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Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]1

Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP-complete problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, BMN22, GCS23]

Solvers can propose infeasible “solutions” (but erroneous claims can in principle be checked)

More challenging: How to achieve reliable claims of infeasibility?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if
solver used as subroutine)

1See end of slides for all references with bibliographic details
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The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct
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Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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This Tutorial Day

Take-Away Message from This Tutorial Day

Proof logging for combinatorial optimisation is possible with single, unified method!

Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

But represent constraints as 0–1 linear inequalities

Formalize reasoning using cutting planes [CCT87] proof system

Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)
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This Tutorial Day

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results

2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays

3 Provides debugging support during software development
[GMM+20, KM21, BBN+23, EG23, KLM+25]

4 Facilitates performance analysis

5 Helps identify potential for further improvements

6 Enables auditability

7 Serves as stepping stone towards explainability
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This Tutorial Day

Design Principles for Proof Logging

Proof logging implementation

Don’t change solver

Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals

Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system

Keep language simple — no XOR constraints, CP propagators, symmetries, . . .

But reason efficiently about such notions using power of proof system

Combine proof logging with formally verified proof checker
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This Tutorial Day

Program for This Tutorial Day

Explain how to use VeriPB as a unified proof logging method for

09:00 SAT solving (Jakob Nordström)

10:00 Subgraph solving (Ciaran McCreesh)

11:30 Constraint programming (Matthew McIlree)

14:00 Pseudo-Boolean optimisation (Wietze Koops)

15:30 Preprocessing/presolving in MaxSAT and 0–1 linear programming (Andy Oertel)

16:30 Symmetry breaking (Markus Anders)
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SAT Basics

But Let Us Start from the Beginning. . .

Review of some basic concepts:

Satisfiability (SAT) problem

Unit propagation

DPLL and CDCL algorithms

Resolution proof system
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SAT Basics

The Satisfiability (SAT) Problem

Variable 𝑥 : takes value true (=1) or false (=0)

Literal ℓ : variable 𝑥 or its negation 𝑥

Clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula 𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 : conjunction of clauses

The SAT Problem

Given a CNF formula 𝐹 , is it satisfiable?

For instance, what about:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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SAT Basics

Proofs for SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses (CNF constraints)

Each clause follows “obviously” from everything we know so far

Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 13/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation
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No further unit propagations

Proof checker should know how to unit propagate until saturation
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:
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Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
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Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
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Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Then continue as before. . .
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Complete Example of CDCL Execution
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to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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𝑥
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Now UIP literal guaranteed to flip (assert) — but this is a
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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𝑟
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𝑧
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𝑥
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⊥
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Assertion level 1 (2nd largest level in learned clause) — trim trail
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Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
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𝑞
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𝑟
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𝑤
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𝑦
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𝑧
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𝑢 ∨ 𝑥
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𝑢
𝑝∨𝑢
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𝑥
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𝑧
𝑥∨𝑧
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𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
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𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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𝑟
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𝑦
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𝑧
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𝑢 ∨ 𝑥
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𝑥
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𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
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𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .
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When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 20/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .
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Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 20/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof. . .
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Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution. . .

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
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𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
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𝑥
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=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
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𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
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𝑢
𝑝∨𝑢
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𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥
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Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑝
d
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𝑢
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𝑟
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𝑤
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𝑥 ∨ 𝑦 ∨ 𝑧
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𝑝
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𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥
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Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥
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RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

More Ingredients in Proof Logging for SAT

Fact

RUP proofs can be viewed as shorthand for resolution proofs

See proof complexity and SAT solving survey [BN21] for more on this

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds of
reasoning
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Proof System for SAT Proof Logging

Extension Variables, Part 1

Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]

Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact

Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT proof
logging system most commonly used for SAT solving
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Constraints

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

𝑎𝑖 , 𝐴 ∈ Z

literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalised form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇔ 𝑥1 + 𝑥2 + 𝑥3 ≥ 1

2 Cardinality constraints
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

3 General pseudo-Boolean constraints

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴
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⌈
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⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
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Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;
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Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Resolution and Cutting Planes

To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d ;
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Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses
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d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
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d
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(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ; ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ; ⇝ Constraint 12 � 0 ≥ 1 E
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Pseudo-Boolean Proof Logging for SAT Solving

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting [EGMN20]

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion!
Constraint programming people might call this (reverse) integer bounds consistency

Does the same thing if we’re working with clauses
More interesting for general pseudo-Boolean constraints

SAT people beware: constraints can propagate multiple times and multiple variables
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Pseudo-Boolean Proof Logging for SAT Solving
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More Pseudo-Boolean Proof Logging Rules

Extension Variables, Part 2

Suppose we want new, fresh variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

This time, introduce constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Again, needs support from the proof system in the form of strengthening rules
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More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Cutting Planes with Strengthening”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of)
OPB format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — more details in a few slides . . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 35/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Cutting Planes with Strengthening”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of)
OPB format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — more details in a few slides . . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 35/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Deleting Constraints

In practice, important to erase constraints to save memory and time during verification

Unsatisfiability proofs: fairly straightforward to deal with from point of view of proof logging

Optimisation proofs: significantly more delicate

We will mostly ignore deletions during this tutorial day for simplicity and clarity
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More Pseudo-Boolean Proof Logging Rules

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it with solx rule

Introduces a new constraint saying “not this solution”

So the proof semantics is “infeasible, except for all the solutions I told you about”

Optimisation:

Define an objective 𝑓 =
∑

𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

To maximise, negate objective

Log solution 𝛼 with soli rule⇒ objective-improving constraint
∑

𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑
𝑖 𝑤𝑖𝛼 (ℓ𝑖 )

Semantics for proof of optimality: “infeasible to find better solution than best so far”

Can also derive (potentially non-tight) lower bound
∑

𝑖 𝑤𝑖ℓ𝑖 ≥ LB
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More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]

Otherwise

do trusted or verified translation to 0-1 ILP

do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

1 0-1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments

3 Efficient reification using big-M constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9
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More Pseudo-Boolean Proof Logging Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker
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More Pseudo-Boolean Proof Logging Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Elaborated proof

✓ / ✗
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Strengthening Rules (And the Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints
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Redundance-Based Strengthening

Redundance-Based Strengthening

𝐶 is “redundant” with respect to 𝐹 if 𝐹 and 𝐹 ∪ {𝐶} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening [BT19, GN21] (extending RAT rule of SAT prof logging)

𝐶 is redundant with respect to 𝐹 if and only if there is a substitution 𝜔 (mapping variables to truth
values or literals), called a witness, for which

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies 𝐹 but falsifies 𝐶 , then 𝛼 satisfies (𝐹 ∪ {𝐶})↾𝜔 ,
i.e., 𝛼 ◦ 𝜔 satisfies 𝐹 ∪ {𝐶}
Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation
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Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 41/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Redundance-Based Strengthening

𝐶 is “redundant” with respect to 𝐹 if 𝐹 and 𝐹 ∪ {𝐶} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening [BT19, GN21] (extending RAT rule of SAT prof logging)

𝐶 is redundant with respect to 𝐹 if and only if there is a substitution 𝜔 (mapping variables to truth
values or literals), called a witness, for which

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies 𝐹 but falsifies 𝐶 , then 𝛼 satisfies (𝐹 ∪ {𝐶})↾𝜔 ,
i.e., 𝛼 ◦ 𝜔 satisfies 𝐹 ∪ {𝐶}
Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 41/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Deriving 𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3) Using the Redundance Rule

Want to derive
3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

using condition 𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

1 𝐹 ∪ {¬(3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)} |=
(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 0} — 𝐹 untouched; new constraint satisfied

2 𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3} ∪ {¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5)} |=(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3, 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 1} — 𝐹 untouched; new constraint satisfied
¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5) forces 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≤ 4
This is the same constraint as 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3
And VeriPB can automatically detect this
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Redundance-Based and Dominance-Based Strengthening for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔 ∪ {𝑓 ↾𝜔 ≤ 𝑓 }

Can be more aggressive if witness 𝜔 strictly improves solution

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Applying 𝜔 should strictly decrease 𝑓

If so, don’t need to show that 𝐶↾𝜔 holds!
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Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶
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Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶
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Redundance-Based and Dominance-Based Strengthening for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If𝐶1,𝐶2, . . . ,𝐶𝑚−1 have been derived from 𝐹 (maybe using dominance), then can derive𝐶𝑚 if exists
witness substitution 𝜔 s.t.

𝐹 ∪ {𝐶1, . . . ,𝐶𝑚−1} ∪ {¬𝐶𝑚} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Only consider 𝐹 — no need to show that any 𝐶𝑖↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested
Or pick solution 𝛼 satisfying 𝐹 and minimizing 𝑓 and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective
Switch between different orders in same proof
See [BGMN23] for details
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Redundance-Based and Dominance-Based Strengthening for Optimisation

Strengthening Rules: Proof Format

red ⟨Constraint 𝐶⟩ : ⟨var1⟩ -> ⟨val1⟩ . . . ⟨varN⟩ -> ⟨valN⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint 𝐶⟩ : ⟨var1⟩ -> ⟨val1⟩ . . . ⟨varN⟩ -> ⟨valN⟩ : subproof
subproofs for proof goals

qed;

Witness 𝜔 should be explicitly specified in proof log

Subproofs of proof goals should also be explicit
Except can be skipped for proof goals that “obviously” follow, e.g.,

by reverse unit propagation (RUP)
by simple syntactic implication from other constraint
since the proof goal is not affected by the witness substitution 𝜔
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References

Successful Applications of VeriPB Proof Logging

Pseudo-Boolean reasoning with strengthening rules sufficient to certify surprisingly wide range of
combinatorial solving paradigms:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
Gaussian elimination [GN21]
symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]

3 (Linear) Pseudo-Boolean solving [GMNO22, KLM+25]

4 Subgraph solving (max clique, subgraph isomorphism, max common connected subgraph)
[GMN20, GMM+20, GMM+24]

5 Dynamic programming and decision diagrams [DMM+24]

6 Presolving in 0–1 integer linear programming [HOGN24]

7 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]

8 Automated planning [DHN+25]
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References

VeriPB Resources

VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]

Video tutorial at https://youtu.be/s_5BIi4I22w

Videos and slides from WHOOPS ’24 at https://jakobnordstrom.se/WHOOPS24/

Videos and slides from WHOOPS ’25 with latest VeriPB updates will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition

Available at https://satcompetition.github.io/2025/output.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23,
BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB
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Some Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging and checking
Trim proof while checking (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking with CakePB (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

Satisfiability modulo theories (SMT) solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC
+
23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the pseudo-Boolean proof logging revolution! ,
We’re happy to collaborate, and we’re hiring
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Take-Away Message

Summing up

Combinatorial solving and optimisation is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

Thank you for your attention!
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