
Applied Presolve Reductions in
Pseudo-Boolean Solving

Asger Kjeldsen

Fall 2020/Spring 2021

Abstract
Pseudo-Boolean solving is a powerful approach to solving 0-1 in-

teger linear programs. Building on the well known Conflict Driven
Clause Learning algorithm, the gap between satisfiability solving in
propositional logic and Pseudo-Boolean optimization is not very wide.
This paper reviews the similarities between satisfiability solving in
propositional logic and Pseudo-Boolean optimization, as well as the
algorithms used in conflict driven solving. Presolve is a key step for
mixed integer programs (MIP) in relation to solve speed. Therefore, a
program to enable MIP presolve techniques to be applied to Pseudo-
Boolean problem instances was developed. In this paper, the imple-
mentation of the presolve program which utilizes the PaPILO MIP
presolver is described. Executing the presolve step before solving an
instance with the solver RoundingSat, reveals that presolving impacts
the speed of solving significantly, though not exclusively positively.

1 Introduction
In this paper, we investigate the inner workings of conflict driven solving of
logical formulas and how this approach is applied in Pseudo-Boolean (PB)
solving. A Pseudo-Boolean instance is a series of linear constraints contain-
ing variables that can take the values 0 and 1. In other words, an Integer
Linear Program with all 0-1 variables. This paper focuses on understand-
ing how well known algorithms from propositional logic such as the Davis-
Putnam-Logemann-Loveland (DPLL) [4] and Conflict Driven Clause Learn-
ing (CDCL) [9][3] can be used to solve such systems. This paper bridges the

1

gap from propositional logic to Pseudo-Boolean solving by connecting the
fundamental pieces needed to construct a conflict driven Pseudo-Boolean
solver. Building on these pieces, we take a look at presolve reductions in
Mixed Integer Programming (MIP). Applied to MIP instances, these pre-
solve steps are known to be very effective at decreasing solve time, and can
in some cases turn an intractable problem solvable [1]. A PB problem is a
MIP sub-problem. The idea of applying such presolve methods to PB in-
stances motivated this paper, with the goal of creating a tool to presolve PB
problem instances. Utilizing RoundingSat [15], an implementation of a PB
solver, and the presolving tool PaPILO [14], a presolver for MIP, this pa-
per introduces a new presolver for PB problems PresolveOpb. PresolveOpb
allows for presolving any PB instance in the .opb file format as defined
in Input/Output Format and Solver Requirements for the Competitions of
Pseudo-Boolean Solvers [12]. The PB presolver uses the presolvers provided
by PaPILO but restricts reductions that would break the structure of a 0-1
integer program. The paper is organized as follows. Section 2 reviews the el-
ements of propositional logic needed to understand DPLL and CDCL, as well
as defining the foundation of terminology used in the paper. Then CDCL is
reviewed. Section 3 introduces conflict driven PB solving and MIP presolv-
ing. Section 4 and 5 cover the implementation of the PresolveOpb program,
and cover testing on the PB16 competition instances. The conclusions are
summarized in section 6.

2

2 Preliminaries

2.1 Propositional logic review

Propositional logic [8] concerns propositions that can be either true or false.
These propositions occur in natural language for example in "The sun is
shining". Formalized these are represented as variables which then can be
assigned with a truth symbol.

A truth symbol is T = 1 or F = 0.

A Variable (q, r, s, t...) can be assigned T or F .

An atom is a variable or a truth symbol.

A literal is an atom or its negation.

Connectives relate atoms and includes and(∧), not(¬), or(∨) and implica-
tion(→). This thesis will use these connectives but let it be noted that any
connective can be defined and used and many combinations and subsets are
sufficient to describe all problems in propositional logic. Let’s consider the
atoms of this example sentence:

The sun shines
p

or it rains
q

, but not both.

In this example we can define p := The sun is shining and q := It is raining.
Then we can construct the proposition, or formula F , from the sentence:

F = (p ∨ q) ∧ ¬(p ∧ q)

This can also be described with the connective XOR (exclusive or) which
supports the point that connectives can be translated to combinations of
other connectives.

2.2 Satisfiability

The primary objective of the algorithms used in this project is to determine
whether a formula F or Pseudo-Boolean model is satisfiable.

Definition 2.1. If a formula F is always true it is valid and we denote that
with |= F .

3

A truth assignment ρ is the assignment of T or F to some or all of the literals
in a formula. For a variable x let σ ∈ {0, 1} and then denote x with xσ such
that x0 = ¬x and x1 = x. If x = F we write x1 = 0 and x0 = 1. If x1−σ ∈ ρ
then ρ(xσ) = 0 and if {x0, x1} 6∈ ρ then ρ(xσ) = ∗ [3]. For propositional
problems we use T and F interchangeably with 1 and 0 to bridge the gap
between Pseudo Boolean Solving and propositional logic. We also use the
notation F |ρ when an assignment ρ is applied to a formula F and the notation
|= F |ρ if ρ satisfies F .

Definition 2.2. A formula F is satisfiable if 6|= ¬F . In other words, F is
not false in all cases and a ρ exists such that |= F |ρ
By example:

F ::= (x1 ∨ x3) ∧ (x2 ∨ x1) ∧ (¬x2 ∨ x4) (2.1)
6|= F (2.2)

{x11, x02} ∈ ρ (2.3)
|= F |ρ (2.4)

In 2.1 we see the CNF formula F introduced. Referring to definition 2.1 F
by itself is not valid, since it does not evaluate T in all cases, proven by for
example the assignment {x01, x02} which falsifies the second clause. ρ satisfies
F as seen in 2.4, so F is indeed satisfiable.
Another way to represent a problem in propositional logic is by constructing
a truth table. Consider table 2.5 of an unknown formula F .

x1 x2 x3 F
T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

(2.5)

It is apparent that the formula F is satisfiable since at least one of the
evaluations result in T. Conversely, an unsatisfiable formula would not have
any truth table line evaluating T . Exploring all truth assignments to see if a
formula is satisfiable is for many problems not feasible in a timely manner.

4

2.3 CNF

When taking an algorithmic approach to propositional logic, conventional
formulation of problems is beneficial. Conjunctive Normal Form (CNF) al-
lows for validity checking in linear time which for an arbitrary formula can
take exponential time in the number of atoms [8]. CNF formulas are of the
form:

n∧
i=1

φ(i) where φ(i) =
ki∨
j=1

Li,j and Li,j is the j’th of ki literals in clause i

In other words, a conjunction of disjunctive clauses.
To see that any formula can be written in CNF consider truth table 2.5.
Recall, that this is the table for an unknown formula F . Even though the
formula is unknown, CNF(F) can be found. For a line in the truth table l
we write l |= F iff F is T in the given line. To get an F equivalent CNF
formula, the truth table has to be equal for both formulas. For one of the
lines resulting in F to not hold in our CNF formula, a variable in the line
has to be assigned with a falsifying truth value. Therefore, we can construct
three clauses - one for each line computing F:

ψ1 = ¬x1 ∨ x2 ∨ x3 ψ2 = x1 ∨ ¬x2 ∨ x3 ψ3 = x1 ∨ x2 ∨ x3

If all these clauses are satisfied, F will also be satisfied since for any l |=
ψ1∧ψ2∧ψ3 it holds that l |= F . So for this example CNF(F) = ψ1∧ψ2∧ψ3.
All logical formulas have a truth table and this argument holds for all truth
tables. Thus, all formulas in propositional logic can be converted to CNF.

2.4 DPLL

A direct way of solving the satisfiability problem is using the Davis-Putnam-
Logemann–Loveland (DPLL) procedure [4]. The intuition for the algorithm
in it’s simplest form is to check truth assignments until either the algorithm
finds a satisfying assignment or all possible satisfying assignments are ex-
hausted.
Let’s look at ways to simplify a CNF formula F = φ1 ∧ φ2 ∧ ... ∧ φn with
0 < k ≤ n constraints under the assignment ρ.

• If a variable x0i and x1i both occur in φk, we can remove φk from the
formula, since |= x0i ∨ x1i in all cases (algorithm 1).

5

• If a variable xσi ∈ ρ is in φk we can remove φk from F since φk then
evaluates 1 in all cases (algorithm 2).

• If a variable x1−σk ∈ ρ remove all xσk from F . In other words, remove
xσk where it can no longer satisfy φ (algorithm 3).

Algorithm 1: Remove Clauses With Complements
RemoveComplements (F)

foreach clause φ ∈ F do
if φ contains a pair of x1k and x0k then

F ← F \ φ
return F

Algorithm 2: Remove Satisfied Clauses
RemoveSatClauses (F, ρ)

foreach clause φ ∈ F do
if φ contains a xσk ∈ ρ then

F ← F \ φ

return (F, ρ)

Algorithm 3: Remove Non-satisfying Variables
RemoveNonSatVars (F, ρ)

foreach clause φ ∈ F do
foreach var xσ ∈ φ do

if x1−σ ∈ ρ then
φ← φ \ xσ

return (F, ρ)

Utilizing these rules we will encounter cases where some clause φl only con-
tains one literal. Since the goal of the DPLL algorithm is to determine
whether a formula is satisfiable, that literal has to satisfy φl so we use unit
propagation to set that literal in ρ [4]. Let’s call the single variable xσk then
it follows that ρ← ρ ∪ xσk to satisfy clause φl.

6

Algorithm 4: Unit Propagation
UnitPropagate (F, ρ)

while F has a unit clause φk with var xσl do
ρ← ρ ∪ xσl
F ← RemoveSatClauses(F, ρ)
F ← RemoveNonSatVars(F, ρ)

return (F, ρ)

When unit propagation is not possible due to no unit clauses being present,
DPLL selects a random variable and explores the satisfiability of that assign-
ment. If at any point the algorithm reaches the decision stage and there are
no unassigned variables, the algorithm returns immediately with the satis-
fying assignment ρ. If RemoveNonSatVars finds that some clause can’t
be satisfied, the algorithm returns. So if for some variable xσ both decisions
x0 and x1 are unsatisfiable and there are no more decisions to be made, the
algorithm returns false since no ρ such that |= F |ρ exist. Tying it all together
we get algorithm 5: DPLL.

Algorithm 5: DPLL
DPLL (F, ρ)

if F contains an empty clause then
return false

UnitPropagate(F, ρ)
if All variables ∈ ρ then

Exit and return true and the assignment ρ
L← a variable from F not in ρ
return DPLL(F, ρ ∪ L1) ∨ DPLL(F, ρ ∪ L0)

It has to be noted that there are several ways to implement DPLL.
Let’s consider the formula:

F = (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x1)

We can apply the DPLL algorithm to check if F is satisfiable. We initialize
the procedure with F as a set of clauses and ρ := ∅. DPLL starts by running
UnitPropagate as we already have a unit clause namely x01. We can follow
the values of F and ρ in the following table:

7

Operation F ρ
Initialization {x02 ∨ x03 ∨ x04, x11 ∨ x12, x03 ∨ x14, x01} ∅
UnitPropagate {x02 ∨ x03 ∨ x04, x12, x03 ∨ x14} {x01}
UnitPropagate {x03 ∨ x04, x03 ∨ x14} {x01, x12}
Decision x13 {x03 ∨ x04, x03 ∨ x14} {x01, x12, x13}
UnitPropagate {x04, x14} {x01, x12, x13}
UnitPropagate {∅} {x01, x12, x13, x04}
Return false {∅} {x01, x12, x13, x04}
Decision x03 {x03 ∨ x04, x03 ∨ x14} {x01, x12, x03}
UnitPropagate {} {x01, x12, x03}
Return true {} {x01, x12, x03}

Table 1: Example execution of DPLL

Hence, the procedure returns true. We first see the decision x13 leading to
unsatisfying assignments. Then the other recursive call x03 leads to a satisfy-
ing assignment. The satisfying assignment ρ is also returned as an argument
of satisfiability. Running RemoveComplements on F before executing
DPLL might reduce the number of clauses in turn reducing the running time
of DPLL.

Proposition 2.1. Given a formula F if there exists an assignment ρ such
that |= F |ρ DPLL will return true for F .

Proof. Assume that F is a satisfiable formula of n clauses. By definition 2.2 a
satisfying assignment ρ must exist so that |= F |ρ. Since F = ∧ni=1φi then for
any clause it holds that |= φi|ρ. DPLL will exit iff a satisfying assignment is
found or all evaluations results in finding an empty clause in F . The only way
for the empty clause to be found is if RemoveNonSatVars finds a clause
such that 6|= φi|ρ. But when the algorithm is evaluating ρ no such clause
exists. So DPLL will either exit when it finds some satisfying assignment ρ′
or continue until exactly ρ is evaluated. True is returned in both cases.

2.5 Conflict Driven Clause Learning

One issue with DPLL is that we might encounter cases where one or several
truth assignments are unnecessary if a previous truth assignment is the reason
for a conflict. Furthermore, some states might always lead to conflicting

8

assignments wasting computing time evaluating already known states.

F := G ∪ {x11 ∨ x12 ∨ x13, x11 ∨ x12 ∨ x03}

In this example, assume G is any CNF formula. If ρ ∈ {x01, x02} we will
always reach conflicting unit clauses namely {x13, x03}. The objective is to
tell the solver that {x01, x02} cannot be assigned at the same time after the
conflict is initially discovered. This can be achieved utilizing conflict analysis
to search for the reason of a conflict, and in this case adding the clause x11∨x12
to F . This concept was initially proposed by J.P. Marques-Silva and Karem
A. Sakallah [9] introducing the algorithm structure GRASP enabling non-
chronological backtracking.

2.5.1 Resolution

Introducing the resolution proof system is beneficial in regard to conflict anal-
ysis [3]. Specifically, the resolution proof system is used to find clauses that
prevent exploration of already known states. The resolution proof system
works directly on clauses and can be used to construct a refutation, refuting
unsatisfiable formulae as well as proving derived clauses. The version of the
resolution proof system described is based on the one by Biere, Heule, van
Maaren and Walsh [3]. The core rule (the resolution rule) of this system is:

B ∨ x1 C ∨ x0
B ∨ C

B and C can be any formula in propositional logic. A resolution derivation
π = (D1, D2, ...DL = D) of clause D consists of clauses from F (axioms) or
clauses derived using the resolution rule. When finding a clause DL through
a resolution proof we write π : F ` D, the resolution derivation π of F leads
to the clause D. Resolution proofs can be used to find a resolution refutation
of F in the case where π : F ` ⊥. We write Res(B ∨ x0, C ∨ x1) when
using the resolution rule and call B ∨ C the resolvent over x. Reaching ⊥
can be achieved when resolving two unit clauses x0 and x1 since these are
equivalent to ⊥∨ x0 and ⊥∨ x1. In this resolution refutation of the example
CNF formula

F := (x11 ∨ x02) ∧ (x11 ∨ x12) ∧ (x01 ∨ x13 ∨ x14) ∧ (x01 ∨ x03) ∧ (x01 ∨ x04)

9

Figure 1: DAG representation of resolution refutation over F

We can represent the steps in a list as follows [3]:

1. x11 ∨ x02 Clause from F
2. x11 ∨ x12 Clause from F
3. x01 ∨ x13 ∨ x14 Clause from F
4. x01 ∨ x03 Clause from F
5. x01 ∨ x04 Clause from F
6. x11 Res(2, 1)
7. x01 ∨ x13 Res(3, 5)
8. x01 Res(7, 4)
9. ⊥ Res(6, 8)

(2.6)

For this example π are the clauses 1-9 refuting F . The proof can also be
represented as a directed acyclic graph Gπ with a vertex for each Di of
1 ≤ i ≤ L clauses in π and edges showing how each clause is derived (figure 1).
Each vertex is labeled with the corresponding line in the list representation
of the proof. This visualization will be useful to later understand how a
new clause is chosen and added to F when performing conflict analysis on a
conflict found by the CDCL algorithm.

10

2.5.1.1 Trivial Resolution

When performing conflict analysis a restricted form of resolution proof can
be utilized namely trivial resolution. Trivial resolution consists of two re-
strictions. First the resolution derivation π has to be regular.

Definition 2.3. For π = (D1, D2, ..., DL = D) consider the DAG (proof
graph) Gπ. For each path from every leaf to the resolvent if no variable is
resolved over multiple times the path is regular. If all such paths for Gπ are
regular, π is regular.

Looking at figure 1, writing S(var) where S is the label of the node and var
is the variable resolved over, it will be clear that the graph is regular. If the
node is a clause from F we write Axiom since no resolution has been made
and we write Resolvent when the resolvent is reached.

1.(Axiom)→ 6.(x2)→ 9.(Resolvent) Conclusion : Regular

2.(Axiom)→ 6.(x2)→ 9.(Resolvent) Conclusion : Regular

3.(Axiom)→ 7.(x4)→ 8.(x3)→ 9.(Resolvent) Conclusion : Regular

5.(Axiom)→ 7.(x4)→ 8.(x3)→ 9.(Resolvent) Conclusion : Regular

4.(Axiom)→ 8.(x3)→ 9.(Resolvent) Conclusion : Regular

Since all the paths in π are regular, π is also regular. Secondly, π has to be
input.

Definition 2.4. For π = (D1, D2, ..., DL = D) if D1 is a clause from F and
for all 1 ≤ i ≤ L

2
all D2i are clauses from F and all D2i+1 are resolvents over

D2i and D2i−1 then π is input.

So a proof of the input form will have the structure of starting by resolving
over 2 clauses from F and then resolving over the found resolvent and another
clause from F repeatedly until D is reached. The list representation 2.7 of
our example shows that π is not of the input form.
Combining these we have the definition of a trivial resolution proof

Definition 2.5. If π is regular and π is input, π is a trivial resolution proof.

Let’s look at an example of a trivial resolution refutation proof of:

F := (x11 ∨ x12) ∧ (x02 ∨ x13) ∧ x03 ∧ x01

11

Figure 2: DAG representation of trivial resolution proof example

Where π : F ` ⊥ and π in the list form is:

1. x02 ∨ x13 Clause from F
2. x03 Clause from F
3. x02 Res(1, 2)
4. x11 ∨ x12 Clause from F
5. x11 Res(4,3)
6. x01 Clause from F
7. ⊥ Res(5, 6)

(2.7)

Looking at the list it is apparent that π is of the input form and it can be
seen that it is regular by looking at Gπ (figure 2). Thus, π is indeed a trivial
resolution refutation. Looking back at section 3, unit propagation is also
able to refute the formula by the following steps:

initial state (x11 ∨ x12) ∧ (x02 ∨ x13) ∧ x03 ∧ x01
Unit Propagate x03 (x11 ∨ x12) ∧ x02 ∧ x01
Unit Propagate x02 x11 ∧ x01
Unit Propagate x11 ⊥

(2.8)

This connection is not coincidental since the two are closely related. To
reach a refutation in a trivial resolution proof, F must contain at least one
unit clause. As mentioned earlier, the only way to get the empty clause
as a resolvent, is to resolve over two unit clauses of the same variable with
opposite truth signs xi and ¬xi. The index form of π restricts D2i to be an

12

axiom so for π : F ` ⊥ a unit clause is needed on DL−1 and DL−2. Since
DL = ⊥ is the result of an application of the resolution rule, DL−1 has to be
an axiom and a unit clause.

Proposition 2.2. If F has a unit resolution refutation, then F has a trivial
resolution refutation. If F has a trivial resolution refutation, then F has a
unit resolution refutation.

Proof. Assume that F is unsatisfiable and has a π = (D1, D2, ..., DL) such
that π : F ` ⊥. Then as argued, step DL−1 and DL−2 must be unit clauses
and DL−1 ∈ F . Let’s call the single literal in these clauses for x so DL−1 = xσ

and DL−2 = x1−σ. For DL−2 to be a unit clause there must exist a Dk

consisting of exactly two literals xσk and x1−σ for the resolvent to be a single
literal. When we unit propagate on xσ, xσk will then become a unit clause.
Inductively this will continue until F contains conflicting unit clauses. Since
we know that F is unsatisfiable from the premise, unit resolution can’t reduce
F to the empty set.

Building on proposition 2.2 and the properties of unit resolution and trivial
resolution [3], we have π : F ` C and C = aσ1∨aσ2∨...∨aσk iff F is refutable by
unit resolution of F ∪{a1−σ1 , a1−σ2 , ..., a1−σk }. This is the property used in con-
flict analysis in CDCL. When a conflict is found, a trivial resolution proof is
constructed backwards through the clauses in F leading to the conflict, until
a clause C with certain properties are found. The current truth assignment is
falsified by C ensuring that the algorithm won’t evaluate known unsatisfiable
states multiple times. This is expanded on later.

2.5.2 Clause Learning

2.5.2.1 First unique implication point

Working on the intuition of CDCL, consider the following example CNF
formula:

F := {x11 ∨ x12 ∨ x13, x11 ∨ x03, x02 ∨ x07 ∨ x04,
x05 ∨ x14 ∨ x02, x15 ∨ x06 ∨ x08, x14 ∨ x15 ∨ x16 ∨ x07}

(2.9)

The formula is a state in execution of DPLL solving and the decision x11
dec←− 1

is made. At this state ρ = {x11, x17, x18}. The following unit propagation will
result in conflict after propagating x11, x03, x12, x04, x05, x06. To illustrate, we

13

Figure 3: Conflict graph of equation 2.9

can construct a conflict graph (figure 3) of the process where each vertex
is a unit assignment and edges are drawn from the literals contributing to
propagating literal.

Definition 2.6. For a variable x ∈ ρ we define its decision level lev(x) as
the amount of decisions made at the stage of assignment.

Let the most recent decision variable be xdec and the current decision level be
lev(xdec). The circular nodes represent a unit assignment made at the current
decision level, the square node is the decision variable and the dashed nodes
are literals asserted in a prior decision level, e.g. asserted variable with
lev(x) < lev(xdec). Marked on the graph are two cuts. These mark the
sections which are entered through unique implication points.

Definition 2.7. A vertex in a conflict graph is a unique implication point
(UIP) if path traversals from the decision node to the conflict node pass
through that vertex.

In figure 3 the two UIP’s are x01 and x12. The decision variable is guaranteed
to be a UIP by definition. The first unique implication point (1UIP) is the
UIP closest to the conflict node, in this case x12. The objective of the 1UIP
learning scheme is to find a clause C = aσ1 ∨ ...∨ aσk where C|ρ is falsified and
there is a unit resolution refutation of F ∪ {a1−σ1 , ..., a1−σk }, where one of the

14

literals in C is the literal at the 1UIP. The fact that the decision variable
always comes with a UIP ensures that such a C is always available during
conflict analysis. So the clause C of k length has to consist of k − 1 literals
asserted outside of the current decision level and one literal inside the current
decision level namely the 1UIP. There are several different ways of creating
the C clause, for example by selecting the UIP differently, or selecting the cut
with the minimum amount of intruding edges, hence minimizing the size of
C. Zhang, Madigan, Moskewicz nad Malik [13] investigate the performance
consequence of different clause learning schemes, and 1UIP performs very
well.

2.5.2.2 Finding the 1UIP

To construct C with the described properties, we return to proposition 2.2
and the observation that if F ∪ {a1−σ1 , ..., a1−σk } is refutable by unit propaga-
tion then there is a π for which π : F ` C holds. This is exactly the case
when we falsify F by unit propagation where {a1−σ1 , ..., a1−σk } are the liter-
als outside of the current decision level contributing to reaching the conflict
node in the graph and the 1UIP. In other words, we want to find all the
literals pointing through our cut in figure 3 together with the 1UIP since we
know that assigning all of these will lead to unsatisfiability. This objective
can be reached by using the resolution rule to resolve repeatedly over the
literals asserted in the current decision level until the resolvant adheres to
the restrictions on C described above. Since the goal is to have the 1UIP as
a literal in C, the first clauses resolved are the last two resolved by unit prop-
agation. In essence, a trivial resolution proof of C is constructed backwards
from the list of clauses causing assignments during unit propagation.

15

Figure 4: Conflict resolution of conflict in equation 2.9. The column
on the left contains assignments made by unit propagation after the
decision x01. The reason column states the clause from which the as-
signment is derived. The trivial resolution proof should be read bottom
up and proves C marked with green.

Figure 4 shows this process executed on equation 2.9. Starting from the
bottom of the reason column, the resolution rule is used on every clause to
construct the proof π : F ` x02 ∨ x07 ∨ x08. The trivial resolution proof termi-
nates here since x2 is the 1UIP and lev(x7), lev(x8) < lev(xdec). It also holds
that F ∪{x12, x17, x18} is refutable by unit resolution since these propagations
have already been evaluated in step 3-7 of assignments made.

2.5.3 Non-chronological backtracking

Consider the properties of the derived clause C. Let the most recent de-
cision variable be denoted by xdec. The variables in C all have an assign-
ment level strictly lower than the level of the 1UIP, e.g. lev(x) < lev(xdec)
where lev(x) is the level of any variable x in C other than the 1UIP literal.
That means with clause C added, the 1UIP literal can be propagated at
BackjumpLevel = maxx6=xdec lev(x). CDCL uses this fact to backtrack to
BackJumpLevel instead of just going to directly explore x1−σdec .

16

Figure 5: Illustration of backjump. The red section represents the
skipped evaluation.

The intuition for this is to go back as far as we can while still using the
observation that x1−σdec has to be set, instead of going down a potential long
calculation to conclude if this assignment leads to unsatisfiability. This is
illustrated in figure 5 where the red section represents the skipped evaluation.
It has to be noted, as presented by Nadel and Ryvchin [10], that a CDCL
solver with chronological backjump, e.g. going back to the decision variable,
performs well on some benchmarks.

2.5.4 Restarting

During execution of CDCL in practice it is beneficial to restart the algo-
rithm during evaluation of a problem. A restart involves setting ρ ← ∅
and choosing new decision variables for the next run. In other words, a
backjump to assignment level 0 is performed. The benefit of a restart is that
the algorithm benefits from learning derived clauses from one branch of the
execution tree in the rest of the execution tree. The new clauses contribute
to unit propagations not possible at the initialisation of the algorithm. The
scheme for when a restart is performed can be very simple such as once ev-
ery n seconds or conflicts. Different restart schemes have different benefits.
An aggressive restarting scheme might be better for unsatisfiable formulae

17

since it enables more unit propagations at early decision levels [7]. A pas-
sive restarting scheme might be necessary for satisfiable problems since the
algorithm needs to assign all variables in one run through.

2.5.5 Pseudocode for the CDCL algorithm

Now all the pieces can be brought together (algorithm 6) as follows. First,
much like DPLL, unit propagation is executed for as long as possible. Then,
if F is neither satisfied nor falsified, a decision variable is chosen and a de-
cision is made. Notice that the recursive call made in DPLL is gone, since
backjump decides the next evaluated state. In an implementation, ρ should
be constructed in a way such that the assertion level of each assignment is
known. This will allow backjump to set ρ to the correct state. The imple-
mentation differs from that in DPLL where F is directly modified and the
assignments are tested recursively. The recursive step is no longer necessary
since the added clause C will cause the decision variable to propagate im-
mediately by design. Unit propagation in this implementation of CDCL is
simpler than the DPLL counter part but methods for checking if |= F |ρ has
to be implemented for the if statements to trigger.

18

Algorithm 6: CDCL
CDCL (F)

L← 0 // init decision level var
ρ← ∅ // init ρ
while true do

Unit Propagate updating ρ
if ρ falsifies F and L = 0 then

return unsat
if ρ falsifies F then

Do conflict analysis and add C to F
// Backjump
Find Backjump level Lback from ρ
L← Lback
Remove all assignments in ρ with lev(x) ≤ L
continue // With next iteration

else
if All variables ∈ ρ then

Exit and return true and the assignment ρ
L← L+ 1
X ← a variable from F where ρ(X) = ∗
ρ← X0 // Set decision var to false
continue // With next iteration

19

3 Pseudo-Boolean Solving and 0-1 Integer Lin-
ear Programming

3.1 Pseudo-Boolean formulae

Now that a method of solving satisfiability problems is established, let’s ex-
amine another class of problems, integer linear programs (ILP) and how to
solve the variant 0-1 integer linear programs or pseudo-boolean formulas with
the same approach as CDCL.

Linear programming [5] is concerned with maximizing or minimizing an
objective while satisfying of a series of linear constraints. The constraints
manifest as either an equality or an inequality that a certain solution or op-
timization has to comply to. The nature of 0-1 integer linear programming
(0-1ILP) is that the variables also are restricted to be 0 or 1. This is very
similar to truth assignment which is what this paper has been concerned with
so far. This is an example of such constraints:

2x1 + 3x2 − 4x3 ≥ 1

2x3 − 3x1 + 1x2 ≥ 2

This problem can be satisfied trivially in the setting of ILP with no 0-1 re-
strictions by setting x2 = 2 and the other variables x1, x3 = 0. Under the 0-1
restriction however, there is no satisfying assignment. This becomes appar-
ent when x3 ← 1 and x1 ← 0 to satisfy the second constraint. Substituting
these necessities into the first constraint we get 0 + 3x2 − 4 ≥ 1 which can
not be satisfied. In the case of maximization and minimization an objective
function is also provided. It is then the goal to find a set of variable assign-
ments ρ with the respectively minimum or maximum value that also satisfies
all constraints.

3.1.1 Normalized Form

Before going in to cutting planes we introduce normalized form of Pseudo-
Boolean formulas as defined in the Handbook of Satisfiability [3]. Working
on formulas in normalized form allow us to describe the rules of derivation
in a simple fashion and introduce the term slack. Specifically, normalized

20

formulation concerns the structure of constraints which has to adhere to∑
i∈[n], σ∈{0,1}

aσi x
σ
i ≥ A

Where all aσi ∈ N+ and A ∈ N+ and the constraint has to be a greater-than
constraint. A is referred to as the degree of falsity of the constraint. Note
that if A ≤ 0 the constraint is always satisfied in this form. To normalize
any constraint, the following tools are needed:
If the constraint is a lesser-than constraint, we can multiply it with −1 to
flip the inequality as seen in equation 3.1.∑

i∈[n],σ∈{0,1}

aσi x
σ
i ≤ A ⇔

∑
i∈[n],σ∈{0,1}

−aσi xσi ≥ −A (3.1)

If the constraint is an equality constraint, we split the constraint into two,
one lesser-than and one greater-than constraint as seen in equation 3.2.∑

i∈[n],σ∈{0,1}

aσi x
σ
i = A ⇔

∑
i∈[n],σ∈{0,1}

aσi x
σ
i ≥ A,

∑
i∈[n],σ∈{0,1}

aσi x
σ
i ≤ A (3.2)

And lastly, to change any coefficient from negative to positive, we use that

aσxσ = aσ(1− x1−σ) (3.3)

This holds since any variable xσi can only take 0-1 values and when x1i = 1
then x0i = 0 and vice versa. So to normalize any constraint, follow these
steps:

1. If the constraint is an equality use equation 3.2 to split the constraint
2. If the constraint is a lesser-than constraint use 3.1 to factor by -1
3. For all coefficient variable pair aσi x

σ
i where aσi ≤ −1 rewrite using equation 3.3

21

An example of such a conversion of the following constraint follows

3x1 − x2 − 5x3 + 4x4 ≤ −3
3x11 − x12 − 5x13 + 4x14 ≤ −3
−3x11 + x12 + 5x13 − 4x14 ≥ 3

−3(1− x01) + x12 + 5x13 − 4(1− x04) ≥ 3

−3 + 3x01 + x12 + 5x13 − 4 + 4x04 ≥ 3

3x01 + x12 + 5x13 + 4x04 ≥ 10 (3.4)

3.1.2 CNF Problems as Pseudo-Boolean Formulae

CNF formulae as presented as input for the DPLL and CDCL algorithms,
can be described as Pseudo-Boolean formulae. A CNF formula is a series of
clauses consisting of literals for which at least one has to evaluate true for
each clause. This is a special case of a Pseudo-Boolean model where each
constraint corresponds to one clause of the CNF formula. A CNF formula F
consisting of n clauses φn is equivalent to a set of Pseudo Boolean constraints
as follows:

F =
n∧
i=1

(xσ1 ∨ ... ∨ xσki) as PB constraints:
n⋃
i=1

{xσ1 + ...+ xσki ≥ 1}

The benefit of formulating problems in PB format comes with conciseness and
an improved potential of performing calculations over the set of constraints.
Pseudo-Boolean Formulae can be formulated in CNF, but the size of the
resulting CNF formula can be exponentially larger [3]. For instance the
single Pseudo-Boolean constraint

−x1 + x2 − x3 + 2x4 + x5 ≥ 1

corresponds to the following 7 CNF clauses

(x01 ∨ x12 ∨ x14) ∧ (x01 ∨ x03 ∨ x14) ∧ (x01 ∨ x15 ∨ x14)
∧(x12 ∨ x03 ∨ x14) ∧ (x12 ∨ x15 ∨ x14) ∧ (x03 ∨ x15 ∨ x14)
∧(x01 ∨ x12 ∨ x03 ∨ x15)

Constraints where all aσi ∈ {0, 1} are called cardinality constraints. Cardinal-
ity constraints dictate that A literals of the constraint has to be 1. A CNF

22

clause can therefore be expressed as a a cardinality constraint where A = 1.
There are other methods of encoding Pseudo-Boolean formulae in CNF, but
this specific case illustrates the conciseness of Pseudo-Boolean formulation.
New variable introduction, substitution and other encodings such as the one
proposed by Bailleux, Boufkhad, and Roussel [2] can support encoding to
CNF in a more efficient way, though it either still has worst case exponential
size consequences or in the case of substitution comes with an overhead of
defining new variables.

3.1.3 Solutions to Pseudo-Boolean Formulae

To visualize the solution space of a Pseudo-Boolean formula consider this
model:

2x1 + 2x2 ≥ 1

−2x1 + 5x2 ≥ −3
x1 − 4x2 ≥ −9 (3.5)

−6x1 − 3x2 ≥ −17
3x1 − x2 ≥ 0

To satisfy this system with a Pseudo-Boolean solution, x1 and x2 has to
comply with all the constraints and xi ∈ {0, 1}. Since there are just 2
variables in this example, each constraint can be plotted as a linear function
in a coordinate system as seen in figure 6. The solution space is highlighted
by marking the area where all the linear constraints are satisfied. For this
example there are 2 solutions under the 0-1 constraint at the coordinates
(1,0) and (1,1) (marked with red dots). This visualization can be used to
understand how the solution space corresponds to a polytope with potential
0-1 integer solutions for any number of variables. The polytope can have no
0-1 integer points or be infeasible, in which case the system is unsatisfiable.
To check if a solution space has 0-1 solutions, the polytope has to be cut until
a 0-1 integer solution is in a corner of the polytope. This is called cutting
planes.

23

Figure 6: Plot of the constraints in equation 3.5. The first axis is x1 and
the second axis is x2. The blue section is the solution space, the blue
dots mark integer solutions and the red dots mark 0-1 integer solutions.
Each constraint is labelled ”Eq. i” for 0 ≤ i ≤ m constraints.

3.2 Cutting Planes

3.2.1 Derivation Rules of Cutting Planes

Before covering rules specific to integer linear programs, there are 3 sim-
ple rules that can be used to manipulate Pseudo-Boolean formulas without
changing the solution space. These rules are defined as Biere, Heule, van
Maaren and Walsh [3] present them. The first rule of reasoning is:

Literal Axioms: xσi ≥ 0 and xσi ≤ 1

Which means that any 0-1 variable can be introduced as either larger than
0 or smaller than 1. ∑

i a
σ
i x

σ
i ≥ A

Multiplication: ∑
i ca

σ
i x

σ
i ≥ cA

for c ∈ N+

The multiplication rule is extended to include a method of changing a less-
than constraint to a greater-than constraint. This rule is needed as previously
mentioned to reformulate constraints to normalized form.

24

∑
i a

σ
i x

σ
i ≤ A

Multiplication (negative): ∑
i ka

σ
i x

σ
i ≥ kA

for k ∈ Z−

The rule is sound since
∑

i a
σ
i x

σ
i and k are simply integer values and for any

real numbers a and b it holds that a ≤ b⇔ −a ≥ −b.

3.2.2 The Chvátal-Gormory Cut

The fundamental rule for cutting real solutions from the solution space is
division (Also called Cvátal-Gomory cut rule [3]).:∑

i ca
σ
i x

σ
i ≥ A

Division: ∑
i a

σ
i x

σ
i ≥ dA/ce

for c ∈ N+

This rule can alter the solution space, essentially adding a cut removing real
solutions. The rule is sound since for any integer K it holds if cK ≥ A then
K ≥ A/c and then K ≥ dA/ce follows. For example if A/c = 2.3 then K
has to be at least d2.3e = 3 to satisfy the inequality. General division is an
extension of the rule and states the following:∑

i a
σ
i x

σ
i ≥ A

General Division: ∑
i daσi /cexσi ≥ dA/ce

for c ∈ N+

General division can be derived using the rule of axioms and division. Con-
sider the constraint

∑
i a

σ
i x

σ
i ≥ A if we want to divide by a divisor not

common between all aσi , we can use the rule of axioms to construct new con-
straints xσi ≥ 0 and add them to the first constraint until all coefficient has
the common divisor. This is General Division. Let us consider again example
3.5 and derive a couple of cuts using the division rule. For any constraint
where the coefficients have a common denominator, divide by the greatest
common denominator. For the first constraint in 3.5:

2x1 + 2x2 ≥ 1 Division by 2

x1 + x2 ≥ 1 (3.6)

For the 4th constraint 3.5:

−6x1 − 3x2 ≥ −17 Division by 3

−(6/3)x1 − (3/3)x2 ≥ d−17/3e
−2x1 − x2 ≥ −5 (3.7)

25

Figure 7: The Chvátal-Gomory cuts 3.6 and 3.7

These derived constraints are plotted in figure 7 and we can see the reduced
solution space. If it is possible to get the inequality 0 ≥ 1 using only the
rules reasoning listed here, no 0-1 integer solution exist, since division doesn’t
remove 0-1 integer solutions.

3.3 Conflict Driven Solving of PB Formulae

To apply the CDCL procedure to a Pseudo-Boolean formula some elements
are needed, firstly a way to determine conflicts, secondly a way to unit prop-
agate and thirdly a way to perform resolution to learn new constraints from
conflicts. The purpose of this section is to introduce conflict driven Pseudo-
Boolean solving with the objective of understanding the solving process well
enough to see why presolving can be beneficial. We will be focusing on Con-
flict Driven Solving based on division instead of the saturation rule as this
is how RoundingSat is implemented [6]. RoundingSat is the Solver used to
conduct the experiments.

3.3.1 Recognizing Conflicts

To determine when a constraint is violated, the term slack is introduced. To
utilize Slack, the coefficients in a constraint have to be positive. Therefore,
normalized form is assumed for all constraints, and if the constraint is not in

26

normalized form, the conversion mentioned above, is executed before calcu-
lating slack. Slack is a measure of how far a constraint is from being falsified
by ρ. For a constraint C of n literals and a truth assignment ρ, the slack is
defined as such:

slack(C, ρ) =

 ∑
i∈[n], σ∈{0,1}, ρ(x1i)6=0

aσi

− A (3.8)

Another way of describing slack is that it’s the sum of the coefficients from all
true and unassigned literals minus the degree of falsity. We call slack(C, ρ)
the slack of the constraint C under the assignment ρ. Since the coefficients
are positive then if the slack of a constraint slack(C, ρ) ≤ 0 the truth as-
signment ρ falsifies C. This fact can be used to propagate variables if their
coefficient is larger than the slack.

Propagation in conflict driven Pseudo-Boolean solving:

• If a variable xσi has a coefficient aσi > slack(C, ρ) add ρ← xσi

Thus, we have the first ingredient of conflict driven solving of Pseudo Boolean
formulas; propagation. As an example let’s see how propagation can be used
on constraint 3.4 from section 3.1.1. We start by calculating the slack for the
constraint where no variables are assigned in ρ.

slack(3x01 + x12 + 5x13 + 4x04 ≥ 10, ∅) = (3 + 1 + 5 + 4)− 10 = 3

So this means that we cannot falsify a variable with a coefficient greater than
3 without falsifying the constraint resulting in conflict. Therefore, we can
immediately propagate ρ ← x13 and ρ ← x04. Note that this doesn’t change
the slack of the constraint. If however ρ(x04) = 0 when the propagation step
is executed, we get the slack

slack(3x01 + x12 + 5x13 + 4x04 ≥ 10, ρ = {x14}) = (3 + 1 + 5)− 10 = −1

This is a conflict and thus under this assignment there is no way to satisfy
the constraint.

3.3.2 Conflict Analysis

When a conflict is found, much like CDCL, conflict analysis is performed.
The difference is, that the variables we can resolve over have coefficients and

27

that we need to be sure that only integer solutions are considered. Let’s start
by introducing the resolution rule for Pseudo-Boolean instances:

ajx
σ
j +

∑
i 6=j a

σ
i x

σ
i ≥ A bjx

1−σ
j +

∑
i 6=j b

σ
i x

σ
i ≥ B

(
∑

i 6=j a
σ
i + bσi)x

σ
i ≥ A+B − aj

for aσi = bσj

Which can be derived ny adding two constraints with variables xσi and x
1−σ
i as

well as same coefficients. To get two constraints to have the same coefficient
on the variable xj we want to resolve over, we find the greatest common
denominator of the two coefficients of xj and call it d = gcd(ai, bj). Then
we multiply the first constraint with kA = d/bj and the second constraint by
kB = d/aj. By example:

6x11 + 3x12 + 5x13 ≥ 6 Constraint A
9x01 + 2x12 + 2x14 ≥ 4 Constraint B

gcd(6, 9) = 3 Enable resolve over x1
18x11 + 9x12 + 15x13 ≥ 18 A ∗ (9/3)
18x01 + 4x12 + 4x14 ≥ 8 B ∗ (6/3)

(9 + 4)x12 + 15x13 + 4x14 ≥ 18 + 8− 18 Resolving over x1
13x12 + 15x13 + 4x14 ≥ 8 (3.9)

To resolve over a variable xi with constraint ajxσj +
∑

i 6=j a
σ
i x

σ
i ≥ A and

bjx
1−σ
j +

∑
i 6=j b

σ
i x

σ
i ≥ B where aj 6= bj:

• Find gcd(aj, bj)

• Multiply constraint A with kA and constraint B with kB

• Use the resolution rule (add the constraints together)

Now that we have a way of resolving constraints the approach is very similar
to the CDCL conflict analysis. Resolve the conflicting constraint with the
reason for the conflict. The issue we can run into is that the constraint derived
from conflict analysis is not falsified by ρ. This is essential, as described in
the CDCL section, since the new constraint has to propagate at the decision
level we jump back to. For example consider the following constraints:

2x11 + x12 + 2x03 ≥ 2 (3.10)
2x01 + x14 ≥ 2 (3.11)

28

After ρ ← x13 the first constraint propagates ρ ← x11 and the slack of the
second constraint is -1. When we resolve over the conflicting constraint 3.11
and the reason 3.10 we get:

2x11 + x12 + 2x03 ≥ 2 2x01 + x14 ≥ 2

x12 + 2x03 + x14 ≥ 2

Which isn’t falsified under ρ and doesn’t propagate. To solve this issue, we
need to utilize cutting planes (division) and weakening.∑

i a
σ
i x

σ
i ≥ A

Weakening: ∑
i 6=j a

σ
i x

σ
i ≥ A−max(a1j , a0j)

When a constraint is weakened the greatest contribution of a variable is
assumed to be valid, thus not changing the slack. Weakening can be derived
by using the axiom rule to infer the constraint x1−σj ≥ 0, multiplying with aσj
and adding the axiom constraint to the constraint we wish to weaken. Using
the method proposed in Handbook of Satisfiability [3] the following steps can
be iterated over until we have a derived constraint which is falsified by ρ:

• Let the variable responsible of falsifying the constraint Cconfl under ρ
be called xσconfl. Then weaken the constraint Creason on a non-falsified
literal l′ which has a coefficient al′ not divisable by a1−σconfl. This gets
weaken(Creason, l′)

• Divide this by aσconfl and obtain divide(weaken(Creason, l′), aσconfl).

• Resolve the conflict constraint over this modified constraint,
getting resolve(Cconfl, divide(weaken(Creason, l′), aσconfl)).

The intuition for this method is to remove all non 0-1 solutions from the
solution space before inferring a new constraint. The proof of correctness for
this method can be found in [3], and will not be covered here.

29

If we apply this method to the above example, we get:

ρ = {x13, x11}
Cconfl = (2x01 + x14 ≥ 2)

Creason = (2x11 + x12 + 2x03 ≥ 2)

aσconflx
σ
confl = 2x11

l′ = x12
weaken(Creason, l′) = (2x11 + 2x03 ≥ 1)

divide(weaken(Creason, l′), aσconfl) = (x11 + 2x02 ≥ 1)

resolve(divide(weaken(Creason, l′), aσconfl)) = (x14 + 2x03 ≥ 2)

Which is falsified under ρ.

3.4 Optimization Problems

In many cases the objective of solving Pseudo-Boolean instances is to obtain
an optimal solution in respect to an objective function. The goal is to either
minimize or maximize the value calculated by inserting a solution in the
objective. An objective function looks like this:

max(
∑
i

aili) or min(
∑
i

aili)

Where ai is the coefficient of the literal li. If we insert a satisfying assignment
ρ we call the value of the objective function for the objective value Aρ.

Aρ =
∑
i

ai(ρ(li))

The solving procedure for optimization problems is almost identical to the
one for PB satisfiability problems. But instead of returning when a satisfying
assignment is found, the solution is used to construct a new constraint∑

i

aili ≤ Aρ − 1

if it is a minimization objective or∑
i

aili ≥ Aρ + 1

30

if it is a maximization objective. Then the satisfying assignment is saved ρ
and we run the solver again. Consider the following example

ρ = {x01, x02, x13, x14}
Obj function: min(2x01 + x02 − x13 + 3x04)

Aρ = 2(1) + 1(1)− 1(1) + 3(0) = 2

New constraint introduced: 2x01 + x02 − x13 + 3x04 ≤ 1

When the solver reaches unsat the last satisfying assignment ρ is returned,
thus returning the optimized solution. This method is called linear search.
Experiments using binary search to find the objective value has been at-
tempted, but linear search seems to be the fastest solution in most cases
[11].

3.5 Pseudo Boolean Solving Procedure

On the basis of propagation and conflict analysis, the following procedure is
put forward to solve Pseudo Boolean instances.

• Propagate until either a conflict or no propagations are possible.

• If the problem is satisfied, return sat or in the case of an optimization
problem, save ρ and add the new constraint and run the solver again.

• If there is no conflict, make a decision on an unassigned variable.

• If there is a conflict and decision level is 0, return unsat. Else do
conflict analysis and add derived constraint to the set of constraints.

3.6 Presolving Methods

Presolving for mixed integer programs (MIP) is a series of transformations
and reductions aiming to reduce the amount of redundant information and
restructuring problems to be easier to solve [1]. In some cases for MIP prob-
lems presolving increase the solving speeds by magnitudes and can be the
difference of solving a problem and timing out. In the paper Presolve Re-
ductions in Mixed Integer Programming [1], an experiment on 3047 models
showed that 504 instances couldn’t be solved within a given time limit with-
out utilizing presolving. Although, presolving in many cases is beneficial, in

31

16 of the 3047 test cases, presolving actually increased the solve time and
made them intractable.
The presolvers utilized in this paper are supplied by the presolving library
PaPILO [14]. PaPILO is built for MIP, and it therefore follows that several
of the presolving methods are designed to optimize with continuous and non-
binary integer variables in mind. However, a Pseudo-Boolean instance can
be seen as a subproblem to a MIP and since PaPILO is sound for all MIP
problems, it follows that it is sound for Pseudo-Boolean instances. All of the
presolving methods are described in Presolve Reductions in Mixed Integer
Programming [1], but several of the methods are not relevant to PB solving,
since the focus is on replacing general integer or real variables with restricted
variables.

3.6.1 Probing

The intuition for probing is to bound variables depending on a binary vari-
able. This is very effective for MIP but since all bounds are predetermined to
be 0-1 for PB instances, stronger bounds can not be derived without fixing a
variable to a 0-1 value. However, fixing a variable can be immensely valuable
if it can be done cheaply, since it halves the amount of possible solutions.
The application of probing on PB instances is therefore to attempt to fix vari-
ables to a each other, before solving is initiated. Furthermore, simple probing
attempts to substitute dependent variables. Consider the two constraints:

x1 + x2 + x3 ≤ 2

x1 − x2 = 0

As we can see from the second constraint if x1 = 1→ x2 = 1 and x1 = 0→
x2 = 0. Therefore, x2 is dependant on x1 and x2 can be substituted for x1 in
the first constraint.

3.6.2 Non-Zero Cancellation

Non-Zero Cancellation (referred to as sparsify in PaPILO) concerns finding
constraints with parallel variables and subtracting one constraint from an-
other to reduce the amount of non-zero entries. Non-Zero entries have a
great effect on many subroutines in MIP solvers [1], so we will investigate
the effect on conflict driven PB solving. Non-Zero entries are the amount of
variables for which ai 6= 0.

32

3.6.3 Conflict Analysis as a Presolve Reduction

Conflict analysis (referred to as propagation in PaPILO) can also be used to
derive conflict constraints from infeasible subproblems even before solving is
initiated [1]. Conflict analysis is used to transform an initial set of conflict
constraints in to a single conflict constraint. In MIP, this presolve reduc-
tion provides a 5% speed-up in the "≥ 10 sec" bracket in the experiments
conducted by Achterberg et al.[1]. Since conflict analysis is one of the key el-
ements in conflict driven Pseudo-Boolean solving, it might be very beneficial
to have these reductions calculated independently of a specific truth assign-
ment ρ. Allowing for conflicts to occur earlier in the propagation graph might
reduce the depth of the tree significantly, resulting in faster solve speed.

33

4 Implementation
This section will cover the implementation of a presolve step using the mixed
integer linear presolver PaPILO [14] to optimize Pseudo-Boolean formulae
before solving them with the solver RoundingSat [15]. The project is called
PresolveOpb. The Opb Presolver is built to handle benchmark cases from
the 2016 Pseudo-Boolean competition [12], and is designed to accommodate
the requirements set for these solvers. The project is located at this git
repository:

https://github.com/AKjeld/PresolveOpb

PresolveOpb has the following features:

• Presolving any Pseudo-Boolean instance in .opb file format.

• Utilizing state of the art presolving methods provided by the PaPILO
library.

• Runs straight from the ./PresolveOpb binary.

• Allows for changing settings such as time limit and enabling/disabling
various presolve reductions.

• Provides postsolving to retrieve the solution from the presolved instance
in the original problem space.

4.1 Requirements

The goal of the program is to read a problem instance in the .opb file format
and apply presolving methods from the PaPILO presolver, while still con-
serving the constraints of a Pseudo-Boolean problem. That is, conserving the
0-1 integer constraints across all variables. The program should supply the
presolved instance in the same format as the original as well as a postsolve
instance. Furthermore, the program should have a postsolve feature, where
the user supplies a solution file along with the postsolve instance, to get the
solution in the original problem space.

34

https://github.com/AKjeld/PresolveOpb

4.2 Pseudo-Boolean Instances

Some limitations apply to the file format of the .opb instances which affect
the structure of the problems compared to normalized form. It is necessary to
have a conversion from the output of the PaPILO presolver to the Pseudo-
Boolean instance format. This description of Pseudo-Boolean instances is
based on the definition from Input/Output Format and Solver Requirements
for the Competitions of Pseudo-Boolean Solvers [12].
We name the variables in a constraint {x0, x2, x3, ..., xn} then any Pseudo
Boolean constraint can be reformulated to adhere the following:∑

i∈[n]

a1ix
1
i ≥ A or

∑
i∈[n]

a1ix
1
i = A (4.1)

where a1i denotes the coefficient for x1i . Since we’re working on Pseudo-
Boolean Constraints, x1i ∈ {0, 1}, A ∈ Z and a1i ∈ Z. The .opb format
dictates that all constraints are written using only x1i . To rewrite a negated
variable we use equation 3.3, and if the constraint is in .opb format we write
x1i interchangeably with xi To rewrite a constraint∑

i∈[n],σ∈{0,1}

aσi x
σ
i ≤ A (4.2)

to the desired formulation, we can factor the constraint with −1. This trans-
formation is used to change less than constraints yielded by the presolve step.
By example:

3x11 + 2x02 − 3x13 ≤ 4 ⇔
−3x11 − 2x02 + 3x13 ≥ −4 ⇔

−3x11 − 2(1− x12) + 3x13 ≥ −4 ⇔
−3x11 − 2 + 2x12 + 3x13 ≥ −4 ⇔
−3x11 + 2x12 + 3x13 ≥ −2

So to rewrite a formula to the .opb format the following steps are followed:

1. If the constraint is in the form of equation 4.2 factor by -1
2. For all coefficient variable pairs aσi x

σ
i where σ = 0

rewrite to aσi − aσi x1−σi and subtract aσi from each side of the constraint

35

* #variable= 4 #constraint= 2
min: 2 x1 +2 x2 -1 x4 ;
1 x1 -2 x2 +1 x3 +2 x4 >= 2 ;
-2 x1 + 2 x2 = 2 ;

Figure 8: Example .opb file

A .opb file covers two different problems, namely, Pseudo-Boolean Optimiza-
tion (PBO) and Pseudo-Boolean Satisfaction (PBS) [12]. They differ in that
a PBO instance has a minimize objective function as the first non-comment
line of the file. An example of a .opb PBO file can be seen in figure 8. Any
line beginning with a "*" is a comment line, and the very first comment is
a header including values for the number of variables and constraints in the
problem.

4.3 Parsing

The first step of presolving is to parse the instance. The PaPILO presolver
comes with a command-line interface designed to parse, presolve and save the
presolved instance to a new file. However, PaPILO doesn’t handle Pseudo-
Boolean problem instances by default [14]. Therefore, PresolveOpb comes
with a parser which reads the input file and utilizes the problem builder
provided by PaPILO to hold the parsed constraints. Before loading the con-
straints, sufficient memory is allocated using information from the header of
the instance file which contains information on the amount of variables and
constraints. According to the documentation of the Pseudo-Boolean com-
petition benchmarks, some problems might have very long constraints, thus
the parser should avoid reading whole lines at once [12]. The problem parser
in PresolveOpb reads the file using a tokenized input stream processing one
coefficient or variable at a time to avoid this issue. The parser also sets all
the bounds for the variables to 0-1 and loads the objective function if one is
provided. PaPILO stores the problems in a matrix where each column repre-
sents a variable and each row represents a constraint. PresolveOpb creates a
mapping of variables to columns and places values in the matrix accordingly.
Table 2 shows the matrix retrieved from parsing the example in figure 8. The
degree of falsity is defined by the row’s upper and lower limit. If a limit is
infinite (inf) the inequality is open in the corresponding direction.

36

Lower Limit x1 x2 x3 x4 Upper Limit
2 1 -2 1 2 inf
2 -2 2 2

Table 2: Constraint matrix of .opb file in figure 8

4.4 Presolving

PresolveOpb now sets up PaPILO to use the settings provided in the pa-
rameter file, and calls the presolver from PaPILO, presolving the instance.
The essential part is that PaPILO is forced to preserve the binary quality of
the variables, so PresolveOpb disables the presolving methods that would
substitute binary variables with general integer variables. After the presolv-
ing has been executed, PresolveOpb validates the output by checking that
the name convention and the 0-1 restriction on the variables is conserved.
This validation step is important in case a different version of PaPILO is
used, since the default presolvers might be changed in future versions. The
diagram (figure 9) shows the sequence of messages passed around when a
user requests presolving of a test instance. The format of a parameter file
along with the definitions of each parameter is described in the repository.

37

Figure 9: UML sequence diagram showing the presolve step

38

4.4.1 Retrieving the Presolved Instance

The last step is to retrieve the presolved instance. Since PaPILO does not
deliver the constraints under the .opb file limitations, the conversion from
Section 4.2 is applied to all constraints not adhering to this format. Then
the constraints are written in the .opb format to the output file. If the
instance has an optimization objective, a postsolve file is also written. After
optimizing, this file can be used to postsolve a solution.

4.5 Post-solving

After solving the instance using any desired solver, the user may supply the
solution along with the postsolve file to retrieve the solution in the original
problem space. Presolving instances will result in columns in the constraint
matrix to be removed, causing the presolved instance to have a different
amount of variables than the original problem. The postsolve instance con-
tains the information on variable mappings between the original and the
presolved instance. PresolveOpb reads the solution from the presolved in-
stance and applies the variable mapping to get the solution in the original
problem space. The postsolve file is an instance of the PaPILO postsolve
object, which comes with a method to achieve this. The solution is then
verified to be feasible in the original problem space, before being supplied to
the user.

39

5 Testing

5.1 Experiment setup

The Pseudo-Boolean solver used for the experiments is RoundingSat [15]
on the git commit 67a39421 from 5th March 2021 (RoundingSat does not
have a version label). RoundingSat does also support Linear Programming
methods provided by SoPlex, but these were not used, since the goal of the
experiments is to investigate the impact of presolving on Conflict Driven
Pseudo-Boolean solving. The experiments were conducted on a 2.0 GHz
Quad-Core Intel i5 processor with 16 GB RAM. The OS of the testing system
is macOS Catalina v. 10.15.7. For each instance a baseline solve-time was
obtained by running RoundingSat on the non-presolved instance referred to
as <instance>.opb and compared to the solve-time of the presolved instance
referred to as <instance>.pre.opb.

5.2 Test instances

Below are the different datasets described. The tests were run with different
timeouts depending on the amount of instances (N) and the average sol-
vetime. The names of the datasets are obtained from the PB competition
folders.

Dataset name Description Timeout (s) N
OPT-BIGINT-LIN Optimization instances

from PB16 competition
3600 226

d_n_k Decision instances
from PB16 competition

3600 84

nossum Decision instances
from PB16 competition

2400 150

Many of the test instances timed out even with a timeout of 7200 seconds.
Therefore, due to limitations of the testing setup, some of the instances are
excluded from the results since both the original and presolved instance were
intractable to solve. Other instances, such as the dataset sumineq from the
PB16 competition were solved very fast (< 10 seconds). These instances
were also excluded since the fluctuations in solve time for both the presolved
and original problems were minimal.

40

In the results, a faster time is defined as at least 10% improvement, and a
slower time is at least 10% slower. The postsolve step takes negligible time
to execute across all tests, and is therefore not included in the results.

5.3 Results

5.3.1 Nossum

Testing on these instances revealed that most of the instances were not solv-
able inside the timeout limit. 10 of the instances were ran with a timeout of
7200 seconds, but these were still not solvable. There were 11 problems that
were solvable, and saw a change after presolving.

N Solvable
(pre)

Solvable
(base)

Faster Slower Avg. time
change

Total time
change

150 11 10 5 6 -8.08% -34.987%

Table 3: Results on the Nossum dataset

The column Avg. time change refers to the speedup seen for a single instance
in relation to the original solve speed. The Total time change column refers
to the total solve time of all solvable problems. It was possible to presolve
all 150 instances with propagation as the most called presolve reduction.
Propagation was the only successful presolve call in the 11 solvable instances.

avg. variables avg. constraints avg. variables (pre) avg. constraints (pre)
4122 8630 3525 7428

Table 4: Nossum: Avg. instance size before and after presolving

5.3.2 Optimization instances

Bracket Models Faster Slower Avg. time change
≤ 1s 96 16 64 +8780%
≤ 10s 7 5 2 -11.00%
≤ 3600s 20 13 5 -16.6%
Timeout 103

Table 5: Results on the optimization dataset

41

Most of the optimization instances were solvable, though some of the in-
stances were solved very fast. Due to the difference in solve time, the result
table (table 5) is split in to 3 time brackets. The brackets are exclusive,
for instance the second row contains all the models solved in the interval
1s < T ≤ 10s. The results in the fastest bracket show, that models solved
almost immediately have very volatile solve times and do not benefit from a
presolve step. But for most the models in the ≤ 3600s bracket, presolving
seems to improve the speed significantly. The most called presolve step was
propagation, and the tests yielded similar results when running only using
propagation. Out of the 226 instances, 1 model was only tractable when pre-
solved. In table 6 the total solve time of all solvable problems in the dataset is
listed. The second row shows the time difference for all models excluding the
unstable fast problems and the instance which timed out without presolving.

Models n Total solvetime (base) Total solvetime (pre)
Solvable 123 2468s 1786s
No timeout and > 1s 26 1268s 733s

Table 6: Total time results on the optimization dataset

avg. variables avg. constraints avg. variables (pre) avg. constraints (pre)
5677 16797 5127 14750

Table 7: Optimization instances: Avg. instance size before and after
presolving

5.3.3 d_n_k Dataset

This dataset contains 19 models with a solve time close to 0.1 second, both
with and without presolving. These are omitted from the table 8.

Bracket Models Faster Slower Avg. time change
≤ 1s 15 5 1 -4,76%
≤ 10s 19 4 4 -5.35%
≤ 3600s 31 13 5 -3.4%

Table 8: Results on the d_n_k dataset

42

The total solvetime for the d_n_k dataset was 10026 s and with presolve it
was 9516 s yielding an average of ≈ 5% speed-up with presolving enabled.
The most called presolve reduction was dualfix.

5.4 Evaluation

Looking at the results from the tests, presolving does certainly influence the
structure of PB instances enough to affect the solve rate significantly. The re-
sults indicate that presolving "easy" instances result in volatile solve times.
Especially the presolve reduction propagation reduces the number of vari-
ables and constraints for a majority of the instances. The tests on the Nos-
sum dataset indicate that propagation contributes positively to solve speed,
but it has to be noted that the amount of solvable instances was very limited.

Due to the limitations of the testing setup and difficulties obtaining suit-
able datasets, the tests are inconclusive. It is clear that the tests conducted
in this paper have not been optimal. The large spread of solve times resulted
in the majority of the instances to either be solved immediately or not be
solved within the time limit. This rendered many of the Pseudo-Boolean
competition instances unusable, resulting in a very limited amount of test
instances. It is clear, that a better understanding of how RoundingSat han-
dles specific cases is needed to obtain suitable test models, and in turn be
able to analyse the effect of presolving accurately. Furthermore, a deeper
analysis of how MIP Presolve reductions affect Pseudo-Boolean instances,
would also be needed to get conclusive results.

Though the results aren’t optimal, they do indicate a potential for PB solv-
ing. Especially probing seems to reduce the problem size significantly. In
relation to solve speed, a presolve step seems to be most effective and con-
sistent in the ≤ 3600s bracket. In general, executing the presolve step was
very fast and had a negligible impact on solve time in all documented cases.
Since this step is so fast to execute, it can also be utilized to gain information
about a specific instance before solving.

The total solve time of the suitable instances from the datasets also indicate
the benefit of utilizing MIP Presolve reductions in Pseudo-Boolean solving.

43

6 Conclusion
This paper has given an overview of DPLL, CDCL, conflict driven Pseudo-
Boolean solving and a basic introduction to presolve methods used in Mixed
Integer Programming. This overview lead to the documentation of PresolveOpb,
a standalone binary supporting application of MIP Presolve reductions on
Pseudo-Boolean instances. Utilizing PaPILO’s powerful presolve library,
PresolveOpb allows experimenting with state-of-the-art MIP Presolvers in
the context of Pseudo-Boolean Solving.
The computational experiments indicate that a presolve step is beneficial
for Pseudo-Boolean solving, and especially the presolve reduction probing
performs well. Due to the limitations of this paper, the results are not con-
clusive, and it is clear that there are still many unanswered questions.
Hopefully, this paper leads to new discoveries and promotes further exper-
imentation and wide application of presolve reductions in Pseudo-Boolean
solving.

6.1 Future Work

The development of PresolveOpb contributes to the future work on Pseudo-
Boolean solvers by enabling application of MIP presolve reductions on PB
optimization and satisfiability models. Building on the findings on this paper,
further experiments are needed to get conclusive results on the performance
of a presolve step. RoundingSat has some integration with LP solver SoPlex
to improve its search routine [15]. A natural next step is to test the presolve
step with this integration enabled. This was not done here, due to the scope
of the paper.

Experimenting with different data sets revealed that individual instances
yielded vastly different results. Both in form of solve times and the reduc-
tions applied during presolving. Consequently, the drastic inconsistencies
rendered many test instances unfit for testing, which impacted the extent
of the experiments in this paper negatively. Solving larger test sets with a
better performing experiment setup, will also be necessary to get consistent
results.

Lastly, theoretical analysis of which presolve reductions are transferable from
MIP to PB solving can aid future experimentation in this research field.

44

7 References

References
[1] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, Di-

eter Weninger, Presolve Reductions in Mixed Integer Programming, Zuse
Institute Berlin, 2016

[2] Bailleux, Olivier, Boufkhad, Yacine, and Roussel, Olivier. A Translation
of Pseudo-Boolean Constraints to SAT, Journal on Satisfiability pp. 191-
200, Boolean Modeling and Computation 2, 2006

[3] Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh, Handbook
of Satisfiability. Chapter 7. IOS Press, 2020

[4] Davis and Putnam, A computing procedure for quantification theory,
7:201-215, Journal of ACM, 1960.

[5] George B. Dantzig, Mukund N. Thapa, Linear Programming 1: introduc-
tion, Springer Series in Operational Research, Springer-Verlag, 1997

[6] Jan Elffers, Jakob Nordström, Divide and conquer: Towards faster
pseudo-Boolean solving. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI ’18), pp. 1291–1299, July
2018.

[7] Martin Hořeňovský, Modern SAT solvers: fast, neat and underused (part
3 of N), The Coding Nest, codingnest.com/modern-sat-solvers-fast-neat-
and-underused-part-3-of-n/, 2019

[8] Michael Huth and Mark Ryan, Logic in Computer Science. Cambridge
University Press, 2004

[9] J.P. Marques-Silva, Karem A. Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability from IEEE Transactions on Computers. pp.
506–521. 1999

[10] Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In
Proceedings of the 21st International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT ’18), volume 10929 of Lecture Notes
in Computer Science, pp. 111–121. 2018.

45

[11] Jakob Nordstrom, Introduction to presolving in Pseudo-Boolean prob-
lems, Personal communication, 2021

[12] Olivier Roussel, Vasco Manquiho, Input/Output Format and Solver
Requirements for the Competitions of Pseudo-Boolean Solvers, Pseudo-
Boolean Competition 2016 at cril.univ-artois.fr/PB16/

[13] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, Sharad Ma-
lik. Efficient conflict driven learning in a boolean satisfiability solver.
Proc. IEEE/ACM Int. Conf. on Computer-aided design (ICCAD). pp.
279–285. 2001

[14] PaPILO repository: github.com/lgottwald/PaPILO

[15] RoundingSat repository: gitlab.com/miao_research/roundingsat

[16] SCIP Documentation, https://www.scipopt.org/doc/html/

46

http://www.cril.univ-artois.fr/PB16/
https://github.com/lgottwald/PaPILO
https://gitlab.com/miao_research/roundingsat
https://www.scipopt.org/doc/html/

