
Combinatorial Solving with Provably Correct Results

Jakob Nordström

University of Copenhagen and Lund University

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
September 16, 2025

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 1/40



Based on Joint Work With. . .

Markus Anders
Jeremias Berg
Bart Bogaerts
Benjamin Bogø
Wolf De Wulf
Emir Demirović
Simon Dold
Jan Elffers
Ambros Gleixner
Stephan Gocht
Arthur Gontier

Malte Helmert
Alexander Hoen
Hannes Ihalainen
Matti Järvisalo
Wietze Koops
Daniel Le Berre
Ruben Martins
Ross McBride
Ciaran McCreesh
Matthew McIlree
Magnus O. Myreen

Andy Oertel
Tobias Paxian
Patrick Prosser
Adrián Rebola-Pardo
Gabriele Röger
Tanja Schindler
Konstantin Sidorov
Yong Kiam Tan
James Trimble
Dieter Vandesande
Marc Vinyals

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 2/40



Based on Joint Work With. . .

Markus Anders
Jeremias Berg
Bart Bogaerts
Benjamin Bogø
Wolf De Wulf
Emir Demirović
Simon Dold
Jan Elffers
Ambros Gleixner
Stephan Gocht
Arthur Gontier

Malte Helmert
Alexander Hoen
Hannes Ihalainen
Matti Järvisalo
Wietze Koops
Daniel Le Berre
Ruben Martins
Ross McBride
Ciaran McCreesh
Matthew McIlree
Magnus O. Myreen

Andy Oertel
Tobias Paxian
Patrick Prosser
Adrián Rebola-Pardo
Gabriele Röger
Tanja Schindler
Konstantin Sidorov
Yong Kiam Tan
James Trimble
Dieter Vandesande
Marc Vinyals

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 2/40



Based on Joint Work With. . .

Markus Anders
Jeremias Berg
Bart Bogaerts
Benjamin Bogø
Wolf De Wulf
Emir Demirović
Simon Dold
Jan Elffers
Ambros Gleixner
Stephan Gocht
Arthur Gontier

Malte Helmert
Alexander Hoen
Hannes Ihalainen
Matti Järvisalo
Wietze Koops
Daniel Le Berre
Ruben Martins
Ross McBride
Ciaran McCreesh
Matthew McIlree
Magnus O. Myreen

Andy Oertel
Tobias Paxian
Patrick Prosser
Adrián Rebola-Pardo
Gabriele Röger
Tanja Schindler
Konstantin Sidorov
Yong Kiam Tan
James Trimble
Dieter Vandesande
Marc Vinyals

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 2/40



Based on Joint Work With. . .

Markus Anders
Jeremias Berg
Bart Bogaerts
Benjamin Bogø
Wolf De Wulf
Emir Demirović
Simon Dold
Jan Elffers
Ambros Gleixner
Stephan Gocht
Arthur Gontier

Malte Helmert
Alexander Hoen
Hannes Ihalainen
Matti Järvisalo
Wietze Koops
Daniel Le Berre
Ruben Martins
Ross McBride
Ciaran McCreesh
Matthew McIlree
Magnus O. Myreen

Andy Oertel
Tobias Paxian
Patrick Prosser
Adrián Rebola-Pardo
Gabriele Röger
Tanja Schindler
Konstantin Sidorov
Yong Kiam Tan
James Trimble
Dieter Vandesande
Marc Vinyals

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 2/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

The Success Story of Combinatorial Solving and Optimization

Rich field of mathematics and computer science
Impact in other areas of science and also industry, e.g.:

airline scheduling
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Discrete problems — computationally very challenging (NP-complete or worse)
Lots of effort last couple of decades spent on developing sophisticated so-called
combinatorial solvers that often work surprisingly well in practice for, e.g.,

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 3/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

And the Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, BMN22, GCS23]

Even worse: No way of knowing for sure when errors happen

Solvers can propose infeasible “solutions” (but erroneous claims can in principle
be checked)

More challenging: How to achieve reliable claims of infeasibility?

Or of optimality?

Even off-by-one mistakes can snowball into large errors if solver used as subroutine

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 4/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 5/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 5/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 5/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 6/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 6/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 6/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 6/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 7/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 7/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 7/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 7/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 7/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Some Previous Proof Logging Work
Boolean satisfiability (SAT) solving

Well established since over decade with several proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But no efficient support for most advanced techniques

Constraint programming
Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
Or suffer from exponential slow-down to generate verifiable proofs [GCS23]

Mixed integer linear programming
Work on proof format VIPR [CGS17, EG23]
But only for exact solving and without support for advanced techniques

Satisfiability modulo theories (SMT) solving
Immense amount of work (see, e.g., [BBC+23, HS22])
Very complicated proof format, and not yet complete coverage of solver techniques

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 8/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Some Previous Proof Logging Work
Boolean satisfiability (SAT) solving

Well established since over decade with several proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But no efficient support for most advanced techniques

Constraint programming
Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
Or suffer from exponential slow-down to generate verifiable proofs [GCS23]

Mixed integer linear programming
Work on proof format VIPR [CGS17, EG23]
But only for exact solving and without support for advanced techniques

Satisfiability modulo theories (SMT) solving
Immense amount of work (see, e.g., [BBC+23, HS22])
Very complicated proof format, and not yet complete coverage of solver techniques

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 8/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Some Previous Proof Logging Work
Boolean satisfiability (SAT) solving

Well established since over decade with several proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But no efficient support for most advanced techniques

Constraint programming
Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
Or suffer from exponential slow-down to generate verifiable proofs [GCS23]

Mixed integer linear programming
Work on proof format VIPR [CGS17, EG23]
But only for exact solving and without support for advanced techniques

Satisfiability modulo theories (SMT) solving
Immense amount of work (see, e.g., [BBC+23, HS22])
Very complicated proof format, and not yet complete coverage of solver techniques

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 8/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Some Previous Proof Logging Work
Boolean satisfiability (SAT) solving

Well established since over decade with several proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But no efficient support for most advanced techniques

Constraint programming
Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
Or suffer from exponential slow-down to generate verifiable proofs [GCS23]

Mixed integer linear programming
Work on proof format VIPR [CGS17, EG23]
But only for exact solving and without support for advanced techniques

Satisfiability modulo theories (SMT) solving
Immense amount of work (see, e.g., [BBC+23, HS22])
Very complicated proof format, and not yet complete coverage of solver techniques

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 8/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Message of This Talk
Proof logging for wide range of combinatorial optimization problems is possible with
single, unified method!

Build on successes in proof logging for SAT solving
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Describe foundations of proof logging method
3 Discuss future challenges and directions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 9/40

https://gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Message of This Talk
Proof logging for wide range of combinatorial optimization problems is possible with
single, unified method!

Build on successes in proof logging for SAT solving
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Describe foundations of proof logging method
3 Discuss future challenges and directions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 9/40

https://gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Message of This Talk
Proof logging for wide range of combinatorial optimization problems is possible with
single, unified method!

Build on successes in proof logging for SAT solving
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Describe foundations of proof logging method
3 Discuss future challenges and directions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 9/40

https://gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Message of This Talk
Proof logging for wide range of combinatorial optimization problems is possible with
single, unified method!

Build on successes in proof logging for SAT solving
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Describe foundations of proof logging method
3 Discuss future challenges and directions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 9/40

https://gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Message of This Talk
Proof logging for wide range of combinatorial optimization problems is possible with
single, unified method!

Build on successes in proof logging for SAT solving
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Describe foundations of proof logging method
3 Discuss future challenges and directions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 9/40

https://gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

Outline of This Talk

1 Combinatorial Solving
The Challenge of Ensuring Correctness
Can Proof Logging Solve This Problem?
This Talk

2 Pseudo-Boolean Proof Logging
Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

3 Pseudo-Boolean Proof Logging Successes and Challenges
List of Successes
Three Concrete Showcases
Some Challenges

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 10/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 11/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 11/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 11/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support during software development

[GMM+20, KM21, BBN+23, EG23, KLM+25]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 12/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Language: Pseudo-Boolean Constraints

Proof consists of 0–1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 13/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Some Types of Pseudo-Boolean Constraints

1 Disjunctive clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 14/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
Boolean satisfiability (SAT) solving
(linear) pseudo-Boolean solving
subgraph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or hopefully in future extensions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 15/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
Boolean satisfiability (SAT) solving
(linear) pseudo-Boolean solving
subgraph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently

, Real Soon Now™, or hopefully in future extensions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 15/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
Boolean satisfiability (SAT) solving
(linear) pseudo-Boolean solving
subgraph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™

, or hopefully in future extensions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 15/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
Boolean satisfiability (SAT) solving
(linear) pseudo-Boolean solving
subgraph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or hopefully in future extensions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 15/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification using big-M constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 16/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification using big-M constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 16/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification using big-M constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 16/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification using big-M constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 16/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification using big-M constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 16/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 17/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 17/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Elaborated proof

✓ / ✗

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 17/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality (or upper and lower bounds)
other types of conclusions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 18/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality (or upper and lower bounds)
other types of conclusions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 18/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality (or upper and lower bounds)
other types of conclusions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 18/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality (or upper and lower bounds)
other types of conclusions

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 18/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Configuration (Slightly Simplified)

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging [but not used by solver]
Any satisfying assignment to C can
be extended to D

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 19/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Configuration (Slightly Simplified)

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging [but not used by solver]
Any satisfying assignment to C can
be extended to D

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 19/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Configuration (Slightly Simplified)

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging [but not used by solver]
Any satisfying assignment to C can
be extended to D

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 19/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 20/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 20/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 20/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 20/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 20/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 20/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2z + 2z ≥ 9

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2 ≥ 9

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 2 1

3

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By referring to constraints by labels and to literal axioms by the literal involved as
@C1 .= 2x + y + w ≥ 2
@C2 .= 2x + 4y + 2z + w ≥ 5
∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 21/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Deriving Non-implied Constraints by Redundance-Based Strengthening
C is said to be “redundant” with respect to F if F and F ∪ {C} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then
α satisfies (F ∪ {C})↾ω, i.e., α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 22/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Deriving Non-implied Constraints by Redundance-Based Strengthening
C is said to be “redundant” with respect to F if F and F ∪ {C} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then
α satisfies (F ∪ {C})↾ω, i.e., α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 22/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Deriving Non-implied Constraints by Redundance-Based Strengthening
C is said to be “redundant” with respect to F if F and F ∪ {C} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then
α satisfies (F ∪ {C})↾ω, i.e., α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 22/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Deriving Non-implied Constraints by Redundance-Based Strengthening
C is said to be “redundant” with respect to F if F and F ∪ {C} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then
α satisfies (F ∪ {C})↾ω, i.e., α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∪ {C})↾ω should follow from F ∪ {¬C} either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 22/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 23/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 23/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 23/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 23/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 23/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Example: Deriving r ↔ (x ∧ y) Using the Redundance Rule
Want to derive

2r + x + y ≥ 2 r + x + y ≥ 1
using condition F ∪ {¬C} |= (F ∪ {C})↾ω

1 F ∪ {¬(2r + x + y ≥ 2)} |= (F ∪ {2r + x + y ≥ 2})↾ω

Choose ω = {r 7→ 0} — F untouched; new constraint satisfied
2 F ∪ {2r + x + y ≥ 2, ¬(r + x + y ≥ 1)} |=

(F ∪ {2r + x + y ≥ 2, r + x + y ≥ 1})↾ω

Choose ω = {r 7→ 1} — F untouched; new constraint satisfied
Premise ¬(r + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence (2r + x + y ≥ 2)↾ω is
satisfied even though r 7→ 1

red 2 ∼r 1 x 1 y >= 2 : r -> 0 ;
red 1 r 1 ∼x 1 ∼y >= 1 : r -> 1 ;

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 23/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 24/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 24/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 24/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!
Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 24/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Assume D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 25/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Strengthening Rules: Proof Format

red ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

Witness ω should be explicitly specified in proof log
Subproofs of proof goals should also be explicit
But can be skipped for proof goals “obvious” to proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 26/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Strengthening Rules: Proof Format

red ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint C⟩ : ⟨var1 ⟩ -> ⟨val1 ⟩ ... ⟨varN ⟩ -> ⟨valN ⟩ : subproof
subproofs for proof goals

qed;

Witness ω should be explicitly specified in proof log
Subproofs of proof goals should also be explicit
But can be skipped for proof goals “obvious” to proof checker

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 26/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Successful Applications of VeriPB Proof Logging
Surprisingly, pseudo-Boolean reasoning with strengthening rules sufficient to efficiently
certify wide range of combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
Gaussian elimination [GN21]
symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22, KLM+25]
4 Subgraph solving (max clique, subgraph isomorphism, max common connected

subgraph) [GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
8 Automated planning [DHN+25]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 27/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Successful Applications of VeriPB Proof Logging
Surprisingly, pseudo-Boolean reasoning with strengthening rules sufficient to efficiently
certify wide range of combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
Gaussian elimination [GN21]
symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22, KLM+25]
4 Subgraph solving (max clique, subgraph isomorphism, max common connected

subgraph) [GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
8 Automated planning [DHN+25]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 27/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Three Pseudo-Boolean Proof Logging Vignettes

1 Symmetry breaking [BGMN23]

2 Graph solving (subgraph isomorphism) [GMN20, GMM+20, GMM+24]

3 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 28/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Use dominance to derive (for proof log only) pseudo-Boolean lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 29/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Use dominance to derive (for proof log only) pseudo-Boolean lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 29/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Use dominance to derive (for proof log only) pseudo-Boolean lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 29/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Use dominance to derive (for proof log only) pseudo-Boolean lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0 ≥ 1 yj + σ(xj) + xj ≥ 1

yj−1 + xj + σ(xj) ≥ 1 yj + yj−1 + xj ≥ 1
yj + yj−1 ≥ 1 yj + yj−1 + σ(xj) ≥ 1

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 29/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Use dominance to derive (for proof log only) pseudo-Boolean lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0 ≥ 1 yj + σ(xj) + xj ≥ 1

yj−1 + xj + σ(xj) ≥ 1 yj + yj−1 + xj ≥ 1
yj + yj−1 ≥ 1 yj + yj−1 + σ(xj) ≥ 1

VeriPB can certify fully general SAT symmetry breaking [BGMN23]
Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 29/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., one-to-one mappings φ such that if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 30/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., one-to-one mappings φ such that if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 30/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 With end-to-end fully formally verified result [GMM+24]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 31/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 With end-to-end fully formally verified result [GMM+24]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 31/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Subgraph Isomorphism as a Pseudo-Boolean Formula
Pattern graph P with V (P) = {a, b, c, . . .}
Target graph T with V (T ) = {u, v, w, . . .}
No loops (for simplicity)

Pseudo-Boolean encoding∑
v∈V (T )

xa,v = 1 [every a maps somewhere]

∑
b∈V (P)

xb,u ≥
∣∣V (P)

∣∣ − 1 [mapping is one-to-one]

xa,u +
∑

v∈N(u)
xb,v ≥ 1 [edge (a, b) maps to edge (u, v)]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 32/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa,u + 10 ≥ 11

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa,u ≥ 1

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa,u + xb,v + xb,w ≥ 1
xa,u + xc,v + xc,w ≥ 1
xa,u + xd,v + xd,w ≥ 1

xa,v + xb,v + xc,v + xd,v + xe,v ≥ 4
xa,w + xb,w + xc,w + xd,w + xe,w ≥ 4

xa,v ≥ 0
xa,w ≥ 0
xe,v ≥ 0
xe,w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa,u ≥ 1
xa,u ≥ 1

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 33/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (1/2)

How to deal with integer variables in constraint programming?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Bad properties for solver propagation, but that isn’t a problem for proof logging

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 34/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (1/2)

How to deal with integer variables in constraint programming?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Bad properties for solver propagation, but that isn’t a problem for proof logging

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 34/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (1/2)

How to deal with integer variables in constraint programming?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Bad properties for solver propagation, but that isn’t a problem for proof logging

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 34/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 35/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 35/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Integer Variables (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 35/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 36/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Constraint Programming: Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 36/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

A Constraint Programming Solver with Pseudo-Boolean Proof Logging

Proof-of-concept CP solver at github.com/ciaranm/glasgow-constraint-solver
supports proof logging for global constraints:

All-different
Integer linear inequality (including for very large domains)
Smart table and regular
Minimum / maximum of an array
Element (kind of array indexing)
Absolute value
(Hamiltonian) Circuit
and more. . .

Details in [EGMN20, GMN22, MM23, MMN24, MM25]

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 37/40

github.com/ciaranm/glasgow-constraint-solver


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging and checking

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model enumeration and counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])
SMT solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC+23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 38/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging and checking

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model enumeration and counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])
SMT solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC+23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 38/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging and checking

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model enumeration and counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])
SMT solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC+23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 38/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging and checking

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model enumeration and counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])
SMT solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC+23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 38/40



Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

VeriPB Resources
VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]
Video tutorial at https://youtu.be/s_5BIi4I22w

Videos from updated tutorials at WHOOPS ’25 will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition
Available at https://satcompetition.github.io/2025/output.html

Details on specific proof logging techniques in [EGMN20, GMN20, GMM+20, GN21,
GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23, BBN+24, DMM+24,
GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]
Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 39/40

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

VeriPB Resources
VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]
Video tutorial at https://youtu.be/s_5BIi4I22w

Videos from updated tutorials at WHOOPS ’25 will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition
Available at https://satcompetition.github.io/2025/output.html

Details on specific proof logging techniques in [EGMN20, GMN20, GMM+20, GN21,
GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23, BBN+24, DMM+24,
GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]
Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 39/40

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

VeriPB Resources
VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]
Video tutorial at https://youtu.be/s_5BIi4I22w

Videos from updated tutorials at WHOOPS ’25 will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition
Available at https://satcompetition.github.io/2025/output.html

Details on specific proof logging techniques in [EGMN20, GMN20, GMM+20, GN21,
GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23, BBN+24, DMM+24,
GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]
Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 39/40

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Combinatorial Solving
Pseudo-Boolean Proof Logging

Pseudo-Boolean Proof Logging Successes and Challenges

List of Successes
Three Concrete Showcases
Some Challenges

VeriPB Resources
VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]
Video tutorial at https://youtu.be/s_5BIi4I22w

Videos from updated tutorials at WHOOPS ’25 will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition
Available at https://satcompetition.github.io/2025/output.html

Details on specific proof logging techniques in [EGMN20, GMN20, GMM+20, GN21,
GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23, BBN+24, DMM+24,
GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]
Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 39/40

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 40/40



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 40/40



References I

[ABB+25] Markus Anders, Bart Bogaerts, Benjamin Bogø, Arthur Gontier, Wietze Koops, Ciaran McCreesh,
Magnus O. Myreen, Jakob Nordström, Andy Oertel, Adrián Rebola-Pardo, and Yong Kiam Tan.
Documentation of VeriPB and CakePB for the SAT competition 2025. Available at
https://satcompetition.github.io/2025/output.html, April 2025.

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An
introduction to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.

[ADH+19] Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser, and James
Trimble. Sequential and parallel solution-biased search for subgraph algorithms. In Proceedings of
the 16th International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’19), volume 11494 of Lecture Notes in
Computer Science, pages 20–38. Springer, June 2019.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference
on Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes
in Computer Science, pages 727–736. Springer, August 2018.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 41/40

https://satcompetition.github.io/2025/output.html


References II

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization,
pages 449–481. Springer, 2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January
1995.

[BB09] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In Proceedings
of the 7th International Workshop on Satisfiability Modulo Theories (SMT ’09), pages 1–5,
August 2009.

[BBC+23] Haniel Barbosa, Clark Barrett, Byron Cook, Bruno Dutertre, Gereon Kremer, Hanna Lachnitt,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Cesare Tinelli,
and Yoni Zohar. Generating and exploiting automated reasoning proof certificates.
Communications of the ACM, 66(10):86––95, October 2023.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 42/40



References III

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated
Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22.
Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter
Vandesande. Certifying without loss of generality reasoning in solution-improving maximum
satisfiability. In Proceedings of the 30th International Conference on Principles and Practice of
Constraint Programming (CP ’24), volume 307 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:28, September 2024.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and
symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence Research,
77:1539–1589, August 2023. Preliminary version in AAAI ’22.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd
edition, February 2021.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 43/40



References IV

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT
and QBF solvers. In Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer
Science, pages 44–57. Springer, July 2010.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results:
Beyond satisfiability, and towards constraint programming. Tutorial at the 28th International
Conference on Principles and Practice of Constraint Programming. Slides available at
https://jakobnordstrom.se/presentations/, August 2022.

[BMN23] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Combinatorial solving with provably
correct results. Tutorial at the 32nd International Joint Conference on Artificial Intelligence.
Slides available at https://jakobnordstrom.se/presentations/, August 2023.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A
look back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
February 2007.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 44/40

https://jakobnordstrom.se/presentations/
https://jakobnordstrom.se/presentations/


References V

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended
resolution. In Proceedings of the 22nd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages
71–89. Springer, July 2019.

[BvdKM+21] Péter Biró, Joris van de Klundert, David F. Manlove, William Pettersson, Tommy Andersson, Lisa
Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, Aline Hemke, Rachel
Johnson, Xenia Klimentova, Dirk Kuypers, Alessandro Nanni Costa, Bart Smeulders, Frits C. R.
Spieksma, Maŕıa O. Valent́ın, and Ana Viana. Modelling and optimisation in European kidney
exchange programmes. European Journal of Operational Research, 291(2):447–456, June 2021.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 45/40



References VI

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer
Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound
approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution
proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in
Computer Science, pages 118–135. Springer, April 2017.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny. A proof system for
certifying symmetry and optimality reasoning in integer programming. Technical Report
2311.03877, arXiv.org, November 2023.

[DFS12] Nicholas Downing, Thibaut Feydy, and Peter J. Stuckey. Explaining alldifferent. In Proceedings of
the 35th Australasian Computer Science Conference (ACSC ’12), pages 115–124, January 2012.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 46/40



References VII

[DHN+25] Simon Dold, Malte Helmert, Jakob Nordström, Gabriele Röger, and Tanja Schindler.
Pseudo-Boolean proof logging for optimal classical planning. In Proceedings of the 35th
International Conference on Automated Planning and Scheduling (ICAPS ’25), November 2025.
To appear.

[DMM+24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and
Konstantin Sidorov. Pseudo-Boolean reasoning about states and transitions to certify dynamic
programming and decision diagram algorithms. In Proceedings of the 30th International
Conference on Principles and Practice of Constraint Programming (CP ’24), volume 307 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:21, September 2024.

[EG23] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. Mathematical Programming, 197(2):793–812, February 2023.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 47/40



References VIII

[Fle20] Mathias Fleury. Formalization of Logical Calculi in Isabelle/HOL. PhD thesis, Universität des
Saarlandes, 2020. Available at
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722.

[GCS23] Graeme Gange, Geoffrey Chu, and Peter J. Stuckey. Certifying optimality in constraint
programming. Manuscript. Available at
https://people.eng.unimelb.edu.au/pstuckey/papers/certified-cp.pdf, 2023.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In
Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Proceedings of the 38th AAAI
Conference on Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 48/40

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722
https://people.eng.unimelb.edu.au/pstuckey/papers/certified-cp.pdf


References IX

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice of
Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 49/40



References X

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean
Reasoning. PhD thesis, Lund University, June 2022. Available at
https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

[GSS] The Glasgow subgraph solver. https://github.com/ciaranm/glasgow-subgraph-solver.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction
(CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June
2013.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 50/40

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://github.com/ciaranm/glasgow-subgraph-solver


References XI

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based
presolve reductions for 0–1 integer linear programs. In Proceedings of the 21st International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR ’24), volume 14742 of Lecture Notes in Computer Science, pages 310–328.
Springer, May 2024.

[HS22] Jochen Hoenicke and Tanja Schindler. A simple proof format for SMT. In Proceedings of the
20th Internal Workshop on Satisfiability Modulo Theories (SMT ’22), volume 3185 of CEUR
Workshop Proceedings, pages 54–70, August 2022.

[IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O.
Myreen, and Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th
International Joint Conference on Automated Reasoning (IJCAR ’24), volume 14739 of Lecture
Notes in Computer Science, pages 396–418. Springer, July 2024.

[JBBJ25] Christoph Jabs, Jeremias Berg, Bart Bogaerts, and Matti Järvisalo. Certifying pareto-optimality
in multi objective maximum satisfiability. In Proceedings of the 31st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’25), volume 15697
of Lecture Notes in Computer Science, pages 108–129. Springer, May 2025.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 51/40



References XII

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the
6th International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of
Lecture Notes in Computer Science, pages 355–370. Springer, June 2012.

[KB22] Daniela Kaufmann and Armin Biere. Fuzzing and delta debugging and-inverter graph verification
tools. In Proceedings of the 16th International Conference on Tests and Proofs (TAP ’22),
volume 13361 of Lecture Notes in Computer Science, pages 69–88. Springer, July 2022.

[KLM+25] Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam
Tan, and Marc Vinyals. Practically feasible proof logging for pseudo-Boolean optimization. In
Proceedings of the 31st International Conference on Principles and Practice of Constraint
Programming (CP ’25), volume 340 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 21:1–21:27, August 2025.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism
problems faster through clique neighbourhood constraints. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August
2021.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 52/40



References XIII

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In
Proceedings of the 29th International Conference on Principles and Practice of Constraint
Programming (CP ’23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:17, August 2023.

[MM25] Matthew McIlree and Ciaran McCreesh. Certifying bounds propagation for integer multiplication
constraints. In Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI ’25),
pages 11309–11317, February-March 2025.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit
constraint. In Proceedings of the 21st International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of
Lecture Notes in Computer Science, pages 38–55. Springer, May 2024.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 53/40



References XIV

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney donation in the UK:
Algorithms and experimentation. In Proceedings of the 11th International Symposium on
Experimental Algorithms (SEA ’12), volume 7276 of Lecture Notes in Computer Science, pages
271–282. Springer, June 2012.

[NPB22] Aina Niemetz, Mathias Preiner, and Clark W. Barrett. Murxla: A modular and highly extensible
API fuzzer for SMT solvers. In Proceedings of the 34th International Conference on Computer
Aided Verification (CAV ’22), volume 13372 of Lecture Notes in Computer Science, pages
92–106. Springer, August 2022.

[OSC09] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, January 2009.

[PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in MaxSAT solvers through
fuzzing and delta debugging. In Proceedings of the 14th International Workshop on Pragmatics
of SAT, volume 3545 of CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, July 2023.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 54/40



References XV

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver.
In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[VS10] Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI ’10), pages 204–209, July 2010.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) Combinatorial Solving with Provably Correct Results UFMG Sep ’25 55/40


	Intro
	MainTalk
	Combinatorial Solving
	The Challenge of Ensuring Correctness
	Can Proof Logging Solve This Problem?
	This Talk

	Pseudo-Boolean Proof Logging 
	Proof Logging Principles and Goals
	Pseudo-Boolean Reasoning with the Cutting Planes Method
	Strengthening Rules 

	Pseudo-Boolean Proof Logging Successes and Challenges 
	List of Successes
	Three Concrete Showcases
	Some Challenges


	Conclusion
	Appendix

