
Sure, Your Algorithm Is Really Fast, But Is It Really Correct?

Jakob Nordström

University of Copenhagen and Lund University

DIKU Bits
September 10, 2024

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 1/28



This Is Me. . .

Jakob Nordström

Professor

Algorithms and Complexity Section

Department of Computer Science (DIKU)

University of Copenhagen

(and also at Lund University)

https://jakobnordstrom.se

jn@di.ku.dk

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 2/28



. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 3/28



. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraints like (x ∨ ¬y ∨ z) means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 3/28



. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1 − x)(1 − z) = 0
(1 − y)z = 0

(1 − x)y(1 − u) = 0
yu = 0

(1 − u)(1 − v) = 0
xv = 0

u(1 − w) = 0
xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 3/28



. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

1 − x − z + xz = 0
z − yz = 0

y − xy − yu + xyu = 0
yu = 0

1 − u − v + uv = 0
xv = 0

u − uw = 0
xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 3/28



. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

1 − x − z + xz = 0
z − yz = 0

y − xy − yu + xyu = 0
yu = 0

1 − u − v + uv = 0
xv = 0

u − uw = 0
xuw = 0

x + z ≥ 1
y + (1 − z) ≥ 1

x + (1 − y) + u ≥ 1
(1 − y) + (1 − u) ≥ 1

u + v ≥ 1
(1 − x) + (1 − v) ≥ 1

(1 − u) + w ≥ 1
(1 − x) + (1 − u) + (1 − w) ≥ 1

For true = 1 and false = 0, is there a {0, 1}-valued solution?
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 3/28



. . . And Here Are Three Problems I Get Paid for Thinking About

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

1 − x − z + xz = 0
z − yz = 0

y − xy − yu + xyu = 0
yu = 0

1 − u − v + uv = 0
xv = 0

u − uw = 0
xuw = 0

x + z ≥ 1
y − z ≥ 0

x − y + u ≥ 0
−y − u ≥ −1

u + v ≥ 1
−x − v ≥ −1
−u + w ≥ 0

−x − u − w ≥ −2

For true = 1 and false = 0, is there a {0, 1}-valued solution?
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 3/28



Combinatorial Solving and Optimization

Highly Concrete Applications of These Very Abstract Problems

Software analysis, testing, and synthesis [DMB11]
Hardware verification [Sha09]
Air and train traffic control [ABFP12, FFH+16, ZR14]
Smart crypto contracts [AGRS20, AGH+22]
Gene regulatory network inference [PBD+22]
Computational protein design [AAB+14, HD19]
Assigning donated organs for transplants [MO12, BvdKM+21]
Allocation of education and work opportunities [Man16, MMT17]
Proving theorems in pure mathematics [HK17]

(Requires fleshing out quite a bit of details, but we don’t have time for this in this brief talk. . . )

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 4/28



Combinatorial Solving and Optimization

Highly Concrete Applications of These Very Abstract Problems

Software analysis, testing, and synthesis [DMB11]
Hardware verification [Sha09]
Air and train traffic control [ABFP12, FFH+16, ZR14]
Smart crypto contracts [AGRS20, AGH+22]
Gene regulatory network inference [PBD+22]
Computational protein design [AAB+14, HD19]
Assigning donated organs for transplants [MO12, BvdKM+21]
Allocation of education and work opportunities [Man16, MMT17]
Proving theorems in pure mathematics [HK17]

(Requires fleshing out quite a bit of details, but we don’t have time for this in this brief talk. . . )

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 4/28



Combinatorial Solving and Optimization

Bad News

This type of problems discussed already in Gödel’s famous letter in 1956 to von Neumann
(“the father of computer science”)

Topic of intense research in computer science ever since 1960s

Problems known to be computationally very challenging (NP-complete or worse)
[Coo71, Lev73]

And machine learning approaches typically do not work

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 5/28



Combinatorial Solving and Optimization

Bad News

This type of problems discussed already in Gödel’s famous letter in 1956 to von Neumann
(“the father of computer science”)

Topic of intense research in computer science ever since 1960s

Problems known to be computationally very challenging (NP-complete or worse)
[Coo71, Lev73]

And machine learning approaches typically do not work

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 5/28



Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

The Success of Combinatorial Solving (and the Dirty Little Secret)

Revolution last couple of decades on so-called combinatorial solvers for, e.g.:
▶ Boolean satisfiability (SAT) solving and optimization [BHvMW21]
▶ Constraint programming [RvBW06]
▶ Mixed integer linear programming [AW13, BR07]
▶ Satisfiability modulo theories (SMT) solving [BHvMW21]

Often solve these very hard problems extremely successfully in practice!

Except the solvers are sometimes wrong. . .
[BLB10, CKSW13, AGJ+18, GSD19, BMN22, BBN+23, Tin24]

Even worse: No way of knowing for sure when errors happen

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 6/28



Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 7/28



Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 7/28



Combinatorial Solving and Optimization The Challenge of Ensuring Correctness

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 7/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 8/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 8/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 8/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 8/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging Wishlist

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!
Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 9/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging Wishlist

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!
Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 9/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging Wishlist

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!
Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 9/28



Combinatorial Solving and Optimization Proof Logging To the Rescue!

Proof Logging Wishlist

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!
Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 9/28



Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for sophisticated combinatorial solvers is possible!
With single, unified method!
Producing proofs in extremely simple format
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Give an example application (but won’t be able to get to my own research)
3 Provide pointers for further reading

(slides with references online at https://jakobnordstrom.se/presentations/)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 10/28

https://gitlab.com/MIAOresearch/software/VeriPB
https://jakobnordstrom.se/presentations/


Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for sophisticated combinatorial solvers is possible!
With single, unified method!
Producing proofs in extremely simple format
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Give an example application (but won’t be able to get to my own research)
3 Provide pointers for further reading

(slides with references online at https://jakobnordstrom.se/presentations/)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 10/28

https://gitlab.com/MIAOresearch/software/VeriPB
https://jakobnordstrom.se/presentations/


Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for sophisticated combinatorial solvers is possible!
With single, unified method!
Producing proofs in extremely simple format
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Give an example application (but won’t be able to get to my own research)
3 Provide pointers for further reading

(slides with references online at https://jakobnordstrom.se/presentations/)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 10/28

https://gitlab.com/MIAOresearch/software/VeriPB
https://jakobnordstrom.se/presentations/


Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for sophisticated combinatorial solvers is possible!
With single, unified method!
Producing proofs in extremely simple format
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Give an example application (but won’t be able to get to my own research)
3 Provide pointers for further reading

(slides with references online at https://jakobnordstrom.se/presentations/)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 10/28

https://gitlab.com/MIAOresearch/software/VeriPB
https://jakobnordstrom.se/presentations/


Combinatorial Solving and Optimization This Talk

My Main Message

Proof logging for sophisticated combinatorial solvers is possible!
With single, unified method!
Producing proofs in extremely simple format
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Give an example application (but won’t be able to get to my own research)
3 Provide pointers for further reading

(slides with references online at https://jakobnordstrom.se/presentations/)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 10/28

https://gitlab.com/MIAOresearch/software/VeriPB
https://jakobnordstrom.se/presentations/


Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

The SAT Problem
Variable x: takes value true (=1) or false (=0)

Literal ℓ: variable x or its negation x (write x instead of ¬x to save space)

Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The SAT Problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 11/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

Proofs for SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses
Each clause follows “obviously” from everything we know so far
Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 12/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation
Clause C unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in C except ℓ

Example: Unit propagate for ρ = {p 7→ 0, q 7→ 0} on

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p ∨ u propagates u 7→ 0
q ∨ r propagates r 7→ 1
Then r ∨ w propagates w 7→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 13/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Davis-Putman-Logemann-Loveland (DPLL) SAT Solving from the 1960s

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of decisions made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 14/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 15/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 15/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 15/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

What About Modern Conflict-Driven Clause Learning (CDCL)?
Run CDCL SAT solver [BS97, MS99, MMZ+01] on our favourite CNF formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 16/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 17/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 17/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 17/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 17/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of
search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 17/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

Assertion level 1 (2nd largest level in learned clause) — trim
trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

Assertion level 1 (2nd largest level in learned clause) — trim
trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

Assertion level 1 (2nd largest level in learned clause) — trim
trail to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving DPLL and CDCL SAT Solving

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 18/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we don’t have time to go into this level of detail

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 19/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we don’t have time to go into this level of detail

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 19/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we don’t have time to go into this level of detail

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 19/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we don’t have time to go into this level of detail

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 19/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing together conflict
analyses:

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 20/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution. . . by stringing together conflict
analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 20/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 20/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing together conflict
analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

x ∨ z

x ∨ z

x

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 20/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

is sequence of reverse unit propagation (RUP) clauses
1 u ∨ x

2 x

3 ⊥
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 21/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

More Ingredients in Proof Logging for SAT

Fact
RUP proofs can be viewed as shorthand for resolution proofs

See survey chapter [BN21] for more on this and connections to SAT solving

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds
of advanced SAT solving techniques

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 22/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Extension Variables
Suppose we want a variable a encoding

a ↔ (x ∧ y)

Extended resolution [Tse68]
Resolution rule plus extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (this is fine since a doesn’t appear anywhere previously)

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the
DRAT proof logging system [HHW13] most commonly used in proof logging for SAT solving

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 23/28



Proof Logging for Boolean Satisfiability (SAT) Solving Proof System for SAT Proof Logging

Extension Variables
Suppose we want a variable a encoding

a ↔ (x ∧ y)

Extended resolution [Tse68]
Resolution rule plus extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (this is fine since a doesn’t appear anywhere previously)

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the
DRAT proof logging system [HHW13] most commonly used in proof logging for SAT solving

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 23/28



Pseudo-Boolean Proof Logging A Quick Teaser

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: Solve these problems changing format to 0-1 integer linear inequalities
(a.k.a. pseudo-Boolean constraints): ∑

i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)

Use pseudo-Boolean reasoning with (extension of) the cutting planes proof system [CCT87]

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 24/28



Pseudo-Boolean Proof Logging A Quick Teaser

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: Solve these problems changing format to 0-1 integer linear inequalities
(a.k.a. pseudo-Boolean constraints): ∑

i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)

Use pseudo-Boolean reasoning with (extension of) the cutting planes proof system [CCT87]

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 24/28



Pseudo-Boolean Proof Logging A Quick Teaser

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: Solve these problems changing format to 0-1 integer linear inequalities
(a.k.a. pseudo-Boolean constraints): ∑

i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)

Use pseudo-Boolean reasoning with (extension of) the cutting planes proof system [CCT87]

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 24/28



Pseudo-Boolean Proof Logging A Quick Teaser

Successful Applications of Pseudo-Boolean Proof Logging

Surprisingly, pseudo-Boolean reasoning is sufficient to efficiently certify wide range of
combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
▶ Gaussian elimination [GN21]
▶ symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22]
4 Subgraph solving (max clique, subgraph isomorphism, max common connected subgraph)

[GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24]

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 25/28



Pseudo-Boolean Proof Logging A Quick Teaser

Successful Applications of Pseudo-Boolean Proof Logging

Surprisingly, pseudo-Boolean reasoning is sufficient to efficiently certify wide range of
combinatorial solving techniques:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
▶ Gaussian elimination [GN21]
▶ symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]
3 (Linear) Pseudo-Boolean solving [GMNO22]
4 Subgraph solving (max clique, subgraph isomorphism, max common connected subgraph)

[GMN20, GMM+20, GMM+24]
5 Dynamic programming and decision diagrams [DMM+24]
6 Presolving in 0–1 integer linear programming [HOGN24]
7 Constraint programming [EGMN20, GMN22, MM23, MMN24]

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 25/28



Pseudo-Boolean Proof Logging The Benefits of Proof Logging

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support [GMM+20, KM21, BBN+23, EG23, Tin24]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability

Opportunities for thesis projects:
requires mathematical maturity
plus excellent programming skills
quite challenging, but potential for real impact

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 26/28



Pseudo-Boolean Proof Logging The Benefits of Proof Logging

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support [GMM+20, KM21, BBN+23, EG23, Tin24]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability

Opportunities for thesis projects:
requires mathematical maturity
plus excellent programming skills
quite challenging, but potential for real impact

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 26/28



Pseudo-Boolean Proof Logging VeriPB Documentation

Pointers for Further Study

VeriPB tutorial at CP ’22 [BMN22]
video at youtu.be/s_5BIi4I22w

updated slides for IJCAI ’23 tutorial [BMN23]

Description of VeriPB for SAT 2023 competition [BMM+23]
Available at satcompetition.github.io/2023/checkers.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23,
MM23, BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 27/28

youtu.be/s_5BIi4I22w
satcompetition.github.io/2023/checkers.html
gitlab.com/MIAOresearch/software/VeriPB


Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot
between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 28/28



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot
between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 28/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x1 ∨ x2 ∨ x3 ⇔ x1 + x2 + x3 ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 29/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input/model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 30/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input/model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 30/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input/model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 30/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input/model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 30/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input/model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(assumes normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 30/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2z + 2z ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2 ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 2 1

3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 31/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Resolution and Cutting Planes
To simulate resolution step such as

y ∨ z x ∨ y ∨ z

x ∨ y

we can perform the cutting planes steps
y + z ≥ 1 x + y + z ≥ 1

Add
x + 2y ≥ 1

Divide by 2
x + y ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references
Constraint 7 .= y + z ≥ 1
Constraint 5 .= x + y + z ≥ 1

we can write this in the proof log as
pol 7 5 + 2 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 32/28



Some Extra Slides More on Pseudo-Boolean Reasoning

Resolution and Cutting Planes
To simulate resolution step such as

y ∨ z x ∨ y ∨ z

x ∨ y

we can perform the cutting planes steps
y + z ≥ 1 x + y + z ≥ 1

Add
x + 2y ≥ 1

Divide by 2
x + y ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references
Constraint 7 .= y + z ≥ 1
Constraint 5 .= x + y + z ≥ 1

we can write this in the proof log as
pol 7 5 + 2 d

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 32/28



Some Extra Slides More on Proof Logging Design Principles

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 33/28



Some Extra Slides More on Proof Logging Design Principles

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 33/28



Some Extra Slides More on Proof Logging Design Principles

Design Principles for Proof Logging

Proof logging implementation
Don’t change solver
Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep language simple — no XOR constraints, CP propagators, symmetries, . . .
But reason efficiently about such notions using power of proof system
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 33/28



Some Extra Slides More on Proof Logging Design Principles

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program
just do proof logging [basically: add print statements to solver code]

Otherwise
do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 34/28



Some Extra Slides More on Proof Logging Design Principles

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program
just do proof logging [basically: add print statements to solver code]

Otherwise
do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 34/28



Some Extra Slides More on Proof Logging Design Principles

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program
just do proof logging [basically: add print statements to solver code]

Otherwise
do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 34/28



Some Extra Slides More on Proof Logging Design Principles

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 35/28



Some Extra Slides More on Proof Logging Design Principles

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 35/28



Some Extra Slides More on Proof Logging Design Principles

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Elaborated proof

✓ / ✗

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 35/28



Some Extra Slides More on Proof Logging Design Principles

References I

[AAB+14] David Allouche, Isabelle André, Sophie Barbe, Jessica Davies, Simon de Givry, George Katsirelos, Barry
O’Sullivan, Steve Prestwich, Thomas Schiex, and Seydou Traoré. Computational protein design as an
optimization problem. Artificial Intelligence, 212(1):59–79, July 2014.

[ABFP12] Cyril Allignol, Nicolas Barnier, Pierre Flener, and Justin Pearson. Constraint programming for air traffic
management: A survey. The Knowledge Engineering Review, 27(3):361–392, July 2012.

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction
to certifying algorithms. it - Information Technology Methoden und innovative Anwendungen der
Informatik und Informationstechnik, 53(6):287–293, December 2011.

[AGH+22] Elvira Albert, Pablo Gordillo, Alejandro Hernández-Cerezo, Clara Rodŕıguez-Núñez, and Albert Rubio.
Using automated reasoning techniques for enhancing the efficiency and security of (Ethereum) smart
contracts. In Proceedings of the 11th International Joint Conference on Automated Reasoning
(IJCAR ’22), volume 13385 of Lecture Notes in Computer Science, pages 3–7. Springer, August 2022.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing
of constraint solvers. In Proceedings of the 24th International Conference on Principles and Practice of
Constraint Programming (CP ’18), volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, August 2018.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 36/28



Some Extra Slides More on Proof Logging Design Principles

References II

[AGRS20] Elvira Albert, Pablo Gordillo, Albert Rubio, and Maria A. Schett. Synthesis of super-optimized smart
contracts using Max-SMT. In Proceedings of the 32nd International Conference on Computer Aided
Verification (CAV ’20), volume 12224 of Lecture Notes in Computer Science, pages 177–200. Springer, July
2020.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In
Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481.
Springer, 2013.

[BB09] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In Proceedings of the 7th
International Workshop on Satisfiability Modulo Theories (SMT ’09), pages 1–5, August 2009.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction
(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.
Certifying without loss of generality reasoning in solution-improving maximum satisfiability. In Proceedings
of the 30th International Conference on Principles and Practice of Constraint Programming (CP ’24),
volume 307 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:28, September 2024.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 37/28



Some Extra Slides More on Proof Logging Design Principles

References III

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and
symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence Research,
77:1539–1589, August 2023. Preliminary version in AAAI ’22.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1937.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF
solvers. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BMM+23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.
Documentation of VeriPB and CakePB for the SAT competition 2023. Available at
https://satcompetition.github.io/2023/checkers.html, March 2023.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 38/28

https://satcompetition.github.io/2023/checkers.html


Some Extra Slides More on Proof Logging Design Principles

References IV

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results: Beyond
satisfiability, and towards constraint programming. Tutorial at the 28th International Conference on
Principles and Practice of Constraint Programming. Slides available at
https://jakobnordstrom.se/presentations/, August 2022.

[BMN23] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Combinatorial solving with provably correct
results. Tutorial at the 32nd International Joint Conference on Artificial Intelligence. Slides available at
https://jakobnordstrom.se/presentations/, August 2023.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere, Marijn J. H.
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 336 of Frontiers in
Artificial Intelligence and Applications, chapter 7, pages 233–350. IOS Press, 2nd edition, February 2021.
Available at http://www.jakobnordstrom.se/publications/.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back
from the other side of the tipping point. Annals of Operations Research, 149(1):37–41, February 2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT
instances. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI ’97), pages
203–208, July 1997.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 39/28

https://jakobnordstrom.se/presentations/
https://jakobnordstrom.se/presentations/
http://www.jakobnordstrom.se/publications/


Some Extra Slides More on Proof Logging Design Principles

References V

[BvdKM+21] Péter Biró, Joris van de Klundert, David F. Manlove, William Pettersson, Tommy Andersson, Lisa
Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, Aline Hemke, Rachel Johnson,
Xenia Klimentova, Dirk Kuypers, Alessandro Nanni Costa, Bart Smeulders, Frits C. R. Spieksma, Maŕıa O.
Valent́ın, and Ana Viana. Modelling and optimisation in European kidney exchange programmes. European
Journal of Operational Research, 291(2):447–456, June 2021.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for
exact rational mixed-integer programming. Mathematical Programming Computation, 5(3):305–344,
September 2013.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing (STOC ’71), pages 151–158, May 1971.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 40/28



Some Extra Slides More on Proof Logging Design Principles

References VI

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and applications.
Communications of the ACM, 54(9):69–77, September 2011.

[DMM+24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and Konstantin
Sidorov. Pseudo-Boolean reasoning about states and transitions to certify dynamic programming and
decision diagram algorithms. In Proceedings of the 30th International Conference on Principles and
Practice of Constraint Programming (CP ’24), volume 307 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 9:1–9:21, September 2024.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM,
7(3):201–215, 1960.

[EG23] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. Mathematical Programming, 197(2):793–812, February 2023.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using
pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI ’20), pages 1486–1494, February 2020.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 41/28



Some Extra Slides More on Proof Logging Design Principles

References VII

[FFH+16] Andreas Falkner, Gerhard Friedrich, Alois Haselböck, Gottfried Schenner, and Herwig Schreiner. Twenty-five
years of successful application of constraint technologies at Siemens. AI Magazine, 37(4):67–80, 2016.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP ’20), volume
12333 of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam
Tan. End-to-end verification for subgraph solving. In Proceedings of the 368h AAAI Conference on
Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes:
Solving with certified solutions. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In
Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming
(CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18,
August 2022.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 42/28



Some Extra Slides More on Proof Logging Design Principles

References VIII

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for
pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891,
March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs.
In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,
February 2021.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In
Proceedings of the 25th International Conference on Principles and Practice of Constraint Programming
(CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582. Springer, October 2019.

[HD19] Mark A. Hallen and Bruce Randall Donald. Protein design by provable algorithms. Communications of the
ACM, 62(10):76–84, October 2019.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 43/28



Some Extra Slides More on Proof Logging Design Principles

References IX

[HHW13] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction (CADE-24),
volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June 2013.

[HK17] Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Communications of the ACM,
60(8):70–79, August 2017.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based presolve
reductions for 0–1 integer linear programs. In Proceedings of the 21st International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24),
volume 14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May 2024.

[IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and
Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th International Joint
Conference on Automated Reasoning (IJCAR ’24), volume 14739 of Lecture Notes in Computer Science,
pages 396–418. Springer, July 2024.

[KB22] Daniela Kaufmann and Armin Biere. Fuzzing and delta debugging and-inverter graph verification tools. In
Proceedings of the 16th International Conference on Tests and Proofs (TAP ’22), volume 13361 of Lecture
Notes in Computer Science, pages 69–88. Springer, July 2022.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 44/28



Some Extra Slides More on Proof Logging Design Principles

References X

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems
faster through clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference
on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August 2021.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy peredachi informatsii, 9(3):115–116, 1973.
In Russian. Available at http://mi.mathnet.ru/ppi914.

[Man16] David F. Manlove. Hospitals/residents problem. In Ming-Yang Kao, editor, Encyclopedia of Algorithms,
pages 926–930. Springer New York, 2016.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of
the 29th International Conference on Principles and Practice of Constraint Programming (CP ’23), volume
280 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In
Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of Lecture Notes in Computer Science,
pages 38–55. Springer, May 2024.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 45/28

http://mi.mathnet.ru/ppi914


Some Extra Slides More on Proof Logging Design Principles

References XI

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, May 2011.

[MMT17] David F. Manlove, Iain McBride, and James Trimble. “Almost-stable” matchings in the hospitals /
residents problem with couples. Constraints, 22(1):50–72, January 2017.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC ’01),
pages 530–535, June 2001.

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney donation in the UK: Algorithms and
experimentation. In Proceedings of the 11th International Symposium on Experimental Algorithms
(SEA ’12), volume 7276 of Lecture Notes in Computer Science, pages 271–282. Springer, June 2012.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[NPB22] Aina Niemetz, Mathias Preiner, and Clark W. Barrett. Murxla: A modular and highly extensible API fuzzer
for SMT solvers. In Proceedings of the 34th International Conference on Computer Aided Verification
(CAV ’22), volume 13372 of Lecture Notes in Computer Science, pages 92–106. Springer, August 2022.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 46/28



Some Extra Slides More on Proof Logging Design Principles

References XII

[PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in MaxSAT solvers through fuzzing and
delta debugging. In Proceedings of the 14th International Workshop on Pragmatics of SAT, volume 3545
of CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, July 2023.

[PBD+22] Lise Pomiès, Céline Brouard, Harold Duruflé, Élise Maigné, Clément Carré, Louise Gody, Fulya Trösser,
George Katsirelos, Brigitte Mangin, Nicolas B. Langlade, and Simon de Givry. Gene regulatory network
inference methodology for genomic and transcriptomic data acquired in genetically related heterozygote
individuals. Bioinformatics, 38(17):4127–4134, September 2022.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming,
volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[Sha09] Natarajan Shankar. Automated deduction for verification. ACM Computing Surveys, 41(4):20:1–20:56,
October 2009.

[Tin24] Cesare Tinelli. Scalable proof production and checking in SMT. In Proceedings of the 27th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’24), volume 305 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 2:1–2:2, August 2024.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 47/28



Some Extra Slides More on Proof Logging Design Principles

References XIII

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko, editor,
Structures in Constructive Mathematics and Mathematical Logic, Part II, pages 115–125. Consultants
Bureau, New York-London, 1968.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International Symposium
on Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at
http://isaim2008.unl.edu/index.php?page=proceedings.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In
Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September
2022.

[ZR14] Yang Zhao and Kristin Yvonne Rozier. Formal specification and verification of a coordination protocol for
an automated air traffic control system. Science of Computer Programming, 96:337–353, December 2014.

Jakob Nordström (UCPH & LU) Sure, Your Algorithm Is Really Fast, But Is It Really Correct? DIKU Bits Sep ’24 48/28

http://isaim2008.unl.edu/index.php?page=proceedings

	Intro
	MainTalk
	Combinatorial Solving and Optimization 
	The Challenge of Ensuring Correctness
	Proof Logging To the Rescue!
	This Talk

	Proof Logging for Boolean Satisfiability (SAT) Solving
	SAT Basics
	DPLL and CDCL SAT Solving
	Proof System for SAT Proof Logging

	Pseudo-Boolean Proof Logging 
	A Quick Teaser
	The Benefits of Proof Logging
	VeriPB Documentation


	Conclusion
	Appendix
	Some Extra Slides
	More on Pseudo-Boolean Reasoning
	More on Proof Logging Design Principles



