
An Introduction to Pseudo-Boolean Proof Logging

Jakob Nordström

University of Copenhagen and Lund University

2nd International Workshop on Highlights in

Organizing and Optimizing Proof-logging Systems

Paris, France
September 13–14, 2025

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 1/50



Based on Joint Work With. . .

Markus Anders

Jeremias Berg

Bart Bogaerts

Benjamin Bogø

Wolf De Wulf

Emir Demirović

Simon Dold

Jan Elffers

Ambros Gleixner

Stephan Gocht

Arthur Gontier

Malte Helmert

Alexander Hoen

Hannes Ihalainen

Matti Järvisalo

Wietze Koops

Daniel Le Berre

Ruben Martins

Ross McBride

Ciaran McCreesh

Matthew McIlree

Magnus O. Myreen

Andy Oertel

Tobias Paxian

Patrick Prosser

Adrián Rebola-Pardo

Gabriele Röger

Tanja Schindler

Konstantin Sidorov

Yong Kiam Tan

James Trimble

Dieter Vandesande

Marc Vinyals

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 2/50



Based on Joint Work With. . .

Markus Anders

Jeremias Berg

Bart Bogaerts
Benjamin Bogø

Wolf De Wulf

Emir Demirović

Simon Dold

Jan Elffers

Ambros Gleixner

Stephan Gocht
Arthur Gontier

Malte Helmert

Alexander Hoen

Hannes Ihalainen

Matti Järvisalo

Wietze Koops

Daniel Le Berre

Ruben Martins

Ross McBride

Ciaran McCreesh
Matthew McIlree

Magnus O. Myreen

Andy Oertel

Tobias Paxian

Patrick Prosser

Adrián Rebola-Pardo

Gabriele Röger

Tanja Schindler

Konstantin Sidorov

Yong Kiam Tan

James Trimble

Dieter Vandesande

Marc Vinyals

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 2/50



Based on Joint Work With. . .

Markus Anders

Jeremias Berg

Bart Bogaerts
Benjamin Bogø
Wolf De Wulf

Emir Demirović

Simon Dold

Jan Elffers

Ambros Gleixner

Stephan Gocht
Arthur Gontier

Malte Helmert

Alexander Hoen

Hannes Ihalainen

Matti Järvisalo

Wietze Koops
Daniel Le Berre

Ruben Martins

Ross McBride

Ciaran McCreesh
Matthew McIlree

Magnus O. Myreen

Andy Oertel
Tobias Paxian

Patrick Prosser

Adrián Rebola-Pardo

Gabriele Röger

Tanja Schindler

Konstantin Sidorov

Yong Kiam Tan

James Trimble

Dieter Vandesande

Marc Vinyals

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 2/50



Based on Joint Work With. . .

Markus Anders

Jeremias Berg

Bart Bogaerts
Benjamin Bogø
Wolf De Wulf

Emir Demirović

Simon Dold

Jan Elffers

Ambros Gleixner

Stephan Gocht
Arthur Gontier

Malte Helmert

Alexander Hoen

Hannes Ihalainen

Matti Järvisalo

Wietze Koops
Daniel Le Berre

Ruben Martins

Ross McBride

Ciaran McCreesh
Matthew McIlree

Magnus O. Myreen

Andy Oertel
Tobias Paxian

Patrick Prosser

Adrián Rebola-Pardo

Gabriele Röger

Tanja Schindler

Konstantin Sidorov

Yong Kiam Tan
James Trimble

Dieter Vandesande

Marc Vinyals

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 2/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]1

Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP-complete problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, BMN22, GCS23]

Solvers can propose infeasible “solutions” (but erroneous claims can in principle be checked)

More challenging: How to achieve reliable claims of infeasibility?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if
solver used as subroutine)

1See end of slides for all references with bibliographic details
Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 3/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 4/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 4/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

What Can Be Done About Solver Bugs?

Software testing
Very useful, but bugs slip through even with careful domain-specific testing
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But testing inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to level of complexity in modern solvers
(Despite valiant efforts in, e.g., [Fle20])

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 4/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 5/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 5/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 5/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input

2 Get as output not only answer but also proof

3 Feed input + answer + proof to proof checker

4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 5/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 6/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 6/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 6/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 6/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Ensuring Correctness with the Help of Proof Logging

Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning

dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 6/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

Take-Away Message from This Tutorial Day

Proof logging for combinatorial optimisation is possible with single, unified method!

Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

But represent constraints as 0–1 linear inequalities

Formalize reasoning using cutting planes [CCT87] proof system

Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 7/50

https://gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

Take-Away Message from This Tutorial Day

Proof logging for combinatorial optimisation is possible with single, unified method!

Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

But represent constraints as 0–1 linear inequalities

Formalize reasoning using cutting planes [CCT87] proof system

Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 7/50

https://gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results

2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays

3 Provides debugging support during software development
[GMM+20, KM21, BBN+23, EG23, KLM+25]

4 Facilitates performance analysis

5 Helps identify potential for further improvements

6 Enables auditability

7 Serves as stepping stone towards explainability

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 8/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

Design Principles for Proof Logging

Proof logging implementation

Don’t change solver

Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals

Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system

Keep language simple — no XOR constraints, CP propagators, symmetries, . . .

But reason efficiently about such notions using power of proof system

Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 9/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

Design Principles for Proof Logging

Proof logging implementation

Don’t change solver

Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals

Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system

Keep language simple — no XOR constraints, CP propagators, symmetries, . . .

But reason efficiently about such notions using power of proof system

Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 9/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

Design Principles for Proof Logging

Proof logging implementation

Don’t change solver

Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals

Proof logging overhead small constant fraction of running time (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system

Keep language simple — no XOR constraints, CP propagators, symmetries, . . .

But reason efficiently about such notions using power of proof system

Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 9/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

This Tutorial Day

Program for This Tutorial Day

Explain how to use VeriPB as a unified proof logging method for

09:00 SAT solving (Jakob Nordström)

10:00 Subgraph solving (Ciaran McCreesh)

11:30 Constraint programming (Matthew McIlree)

14:00 Pseudo-Boolean optimisation (Wietze Koops)

15:30 Preprocessing/presolving in MaxSAT and 0–1 linear programming (Andy Oertel)

16:30 Symmetry breaking (Markus Anders)

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 10/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

But Let Us Start from the Beginning. . .

Review of some basic concepts:

Satisfiability (SAT) problem

Unit propagation

DPLL and CDCL algorithms

Resolution proof system

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 11/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

The Satisfiability (SAT) Problem

Variable 𝑥 : takes value true (=1) or false (=0)

Literal ℓ : variable 𝑥 or its negation 𝑥

Clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula 𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 : conjunction of clauses

The SAT Problem

Given a CNF formula 𝐹 , is it satisfiable?

For instance, what about:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 12/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

Proofs for SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses (CNF constraints)

Each clause follows “obviously” from everything we know so far

Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 13/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0

𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1

Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1

No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

SAT Basics

What Is Obvious? Unit Propagation

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on our formula

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
No further unit propagations

Proof checker should know how to unit propagate until saturation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 14/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1 𝑥 ∨ 𝑦

2 𝑥 ∨ 𝑦

3 𝑥

4 𝑥

5 ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 15/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 16/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 16/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]

𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if

assigning 𝐶 to false

then unit propagating on 𝐹 until saturation

leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 16/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0 Decision

Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0 Decision

Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

What About Conflict-Driven Clause Learning (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 17/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 18/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 18/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 18/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 18/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Conflict Analysis
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Could backtrack by erasing conflict level & flipping last decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:

𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
𝑦 ∨ 𝑧 wants 𝑧 = 0
Resolve clauses by merging them & removing 𝑧 — must
satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 18/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 19/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 20/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 20/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 20/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

CDCL Reasoning and the Resolution Proof System

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 20/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof. . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 21/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution. . .

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 21/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 21/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Resolution Proofs from CDCL Executions

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 21/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

RUP Proofs and CDCL

But it turns out we can be lazier. . .

Fact

All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1 𝑢 ∨ 𝑥

2 𝑥

3 ⊥

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 22/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

More Ingredients in Proof Logging for SAT

Fact

RUP proofs can be viewed as shorthand for resolution proofs

See proof complexity and SAT solving survey [BN21] for more on this

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds of
reasoning

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 23/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Extension Variables, Part 1

Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]

Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact

Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT proof
logging system most commonly used for SAT solving

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 24/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Proof System for SAT Proof Logging

Extension Variables, Part 1

Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]

Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact

Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT proof
logging system most commonly used for SAT solving

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 24/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 25/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!

Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 25/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 25/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 25/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 25/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Why Aren’t We Done?

Practical limitations of current SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently (even for SAT solving)

Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT
proof logging:

Cardinality reasoning
Gaussian elimination
Symmetry breaking

Supports use of SAT solvers for optimisation problems (MaxSAT)

Can justify graph reasoning without knowing what a graph is

Can justify constraint programming inference without knowing what an integer variable is

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 25/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Constraints

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

𝑎𝑖 , 𝐴 ∈ Z

literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalised form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 26/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Constraints

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

𝑎𝑖 , 𝐴 ∈ Z

literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalised form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 26/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇔ 𝑥1 + 𝑥2 + 𝑥3 ≥ 1

2 Cardinality constraints
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

3 General pseudo-Boolean constraints

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 27/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 28/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 28/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 28/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 28/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉

Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 28/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖 )ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Saturation for any 𝑐 ∈ N+

(assumes normalised form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖 min(𝑎𝑖 , 𝐴) · ℓ𝑖 ≥ 𝐴

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 28/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 + 2𝑧 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 + 2 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 2 13

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Constraints and Cutting Planes Reasoning

Cutting Planes Toy Example

𝑤 + 2𝑥 + 𝑦 ≥ 2
Multiply by 2

2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9
𝑧 ≥ 0

Multiply by 2
2𝑧 ≥ 0

Add
3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Divide by 3
𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 29/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Resolution and Cutting Planes

To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 30/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Resolution and Cutting Planes

To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d ;

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 30/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ; ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ; ⇝ Constraint 12 � 0 ≥ 1 E

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 31/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ; ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ; ⇝ Constraint 12 � 0 ≥ 1 E

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 31/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ; ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ; ⇝ Constraint 12 � 0 ≥ 1 E

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 31/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ; ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ; ⇝ Constraint 12 � 0 ≥ 1 E

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 31/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Conflict Analyses

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ; ⇝ Constraint 11 � 𝑥 ≥ 1

pol 9 1 + 2 d 10 + 2 d 11 + 2 d ; ⇝ Constraint 12 � 0 ≥ 1 E
Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 31/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting [EGMN20]

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion!
Constraint programming people might call this (reverse) integer bounds consistency

Does the same thing if we’re working with clauses
More interesting for general pseudo-Boolean constraints

SAT people beware: constraints can propagate multiple times and multiple variables

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 32/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting [EGMN20]

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion!
Constraint programming people might call this (reverse) integer bounds consistency

Does the same thing if we’re working with clauses
More interesting for general pseudo-Boolean constraints

SAT people beware: constraints can propagate multiple times and multiple variables

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 32/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Execution with RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1

rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 33/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Pseudo-Boolean Proof Logging for SAT Solving

Pseudo-Boolean Proof Logging for Example CDCL Execution with RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧

(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1

rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E
Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 33/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Extension Variables, Part 2

Suppose we want new, fresh variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

This time, introduce constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Again, needs support from the proof system in the form of strengthening rules

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 34/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Cutting Planes with Strengthening”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of)
OPB format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — more details in a few slides . . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 35/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Proof Logs for “Cutting Planes with Strengthening”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of)
OPB format [RM16]

Each constraint follows “obviously” from what is known so far

Either implicitly, by RUP. . .

Or by an explicit cutting planes derivation. . .

Or as an extension variable reifying a new constraint∗

Final constraint is 0 ≥ 1

(*) Not actually implemented this way — more details in a few slides . . .

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 35/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Deleting Constraints

In practice, important to erase constraints to save memory and time during verification

Unsatisfiability proofs: fairly straightforward to deal with from point of view of proof logging

Optimisation proofs: significantly more delicate

We will mostly ignore deletions during this tutorial day for simplicity and clarity

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 36/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it with solx rule

Introduces a new constraint saying “not this solution”

So the proof semantics is “infeasible, except for all the solutions I told you about”

Optimisation:

Define an objective 𝑓 =
∑

𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

To maximise, negate objective

Log solution 𝛼 with soli rule⇒ objective-improving constraint
∑

𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑
𝑖 𝑤𝑖𝛼 (ℓ𝑖 )

Semantics for proof of optimality: “infeasible to find better solution than best so far”

Can also derive (potentially non-tight) lower bound
∑

𝑖 𝑤𝑖ℓ𝑖 ≥ LB

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 37/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it with solx rule

Introduces a new constraint saying “not this solution”

So the proof semantics is “infeasible, except for all the solutions I told you about”

Optimisation:

Define an objective 𝑓 =
∑

𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

To maximise, negate objective

Log solution 𝛼 with soli rule ⇒ objective-improving constraint
∑

𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑
𝑖 𝑤𝑖𝛼 (ℓ𝑖 )

Semantics for proof of optimality: “infeasible to find better solution than best so far”

Can also derive (potentially non-tight) lower bound
∑

𝑖 𝑤𝑖ℓ𝑖 ≥ LB

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 37/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]

Otherwise

do trusted or verified translation to 0-1 ILP

do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

1 0-1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments

3 Efficient reification using big-M constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 38/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]

Otherwise

do trusted or verified translation to 0-1 ILP

do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

1 0-1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments

3 Efficient reification using big-M constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 38/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]

Otherwise

do trusted or verified translation to 0-1 ILP

do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

1 0-1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments

3 Efficient reification using big-M constraints

— example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 38/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]

Otherwise

do trusted or verified translation to 0-1 ILP

do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

1 0-1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments

3 Efficient reification using big-M constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 38/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]

Otherwise

do trusted or verified translation to 0-1 ILP

do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

1 0-1 ILP expressive formalism for combinatorial problems (including objective)

2 Powerful reasoning capturing many combinatorial arguments

3 Efficient reification using big-M constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 38/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 39/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 39/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

More Pseudo-Boolean Proof Logging Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Elaborated proof

✓ / ✗

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 39/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Strengthening Rules (And the Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 40/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Strengthening Rules (And the Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 40/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Strengthening Rules (And the Truth About Extension Variables)

When is it allowed to derive a new constraint? If it is (clear that it is) implied?

Sometimes weaker criterion needed — recall that to get variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

we introduced pseudo-Boolean constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Cutting planes method inherently cannot certify such constraints — they are not implied!

Wish to allow without-loss-of-generality arguments that can derive non-implied constraints

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 40/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Redundance-Based Strengthening

𝐶 is “redundant” with respect to 𝐹 if 𝐹 and 𝐹 ∪ {𝐶} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening [BT19, GN21] (extending RAT rule of SAT prof logging)

𝐶 is redundant with respect to 𝐹 if and only if there is a substitution 𝜔 (mapping variables to truth
values or literals), called a witness, for which

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies 𝐹 but falsifies 𝐶 , then 𝛼 satisfies (𝐹 ∪ {𝐶})↾𝜔 ,
i.e., 𝛼 ◦ 𝜔 satisfies 𝐹 ∪ {𝐶}
Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 41/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Redundance-Based Strengthening

𝐶 is “redundant” with respect to 𝐹 if 𝐹 and 𝐹 ∪ {𝐶} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening [BT19, GN21] (extending RAT rule of SAT prof logging)

𝐶 is redundant with respect to 𝐹 if and only if there is a substitution 𝜔 (mapping variables to truth
values or literals), called a witness, for which

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies 𝐹 but falsifies 𝐶 , then 𝛼 satisfies (𝐹 ∪ {𝐶})↾𝜔 ,
i.e., 𝛼 ◦ 𝜔 satisfies 𝐹 ∪ {𝐶}
Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 41/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Redundance-Based Strengthening

𝐶 is “redundant” with respect to 𝐹 if 𝐹 and 𝐹 ∪ {𝐶} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening [BT19, GN21] (extending RAT rule of SAT prof logging)

𝐶 is redundant with respect to 𝐹 if and only if there is a substitution 𝜔 (mapping variables to truth
values or literals), called a witness, for which

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies 𝐹 but falsifies 𝐶 , then 𝛼 satisfies (𝐹 ∪ {𝐶})↾𝜔 ,
i.e., 𝛼 ◦ 𝜔 satisfies 𝐹 ∪ {𝐶}

Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 41/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Redundance-Based Strengthening

𝐶 is “redundant” with respect to 𝐹 if 𝐹 and 𝐹 ∪ {𝐶} are equisatisfiable
[apologies for the terminology — this is inherited from SAT proof logging]

Redundance-based strengthening [BT19, GN21] (extending RAT rule of SAT prof logging)

𝐶 is redundant with respect to 𝐹 if and only if there is a substitution 𝜔 (mapping variables to truth
values or literals), called a witness, for which

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies 𝐹 but falsifies 𝐶 , then 𝛼 satisfies (𝐹 ∪ {𝐶})↾𝜔 ,
i.e., 𝛼 ◦ 𝜔 satisfies 𝐹 ∪ {𝐶}
Witness 𝜔 should be specified, and implication needs to be efficiently verifiable — every
𝐷 ∈ (𝐹 ∪ {𝐶})↾𝜔 should follow from 𝐹 ∪ {¬𝐶} either

“obviously” (e.g., by reverse unit propagation) or
by explicitly presented derivation

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 41/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Deriving 𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3) Using the Redundance Rule

Want to derive
3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

using condition 𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

1 𝐹 ∪ {¬(3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)} |=
(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 0} — 𝐹 untouched; new constraint satisfied

2 𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3} ∪ {¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5)} |=(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3, 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 1} — 𝐹 untouched; new constraint satisfied
¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5) forces 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≤ 4
This is the same constraint as 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3
And VeriPB can automatically detect this

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 42/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Deriving 𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3) Using the Redundance Rule

Want to derive
3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

using condition 𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

1 𝐹 ∪ {¬(3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)} |=
(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 0} — 𝐹 untouched; new constraint satisfied

2 𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3} ∪ {¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5)} |=(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3, 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 1} — 𝐹 untouched; new constraint satisfied
¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5) forces 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≤ 4
This is the same constraint as 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3
And VeriPB can automatically detect this

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 42/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based Strengthening

Deriving 𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3) Using the Redundance Rule

Want to derive
3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

using condition 𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔

1 𝐹 ∪ {¬(3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)} |=
(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 0} — 𝐹 untouched; new constraint satisfied

2 𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3} ∪ {¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5)} |=(
𝐹 ∪ {3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3, 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5}

)
↾𝜔

Choose 𝜔 = {𝑎 ↦→ 1} — 𝐹 untouched; new constraint satisfied
¬(5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5) forces 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≤ 4
This is the same constraint as 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3
And VeriPB can automatically detect this

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 42/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔 ∪ {𝑓 ↾𝜔 ≤ 𝑓 }

Can be more aggressive if witness 𝜔 strictly improves solution

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Applying 𝜔 should strictly decrease 𝑓

If so, don’t need to show that 𝐶↾𝜔 holds!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 43/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔 ∪ {𝑓 ↾𝜔 ≤ 𝑓 }

Can be more aggressive if witness 𝜔 strictly improves solution

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Applying 𝜔 should strictly decrease 𝑓

If so, don’t need to show that 𝐶↾𝜔 holds!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 43/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔 ∪ {𝑓 ↾𝜔 ≤ 𝑓 }

Can be more aggressive if witness 𝜔 strictly improves solution

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Applying 𝜔 should strictly decrease 𝑓

If so, don’t need to show that 𝐶↾𝜔 holds!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 43/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= (𝐹 ∪ {𝐶})↾𝜔 ∪ {𝑓 ↾𝜔 ≤ 𝑓 }

Can be more aggressive if witness 𝜔 strictly improves solution

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Applying 𝜔 should strictly decrease 𝑓

If so, don’t need to show that 𝐶↾𝜔 holds!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 43/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)

2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)

3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint 𝐶 to formula 𝐹 if exists witness substitution 𝜔 s.t.

𝐹 ∪ {¬𝐶} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Why is this sound?

1 Suppose 𝛼 satisfies 𝐹 but falsifies 𝐶 (i.e., satisfies ¬𝐶)
2 Then 𝛼 ◦ 𝜔 satisfies 𝐹 and 𝑓 (𝛼 ◦ 𝜔) < 𝑓 (𝛼)
3 If 𝛼 ◦ 𝜔 satisfies 𝐶 , we’re done

4 Otherwise (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐹 and 𝑓
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
𝛼 ◦ 𝜔

)
5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies 𝐶 , we’re done

6 Otherwise
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies 𝐹 and 𝑓

(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< 𝑓

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′ satisfying 𝐹 ∧𝐶

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 44/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If𝐶1,𝐶2, . . . ,𝐶𝑚−1 have been derived from 𝐹 (maybe using dominance), then can derive𝐶𝑚 if exists
witness substitution 𝜔 s.t.

𝐹 ∪ {𝐶1, . . . ,𝐶𝑚−1} ∪ {¬𝐶𝑚} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Only consider 𝐹 — no need to show that any 𝐶𝑖↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested
Or pick solution 𝛼 satisfying 𝐹 and minimizing 𝑓 and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 45/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If𝐶1,𝐶2, . . . ,𝐶𝑚−1 have been derived from 𝐹 (maybe using dominance), then can derive𝐶𝑚 if exists
witness substitution 𝜔 s.t.

𝐹 ∪ {𝐶1, . . . ,𝐶𝑚−1} ∪ {¬𝐶𝑚} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Only consider 𝐹 — no need to show that any 𝐶𝑖↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested

Or pick solution 𝛼 satisfying 𝐹 and minimizing 𝑓 and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 45/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If𝐶1,𝐶2, . . . ,𝐶𝑚−1 have been derived from 𝐹 (maybe using dominance), then can derive𝐶𝑚 if exists
witness substitution 𝜔 s.t.

𝐹 ∪ {𝐶1, . . . ,𝐶𝑚−1} ∪ {¬𝐶𝑚} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Only consider 𝐹 — no need to show that any 𝐶𝑖↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested
Or pick solution 𝛼 satisfying 𝐹 and minimizing 𝑓 and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 45/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If𝐶1,𝐶2, . . . ,𝐶𝑚−1 have been derived from 𝐹 (maybe using dominance), then can derive𝐶𝑚 if exists
witness substitution 𝜔 s.t.

𝐹 ∪ {𝐶1, . . . ,𝐶𝑚−1} ∪ {¬𝐶𝑚} |= 𝐹↾𝜔 ∪ {𝑓 ↾𝜔 < 𝑓 }

Only consider 𝐹 — no need to show that any 𝐶𝑖↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested
Or pick solution 𝛼 satisfying 𝐹 and minimizing 𝑓 and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 45/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Strengthening Rules: Proof Format

red ⟨Constraint 𝐶⟩ : ⟨var1⟩ -> ⟨val1⟩ . . . ⟨varN⟩ -> ⟨valN⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint 𝐶⟩ : ⟨var1⟩ -> ⟨val1⟩ . . . ⟨varN⟩ -> ⟨valN⟩ : subproof
subproofs for proof goals

qed;

Witness 𝜔 should be explicitly specified in proof log

Subproofs of proof goals should also be explicit
Except can be skipped for proof goals that “obviously” follow, e.g.,

by reverse unit propagation (RUP)
by simple syntactic implication from other constraint
since the proof goal is not affected by the witness substitution 𝜔

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 46/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Redundance-Based and Dominance-Based Strengthening for Optimisation

Strengthening Rules: Proof Format

red ⟨Constraint 𝐶⟩ : ⟨var1⟩ -> ⟨val1⟩ . . . ⟨varN⟩ -> ⟨valN⟩ : subproof
subproofs for proof goals

qed;

dom ⟨Constraint 𝐶⟩ : ⟨var1⟩ -> ⟨val1⟩ . . . ⟨varN⟩ -> ⟨valN⟩ : subproof
subproofs for proof goals

qed;

Witness 𝜔 should be explicitly specified in proof log

Subproofs of proof goals should also be explicit
Except can be skipped for proof goals that “obviously” follow, e.g.,

by reverse unit propagation (RUP)
by simple syntactic implication from other constraint
since the proof goal is not affected by the witness substitution 𝜔

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 46/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

References

Successful Applications of VeriPB Proof Logging

Pseudo-Boolean reasoning with strengthening rules sufficient to certify surprisingly wide range of
combinatorial solving paradigms:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
Gaussian elimination [GN21]
symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]

3 (Linear) Pseudo-Boolean solving [GMNO22, KLM+25]

4 Subgraph solving (max clique, subgraph isomorphism, max common connected subgraph)
[GMN20, GMM+20, GMM+24]

5 Dynamic programming and decision diagrams [DMM+24]

6 Presolving in 0–1 integer linear programming [HOGN24]

7 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]

8 Automated planning [DHN+25]

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 47/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

References

Successful Applications of VeriPB Proof Logging

Pseudo-Boolean reasoning with strengthening rules sufficient to certify surprisingly wide range of
combinatorial solving paradigms:

1 Boolean satisfiability (SAT) solving including advanced techniques such as
Gaussian elimination [GN21]
symmetry breaking [BGMN23]

2 SAT-based optimization (MaxSAT) [VDB22, BBN+23, BBN+24, IOT+24]

3 (Linear) Pseudo-Boolean solving [GMNO22, KLM+25]

4 Subgraph solving (max clique, subgraph isomorphism, max common connected subgraph)
[GMN20, GMM+20, GMM+24]

5 Dynamic programming and decision diagrams [DMM+24]

6 Presolving in 0–1 integer linear programming [HOGN24]

7 Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]

8 Automated planning [DHN+25]

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 47/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

References

VeriPB Resources

VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]

Video tutorial at https://youtu.be/s_5BIi4I22w

Videos and slides from WHOOPS ’24 at https://jakobnordstrom.se/WHOOPS24/

Videos and slides from WHOOPS ’25 with latest VeriPB updates will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition

Available at https://satcompetition.github.io/2025/output.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23,
BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 48/50

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS24/
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

References

VeriPB Resources

VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]

Video tutorial at https://youtu.be/s_5BIi4I22w

Videos and slides from WHOOPS ’24 at https://jakobnordstrom.se/WHOOPS24/

Videos and slides from WHOOPS ’25 with latest VeriPB updates will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition

Available at https://satcompetition.github.io/2025/output.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23,
BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 48/50

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS24/
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

References

VeriPB Resources

VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]

Video tutorial at https://youtu.be/s_5BIi4I22w

Videos and slides from WHOOPS ’24 at https://jakobnordstrom.se/WHOOPS24/

Videos and slides from WHOOPS ’25 with latest VeriPB updates will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition

Available at https://satcompetition.github.io/2025/output.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23,
BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 48/50

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS24/
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

References

VeriPB Resources

VeriPB tutorials

Slides from tutorials at CP ’22 [BMN22] and IJCAI ’23 [BMN23]

Video tutorial at https://youtu.be/s_5BIi4I22w

Videos and slides from WHOOPS ’24 at https://jakobnordstrom.se/WHOOPS24/

Videos and slides from WHOOPS ’25 with latest VeriPB updates will hopefully be
online soon at https://jakobnordstrom.se/WHOOPS25/

Technical documentation [ABB+25] for SAT 2025 competition

Available at https://satcompetition.github.io/2025/output.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23, MM23,
BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24, DHN+25, JBBJ25, KLM+25, MM25]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 48/50

https://youtu.be/s_5BIi4I22w
https://jakobnordstrom.se/WHOOPS24/
https://jakobnordstrom.se/WHOOPS25/
https://satcompetition.github.io/2025/output.html
gitlab.com/MIAOresearch/software/VeriPB


Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Some Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging and checking
Trim proof while checking (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking with CakePB (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

Satisfiability modulo theories (SMT) solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC
+
23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the pseudo-Boolean proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 49/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Some Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging and checking
Trim proof while checking (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking with CakePB (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

Satisfiability modulo theories (SMT) solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC
+
23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the pseudo-Boolean proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 49/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Some Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging and checking
Trim proof while checking (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking with CakePB (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

Satisfiability modulo theories (SMT) solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC
+
23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas

Talk to us if you want to join the pseudo-Boolean proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 49/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Some Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging and checking
Trim proof while checking (as in DRAT-Trim [HHW13a])
Compress proof file using binary format
Formally verifed end-to-end checking with CakePB (as in [GMM+24, IOT+24, KLM+25])
Faster proof logging and checking!

Proof logging for other combinatorial problems and techniques
Model counting
Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

Satisfiability modulo theories (SMT) solving (work on solvers cvc5, SMTInterpol, Z3, . . . [BBC
+
23, HS22])

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
Talk to us if you want to join the pseudo-Boolean proof logging revolution! ,
We’re happy to collaborate, and we’re hiring

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 49/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Take-Away Message

Summing up

Combinatorial solving and optimisation is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

Thank you for your attention!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 50/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Take-Away Message

Summing up

Combinatorial solving and optimisation is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

Thank you for your attention!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 50/50



Introduction Proof Logging for SAT Pseudo-Boolean Proof Logging Strengthening Rules Concluding Remarks

Take-Away Message

Summing up

Combinatorial solving and optimisation is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

Action point: What problems can VeriPB solve for you?

Come talk to us. We’re hiring and open to collaboration!

Thank you for your attention!

Jakob Nordström (UCPH & LU) An Introduction to Pseudo-Boolean Proof Logging WHOOPS ’25 50/50



References I

[ABB+25] Markus Anders, Bart Bogaerts, Benjamin Bogø, Arthur Gontier, Wietze Koops, Ciaran McCreesh, Magnus O. Myreen, Jakob
Nordström, Andy Oertel, Adrián Rebola-Pardo, and Yong Kiam Tan. Documentation of VeriPB and CakePB for the SAT
competition 2025. Available at https://satcompetition.github.io/2025/output.html, April 2025.

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction to certifying
algorithms. it - Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik,
53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing of constraint solvers.
In Proceedings of the 24th International Conference on Principles and Practice of Constraint Programming (CP ’18), volume 11008
of Lecture Notes in Computer Science, pages 727–736. Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In Michael Jünger
and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical Report
MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.

[BB09] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In Proceedings of the 7th International

Workshop on Satisfiability Modulo Theories (SMT ’09), pages 1–5, August 2009.

[BBC+23] Haniel Barbosa, Clark Barrett, Byron Cook, Bruno Dutertre, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres Nötzli,
Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Cesare Tinelli, and Yoni Zohar. Generating and exploiting automated
reasoning proof certificates. Communications of the ACM, 66(10):86––95, October 2023.

https://satcompetition.github.io/2025/output.html


References II

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided MaxSAT solving.
In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture Notes in
Computer Science, pages 1–22. Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande. Certifying without loss
of generality reasoning in solution-improving maximum satisfiability. In Proceedings of the 30th International Conference on

Principles and Practice of Constraint Programming (CP ’24), volume 307 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 4:1–4:28, September 2024.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and symmetry breaking for
combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August 2023. Preliminary version in
AAAI ’22.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability, volume 336 of Frontiers
in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1937.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF solvers. In
Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT ’10), volume 6175 of
Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results: Beyond satisfiability, and
towards constraint programming. Tutorial at the 28th International Conference on Principles and Practice of Constraint

Programming. Slides available at https://jakobnordstrom.se/presentations/, August 2022.

https://jakobnordstrom.se/presentations/


References III

[BMN23] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Combinatorial solving with provably correct results. Tutorial at the
32nd International Joint Conference on Artificial Intelligence. Slides available at
https://jakobnordstrom.se/presentations/, August 2023.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back from the other side
of the tipping point. Annals of Operations Research, 149(1):37–41, February 2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT instances. In Proceedings of

the 14th National Conference on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In Proceedings of the 22nd

International Conference on Theory and Applications of Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in
Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied
Mathematics, 18(1):25–38, November 1987.

[CHH+17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp. Efficient certified RAT
verification. In Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume 10395 of Lecture
Notes in Computer Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for exact rational
mixed-integer programming. Mathematical Programming Computation, 5(3):305–344, September 2013.

https://jakobnordstrom.se/presentations/


References IV

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution proof checking. In Proceedings

of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’17), volume
10205 of Lecture Notes in Computer Science, pages 118–135. Springer, April 2017.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny. A proof system for certifying symmetry and
optimality reasoning in integer programming. Technical Report 2311.03877, arXiv.org, November 2023.

[DHN+25] Simon Dold, Malte Helmert, Jakob Nordström, Gabriele Röger, and Tanja Schindler. Pseudo-Boolean proof logging for optimal
classical planning. In Proceedings of the 35th International Conference on Automated Planning and Scheduling (ICAPS ’25),
November 2025. To appear.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Communications of the ACM,
5(7):394–397, July 1962.

[DMM+24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov. Pseudo-Boolean
reasoning about states and transitions to certify dynamic programming and decision diagram algorithms. In Proceedings of the

30th International Conference on Principles and Practice of Constraint Programming (CP ’24), volume 307 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 9:1–9:21, September 2024.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201–215, 1960.

[EG23] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer programming. Mathematical

Programming, 197(2):793–812, February 2023.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using pseudo-Boolean reasoning.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February 2020.



References V

[Fle20] Mathias Fleury. Formalization of Logical Calculi in Isabelle/HOL. PhD thesis, Universität des Saarlandes, 2020. Available at
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722.

[GCS23] Graeme Gange, Geoffrey Chu, and Peter J. Stuckey. Certifying optimality in constraint programming. Manuscript. Available at
https://people.eng.unimelb.edu.au/pstuckey/papers/certified-cp.pdf, 2023.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble. Certifying solvers for
clique and maximum common (connected) subgraph problems. In Proceedings of the 26th International Conference on Principles

and Practice of Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan. End-to-end
verification for subgraph solving. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI ’24), pages
8038–8047, February 2024.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes: Solving with certified
solutions. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July
2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In Proceedings of the

28th International Conference on Principles and Practice of Constraint Programming (CP ’22), volume 235 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for pseudo-Boolean solving. In
Proceedings of the 25th International Conference on Theory and Applications of Satisfiability Testing (SAT ’22), volume 236 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722
https://people.eng.unimelb.edu.au/pstuckey/papers/certified-cp.pdf


References VI

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In Proceedings of the

Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In Proceedings of

the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning. PhD thesis, Lund
University, June 2022. Available at https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In Proceedings of the 25th

International Conference on Principles and Practice of Constraint Programming (CP ’19), volume 11802 of Lecture Notes in
Computer Science, pages 565–582. Springer, October 2019.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In Proceedings of the 13th

International Conference on Formal Methods in Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution. In Proceedings of

the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages
345–359. Springer, June 2013.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based presolve reductions for 0–1
integer linear programs. In Proceedings of the 21st International Conference on the Integration of Constraint Programming,

Artificial Intelligence, and Operations Research (CPAIOR ’24), volume 14742 of Lecture Notes in Computer Science, pages 310–328.
Springer, May 2024.

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu


References VII

[HS22] Jochen Hoenicke and Tanja Schindler. A simple proof format for SMT. In Proceedings of the 20th Internal Workshop on

Satisfiability Modulo Theories (SMT ’22), volume 3185 of CEUR Workshop Proceedings, pages 54–70, August 2022.

[IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström.
Certified MaxSAT preprocessing. In Proceedings of the 12th International Joint Conference on Automated Reasoning (IJCAR ’24),
volume 14739 of Lecture Notes in Computer Science, pages 396–418. Springer, July 2024.

[JBBJ25] Christoph Jabs, Jeremias Berg, Bart Bogaerts, and Matti Järvisalo. Certifying pareto-optimality in multi objective maximum
satisfiability. In Proceedings of the 31st International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS ’25), volume 15697 of Lecture Notes in Computer Science, pages 108–129. Springer, May 2025.

[KB22] Daniela Kaufmann and Armin Biere. Fuzzing and delta debugging and-inverter graph verification tools. In Proceedings of the

16th International Conference on Tests and Proofs (TAP ’22), volume 13361 of Lecture Notes in Computer Science, pages 69–88.
Springer, July 2022.

[KLM+25] Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam Tan, and Marc Vinyals.
Practically feasible proof logging for pseudo-Boolean optimization. In Proceedings of the 31st International Conference on

Principles and Practice of Constraint Programming (CP ’25), volume 340 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 21:1–21:27, August 2025.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems faster through
clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI ’21),
pages 1396–1402, August 2021.



References VIII

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of the 29th

International Conference on Principles and Practice of Constraint Programming (CP ’23), volume 280 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MM25] Matthew McIlree and Ciaran McCreesh. Certifying bounds propagation for integer multiplication constraints. In Proceedings

of the 39th AAAI Conference on Artificial Intelligence (AAAI ’25), pages 11309–11317, February-March 2025.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In Proceedings of the 21st

International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research

(CPAIOR ’24), volume 14743 of Lecture Notes in Computer Science, pages 38–55. Springer, May 2024.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer Science Review,
5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on

Computers, 48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[NPB22] Aina Niemetz, Mathias Preiner, and Clark W. Barrett. Murxla: A modular and highly extensible API fuzzer for SMT solvers. In
Proceedings of the 34th International Conference on Computer Aided Verification (CAV ’22), volume 13372 of Lecture Notes in
Computer Science, pages 92–106. Springer, August 2022.



References IX

[PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in MaxSAT solvers through fuzzing and delta debugging. In
Proceedings of the 14th International Workshop on Pragmatics of SAT, volume 3545 of CEUR Workshop Proceedings, pages 59–71.
CEUR-WS.org, July 2023.

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for the competitions of
pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.univ-artois.fr/PB16/format.pdf, January 2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–41, January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence. Elsevier, 2006.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko, editor, Structures in Constructive

Mathematics and Mathematical Logic, Part II, pages 115–125. Consultants Bureau, New York-London, 1968.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International Symposium on Artificial

Intelligence and Mathematics (ISAIM ’08), 2008. Available at http://isaim2008.unl.edu/index.php?page=proceedings.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings of the 16th

International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in
Computer Science, pages 429–442. Springer, September 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using expressive
clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT ’14),
volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.

http://www.cril.univ-artois.fr/PB16/format.pdf
http://isaim2008.unl.edu/index.php?page=proceedings

	Main Talk
	Introduction
	The Success of Combinatorial Solving (and the Dirty Little Secret…)
	Ensuring Correctness with the Help of Proof Logging
	This Tutorial Day

	Proof Logging for SAT
	SAT Basics
	Davis-Putman-Logemann-Loveland (DPLL) and Conflict-Driven Clause Learning (CDCL)
	Proof System for SAT Proof Logging

	Pseudo-Boolean Proof Logging
	Pseudo-Boolean Constraints and Cutting Planes Reasoning
	Pseudo-Boolean Proof Logging for SAT Solving
	More Pseudo-Boolean Proof Logging Rules

	Strengthening Rules
	Redundance-Based Strengthening
	Redundance-Based and Dominance-Based Strengthening for Optimisation

	Concluding Remarks
	References
	Some Challenges
	Take-Away Message


	Appendix
	References


