23]

* But GLNS23 yields no proof complexity results  (because of “~”)
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Our Result for Weisfeiler-Leman algorithm

Corollary (Weisteiler-Leman)
For any ¢ < k — 2, 3 graph pairs of size N such that:
« dimension-(k + 1) WL can distinguish them
* dimension-(k + ¢) WL requires N Fkl iterations

* More robust trade-offs for Weisfeiler-Leman than GLNS23
* And thanks to robustness yields proof complexity consequences
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Conclusion

* Depth-width tradeoff, supercritical in formula size

* Robust (somewhat): applies not only to minimal width

* Similar trade-offs obtained independently by Go6s et al.
* Our results apply also to Weisfeiler-Leman algorithm

N

Open problems:

Jrrrtir

* Better robustness? Vworst (Size)
* Trade-offs size-depth, size-space? (stay tuned...)
* (Can we compress other graphs than cylinders?

Thank you for your attention!
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