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. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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Variables should be set to true or false

Constraints like (x ∨ ¬y ∨ z) means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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(1 − x)(1 − z) = 0
(1 − y)z = 0

(1 − x)y(1 − u) = 0
yu = 0

(1 − u)(1 − v) = 0
xv = 0

u(1 − w) = 0
xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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1 − u − v + uv = 0
xv = 0
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(1 − y) + (1 − u) ≥ 1

u + v ≥ 1
(1 − x) + (1 − v) ≥ 1

(1 − u) + w ≥ 1
(1 − x) + (1 − u) + (1 − w) ≥ 1

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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z − yz = 0

y − xy − yu + xyu = 0
yu = 0

1 − u − v + uv = 0
xv = 0

u − uw = 0
xuw = 0

x + z ≥ 1
y − z ≥ 0

x − y + u ≥ 0
−y − u ≥ −1

u + v ≥ 1
−x − v ≥ −1
−u + w ≥ 0

−x − u − w ≥ −2

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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Combinatorial Solving and Optimization

Highly Concrete Applications of These Very Abstract Problems

Software analysis, testing, and synthesis [DMB11]
Hardware verification [Sha09]
Air and train traffic control [ABFP12, FFH+16, ZR14]
Smart crypto contracts [AGRS20, AGH+22]
Gene regulatory network inference [PBD+22]
Computational protein design [AAB+14, HD19]
Assigning donated organs for transplants [MO12, BvdKM+21]
Allocation of education and work opportunities [Man16, MMT17]
Proving theorems in pure mathematics [HK17]

(Requires fleshing out quite a bit of details, but we don’t have time for this in this brief talk. . . )
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Combinatorial Solving and Optimization

Bad News

This type of problems discussed already in Gödel’s famous letter in 1956 to von Neumann
(“the father of computer science”)

Topic of intense research in computer science ever since 1960s

Problems known to be computationally very challenging (NP-complete or worse)
[Coo71, Lev73]

And machine learning approaches typically do not work
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Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

The Success of Combinatorial Solving (and the Dirty Little Secret)

Revolution last couple of decades on so-called combinatorial solvers for, e.g.:
▶ Boolean satisfiability (SAT) solving and optimization [BHvMW21]
▶ Constraint programming [RvBW06]
▶ Mixed integer linear programming [AW13, BR07]
▶ Satisfiability modulo theories (SMT) solving [BHvMW21]

Often solve these very hard problems extremely successfully in practice!

Except the solvers are sometimes wrong. . .
[BLB10, CKSW13, AGJ+18, GSD19, BMN22, BBN+23, Tin24]

Even worse: No way of knowing for sure when errors happen
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Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging Wishlist

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!
Asking for both perhaps a little bit too good to be true?
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Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for sophisticated combinatorial solvers is possible!
With single, unified method!
Producing proofs in extremely simple format
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Give an example application (but won’t be able to get to my own research)
3 Provide pointers for further reading

(slides with references online at https://jakobnordstrom.se/presentations/)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 10/28
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Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

The SAT Problem
Variable x: takes value true (=1) or false (=0)

Literal ℓ: variable x or its negation x (write x instead of ¬x to save space)

Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The SAT Problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

Proofs for SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses
Each clause follows “obviously” from everything we know so far
Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent
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Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1
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Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof
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Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28
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Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
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r∨w
= 1

x
d
=0

y
u∨x∨y
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z
x∨y∨z
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y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump
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after last decision — learn and backjump
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Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we don’t have time to go into this level of detail
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Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing together conflict
analyses:
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Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing together conflict
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Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
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Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

More Ingredients in Proof Logging for SAT

Fact
RUP proofs can be viewed as shorthand for resolution proofs

See survey chapter [BN21] for more on this and connections to SAT solving

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds
of advanced SAT solving techniques
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Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Extension Variables
Suppose we want a variable a encoding

a ↔ (x ∧ y)

Extended resolution [Tse68]
Resolution rule plus extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (this is fine since a doesn’t appear anywhere previously)

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the
DRAT proof logging system [HHW13] most commonly used in proof logging for SAT solving
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Pseudo-Boolean Proof Logging A Quick Teaser

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: Solve these problems changing format to 0-1 integer linear inequalities
(a.k.a. pseudo-Boolean constraints): ∑

i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)

Use pseudo-Boolean reasoning with (extension of) the cutting planes proof system [CCT87]
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Pseudo-Boolean Proof Logging A Quick Teaser

Successful Applications of Pseudo-Boolean Proof Logging

Surprisingly, pseudo-Boolean reasoning is sufficient to efficiently certify wide range of
combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
▶ Gaussian elimination [GN21]
▶ symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22]
4 Subgraph solving (max clique, subgraph isomorphism, max common connected subgraph)

[GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24]
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Pseudo-Boolean Proof Logging The Benefits of Proof Logging

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support [GMM+20, KM21, BBN+23, EG23, Tin24]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability

Opportunities for thesis projects:
requires mathematical maturity
plus excellent programming skills
quite challenging, but potential for real impact
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Pseudo-Boolean Proof Logging VeriPB Documentation

Pointers for Further Study

VeriPB tutorial at CP ’22 [BMN22]
video at youtu.be/s_5BIi4I22w

updated slides for IJCAI ’23 tutorial [BMN23]

Description of VeriPB for SAT 2023 competition [BMM+23]
Available at satcompetition.github.io/2023/checkers.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23,
MM23, BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot
between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!
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Some Extra Slides More on Pseudo-Boolean Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x1 ∨ x2 ∨ x3 ⇔ x1 + x2 + x3 ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Some Extra Slides More on Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input/model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
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Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d
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such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d
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Resolution and Cutting Planes
To simulate resolution step such as

y ∨ z x ∨ y ∨ z

x ∨ y

we can perform the cutting planes steps
y + z ≥ 1 x + y + z ≥ 1

Add
x + 2y ≥ 1

Divide by 2
x + y ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references
Constraint 7 .= y + z ≥ 1
Constraint 5 .= x + y + z ≥ 1

we can write this in the proof log as
pol 7 5 + 2 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 32/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Resolution and Cutting Planes
To simulate resolution step such as

y ∨ z x ∨ y ∨ z

x ∨ y

we can perform the cutting planes steps
y + z ≥ 1 x + y + z ≥ 1

Add
x + 2y ≥ 1

Divide by 2
x + y ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references
Constraint 7 .= y + z ≥ 1
Constraint 5 .= x + y + z ≥ 1

we can write this in the proof log as
pol 7 5 + 2 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 32/28



Some Extra Slides More on Proof Logging Design Principles

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 33/28



Some Extra Slides More on Proof Logging Design Principles

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 33/28



Some Extra Slides More on Proof Logging Design Principles

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 33/28



Some Extra Slides More on Proof Logging Design Principles

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program
just do proof logging [basically: add print statements to solver code]

Otherwise
do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
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Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker
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Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Elaborated proof

✓ / ✗
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optimization problem. Artificial Intelligence, 212(1):59–79, July 2014.

[ABFP12] Cyril Allignol, Nicolas Barnier, Pierre Flener, and Justin Pearson. Constraint programming for air traffic
management: A survey. The Knowledge Engineering Review, 27(3):361–392, July 2012.
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Valent́ın, and Ana Viana. Modelling and optimisation in European kidney exchange programmes. European
Journal of Operational Research, 291(2):447–456, June 2021.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for
exact rational mixed-integer programming. Mathematical Programming Computation, 5(3):305–344,
September 2013.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing (STOC ’71), pages 151–158, May 1971.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 40/28



Some Extra Slides More on Proof Logging Design Principles

References VI

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and applications.
Communications of the ACM, 54(9):69–77, September 2011.
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