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Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

The Success Story of Combinatorial Solving and Optimization

Rich field of mathematics and computer science
Impact in other areas of science and also industry, e.g.:

airline scheduling
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Discrete problems — computationally very challenging (NP-complete or worse)
Lots of effort last couple of decades spent on developing sophisticated so-called
combinatorial solvers that often work surprisingly well in practice for, e.g.,

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 3/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

And the Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, BMN22, GCS23]

Even worse: No way of knowing for sure when errors happen

Solvers can propose infeasible “solutions” (but erroneous claims can in principle
be checked)

More challenging: How to achieve reliable claims of infeasibility?

Or of optimality?

Even off-by-one mistakes can snowball into large errors if solver used as subroutine
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Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 5/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 5/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 5/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges
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Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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Can Proof Logging Solve This Problem?
This Talk

Some Previous Proof Logging Work
Boolean satisfiability (SAT) solving

Well established since over decade with several proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But no efficient support for most advanced techniques

Constraint programming
Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
Or suffer from exponential slow-down to generate verifiable proofs [GCS23]

Mixed integer linear programming
Work on proof format VIPR [CGS17, EG23]
But only for exact solving and without support for advanced techniques

Satisfiability modulo theories (SMT) solving
Immense amount of work (see, e.g., [BBC+23, HS22])
Very complicated proof format, and not yet complete coverage of solver techniques
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Message of This Talk
Proof logging for wide range of combinatorial optimization problems is possible with
single, unified method!

Build on successes in proof logging for SAT solving
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Describe foundations of proof logging method
3 Discuss future challenges and directions
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Outline of This Talk

1 Combinatorial Solving
The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

2 Pseudo-Boolean Proof Logging
Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

3 Pseudo-Boolean Proof Logging Successes and Challenges
List of Successes
Three Concrete Showcases
Some Challenges
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Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker
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Proof Logging Principles and Goals
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Strengthening Rules

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support during software development

[GMM+20, KM21, BBN+23, EG23, KLM+25]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability
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Proof Logging Principles and Goals
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Strengthening Rules

Proof Language: Pseudo-Boolean Constraints

Proof consists of 0–1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)
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Proof Logging Principles and Goals
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Some Types of Pseudo-Boolean Constraints

1 Disjunctive clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
Boolean satisfiability (SAT) solving
(linear) pseudo-Boolean solving
subgraph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or hopefully in future extensions
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, or hopefully in future extensions
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Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification using big-M constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker
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Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input
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VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality (or upper and lower bounds)
other types of conclusions
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VeriPB Proof Configuration (Slightly Simplified)

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging [but not used by solver]
Any satisfying assignment to C can
be extended to D

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A
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Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;
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pol @C1 2 * @C2 + ∼z 2 * + 3 d ;
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Deriving Non-implied Constraints by Redundance-Based Strengthening
C is said to be “redundant” with respect to F if F and F ∪ {C} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then
α satisfies (F ∪ {C})↾ω, i.e., α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either

1 “obviously” or
2 by explicitly presented derivation
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Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;
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Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!
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Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}
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Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Strengthening Rules: Proof Format

red ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

Witness ω should be explicitly specified in proof log
Subproofs of proof goals should also be explicit
But can be skipped for proof goals “obvious” to proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 26/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Strengthening Rules: Proof Format

red ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

Witness ω should be explicitly specified in proof log
Subproofs of proof goals should also be explicit
But can be skipped for proof goals “obvious” to proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 26/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Successful Applications of VeriPB Proof Logging
Surprisingly, pseudo-Boolean reasoning with strengthening rules sufficient to efficiently
certify wide range of combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
Gaussian elimination [GN21]
symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22, KLM+25]
4 Subgraph solving (max clique, subgraph isomorphism, max common connected

subgraph) [GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
8 Automated planning [DHN+25]
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Three Pseudo-Boolean Proof Logging Vignettes

1 Symmetry breaking [BGMN23]

2 Graph solving (subgraph isomorphism) [GMN20, GMM+20, GMM+24]

3 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Use dominance to derive (for proof log only) pseudo-Boolean lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]
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3 Derive symmetry breaking clauses from this PB constraint:
y0 ≥ 1 yj + σ(xj) + xj ≥ 1

yj−1 + xj + σ(xj) ≥ 1 yj + yj−1 + xj ≥ 1
yj + yj−1 ≥ 1 yj + yj−1 + σ(xj) ≥ 1

VeriPB can certify fully general SAT symmetry breaking [BGMN23]
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Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., one-to-one mappings φ such that if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 With end-to-end fully formally verified result [GMM+24]
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Subgraph Isomorphism as a Pseudo-Boolean Formula
Pattern graph P with V (P) = {a, b, c, . . .}
Target graph T with V (T ) = {u, v, w, . . .}
No loops (for simplicity)

Pseudo-Boolean encoding∑
v∈V (T )

xa,v = 1 [every a maps somewhere]

∑
b∈V (P)

xb,u ≥
∣∣V (P)

∣∣ − 1 [mapping is one-to-one]

xa,u +
∑

v∈N(u)
xb,v ≥ 1 [edge (a, b) maps to edge (u, v)]
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

Sum up all constraints & divide by 3 to obtain
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List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

Sum up all constraints & divide by 3 to obtain
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List of Successes
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Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

Sum up all constraints & divide by 3 to obtain
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xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4
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xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa,u + 10 ≥ 11
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3xa,u ≥ 1
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List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
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e u

v
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xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (1/2)

How to deal with integer variables in constraint programming?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Bad properties for solver propagation, but that isn’t a problem for proof logging
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

A Constraint Programming Solver with Pseudo-Boolean Proof Logging

Proof-of-concept CP solver at github.com/ciaranm/glasgow-constraint-solver
supports proof logging for global constraints:

All-different
Integer linear inequality (including for very large domains)
Smart table and regular
Minimum / maximum of an array
Element (kind of array indexing)
Absolute value
(Hamiltonian) Circuit
and more. . .

Details in [EGMN20, GMN22, MM23, MMN24, MM25]
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging and checking

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model enumeration and counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])
SMT solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC+23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,
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Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

VeriPB Resources
VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]
Video tutorial at https://youtu.be/s_5BIi4I22w

Videos from updated tutorials at WHOOPS ’25 will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition
Available at https://satcompetition.github.io/2025/output.html

Details on specific proof logging techniques in [EGMN20, GMN20, GMM+20, GN21,
GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23, BBN+24, DMM+24,
GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]
Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!
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