
Combinatorial Solving with
Provably Correct Results
Bart Bogaerts Ciaran McCreesh

Jakob Nordström

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for

Boolean satisfiability (SAT) solving [BHvMW21]
1

Constraint programming (CP) [RvBW06]

Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial

ones) [BLB10, CKSW13, AGJ
+
18, GSD19, GS19]

1
See end of slides for all references with bibliographic details

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 1 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for

Boolean satisfiability (SAT) solving [BHvMW21]
1

Constraint programming (CP) [RvBW06]

Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial

ones) [BLB10, CKSW13, AGJ
+
18, GSD19, GS19]

1
See end of slides for all references with bibliographic details

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 1 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for

Boolean satisfiability (SAT) solving [BHvMW21]
1

Constraint programming (CP) [RvBW06]

Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial

ones) [BLB10, CKSW13, AGJ
+
18, GSD19, GS19]

1
See end of slides for all references with bibliographic details

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 1 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

The Controversial Slide

In the 2021 constraint programming MiniZinc challenge: for 1.28% of

instances, wrong solutions were claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

This problem is worth taking seriously.

Not limited to a single solver, problem, or constraint.

Not even consistent — same solver on same hardware and same

instance can give di�erent results on di�erent runs.

Obviously, your solver doesn’t have this problem, but how do you

convince others of this?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 2 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

The Controversial Slide

In the 2021 constraint programming MiniZinc challenge: for 1.28% of

instances, wrong solutions were claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

This problem is worth taking seriously.

Not limited to a single solver, problem, or constraint.

Not even consistent — same solver on same hardware and same

instance can give di�erent results on di�erent runs.

Obviously, your solver doesn’t have this problem, but how do you

convince others of this?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 2 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

The Controversial Slide

In the 2021 constraint programming MiniZinc challenge: for 1.28% of

instances, wrong solutions were claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

This problem is worth taking seriously.

Not limited to a single solver, problem, or constraint.

Not even consistent — same solver on same hardware and same

instance can give di�erent results on di�erent runs.

Obviously, your solver doesn’t have this problem, but how do you

convince others of this?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 2 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Testing?

Various domain-specific testing methods [BLB10, AGJ
+
18, GSD19].

Definitely be�er than nothing, but is it enough?

Clearly not: bugs are found in thoroughly tested solvers as well.

Testing can only reveal the presence of bugs, not their absence.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 3 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Testing?

Various domain-specific testing methods [BLB10, AGJ
+
18, GSD19].

Definitely be�er than nothing, but is it enough?

Clearly not: bugs are found in thoroughly tested solvers as well.

Testing can only reveal the presence of bugs, not their absence.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 3 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Formal Methods?

Prove that solver implementation adheres to formal specification.

Current techniques cannot scale to level of complexity in modern

solvers.

In SAT solver competition, formally verified solvers are far

behind in terms of performance (and available techniques).

In constraint programming, even an ine�icient implementation

of all-di�erent is pushing the limits [Dub20].

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 4 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

A Simple but Crucial Change of Perspective

State-of-the-art SAT solvers instead use proof logging.

Make solvers certifying [ABM
+
11, MMNS11].

Output proof of correctness in standard format that is

independently verified.

A variety of proof logging formats introduced, including

DRAT [HHW13a, HHW13b, WHH14]

GRIT [CMS17]

LRAT [CHH
+
17]

. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 5 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Proof Logging Workflow

Solver

Checker

Result

Proof 3 or 7

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 6 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Proof Logging Workflow

Solver

Checker

Result

Proof 3 or 7

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 6 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Proof Logging Workflow

Solver

Checker

Result

Proof 3 or 7

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 6 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Proof Logging Workflow

Solver

Checker

Result

Proof 3 or 7

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 6 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Requirements

Proofs produced by certifying solver should:

Be powerful enough for proof logging to incur minimal overhead.

Be based on very simple rules.

Not require knowledge of inner workings of solver.

Allow verification by stand-alone proof checker.

Much easier to trust a small, simple checker than a full solver.

Should even be simple enough to be formally verified.

Does not prove solver correct, but proves solution correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 7 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Requirements

Proofs produced by certifying solver should:

Be powerful enough for proof logging to incur minimal overhead.

Be based on very simple rules.

Not require knowledge of inner workings of solver.

Allow verification by stand-alone proof checker.

Much easier to trust a small, simple checker than a full solver.

Should even be simple enough to be formally verified.

Does not prove solver correct, but proves solution correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 7 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results.

2 Detects errors even if due to compiler bugs, hardware failures, or

cosmic rays.

3 Provides debugging support during development

[EG21, GMM
+
20, KM21].

4 Facilitates performance analysis.

5 Helps identify potential for further improvements.

6 Enables auditability.

7 Serves as stepping stone towards explainability.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 8 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

The Rest of This Tutorial

VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Versatile proof logging system that can handle

Subgraph algorithms

Constraint programming

Symmetry and dominance reasoning

in a unified way.

But first we need to tell you about:

Proof logging for SAT.

Pseudo-Boolean reasoning and cu�ing planes.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 9 / 86

https://gitlab.com/MIAOresearch/software/VeriPB

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

The Rest of This Tutorial

VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Versatile proof logging system that can handle

Subgraph algorithms

Constraint programming

Symmetry and dominance reasoning

in a unified way.

But first we need to tell you about:

Proof logging for SAT.

Pseudo-Boolean reasoning and cu�ing planes.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 9 / 86

https://gitlab.com/MIAOresearch/software/VeriPB

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

SAT

The SAT Problem

Variable x : takes value true (=1) or false (=0)

Literal ℓ : variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk : disjunction of literals

(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:

conjunction of clauses

The SAT Problem

Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 10 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

SAT

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of clauses (CNF constraints).

Each clause follows “obviously” from everything we know so far.

Final clause is empty, meaning contradiction (wri�en ⊥).

Means original formula must be inconsistent.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 11 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)
p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)
p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)
p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)
p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)
p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 12 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause [GN03, Van08]

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify e�iciently

Fact

Backtrack clauses from DPLL solver generate a RUP proof.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 14 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause [GN03, Van08]

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify e�iciently

Fact

Backtrack clauses from DPLL solver generate a RUP proof.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 14 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause [GN03, Van08]

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify e�iciently

Fact

Backtrack clauses from DPLL solver generate a RUP proof.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 14 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 15 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Conflict Analysis

Time to analyse this conflict and learn from it!

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by flipping last decision

But want to learn from conflict and cut

away as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &

removing z — must satisfy x ∨ y

Repeat til UIP clause with only 1 variable

at conflict level — learn and backjump

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 16 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Conflict Analysis

Time to analyse this conflict and learn from it!

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by flipping last decision

But want to learn from conflict and cut

away as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &

removing z — must satisfy x ∨ y

Repeat til UIP clause with only 1 variable

at conflict level — learn and backjump

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 16 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Conflict Analysis

Time to analyse this conflict and learn from it!

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by flipping last decision

But want to learn from conflict and cut

away as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &

removing z — must satisfy x ∨ y

Repeat til UIP clause with only 1 variable

at conflict level — learn and backjump

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 16 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Conflict Analysis

Time to analyse this conflict and learn from it!

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by flipping last decision

But want to learn from conflict and cut

away as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &

removing z — must satisfy x ∨ y

Repeat til UIP clause with only 1 variable

at conflict level — learn and backjump

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 16 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Conflict Analysis

Time to analyse this conflict and learn from it!

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by flipping last decision

But want to learn from conflict and cut

away as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &

removing z — must satisfy x ∨ y

Repeat til UIP clause with only 1 variable

at conflict level — learn and backjump

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 16 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 17 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Conflict-Driven Clause Learning

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 18 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 19 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 19 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ y
x ∨ y
x
x
⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 19 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ y
x ∨ y
x
x
⊥
DPLL Proof in DRAT

6 7 0
6 -7 0
6 0
-6 0
0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 19 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ y
x ∨ y
x
x
⊥
DPLL Proof in DRAT

6 7 0
6 -7 0
6 0
-6 0
0

CDCL Proof in RUP

u ∨ x
x
⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 19 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ y
x ∨ y
x
x
⊥
DPLL Proof in DRAT

6 7 0
6 -7 0
6 0
-6 0
0

CDCL Proof in RUP

u ∨ x
x
⊥

CDCL Proof in DRAT

4 6 0
-6 0
0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 19 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

More Ingredients in Proof Logging for SAT

Fact

RUP proofs are shorthand for so-called Resolution proofs.

See [BN21] for more on this and connections to SAT solving.

But RUP and Resolution aren’t enough for preprocessing,

inprocessing, and some other kinds of reasoning.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 20 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Extension Variables, Part 1

Suppose we want new, fresh variable a encoding

a ⇔ (x ∧ y)

Extended Resolution: allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be fine, so long as a doesn’t appear anywhere previously.

Fact

Extended Resolution (RUP + definition of new variables) is essentially

equivalent to the DRAT proof logging system.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 21 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Extension Variables, Part 1

Suppose we want new, fresh variable a encoding

a ⇔ (x ∧ y)

Extended Resolution: allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be fine, so long as a doesn’t appear anywhere previously.

Fact

Extended Resolution (RUP + definition of new variables) is essentially

equivalent to the DRAT proof logging system.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 21 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Writing Proofs

Deleting Clauses

In practice, important to erase lines to save memory and time during

verification.

Very easy to deal with from the point of view of proof logging.

So ignored in this tutorial for simplicity and clarity.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 22 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Why Aren’t We Done?

Practical limitations of SAT proof logging technology:

Di�iculties dealing with stronger reasoning e�iciently.

Clausal proofs can’t easily reflect what other algorithms do.

Surprising claim: a slight change to 0-1 integer linear inequalities

does the job!

Can justify graph reasoning without knowing what a graph is.

Can justify constraint programming inference without knowing

what an integer variable is.

This even helps justify advanced SAT techniques (cardinality

reasoning, Gaussian elimination, symmetry breaking) so far

beyond reach for e�icient DRAT proof logging.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 23 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Why Aren’t We Done?

Practical limitations of SAT proof logging technology:

Di�iculties dealing with stronger reasoning e�iciently.

Clausal proofs can’t easily reflect what other algorithms do.

Surprising claim: a slight change to 0-1 integer linear inequalities

does the job!

Can justify graph reasoning without knowing what a graph is.

Can justify constraint programming inference without knowing

what an integer variable is.

This even helps justify advanced SAT techniques (cardinality

reasoning, Gaussian elimination, symmetry breaking) so far

beyond reach for e�icient DRAT proof logging.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 23 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai,A ∈ Z
literals ℓi : xi or x i (where xi + x i = 1)

Sometimes convenient to use normalized form [Bar95] with

all ai,A positive (without loss of generality)

Write (partial) assignment d as

set of variable assignments d = {x ↦→ 1, y ↦→ 0, z ↦→ 1, . . .}, or

set of true literals d = {x, y, z, . . .}

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 24 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai,A ∈ Z
literals ℓi : xi or x i (where xi + x i = 1)

Sometimes convenient to use normalized form [Bar95] with

all ai,A positive (without loss of generality)

Write (partial) assignment d as

set of variable assignments d = {x ↦→ 1, y ↦→ 0, z ↦→ 1, . . .}, or

set of true literals d = {x, y, z, . . .}

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 24 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai,A ∈ Z
literals ℓi : xi or x i (where xi + x i = 1)

Sometimes convenient to use normalized form [Bar95] with

all ai,A positive (without loss of generality)

Write (partial) assignment d as

set of variable assignments d = {x ↦→ 1, y ↦→ 0, z ↦→ 1, . . .}, or

set of true literals d = {x, y, z, . . .}
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 24 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Some Types of Pseudo-Boolean Constraints

1 Clauses

x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 25 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean se�ing.

Risk for confusion: Constraint programming people might call this

(reverse) integer bounds consistency.

Does the same thing if we’re working with clauses.

More interesting for general pseudo-Boolean constraints.

SAT people beware: constraints can propagate multiple times and

multiple literals.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 26 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 27 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Reasoning: Cu�ing Planes [CCT87]

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈A

c

⌉

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 28 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Reasoning: Cu�ing Planes [CCT87]

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈A

c

⌉

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 28 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Reasoning: Cu�ing Planes [CCT87]

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈A

c

⌉

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 28 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Reasoning: Cu�ing Planes [CCT87]

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈A

c

⌉

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 28 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Pseudo-Boolean Reasoning: Cu�ing Planes [CCT87]

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈A

c

⌉
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 28 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y + 2z + 2z ≥ 9

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y + 2 ≥ 9

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y ≥ 7

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y ≥ 7

Div by 3

w + 2x + 2y ≥ 2
1

3

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y ≥ 7

Div by 3

w + 2x + 2y ≥ 3

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y ≥ 7

Div by 3

w + 2x + 2y ≥ 3

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y ≥ 7

Div by 3

w + 2x + 2y ≥ 3

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 29 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Extension Variables, Part 2

Suppose we want new, fresh variable a encoding

a ⇔ (3x + 2y + z + w ≥ 3)

This time, introduce constraints

3a + 3x + 2y + z + w ≥ 3 5a + 3x + 2y + z + w ≥ 5

Again, needs support from the proof system.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 30 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Pseudo-Boolean Problems

Proof Logs for Extended Cu�ing Planes

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in

(slight extension of) OPB format [RM16].

Each constraint follows “obviously” from what is known so far.

Either implicitly, by RUP. . .

Or by an explicit cu�ing planes derivation. . .

Or as an extension variable reifying a new constraint
∗

Final constraint is 0 ≥ 1.

(*) Not actually implemented this way — details later. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 31 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Beyond Decision Problems

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it.

Introduces a new constraint saying “not this solution”.

So the proof semantics are “unsatisfiable, except for all the

solutions I told you about”.

For optimisation:

Define an objective f =
∑

i wiℓi , wi ∈ Z, to minimise in the

pseudo-Boolean model.

To maximise, negate objective.

Log a solution U , get a solution-improving constraint∑
i wiℓi ≤ −1 +∑

i wiU (ℓi).

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 32 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Beyond Decision Problems

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it.

Introduces a new constraint saying “not this solution”.

So the proof semantics are “unsatisfiable, except for all the

solutions I told you about”.

For optimisation:

Define an objective f =
∑

i wiℓi , wi ∈ Z, to minimise in the

pseudo-Boolean model.

To maximise, negate objective.

Log a solution U , get a solution-improving constraint∑
i wiℓi ≤ −1 +∑

i wiU (ℓi).
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 32 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Beyond Decision Problems

The VeriPB Format and Tool

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence.

Various features to help development:

Extended variable name syntax allowing human-readable names.

Proof tracing.

“Trust me” assertions for incremental proof logging.

Full details: Stephan Gocht’s PhD thesis [Goc22].

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 33 / 86

https://gitlab.com/MIAOresearch/software/VeriPB

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Progress So Far

Progress So Far

We’ve seen proof logging, and how it works for SAT.

We’ve learned about

pseudo-Boolean constraints (0-1 linear inequalities),

cu�ing planes reasoning, and

VeriPB.

Coming next, some worked examples from dedicated graph solvers.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 34 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

The Maximum Clique Problem

3

4

6

7

9

10

11

12

1

2

5

8

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 35 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

The Maximum Clique Problem

3

4

6

7

9

10

11

12

1

2

5

8

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 35 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Maximum Clique Solvers

There are a lot of dedicated solvers for clique problems.

But there are issues:

“State of the art” solvers have been buggy.

O�en undetected: error rate of around 0.1% [MPP19].

O�en used inside other solvers.

An o�-by-one result can cause much larger errors.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 36 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Making a Proof-Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem.

Clique problems have several standard file formats.

2 Make the solver log its search tree.

Output a small header.

Output something on every backtrack.

Output something every time a solution is found.

Output a small footer.

3 Figure out how to log the bound function.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 37 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

A Slightly Di�erent Workflow

Solver

Checker

Result

Proof 3 or 7

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 38 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

A Slightly Di�erent Workflow

Solver

Checker

Result

Proof 3 or 7

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 38 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

A Slightly Di�erent Workflow

Solver

Checker

Result

Proof 3 or 7

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 38 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

A Slightly Di�erent Workflow

Solver

Checker

Result

Proof 3 or 7

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 38 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

A Slightly Di�erent Workflow

Solver

Checker

Result

Proof 3 or 7

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 38 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6

7

9

10

11

12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 39 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

Start with a header.

Load the 41 problem axioms.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

Branch on 12, 7, 9.

Find a new incumbent.

Now looking for a ≥ 4 vertex clique.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

Backtrack from 12, 7.

Only 6 and 9 feasible.

No ≥ 4 vertex clique possible.

E�ectively this deletes the 7–12 edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

Backtrack from 12.

Only 1, 6 and 9 feasible.

No ≥ 4 vertex clique possible.

E�ectively this deletes vertex 12.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

Branch on 11 then 10.

Only 1, 3 and 9 feasible.

No ≥ 4 vertex clique possible.

Backtrack, deleting the edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

Backtrack from 11.

Clearly no ≥ 4 clique.

Delete the vertex.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

Branch on 8, 5, 1, 2.

Find a new incumbent.

Now looking for a ≥ 5 vertex clique.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

Backtrack from 8, 5.

Only 4 vertices, can’t have a ≥ 5 clique.

Delete the edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

Backtrack from 8.

Still not enough vertices.

Delete the vertex.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

9

10

Now obvious to solver that claim of

≥ 5 clique is contradictory

(we’ll see why).

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

9

10

Assert previous line has derived

contradiction, ending proof.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 41 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

1

2

3

4

5

6

7

8

9

10

11

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 41 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Verifying This Proof (Or Not. . .)

$ veripb --trace clique.opb clique-attempt-one.veripb
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: u 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: u 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 41 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Bound Functions

1

39

2

4

7 5

6

10

8

11

12

Given a k-colouring of a subgraph, that subgraph cannot have a

clique of more than k vertices.

Each colour class describes an at-most-one constraint.

This does not follow by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 42 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the

pseudo-Boolean input.

But we can use cu�ing planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cu�ing planes to write this out.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 43 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the

pseudo-Boolean input.

But we can use cu�ing planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cu�ing planes to write this out.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 43 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the

pseudo-Boolean input.

But we can use cu�ing planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cu�ing planes to write this out.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 43 / 86

What This Looks Like

pseudo-Boolean proof version 1.2
f 41
o x12 x7 x9
u 1 ~x12 1 ~x7 >= 1 ;
* bound, colour classes [x1 x6 x9]
p 71�6 191�9 + 246�9 + 2 d
p 42obj -1 +
u 1 ~x12 >= 1 ;
* bound, colour classes [x1 x3 x9]
p 11�3 191�9 + 213�9 + 2 d
p 42obj -1 +
u 1 ~x11 1 ~x10 >= 1 ;
* bound, colour classes [x1 x3 x7] [x9]
p 11�3 101�7 + 123�7 + 2 d
p 42obj -1 +
u 1 ~x11 >= 1 ;
o x8 x5 x2 x1
u 1 ~x8 1 ~x5 >= 1 ;
* bound, colour classes [x1 x9] [x2]
p 53obj 191�9 +
u 1 ~x8 >= 1 ;
* bound, colour classes [x1 x3 x7] [x2 x4 x9] [x5 x6 x10]
p 11�3 101�7 + 123�7 + 2 d
p 53obj -1 +
p 42�4 202�9 + 224�9 + 2 d
p 53obj -3 + -1 +
p 95�6 265�10 + 276�10 + 2 d
p 53obj -5 + -3 + -1 +
u >= 1 ;
c -1

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb
=== begin trace ===
line 002: f 41
ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: * bound, colour classes [x1 x6 x9]
line 006: p 7 19 + 24 + 2 d

ConstraintId 044: 1 ~x1 1 ~x6 1 ~x9 >= 2
line 007: p 42 43 +

ConstraintId 045: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x8 1 x9 1 x10 1 x11 >= 3
...

ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2
line 028: p 53 57 + 59 + 61 +

ConstraintId 062: 1 x8 1 x11 1 x12 >= 2
line 029: u >= 1 ;

ConstraintId 063: >= 1
line 030: c -1
=== end trace ===

Verification succeeded.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 45 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Di�erent Clique Algorithms

Di�erent search orders?

X Irrelevant for proof logging.

Using local search to initialise?

X Just log the incumbent.

Di�erent bound functions?

Is cu�ing planes strong enough to justify every useful bound

function ever invented?

So far, seems like it. . .

Weighted cliques?

X Multiply a colour class by its largest weight.

X Also works for vertices “split between colour classes”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 46 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Subgraph Isomorphism

Find the pa�ern inside the target.

Applications in compilers, biochemistry, model checking, pa�ern

recognition, . . .

O�en want to find all matches.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 47 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Subgraph Isomorphism

Find the pa�ern inside the target.

Applications in compilers, biochemistry, model checking, pa�ern

recognition, . . .

O�en want to find all matches.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 47 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Subgraph Isomorphism in Pseudo-Boolean Form

Each pa�ern vertex gets a target vertex:∑
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t , then p’s neighbours must

be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 48 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Subgraph Isomorphism in Pseudo-Boolean Form

Each pa�ern vertex gets a target vertex:∑
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t , then p’s neighbours must

be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 48 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Subgraph Isomorphism in Pseudo-Boolean Form

Each pa�ern vertex gets a target vertex:∑
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t , then p’s neighbours must

be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 48 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

A pa�ern vertex p of degree deg(p) can never be mapped to a target

vertex t of degree deg(p) − 1 or lower in any subgraph isomorphism.

Observe N(p) = {q, r, s} and N(t) = {u, v}.
We wish to derive xp,t ≥ 1.

o

p

q

r

s

t

u

v

x

y

z

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 49 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

We have the three adjacency constraints,

xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Their sum is

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

o

p

q

r

s

t

u

v

x

y

z

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 50 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

Continuing with the sum

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

Due to injectivity,

− xo,u + −xp,u + −xq,u + −xr,u + −xs,u ≥ −1

− xo,v + −xp,v + −xq,v + −xr,v + −xs,v ≥ −1

Add all these together, ge�ing

3xp,t + −xo,u + −xo,v + −xp,u + −xp,v ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 51 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

We’re more or less there. We have:

3xp,t + −xo,u + −xo,v + −xp,u + −xp,v ≥ 1

Add the literal axioms xo,u ≥ 0, xo,v ≥ 0, xp,u ≥ 0 and xp,v ≥ 0 to get

3xp,t ≥ 1

Divide by 3 to get the desired

xp,t ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 52 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Degree Reasoning in VeriPB

p 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints
12inj (u) + 13inj (v) + * sum injectivity constraints
xo_u + xo_v + * cancel stray xo_*
xp_u + xp_v + * cancel stray xp_*
3 d * divide, and we're done

Or we can ask VeriPB to do the last bit of simplification

automatically:

p 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints
12inj (u) + 13inj (v) + * sum injectivity constraints

j -1 1 ~xp_t >= 1 ; * desired conclusion is implied

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 53 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph

solvers do:

Injectivity reasoning and filtering.

Distance filtering.

Neighbourhood degree sequences.

Path filtering.

Supplemental graphs.

Proof steps are “e�icient” using cu�ing planes.

The length of the proof steps are no worse than the time

complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 54 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph

solvers do:

Injectivity reasoning and filtering.

Distance filtering.

Neighbourhood degree sequences.

Path filtering.

Supplemental graphs.

Proof steps are “e�icient” using cu�ing planes.

The length of the proof steps are no worse than the time

complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 54 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Limitations

Why trust the encoding?

Here we can formally verify the correctness of the encoding!

Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms.

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms.

Works up to moderately-sized hard instances

Even an O(n3) encoding is painful.

Particularly bad when the pseudo-Boolean encoding talks about

“non-edges” but large sparse graphs are “easy”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 55 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Limitations

Why trust the encoding?

Here we can formally verify the correctness of the encoding!

Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms.

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms.

Works up to moderately-sized hard instances

Even an O(n3) encoding is painful.

Particularly bad when the pseudo-Boolean encoding talks about

“non-edges” but large sparse graphs are “easy”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 55 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Limitations

Why trust the encoding?

Here we can formally verify the correctness of the encoding!

Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms.

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms.

Works up to moderately-sized hard instances

Even an O(n3) encoding is painful.

Particularly bad when the pseudo-Boolean encoding talks about

“non-edges” but large sparse graphs are “easy”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 55 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Limitations

Why trust the encoding?

Here we can formally verify the correctness of the encoding!

Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms.

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms.

Works up to moderately-sized hard instances

Even an O(n3) encoding is painful.

Particularly bad when the pseudo-Boolean encoding talks about

“non-edges” but large sparse graphs are “easy”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 55 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Code

https://github.com/ciaranm/glasgow-subgraph-solver

Released under MIT Licence.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 56 / 86

https://github.com/ciaranm/glasgow-subgraph-solver

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Constraint Programming

What About Constraint Programming?

Non-Boolean variables?

Constraints?

Encoding constraints as Pseudo-Boolean constraints?

Justifying inference?

Reformulation?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 57 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Non-Boolean Variables

Compiling CP Variables

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 58 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Non-Boolean Variables

Compiling CP Variables

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 58 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Non-Boolean Variables

Compiling CP Variables

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains.

We could use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and

16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

This doesn’t propagate much, but that isn’t a problem for proof

logging.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 58 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Non-Boolean Variables

Compiling CP Variables

We can mix binary and an order encoding. Where needed, define:

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4

a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5

a=4 ⇔ a≥4 ∧ a≥5

When creating a=i , also introduce pseudo-Boolean constraints

encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist.

We can do this:

Inside the pseudo-Boolean model, where needed.

Otherwise lazily during proof logging.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 58 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Constraints

Compiling Constraints

Also need to compile every constraint to pseudo-Boolean form.

Doesn’t need to be a propagating encoding.

Can use additional variables.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 59 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Constraints

Compiling Constraints

Given 2A + 3B + 4C ≥ 42, where A,B,C ∈ {−3 . . . 9},

−32aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3

+ − 48bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3

+ − 64cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 ≥ 42

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 59 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Constraints

Compiling Constraints

Constraints can be specified extensionally as list of feasible tuples,

called a table. We have to pick one of the tuples from the table, and

give it to the associated variables.

Given a table constraint (A,B,C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)], define

3t0 + a=1 + b=2 + c=3 ≥ 3 i.e. t0 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t1 + a=1 + b=4 + c=4 ≥ 3 i.e. t1 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t2 + a=2 + b=2 + c=5 ≥ 3 i.e. t2 ⇒ (a=2 ∧ b=2 ∧ c=5)

using a tuple selector variable

t0 + t1 + t2 = 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 59 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Constraints

Encoding Constraint Definitions

We already know how to do it for any constraint that has a sane

encoding using some combination of

CNF,

Integer linear inequalities,

Table constraints,

Auxiliary variables.

Simplicity is important, propagation strength isn’t.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 60 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying Search

Mostly this works as in earlier examples.

Restarts are easy.

No need to justify guesses or decisions. We only justify backtracking.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 61 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying Inference

If it follows from unit propagation, nothing needed.

Some propagators and encodings need RUP steps for inferences.

A lot of propagators are e�ectively “doing a li�le bit of

lookahead” but in an e�icient way.

A few need explicit cu�ing planes justifications.

Linear inequalities just need to multiply and add.

All-di�erent needs a bit more.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 62 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

v=1 ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

v=1 ≥ 0

0 ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 63 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Other Constraint Programming Topics

Reformulation

Auto-tabulation is possible.

Heavy use of extension variables.

Can re-encode maximum common subgraph as a clique problem,

without changing the pseudo-Boolean model.

a

b c d

1 2

3 4

1 2 3 4a ↦→ { }

1

2

3

4

b ↦→

1 2 3 4c ↦→ { }

1

2

3

4

↦→d

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 64 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Other Constraint Programming Topics

High Level Modelling Languages?

High level modelling languages like MiniZinc and Essence have

complicated compilers.

How do we know we’re giving a proof for the problem the user

actually specified?

Future research. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 65 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Other Constraint Programming Topics

Code

https://github.com/ciaranm/glasgow-constraint-solver

Released under MIT Licence.

Supports proof logging for global constraints including:

All-di�erent.

Integer linear inequality (including for very large domains).

Table.

Minimum / maximum of an array.

Element.

Absolute value.

Details in [GMN22].

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 66 / 86

https://github.com/ciaranm/glasgow-constraint-solver

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetries and More

What’s Le�?

The truth about extension variables (redundance rule)

Some applications of this rule (parity reasoning & PB-to-CNF

translations)

Extensions of the redundance rule to optimization

Symmetry Breaking

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 67 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

The Truth About Extension Variables

Recall: we want new, fresh variable a encoding

a ⇔ (x ∧ y)

Introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Or, in pseudo-Boolean language, constraints

a + x + y ≥ 1 2a + x + y ≥ 2

Resolution and cu�ing planes proof system inherently cannot certify

such derivations: they are not implied!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 68 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21] (extending RAT)

C is redundant with respect to F i� there is a substitution l (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�l
Proof sketch for interesting direction: If U satisfies F but falsifies C,

then U ◦ l satisfies F ∧ C

Witness l should be specified, and implication be e�iciently

verifiable (which is the case, e.g., if all constraints in (F ∧ C)�l are

RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 69 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21] (extending RAT)

C is redundant with respect to F i� there is a substitution l (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�l

Proof sketch for interesting direction: If U satisfies F but falsifies C,

then U ◦ l satisfies F ∧ C

Witness l should be specified, and implication be e�iciently

verifiable (which is the case, e.g., if all constraints in (F ∧ C)�l are

RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 69 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21] (extending RAT)

C is redundant with respect to F i� there is a substitution l (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�l

Proof sketch for interesting direction: If U satisfies F but falsifies C,

then U ◦ l satisfies F ∧ C

Witness l should be specified, and implication be e�iciently

verifiable (which is the case, e.g., if all constraints in (F ∧ C)�l are

RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 69 / 86

Fact

U satisfies q�l i� U ◦ l satisfies q

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21] (extending RAT)

C is redundant with respect to F i� there is a substitution l (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�l
Proof sketch for interesting direction: If U satisfies F but falsifies C,

then U ◦ l satisfies F ∧ C

Witness l should be specified, and implication be e�iciently

verifiable (which is the case, e.g., if all constraints in (F ∧ C)�l are

RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 69 / 86

Fact

U satisfies q�l i� U ◦ l satisfies q

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21] (extending RAT)

C is redundant with respect to F i� there is a substitution l (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�l
Proof sketch for interesting direction: If U satisfies F but falsifies C,

then U ◦ l satisfies F ∧ C

Witness l should be specified, and implication be e�iciently

verifiable (which is the case, e.g., if all constraints in (F ∧ C)�l are

RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 69 / 86

Fact

U satisfies q�l i� U ◦ l satisfies q

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Deriving a ⇔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)�l

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))�l
Choose l = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))�l
Choose l = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied a�er forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 70 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Deriving a ⇔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)�l

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))�l
Choose l = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))�l
Choose l = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied a�er forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 70 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Deriving a ⇔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)�l

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))�l
Choose l = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))�l
Choose l = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied a�er forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 70 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 71 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 71 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 71 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 71 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 71 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 71 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 72 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 72 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 72 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 72 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 72 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 72 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

Use redundance rule with fresh variables

a, b to derive

x + y + z + 2a = 3

y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1

x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 73 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

Use redundance rule with fresh variables

a, b to derive

x + y + z + 2a = 3

y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1

x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 73 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

Use redundance rule with fresh variables

a, b to derive

x + y + z + 2a = 3

y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1

x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 73 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

Use redundance rule with fresh variables

a, b to derive

x + y + z + 2a = 3

y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1

x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 73 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

Use redundance rule with fresh variables

a, b to derive

x + y + z + 2a = 3

y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1

x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 73 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= (F ∧ C)�l ∧ f�l ≤ f

Can be more aggressive if witness l strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Applying l should strictly decrease f .

If so, don’t need to show that C�l holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 74 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= (F ∧ C)�l ∧ f�l ≤ f

Can be more aggressive if witness l strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Applying l should strictly decrease f .

If so, don’t need to show that C�l holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 74 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= (F ∧ C)�l ∧ f�l ≤ f

Can be more aggressive if witness l strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Applying l should strictly decrease f .

If so, don’t need to show that C�l holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 74 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= (F ∧ C)�l ∧ f�l ≤ f

Can be more aggressive if witness l strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Applying l should strictly decrease f .

If so, don’t need to show that C�l holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 74 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).

3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l)

< f
(
U ◦ l)

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l)

< f
((U ◦ l) ◦ l)

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 75 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution l s.t.

F ∧ ∧m−1

i=1
Ci ∧ ¬Cm |= F�l ∧ f�l < f

Only consider F — no need to show that any Ci�l implied!

Now why is this sound?

Same inductive proof as before, but nested.

Or pick solution U minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between di�erent orders in same proof.

See [BGMN22a] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 76 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution l s.t.

F ∧ ∧m−1

i=1
Ci ∧ ¬Cm |= F�l ∧ f�l < f

Only consider F — no need to show that any Ci�l implied!

Now why is this sound?

Same inductive proof as before, but nested.

Or pick solution U minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between di�erent orders in same proof.

See [BGMN22a] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 76 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution l s.t.

F ∧ ∧m−1

i=1
Ci ∧ ¬Cm |= F�l ∧ f�l < f

Only consider F — no need to show that any Ci�l implied!

Now why is this sound?

Same inductive proof as before, but nested.

Or pick solution U minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between di�erent orders in same proof.

See [BGMN22a] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 76 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance and Dominance for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution l s.t.

F ∧ ∧m−1

i=1
Ci ∧ ¬Cm |= F�l ∧ f�l < f

Only consider F — no need to show that any Ci�l implied!

Now why is this sound?

Same inductive proof as before, but nested.

Or pick solution U minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between di�erent orders in same proof.

See [BGMN22a] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 76 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Elimination (CP)

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without

repetition, adjacent circles cannot

have consecutive numbers.

We can introduce these constraints inside the proof, rather than as

part of the pseudo-Boolean model!

Can use permutation of variable-values as the witness l .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain supporting this.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 77 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Elimination (CP)

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without

repetition, adjacent circles cannot

have consecutive numbers.

We can introduce these constraints inside the proof, rather than as

part of the pseudo-Boolean model!

Can use permutation of variable-values as the witness l .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain supporting this.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 77 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Elimination (CP)

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without

repetition, adjacent circles cannot

have consecutive numbers.

We can introduce these constraints inside the proof, rather than as

part of the pseudo-Boolean model!

Can use permutation of variable-values as the witness l .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain supporting this.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 77 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Elimination (CP)

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without

repetition, adjacent circles cannot

have consecutive numbers.

We can introduce these constraints inside the proof, rather than as

part of the pseudo-Boolean model!

Can use permutation of variable-values as the witness l .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain supporting this.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 77 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Elimination (CP)

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without

repetition, adjacent circles cannot

have consecutive numbers.

We can introduce these constraints inside the proof, rather than as

part of the pseudo-Boolean model!

Can use permutation of variable-values as the witness l .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain supporting this.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 77 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Lazy Global Domination For Maximum Clique [MP16]

1

3

4

5

6

7

8

9

10

11

12

2

2b

Can ignore vertex 2b.

Every neighbour of 2b is also a neighbour of 2.

Not a symmetry, but a dominance.

Dominance rule can justify this.

Even when detected dynamically during search.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 78 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Lazy Global Domination For Maximum Clique [MP16]

1

3

4

5

6

7

8

9

10

11

12

2

2b

Can ignore vertex 2b.

Every neighbour of 2b is also a neighbour of 2.

Not a symmetry, but a dominance.

Dominance rule can justify this.

Even when detected dynamically during search.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 78 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing

f �
∑n

i=1
2

n−i · xi

(search lexicographically smallest assignment satisfying formula)

2 Derive pseudo-Boolean lex-leader constraint

Cf � f ≤ f�f �
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB

constraint (in same spirit as [GMNO22])

y0 y j ∨ f (xj) ∨ xj

y j−1
∨ x j ∨ f (xj) yj ∨ y j−1

∨ x j

y j ∨ yj−1 yj ∨ y j−1
∨ f (xj)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 79 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing

f �
∑n

i=1
2

n−i · xi

(search lexicographically smallest assignment satisfying formula)

2 Derive pseudo-Boolean lex-leader constraint

Cf � f ≤ f�f �
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB

constraint (in same spirit as [GMNO22])

y0 y j ∨ f (xj) ∨ xj

y j−1
∨ x j ∨ f (xj) yj ∨ y j−1

∨ x j

y j ∨ yj−1 yj ∨ y j−1
∨ f (xj)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 79 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing

f �
∑n

i=1
2

n−i · xi

(search lexicographically smallest assignment satisfying formula)

2 Derive pseudo-Boolean lex-leader constraint

Cf � f ≤ f�f �
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB

constraint (in same spirit as [GMNO22])

y0 y j ∨ f (xj) ∨ xj

y j−1
∨ x j ∨ f (xj) yj ∨ y j−1

∨ x j

y j ∨ yj−1 yj ∨ y j−1
∨ f (xj)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 79 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Breaking: Example

Example: Pigeonhole principle formula

Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true i� pigeon i in hole j
Focus on pigeon symmetries — notation:

f (12) swaps pigeons 1 and 2

Formally: f (12) (p1j) = p2j and f (12) (p2j) = p1j for all j
f (1234) shi�s all pigeons

Order: “Pigeon 1 preferred in the smallest hole; next pigeon 2, ...”

f � 2
11 · p13 + 2

10 · p12 + 2
9 · p11 + 2

8 · p23 + · · · + 1 · p41

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 80 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Breaking: Example

Example: Pigeonhole principle formula

Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true i� pigeon i in hole j
Focus on pigeon symmetries — notation:

f (12) swaps pigeons 1 and 2

Formally: f (12) (p1j) = p2j and f (12) (p2j) = p1j for all j
f (1234) shi�s all pigeons

Order: “Pigeon 1 preferred in the smallest hole; next pigeon 2, ...”

f � 2
11 · p13 + 2

10 · p12 + 2
9 · p11 + 2

8 · p23 + · · · + 1 · p41

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 80 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Breaking: Example

Example: Pigeonhole principle formula

Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true i� pigeon i in hole j
Focus on pigeon symmetries — notation:

f (12) swaps pigeons 1 and 2

Formally: f (12) (p1j) = p2j and f (12) (p2j) = p1j for all j
f (1234) shi�s all pigeons

Order: “Pigeon 1 preferred in the smallest hole; next pigeon 2, ...”

f � 2
11 · p13 + 2

10 · p12 + 2
9 · p11 + 2

8 · p23 + · · · + 1 · p41

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 80 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)

C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)
C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)
C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)
C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)
C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧ ¬(f ≤ f�f (12)) |= F�f (12) ∧ (f ≤ f�f (12))�f (12) ∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)
C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f > f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)
C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f > f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 81 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking More/Other symmetries

Problem

This idea does not generalize.

Breaking two symmetries

F ∧ C12 ∧ ¬C23 6 |= F�f (23) ∧ C12�f (23) ∧ C23�f (23) ∧ f�f (23) ≤ f

Intuitively: applying f (23) potentially falsifies C12

We might have to apply f (12) again

Breaking complex symmetries

F ∧ ¬C1234 |= F�f (1234) ∧ C1234�f (1234) ∧ f�f (1234) ≤ f

Intuitively, C1234 holds if shi�ing all the pigeons results in a

worse assignment.

Can “restore” its truth by applying f (1234) once, twice, or thrice.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 82 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking More/Other symmetries

Problem

This idea does not generalize.

Breaking two symmetries

F ∧ C12 ∧ ¬C23 6 |= F�f (23) ∧ C12�f (23) ∧ C23�f (23) ∧ f�f (23) ≤ f

Intuitively: applying f (23) potentially falsifies C12

We might have to apply f (12) again

Breaking complex symmetries

F ∧ ¬C1234 |= F�f (1234) ∧ C1234�f (1234) ∧ f�f (1234) ≤ f

Intuitively, C1234 holds if shi�ing all the pigeons results in a

worse assignment.

Can “restore” its truth by applying f (1234) once, twice, or thrice.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 82 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking More/Other symmetries

Problem

This idea does not generalize.

Breaking two symmetries

F ∧ C12 ∧ ¬C23 6 |= F�f (23) ∧ C12�f (23) ∧ C23�f (23) ∧ f�f (23) ≤ f

Intuitively: applying f (23) potentially falsifies C12

We might have to apply f (12) again

Breaking complex symmetries

F ∧ ¬C1234 |= F�f (1234) ∧ C1234�f (1234) ∧ f�f (1234) ≤ f

Intuitively, C1234 holds if shi�ing all the pigeons results in a

worse assignment.

Can “restore” its truth by applying f (1234) once, twice, or thrice.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 82 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking More/Other symmetries

Problem

This idea does not generalize.

Breaking two symmetries

F ∧ C12 ∧ ¬C23 6 |= F�f (23) ∧ C12�f (23) ∧ C23�f (23) ∧ f�f (23) ≤ f

Intuitively: applying f (23) potentially falsifies C12

We might have to apply f (12) again

Breaking complex symmetries

F ∧ ¬C1234 |= F�f (1234) ∧ C1234�f (1234) ∧ f�f (1234) ≤ f

Intuitively, C1234 holds if shi�ing all the pigeons results in a

worse assignment.

Can “restore” its truth by applying f (1234) once, twice, or thrice.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 82 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking More/Other symmetries

Problem

This idea does not generalize.

Breaking two symmetries

F ∧ C12 ∧ ¬C23 6 |= F�f (23) ∧ C12�f (23) ∧ C23�f (23) ∧ f�f (23) ≤ f

Intuitively: applying f (23) potentially falsifies C12

We might have to apply f (12) again

Breaking complex symmetries

F ∧ ¬C1234 |= F�f (1234) ∧ C1234�f (1234) ∧ f�f (1234) ≤ f

Intuitively, C1234 holds if shi�ing all the pigeons results in a

worse assignment.

Can “restore” its truth by applying f (1234) once, twice, or thrice.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 82 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (1/2)

Definition

Given a symmetry f , the (pseudo-Boolean) breaking constraint of f is

Cf � f ≤ f�f

Theorem

Cf can be derived from F using dominance with witness f

F ∧ ¬Cf |= F�f ∧ f�f < f

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 83 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (1/2)

Definition

Given a symmetry f , the (pseudo-Boolean) breaking constraint of f is

Cf � f ≤ f�f

Theorem

Cf can be derived from F using dominance with witness f

F ∧ ¬Cf |= F�f ∧ f�f < f

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 83 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (2/2)

Breaking symmetries with the dominance rule

Surprisingly simple

Generalizes well

Works for arbitrary symmetries

Works for multiple symmetries (ignore previously derived

constraints)

F ∧ C12 ∧ ¬C23 |= F�f (23) ∧ f�f (23) < f

Why does it work?

Witness need not satisfy all derived constraints

Su�icient to just produce “be�er” assignment

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 84 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (2/2)

Breaking symmetries with the dominance rule

Surprisingly simple

Generalizes well

Works for arbitrary symmetries

Works for multiple symmetries (ignore previously derived

constraints)

F ∧ C12 ∧ ¬C23 |= F�f (23) ∧ f�f (23) < f

Why does it work?

Witness need not satisfy all derived constraints

Su�icient to just produce “be�er” assignment

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 84 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (2/2)

Breaking symmetries with the dominance rule

Surprisingly simple

Generalizes well

Works for arbitrary symmetries

Works for multiple symmetries (ignore previously derived

constraints)

F ∧ C12 ∧ ¬C23 |= F�f (23) ∧ f�f (23) < f

Why does it work?

Witness need not satisfy all derived constraints

Su�icient to just produce “be�er” assignment

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 84 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (2/2)

Breaking symmetries with the dominance rule

Surprisingly simple

Generalizes well

Works for arbitrary symmetries

Works for multiple symmetries (ignore previously derived

constraints)

F ∧ C12 ∧ ¬C23 |= F�f (23) ∧ f�f (23) < f

Why does it work?

Witness need not satisfy all derived constraints

Su�icient to just produce “be�er” assignment

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 84 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking Symmetries With the Dominance Rule (2/2)

Breaking symmetries with the dominance rule

Surprisingly simple

Generalizes well

Works for arbitrary symmetries

Works for multiple symmetries (ignore previously derived

constraints)

F ∧ C12 ∧ ¬C23 |= F�f (23) ∧ f�f (23) < f

Why does it work?

Witness need not satisfy all derived constraints

Su�icient to just produce “be�er” assignment

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 84 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Ge�ing Started

Making Your Solver Output Proofs

The VeriPB proof verifier lives at

https://gitlab.com/MIAOresearch/software/VeriPB

And it’s documented!

See [GMM
+
20, EGMN20, BGMN22b, GN22, GMN22] for worked

examples, and even more in Stephan Gocht’s PhD thesis [Goc22].

We’re happy to collaborate with you! And we’re hiring!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 85 / 86

https://gitlab.com/MIAOresearch/software/VeriPB

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Future Work

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 86 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Future Work

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 86 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Future Work

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 86 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Future Work

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end.

Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 86 / 86

Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Future Work

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 86 / 86

References I

[ABM
+

11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction to

certifying algorithms. it - Information Technology Methoden und innovative Anwendungen der Informatik und
Informationstechnik, 53(6):287–293, December 2011.

[AGJ
+

18] Özgür Akgün, Ian P. Gent, Christopher Je�erson, Ian Miguel, and Peter Nightingale. Metamorphic testing of

constraint solvers. In Proceedings of the 24th International Conference on Principles and Practice of Constraint
Programming (CP ’18), volume 11008 of Lecture Notes in Computer Science, pages 727–736. Springer, August

2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In

Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481. Springer,

2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical

Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of the Spring Joint Computer
Conference of the American Federation of Information Processing Societies (AFIPS ’68), volume 32, pages

307–314, April 1968.

[BB03] Olivier Bailleux and Yacine Boufkhad. E�icient CNF encoding of Boolean cardinality constraints. In

Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP ’03),
volume 2833 of Lecture Notes in Computer Science, pages 108–122. Springer, September 2003.

[BGMN22a] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance

breaking for combinatorial optimisation. In Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI ’22), pages 3698–3707, February 2022.

[BGMN22b] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance

breaking for combinatorial optimisation. Technical Report 2203.12275, arXiv.org, March 2022.

References II

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,

volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF

solvers. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Biere et al. [BHvMW21],

chapter 7, pages 233–350.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back

from the other side of the tipping point. Annals of Operations Research, 149(1):37–41, February 2007.

[Bre] Breakid. https://bitbucket.org/krr/breakid.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT instances.

In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In

Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing (SAT ’19),
volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Colle�e Rene Coullard, and György Turán. On the complexity of cu�ing-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, November 1987.

[CHH
+

17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Ma� Kaufmann, and Peter Schneider-Kamp. E�icient

certified RAT verification. In Proceedings of the 26th International Conference on Automated Deduction
(CADE-26), volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer, August 2017.

https://bitbucket.org/krr/breakid

References III

[CKSW13] William Cook, Thorsten Koch, Daniel E. Ste�y, and Kati Wolter. A hybrid branch-and-bound approach for

exact rational mixed-integer programming. Mathematical Programming Computation, 5(3):305–344, September

2013.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. E�icient certified resolution proof

checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in Computer Science, pages 118–135. Springer,

April 2017.

[Cry] CryptoMiniSat SAT solver. https://github.com/msoos/cryptominisat/.

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static symmetry breaking

for SAT. In Proceedings of the 19th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’16), volume 9710 of Lecture Notes in Computer Science, pages 104–122. Springer, July 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.

Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM,

7(3):201–215, 1960.

[Dub20] Catherine Dubois. Formally verified constraints solvers: a guided tour. CICM. Invited talk, 2020.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer

programming. In Proceedings of the 22nd International Conference on Integer Programming and Combinatorial
Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer Science, pages 163–177. Springer, May

2021.

https://github.com/msoos/cryptominisat/

References IV

[EGMN20] Jan El�ers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all di�erences using

pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),
pages 1486–1494, February 2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

[GMM
+

20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.

Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333 of

Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In

Christine Solnon, editor, 28th International Conference on Principles and Practice of Constraint Programming,
CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume 235 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for

pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs), pages

16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In

Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning e�iciently using pseudo-Boolean proofs. In

Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[GN22] Stephan Gocht and Jakob Nordström. Certifying parity reasoning e�iciently using pseudo-Boolean proofs.

Technical Report 2209.12185, arXiv.org, September 2022.

References V

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning. PhD

thesis, Lund University, Lund, Sweden, June 2022. Available at https://portal.research.lu.se/en/
publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation at KTH

Royal Institute of Technology. Slides available at

https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In Proceedings
of the 25th International Conference on Principles and Practice of Constraint Programming (CP ’19), volume

11802 of Lecture Notes in Computer Science, pages 565–582. Springer, October 2019.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In

Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD ’13),
pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution. In

Proceedings of the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of Lecture
Notes in Computer Science, pages 345–359. Springer, June 2013.

[HHW15] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing symmetry breaking in DRAT proofs.

In Proceedings of the 25th International Conference on Automated Deduction (CADE-25), volume 9195 of Lecture
Notes in Computer Science, pages 591–606. Springer, August 2015.

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for pseudo-Boolean

constraints. In Proceedings of the 21st International Conference on Principles and Practice of Constraint
Programming (CP ’15), volume 9255 of Lecture Notes in Computer Science, pages 200–209. Springer,

August-September 2015.

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

References VI

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems

faster through clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI ’21), pages 1396–1402, August 2021.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Proceedings
of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561

of Lecture Notes in Computer Science, pages 438–445. Springer, July 2014.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, May 2011.

[MMZ
+

01] Ma�hew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Cha�: Engineering

an e�icient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC ’01), pages 530–535,

June 2001.

[MP16] Ciaran McCreesh and Patrick Prosser. Finding maximum k-cliques faster using lazy global domination. In

Proceedings of the 9th Annual Symposium on Combinatorial Search (SOCS ’16), pages 72–80, July 2016.

[MPP19] Ciaran McCreesh, William Pe�ersson, and Patrick Prosser. Understanding the empirical hardness of random

optimisation problems. In Proceedings of the 25th International Conference on Principles and Practice of
Constraint Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 333–349. Springer,

September 2019.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR reasoning. In Proceedings of the 15th European
Conference on Logics in Artificial Intelligence (JELIA ’16), volume 10021 of Lecture Notes in Computer Science,

pages 415–429. Springer, November 2016.

References VII

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for the competitions

of pseudo-Boolean solvers. Revision 2324. Available at

http://www.cril.univ-artois.fr/PB16/format.pdf, January 2016.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming, volume 2 of

Foundations of Artificial Intelligence. Elsevier, 2006.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In Proceedings of the 11th
International Conference on Principles and Practice of Constraint Programming (CP ’05), volume 3709 of Lecture
Notes in Computer Science, pages 827–831. Springer, October 2005.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and

related techniques for PB-solvers. IEICE Transactions on Information and Systems, 98-D(6):1121–1127, June

2015.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, January 1987.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International Symposium on
Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at

http://isaim2008.unl.edu/index.php?page=proceedings.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings
of the 16th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR ’22), volume

13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: E�icient checking and trimming

using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,

July 2014.

http://www.cril.univ-artois.fr/PB16/format.pdf
http://isaim2008.unl.edu/index.php?page=proceedings

https://gitlab.com/MIAOresearch/software/VeriPB

https://github.com/ciaranm/glasgow-constraint-solver

https://github.com/ciaranm/glasgow-subgraph-solver

https://bitbucket.org/krr/breakid

https://gitlab.com/MIAOresearch/software/VeriPB
https://github.com/ciaranm/glasgow-constraint-solver
https://github.com/ciaranm/glasgow-subgraph-solver
https://bitbucket.org/krr/breakid

References Experiments From PB Breaking to Clauses

Experiments (Subgraph Algorithms)

Clique Results

Implemented in the Glasgow Subgraph Solver.

Bit-parallel, can perform a colouring and recursive call in under a

microsecond.

59 of the 80 DIMACS instances take under 1,000 seconds to solve

without logging.

Produced and verified proofs for 57 of these 59 instances (the

other two reached 1TByte disk space).

Mean slowdown from proof logging is 80.1 (due to disk I/O).

Mean verification slowdown a further 10.1.

Approximate implementation e�ort: one Masters student.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 94 / 86

References Experiments From PB Breaking to Clauses

Experiments (Subgraph Algorithms)

Subgrap Isomorphism Results

The Pseudo-Boolean models can be large: had to restrict to

instances with no more than 260 vertices in the target graph.

Took enumeration instances which could be solved without

proof logging in under ten seconds.

1,227 instances from Solnon’s benchmark collection:

789 unsatisfiable, up to 50,635,140 solutions in the rest.

498 instances solved without guessing.

Hardest solved satisfiable and unsatisfiable instances required

53,605,482 and 2,074,386 recursive calls.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 95 / 86

References Experiments From PB Breaking to Clauses

Experiments (Subgraph Algorithms)

Subgrap Isomorphism Results

0

200

400

600

800

1000

1200

100 101 102 103 104 105 106 107 108 109

In
st
an
ce
sS

ol
ve
d

Time (ms)

Solve
Prove
Verify

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 95 / 86

References Experiments From PB Breaking to Clauses

Experiments (Subgraph Algorithms)

Subgrap Isomorphism Results

1

1K

1M

1G

100G

1 102 104 106

O
PB

+
Pr
oo

fL
og

Si
ze

Time with Proof Logging (ms)
(Colour: Time without Proof Logging)

1ms

10ms

100ms

1s

10s

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 95 / 86

References Experiments From PB Breaking to Clauses

Experiments (Constraint Programming)

How Expensive is Proof Logging?

Laurent D. Michel, Pierre Schaus, Pascal Van Hentenryck:

MiniCP: a lightweight solver for constraint programming. Math.

Program. Comput. 13(1) (2021).

Five benchmark problems allowing comparison of solvers “doing

the same thing”:

Simple models.

Fixed search order and well-defined propagation consistency

levels.

Few global constraints (although we don’t have circuit yet).

Probably close to the worst case for proof logging performance.

Also: Crystal Maze and World’s Hardest Sudoku.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 96 / 86

References Experiments From PB Breaking to Clauses

Experiments (Constraint Programming)

How Expensive is Proof Logging?

Our solver: faster than the fastest of MiniCP, OscaR, and Choco.

Proof logging slowdown: between 8.4 to 61.1.

800,000 to 3,000,000 inferences per second.

Proof logs can be hundreds of GBytes.

No e�ort put into making the proof-writing code run fast.

Verification slowdown: a further 10 to 100.

Probably possible to reduce this substantially if we are prepared

to put more care into writing proofs.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 96 / 86

References Experiments From PB Breaking to Clauses

Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF Translation: Experiments

Certified translations for the following CNF encodings:
2

Sequential counter [Sin05]

Totalizer [BB03]

Generalized totalizer [JMM15]

Adder network [ES06]

Proof verified by proof checker VeriPB

Benchmarks from PB 2016 Evaluation:
3

SMALLINT decision benchmarks without purely clausal formulas

3 subclasses of benchmarks:

Only cardinality constraints (sequential counter, totalizer)

Only general 0-1 ILP constraints (generalized totalizer, adder

network)

Mixed cardinality & general 0-1 ILP constraints (sequential

counter + adder network)

2https://github.com/forge-lab/VeritasPBLib
3http://www.cril.univ-artois.fr/PB16/

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 97 / 86

https://github.com/forge-lab/VeritasPBLib
http://www.cril.univ-artois.fr/PB16/

References Experiments From PB Breaking to Clauses

Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: CNF Size vs Proof Size in KiB

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og
gi
n
g

sequential
totalizer

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF
P
ro
of

L
og
gi
n
g

adder
gte

seq+adder

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 98 / 86

References Experiments From PB Breaking to Clauses

Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Translation vs Verification Time in Seconds

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

sequential
totalizer

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

adder
gte

seq+adder

Translation just generates clauses and proof

Verification slower, as reasoning has to be performed

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 99 / 86

References Experiments From PB Breaking to Clauses

Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Solving Time vs Verification Time in Seconds

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

sequential
totalizer

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

adder
gte

seq+adder

Solved with fork of Kissat
4

syntactically modified to output

pseudo-Boolean proofs

Room for improvement, but clearly shows approach is viable

4https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 100 / 86

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

References Experiments From PB Breaking to Clauses

Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Future Work

Improving performance:

Cu�ing Planes derivations instead of reverse unit

propagations [VDB22]

Backwards checking/trimming for verification (as in

DRAT-trim [HHW13a])

Extend proof logging further:

Sorting networks like odd-even mergesort, bitonic sorter [Bat68]

MaxSAT solving

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 101 / 86

References Experiments From PB Breaking to Clauses

Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Future Work

Improving performance:

Cu�ing Planes derivations instead of reverse unit

propagations [VDB22]

Backwards checking/trimming for verification (as in

DRAT-trim [HHW13a])

Extend proof logging further:

Sorting networks like odd-even mergesort, bitonic sorter [Bat68]

MaxSAT solving

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 101 / 86

References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Experiments

Implemented parity reasoning and PB proof logging engine
5

Also DRAT proof logging as described in [PR16]

Experiments with MiniSat
6

Set-up:
7

Intel Core i5-1145G7 @2.60GHz × 4

Memory limit 8GiB

Disk write speed roughly 200 MiB/s

Read speed of 2 GiB/s

5https://gitlab.com/MIAOresearch/tools-and-utlities/xorengine
6http://minisat.se/
7
Tools, benchmarks, data and evaluation scripts available at

https://doi.org/10.5281/zenodo.7083485
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 102 / 86

https://gitlab.com/MIAOresearch/tools-and-utlities/xorengine
http://minisat.se/
https://doi.org/10.5281/zenodo.7083485

References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Proof Size

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

P
ro

of
 S

iz
e

(M
iB

)

Proof Format

DRAT

PBP

Proof sizes for Tseitin formulas using DRAT and PB proof logging

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 103 / 86

References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Solving and Verification Time

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

T
im

e
(s

)

Tool

DRAT−trim (DRAT verification)

VeriPB (PBP verification)

MiniSat+XOR (PBP)

MiniSat+XOR (DRAT)

Solving and verification time for Tseitin formulas

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 104 / 86

References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Crypto Track of SAT 2021 Competition

0

50

100

150

0 2500 5000 7500 10000
Time (s)

N
um

be
r

of
 S

ol
ve

d
In

st
an

ce
s

Solver

SLIME

CryptoMiniSat

MiniSat

MiniSat+XOR (PBP)

MiniSat+XOR (no prooflogging)

MiniSat+XOR (DRAT)

Cumulative plot for the crypto track of the SAT Competition 2021

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 105 / 86

References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Crypto Track Proof Size

0.1

1

10

100

timeout
error

0.1 1 10 100
timeout

error

Proof Size PBP (GiB)

P
ro

of
 S

iz
e

D
R

AT
 (

G
iB

)

Satisfiability

SAT

UNSAT

DRAT and PB proof sizes for crypto track of SAT Competition 2021

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 106 / 86

References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Crypto Track Verification Time

10

100

1000

10000

10 100
1000

10000
timeout

error

Verification Time with VeriPB (s)

S
ol

vi
ng

 T
im

e
w

ith
 M

in
iS

AT
+

X
O

R
 (

s)

Satisfiability

SAT

UNSAT

Time required for solving and verifying crypto instances

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 107 / 86

References Experiments From PB Breaking to Clauses

Experiments (SAT Symmetry Breaking)

Experimental Evaluation of SAT Symmetry Breaking

Evaluated on SAT competition benchmarks

BreakID [DBBD16, Bre] used to find and break symmetries

1

10

100

1000

10000

1 10 100 1000 10000
BreakID + proof logging (time in s)

B
re

ak
ID

 (
tim

e
in

 s
)

1MB

1GB

proof size

1

10

100

1000

10000

1 10 100 1000 10000
VeriPB (verification time in s)

B
re

ak
ID

 +
 p

ro
of

 lo
gg

in
g

(t
im

e
in

 s
)

Requires Breaking no unsolved yes

proof logging overhead negligible

verification at most 20 times slower than solving for 95% of

instances

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 108 / 86

References Experiments From PB Breaking to Clauses

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing

f �
∑n

i=1
2

n−i · xi

(search lexicographically smallest assignment satisfying formula)

2 Derive pseudo-Boolean lex-leader constraint

Cf � f ≤ f�f �
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB

constraint (in same spirit as [GMNO22])

y0 y j ∨ f (xj) ∨ xj

y j−1
∨ x j ∨ f (xj) yj ∨ y j−1

∨ x j

y j ∨ yj−1 yj ∨ y j−1
∨ f (xj)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 109 / 86

References Experiments From PB Breaking to Clauses

Symmetry Breaking in CNF

In SAT symmetry breakers, symmetry is broken in CNF

Still need to show how to derive CNF encoding

We use the encoding of BreakID [DBBD16]:

y0

y j−1
∨ x j ∨ f (xj)

y j ∨ yj−1

y j ∨ f (xj) ∨ xj

yj ∨ y j−1
∨ x j

yj ∨ y j−1
∨ f (xj)

Define yj to be true if xk equals

f (xk) for all k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ f (xk))

(derivable with redundance

rule) If yk is true, xk is at most

f (xk)
(derivable from the PB breaking

constraint)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 110 / 86

References Experiments From PB Breaking to Clauses

Symmetry Breaking in CNF

In SAT symmetry breakers, symmetry is broken in CNF

Still need to show how to derive CNF encoding

We use the encoding of BreakID [DBBD16]:

y0

y j−1
∨ x j ∨ f (xj)

y j ∨ yj−1

y j ∨ f (xj) ∨ xj

yj ∨ y j−1
∨ x j

yj ∨ y j−1
∨ f (xj)

Define yj to be true if xk equals

f (xk) for all k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ f (xk))

(derivable with redundance

rule) If yk is true, xk is at most

f (xk)
(derivable from the PB breaking

constraint)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 110 / 86

References Experiments From PB Breaking to Clauses

Symmetry Breaking in CNF

In SAT symmetry breakers, symmetry is broken in CNF

Still need to show how to derive CNF encoding

We use the encoding of BreakID [DBBD16]:

y0

y j−1
∨ x j ∨ f (xj)

y j ∨ yj−1

y j ∨ f (xj) ∨ xj

yj ∨ y j−1
∨ x j

yj ∨ y j−1
∨ f (xj)

Define yj to be true if xk equals

f (xk) for all k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ f (xk))

(derivable with redundance

rule) If yk is true, xk is at most

f (xk)
(derivable from the PB breaking

constraint)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 110 / 86

References Experiments From PB Breaking to Clauses

Symmetry Breaking in CNF

In SAT symmetry breakers, symmetry is broken in CNF

Still need to show how to derive CNF encoding

We use the encoding of BreakID [DBBD16]:

y0

y j−1
∨ x j ∨ f (xj)

y j ∨ yj−1

y j ∨ f (xj) ∨ xj

yj ∨ y j−1
∨ x j

yj ∨ y j−1
∨ f (xj)

Define yj to be true if xk equals

f (xk) for all k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ f (xk))

(derivable with redundance

rule)

If yk is true, xk is at most

f (xk)
(derivable from the PB breaking

constraint)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 110 / 86

References Experiments From PB Breaking to Clauses

Symmetry Breaking in CNF

In SAT symmetry breakers, symmetry is broken in CNF

Still need to show how to derive CNF encoding

We use the encoding of BreakID [DBBD16]:

y0

y j−1
∨ x j ∨ f (xj)

y j ∨ yj−1

y j ∨ f (xj) ∨ xj

yj ∨ y j−1
∨ x j

yj ∨ y j−1
∨ f (xj)

Define yj to be true if xk equals

f (xk) for all k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ f (xk))

(derivable with redundance

rule) If yk is true, xk is at most

f (xk)
(derivable from the PB breaking

constraint)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 110 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Pseudo-Boolean breaking constraint

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y0 ↦→ 1

F ∧ D ∧ {y
0
} |= (F ∧ D)�l ∧ {y0}�l

F ∧ {y
0
} |= (F ∧ D)�l ∧ {1}

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y0 ↦→ 1

F ∧ D ∧ {y
0
} |= (F ∧ D)�l ∧ {y0}�l

F ∧ {y
0
} |= (F ∧ D)�l ∧ {1}

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by RUP

F ∧ D ∧ ¬(y
0
∨ x1 ∨ f (x1))

= F ∧ D ∧ {y0 ∧ x1 ∧ f (x1)}
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

2
n−1 · (−1) +

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

with

n∑
i=2

2
n−i · (f (xi) − xi) ≤ 2

n−1 − 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by RUP

F ∧ D ∧ ¬(y
0
∨ x1 ∨ f (x1))

= F ∧ D ∧ {y0 ∧ x1 ∧ f (x1)}

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

2
n−1 · (−1) +

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

with

n∑
i=2

2
n−i · (f (xi) − xi) ≤ 2

n−1 − 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by RUP

F ∧ D ∧ ¬(y
0
∨ x1 ∨ f (x1))

= F ∧ D ∧ {y0 ∧ x1 ∧ f (x1)}
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

2
n−1 · (−1) +

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

with

n∑
i=2

2
n−i · (f (xi) − xi) ≤ 2

n−1 − 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by RUP

F ∧ D ∧ ¬(y
0
∨ x1 ∨ f (x1))

= F ∧ D ∧ {y0 ∧ x1 ∧ f (x1)}
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

2
n−1 · (−1) +

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

with

n∑
i=2

2
n−i · (f (xi) − xi) ≤ 2

n−1 − 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by RUP

F ∧ D ∧ ¬(y
0
∨ x1 ∨ f (x1))

= F ∧ D ∧ {y0 ∧ x1 ∧ f (x1)}
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

2
n−1 · (−1) +

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

with

n∑
i=2

2
n−i · (f (xi) − xi) ≤ 2

n−1 − 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 0

F ∧ D ∧ ¬(y
1
∨ y0)

|= (F ∧ D)�l ∧ {y1
∨ y0}�l

F ∧ D ∧ ¬(y
1
∨ y0)

|= (F ∧ D)�l ∧ {1 ∨ y0}

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 0

F ∧ D ∧ ¬(y
1
∨ y0)

|= (F ∧ D)�l ∧ {y1
∨ y0}�l

F ∧ D ∧ ¬(y
1
∨ y0)

|= (F ∧ D)�l ∧ {1 ∨ y0}

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 0

(same argument)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 1

F ∧ D ∧ ¬(y1 ∨ y
0
∨ x1)

|= (F ∧ D)�l ∧ {y1 ∨ y
0
∨ x1}�l

F ∧ D ∧ {y
1
∧ y0 ∧ x1)

|= · · · ∧ D�l ∧ . . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 1

F ∧ D ∧ ¬(y1 ∨ y
0
∨ x1)

|= (F ∧ D)�l ∧ {y1 ∨ y
0
∨ x1}�l

F ∧ D ∧ {y
1
∧ y0 ∧ x1)

|= · · · ∧ D�l ∧ . . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 1

F ∧ D ∧ ¬(y1 ∨ y
0
∨ x1)

|= (F ∧ D)�l ∧ {y1 ∨ y
0
∨ x1}�l

F ∧ D ∧ {y
1
∧ y0 ∧ x1)

|= · · · ∧ D�l ∧ . . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 1

F ∧ D ∧ ¬(y1 ∨ y
0
∨ x1)

|= (F ∧ D)�l ∧ {y1 ∨ y
0
∨ x1}�l

F ∧ D ∧ {y
1
∧ y0 ∧ x1)

|= · · · ∧ D�l ∧ . . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

Derivable by redundance with witness

l : y1 ↦→ 1

(same argument)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

+ 2
n−1 ·

(
y

1
+ f (x1) + x1 ≥ 1

)
2

n−1 · y
1
+

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

The clause to derive is RUP with respect to

this constraint

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

+ 2
n−1 ·

(
y

1
+ f (x1) + x1 ≥ 1

)

2
n−1 · y

1
+

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

The clause to derive is RUP with respect to

this constraint

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

+ 2
n−1 ·

(
y

1
+ f (x1) + x1 ≥ 1

)
2

n−1 · y
1
+

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

The clause to derive is RUP with respect to

this constraint

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

References Experiments From PB Breaking to Clauses

Detailed Derivation of CNF Breaking Constraints

Derived constraints (D):

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

y0

y
0
∨ x1 ∨ f (x1)

y
1
∨ y0

y
1
∨ f (x1) ∨ x1

y1 ∨ y
0
∨ x1

y1 ∨ y
0
∨ f (x1)

y
1
∨ x2 ∨ f (x2)

n∑
i=1

2
n−i · (f (xi) − xi) ≥ 0

+ 2
n−1 ·

(
y

1
+ f (x1) + x1 ≥ 1

)
2

n−1 · y
1
+

n∑
i=2

2
n−i · (f (xi) − xi) ≥ 0

The clause to derive is RUP with respect to

this constraint

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 111 / 86

	Proof Logging
	Proof Logging for Combinatorial Solving

	In SAT
	SAT
	Unit Propagation and DPLL
	Conflict-Driven Clause Learning
	Writing Proofs

	Going Beyond SAT
	Pseudo-Boolean Problems
	Beyond Decision Problems

	Subgraph Algorithms
	Progress So Far
	Maximum Clique
	Subgraph Isomorphism

	Constraint Programming
	Constraint Programming
	Non-Boolean Variables
	Constraints
	Proofs for Constraint Programming
	Other Constraint Programming Topics

	Symmetries & More
	Symmetries and More
	Redundance-Based Strengthening
	Applications of Redundance Rule
	Redundance and Dominance for Optimisation
	Symmetry Handling

	The Future
	Getting Started
	Future Work

	Appendix
	References
	Experiments
	Experiments (Subgraph Algorithms)
	Experiments (Constraint Programming)
	Experiments (Pseudo-Boolean to CNF Translation)
	Experiments (Parity Reasoning)
	Experiments (SAT Symmetry Breaking)

	From PB Breaking to Clauses

