
Automating Algebraic Proof Systems Is NP-Hard
Susanna F. de Rezende

Institute of Mathematics of the Czech

Academy of Sciences

Prague, Czechia

rezende@math.cas.cz

Mika Göös

EPFL

Lausanne, Switzerland

mika.goos@epfl.ch

Jakob Nordström

University of Copenhagen & Lund

University

Copenhagen, Denmark and Lund,

Sweden

jakob.nordstrom@cs.lth.se

Toniann Pitassi

University of Toronto and IAS

Toronto, Canada and Princeton, U.S.A

toni@cs.toronto.edu

Robert Robere

McGill University

Montréal, Canada

robere@cs.mcgill.ca

Dmitry Sokolov

St. Petersburg State University and

PDMI RAS

St. Petersburg, Russia

sokolov.dmt@gmail.com

ABSTRACT
We show that algebraic proofs are hard to find: Given an unsat-

isfiable CNF formula F , it is NP-hard to find a refutation of F in

the Nullstellensatz, Polynomial Calculus, or Sherali–Adams proof

systems in time polynomial in the size of the shortest such refuta-

tion. Our work extends, and gives a simplified proof of, the recent

breakthrough of Atserias and Müller (JACM 2020) that established

an analogous result for Resolution.

CCS CONCEPTS
• Theory of computation→ Proof complexity.

KEYWORDS
proof complexity, automatability, pigeonhole principle, algebraic

proof systems, lower bounds

ACM Reference Format:
Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert

Robere, and Dmitry Sokolov. 2021. Automating Algebraic Proof Systems

Is NP-Hard. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (STOC ’21), June 21–25, 2021, Virtual, Italy. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3406325.3451080

1 INTRODUCTION
Automatability. A proof system S is (polynomial-time) automat-

able [18] if there is an algorithm that takes as input an unsatisfiable

CNF formula F and outputs an S-refutation of F in time polyno-

mial in the size of the shortest S-refutation of F (plus the size of

F). Intuitively, automatability addresses the proof search problem:

How hard is it to find a proof? Automatability (or lack thereof)

for well-studied proof systems is a central question for automated

theorem proving and SAT solving.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451080

For example, state-of-the-art SAT solvers using conflict-driven

clause learning (CDCL) [9, 48, 50] are based on the most basic

propositional proof system, Resolution (R for short). This means

that running a CDCL solver (without preprocessing) on an unsatis-

fiable formula F produces a Resolution refutation of F [12]. Thus,

non-automatability of Resolution (studied in a long line of work [2–

4, 7, 39, 49]) implies that any SAT solver based on Resolution will

require superpolynomial time even on formulas that are easy, that

is, admit a polynomial-size refutation.

Algebraic Proof Systems. In this paper, we study the automata-

bility of algebraic proof systems. We show that it is NP-hard to

automate any of the following standard systems:

• (NS) Nullstellensatz [11],
• (PC) Polynomial Calculus [1, 22],

• (SA) Sherali–Adams [63].

An important proof system that is missing above, and for which

we still leave open the question of its automatability, is

• (SoS) Sum-of-Squares [44, 55, 64].

1.1 Our Results
For the aforementioned proof systems (excluding SoS), our main

result shows that it is NP-hard to approximate the minimum refu-

tation size up to a factor of 2
nϵ

for some constant ϵ > 0. We defer

the standard definitions of the algebraic proof systems to Section 8.

Our result holds regardless of definitional details such as which un-

derlying field (real numbers, finite fields) we choose, or whether we

allow twin variables (separate formal variables for negated literals).

Theorem 1.1 (Main result). There is a polynomial-time algo-
rithm A that on input an n-variate 3-CNF formula F outputs a CNF
formula A(F) such that for any system S = R,NS, PC, SA:
− If F is satisfiable, then A(F) admits an S-refutation of size at

most nO (1).
− If F is unsatisfiable, then A(F) requires S-refutations of size

at least 2
nΩ(1)

.

A direct corollary of Theorem 1.1 is that we can rule out au-

tomatability in polynomial, quasi-polynomial and subexponential

time under corresponding hardness assumptions. To state this more

precisely, let QP be the class of problems that can be solved in

209

https://doi.org/10.1145/3406325.3451080
https://doi.org/10.1145/3406325.3451080

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

time exp(log
O (1) n) and SUBEXP those that can be solved in time

exp(no(1)).

Corollary 1.2. For any system S = R,NS, PC, SA:
− S is not automatable in polynomial time unless NP ⊆ P.
− S is not automatable in quasi-polynomial time unless NP ⊆

QP.
− S is not automatable in subexponential time unless NP ⊆

SUBEXP.

We emphasize that our theorem handles all of the proof systems

simultaneously. That is, there is one common polynomial-time

constructible formula A(F) that is either easy for all the proof

systems, or hard for all of them. This means that proof search is

hard for R and NS even if we are allowed to search for proofs in a

stronger system like PC and SA.
Previously, Galesi and Lauria [27], building on [3], proved that

NS and PC are not polynomial-time automatable unless the fixed

parameter hierarchy collapses. Our result upgrades this to an op-

timal hardness assumption, namely P , NP. For SA, no previous

non-automatability results were known. As for upper bounds, the

fastest-known search algorithms for PC, SA, and SoS run in ex-

ponential time exp(Õ(
√
n log s)), where s is the proof size and the

Õ-notation hides poly(logn) factors. All these algorithms are based

on general size–degree tradeoffs [6, 22, 38, 56].

1.2 Techniques
Our proof builds on the recent breakthrough of Atserias and Müller

[7] that showed that automating Resolution is NP-hard. Namely,

they proved Theorem 1.1 for S = R. We give a simpler proof of their

theorem that generalizes better, handling more systems simultane-

ously. The key new ingredient in our approach is a reduction from

the pigeonhole principle to prove the lower bound in case F is un-

satisfiable. As a further simplification, we show how standard size–

width tradeoffs can be used to eliminate the “relativization/lifting”

step in the Atserias and Müller proof by tweaking their construc-

tion of A(F) slightly. See Section 2 for a detailed overview of our

techniques.

1.3 Other Related Work
Degree-Automatability. Many algebraic proof systems possess a

(weaker) form of automatability known as degree-automatability

(as opposed to size-automatability), which enables proofs of low
degree to be found efficiently. For our four systems, proofs of degree

d can be found in time nO (d) for n-variate formulas: for NS and

SA this can be achieved by solving an LP; for PC see [22]; for SoS
(under technical assumptions that cover the case of CNF formulas)

see [51, 61].

Degree (or size) automatability yields a meta-approach for search

problems. Namely, when the existence of a solution can be proven

via a low-degree (or small size) proof then degree (or size) automata-

bility can be applied to generate an efficient algorithm for finding

a solution. This proofs-as-algorithms approach has led to many

beautiful and sometimes surprising new approximation algorithms

for a variety of optimization and average-case parameter estimation

problems. Examples include dictionary learning [8], tensor decom-

position [47], learning mixtures of Gaussians [42], and constraint

satisfaction problems [36, 52]. What makes these algebraic proof

systems special is that they hit a sweet spot, possessing strong

power but also being weak enough to admit nontrivial proof search.

For example, SA (resp. SoS) gives a standard way of tightening LP

(resp. SDP) relaxations of boolean LPs in order to improve perfor-

mance. Another example of their power is that SA and SoS are

able to prove many useful (anti-)concentration inequalities in con-

stant degree [53]. For a comprehensive introduction to the interplay

between algebraic proofs and algorithms, see the monograph [26].

Size–Degree Tradeoffs. Degree-automatability has an interesting

consequence for the way non-automatability results are proved:

The formulaA(F)we construct admits a short refutation when F is

satisfiable, but every such refutation must require large degree (oth-

erwise degree-automatability would allow us to find them quickly).

Such formulas—admitting short proofs but none of small degree—

were known to exist for R [17] and PC [28] (and for NS this is

implicit in [20]). No such CNF formulas have yet been exhibited

for SoS, although progress towards this goal was recently made

in [57].

Other Proof Systems. For standard textbook-style proof systems

(Frege and Extended Frege) weak automatability [4]—that is, be-

ing polynomially simulated by an automatable proof system—is

equivalent to possessing feasible interpolation. More specifically,

for any proof system that is closed under restrictions, weak au-

tomatability implies feasible interpolation [19], and for sufficiently

strong proof systems (that admit short proofs of their soundness),

the converse holds [59]. Under cryptographic assumptions, Frege,

Extended Frege, and bounded-depth Frege systems are known to

not have feasible interpolation and therefore are not even weakly

automatable [16, 18, 43].

By contrast, for weak systems that seemingly cannot reason

about their own soundness (R, NS, PC, SA, SoS), deciding whether

they are automatable has proven more challenging. Until the recent

breakthrough by Atserias and Müller [7], even the automatabil-

ity of Resolution was unresolved. In an earlier important paper,

Alekhnovich and Razborov [3] ruled out automatability of Resolu-

tion under the assumption that the fixed parameter hierarchy is

proper. However, the best upper bound on the time complexity re-

mained exponential, and it remained open for a long time whether

or not this upper bound could be improved until this question was

finally resolved in [7]. Following in the wake of Atserias and Müller,

non-automatability results have also been shown for other weak

proof systems such as regular and ordered Resolution [13] (building

on a preliminary version of this paper), k-DNF Resolution [31], and

cutting planes [34].

2 PROOF OVERVIEW
Let us now give an overview of how we modify [7] to construct

our new proof. In this section:

(§2.1) We recall the the definition of the Resolution proof

system.

(§2.2) We outline a simpler proof of the Atserias–Müller the-

orem (Theorem 1.1 for Resolution).

210

Automating Algebraic Proof Systems Is NP-Hard STOC ’21, June 21–25, 2021, Virtual, Italy

(§2.3) We outline why our simplified proof generalizes, with

some additional work, to the setting of algebraic proof

systems.

Readers who only care about our simplified proof of Atserias–

Müller are in luck: We have organized the paper so that the initial

Sections 3–7 present the simplified proof in a self-contained fashion.

In particular, no knowledge of algebraic proof systems is required

there.

2.1 Resolution Basics
Fix an unsatisfiable CNF formula F over variablesx1, . . . , xn .We call

the clauses of F axioms and often think of them as sets of literals (xi
or x̄i , where bar denotes negation). A Resolution refutation P of F ,
or R-refutation for short, is a sequence of clauses P = (C1, . . . ,Cs)
ending in the empty clause Cs = ∅ such that each Ci is either (i)
an axiom of F ; or (ii) derived from clauses Cj , Cj′ , where j, j

′ < i ,
using one of the following rules:

• Resolution rule:Ci = (Cj \ {xk })∪(Cj′ \ {x̄k }) where xk ∈ Cj
and x̄k ∈ Cj′ .

• Weakening rule: Ci ⊇ Cj .

The size of the refutation is ∥P∥ B s . The Resolution size complex-

ity of F , denoted R(F), is the size of a smallest Resolution refutation

of F . Another important complexity measure of a refutation P is its

width w(P) defined as the maximum width |C | of any of its clauses

C ∈ P. Define also the width complexity wR(F) of a formula F as

the least width of a Resolution refutation of F .
For visualization purposes, a refutation P can be thought of as a

directed acyclic graph (dag), also called the refutation dag: Introduce
a node vi for every clause Ci , and include a directed edge (j, i) if
Cj is used to derive Ci . The final clause Cs becomes a root node (no
parent), while the axioms are leaves (no children). A refutation is

tree-like if this graph is a tree (note that the same clause can label

several different nodes), and otherwise it is dag-like.

2.2 A Simpler Proof for the
Non-Automatability of Resolution

Suppose we are given an n-variate 3-CNF formula F as input. The

algorithm A that Atserias and Müller devised computes in two

steps: In the first step, the algorithm constructs a “refutation for-

mula” denoted by Ref(F). In the second step, this formula is “lifted”

to produce Lift(Ref(F)), which is then output by A. We explain

these two steps in detail.

Step 1: A Block-Width Lower Bound. The refutation formula Ref(F)
(defined precisely in Section 3.1) intuitively states

Ref(F) ≡ “F admits a short dag-like Resolution refutation.”
For now, it suffices to say that the variables of Ref(F) come parti-

tioned into some number of blocks. For a clauseC over the variables

of Ref(F), we define its block-width bw(C) as the number of distinct

blocks thatC touches, that is, fromwhich it contains a variable. For a

Resolution refutation P (resp. formula F), we define its block-width
bw(P) (resp. bw(F)) as the maximum block-width of its clauses. Fi-

nally, for a formula F , we define its block-width complexity bwR(F)
as the minimum block-width of a Resolution refutation of F .

The key property of Ref(F) is that its block-width complexity

depends drastically on F ’s satisfiability.

Lemma 2.1 (Atserias–Müller). There is a polynomial-time algo-
rithm that on input an n-variate 3-CNF formula F outputs a block-
width-O(1) CNF formula Ref(F) such that

(i) If F is satisfiable, then Ref(F) admits a size-nO (1) block-width-
O(1) resolution refutation.

(ii) If F is unsatisfiable, then Ref(F) requires resolution refutations
of block-width nΩ(1).

We present the upper bound (i) in Section 7 for completeness

(and also because our definition of Ref(F) differs slightly from that

of Atserias and Müller). Our main simplification is for the block-

width lower bound (ii).

Simplifying Part (ii) of Lemma 2.1. Atserias andMüller originally

proved the lower bound (ii) by a direct ad-hoc adversary argument.

This was the most involved step in their proof. Our proof is by a

mere reduction from the usual pigeonhole principle. We define in

Section 3.3 a convenient, somewhat non-standard encoding of the

principle, sometimes called the retraction weak pigeonhole princi-
ple [40, 60]. This encoding, denoted rPHPm , is an O(logm)-width
CNF formula that claims there exists an efficiently invertible injec-

tion, encoded in binary, from 2m pigeons tom holes. Our reduction

in Section 5 translates, with modest loss, width complexity lower

bounds for rPHPn2 into block-width complexity lower bounds for

Ref(F).

Lemma 2.2. For any n-variate unsatisfiable formula F we have
bwR(Ref(F)) ≥ Ω̃(wR(rPHPn2)/n).

Our simplified proof of (ii) is then concluded by invoking known

width lower bounds for pigeonhole principles. Indeed, standard

techniques [60, Proposition 3.4] show that

wR(rPHPm) ≥ Ω(m).

This lower bound and Lemma 2.2 imply that bwR(Ref(F)) ≥ Ω̃(n),
which proves (ii).

Step 2: From Block-Width to Size. The goal of the second step is to

transform the block-width gap in Lemma 2.1 into a size gap. There

are two alternative approaches to achieve this.

Lifting. This technique was used by Atserias and Müller, although

they called it relativization after [23]; see also [30]. Lifting

techniques have produced a plethora of applications in proof

complexity; recent examples include [24, 25, 29, 33–35, 37].

The general strategy is this: We start with a formula F that

is hard in some weak sense (for us, block-width). Then we

compose (or lift) the formula with a carefully chosen gadget—
usually, each variable of F is replaced with a copy of the

gadget—to produce a formula Lift(F), which we then show

is hard in a strong sense (for us, Resolution size).

Tradeoff. The famous size–width tradeoff of Ben-Sasson andWigder-

son [14] states that any n-variate low-width formula F that

has high width complexity, namely wR(F) ≫
√
n, also has

exponentially large size complexity. Atserias and Müller’s

original proof did not use the tradeoff result, as their encod-

ing of Ref(R) did not admit a high enough width complexity.

We observe that by defining Ref(R) in a succinct enough way
(technically speaking, using binary rather than unary encod-

ing to represent numbers), the width complexity wR(Ref(F))

211

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

ends up in a regime where the tradeoff result applies, which

gives us an exponential size lower bound without the need

for any gadget composition.

We think both approaches have merits. Lifting is the more robust

technique: it is more widely applicable than the tradeoff, as it ap-

plies even if the starting formula F has only a small polynomial

(block-)width complexity. However, given that we have been able

(somewhat unintentionally) to optimize the encoding of Ref(R), the
tradeoff approach can give us a shorter proof.

We will opt to focus on the lifting approach in this paper. We do,

however, outline briefly how the alternative tradeoff approach can

be carried out in Section 6.4.

Block Lifting. We prove in Section 6 a lifting lemma whose no-

table feature is that it is block-aware: the gadgets corresponding
to a single block will share some input variables. This allows us to

lift block-width (rather than width) to Resolution size. The lemma

is simple to prove via random restrictions: a proof is implicit in

Atserias–Müller, and an even stronger version (lifting to Cutting

Planes size) was proved in [34]. We formulate the lemma here for

completeness, and also in order to generalize it to algebraic systems

later (see Section 2.3).

Lemma 2.3 (Block lifting). There is a polynomial-time algorithm
that on input a block-width-O(1) CNF formula F outputs a CNF
formula Lift(F) such that

2
Ω(bwR(F)) ≤ R(Lift(F)) ≤ 2

O (bw(P)) · ∥P∥,

where P is any Resolution refutation of F .

The main theorem for Resolution follows immediately by com-

bining Lemma 2.1 and Lemma 2.3. Namely, the algorithm that com-

putes A(F) B Lift(Ref(F)) satisfies Theorem 1.1 for Resolution.

This completes the overview of our simplified proof of the non-

automatability of Resolution.

2.3 Generalization to Algebraic Systems
Generalizing the proof from the previous subsection (using lifting)

to algebraic systems S = NS, PC, SA is now a matter of generalizing

the block-width-based Lemma 2.1 and 2.3.

Terminology. The algebraic proof systems are defined formally

in Section 8. For the purpose of this overview, we only sketch some

notation. The analogue of width in an algebraic system S is degree.
The degree of a monomial r is denoted deg(r); the maximum degree

of a monomial in an S-refutation P is denoted deg(P); the mini-

mum degree of an S-refutation of a formula F is denoted degS(F).
Moreover, we define the block-degree bdeg(r) of a monomial r as
the number of blocks that r touches; we extend this definition to

refutations and formulas as before. For convenience, when talking

about Resolution, we use (block-)degree to mean (block-)width.

Finally, we use S(F) to denote the least size ∥P∥ of an S-refutation
P of F , measured as the number of monomials in P.

Improved Lemmas. We now formulate the improved versions

of Lemma 2.1 and 2.3. The statements are as expected, except we

replace the formula Ref(F) with a tree-like variant TreeRef(F), dis-
cussed shortly. Our main result (Theorem 1.1) follows by consider-

ing A(F) B Lift(TreeRef(F)) and applying the improved lemmas.

The remainder of this section discusses how to prove these lemmas.

Lemma 2.4 (Improved Lemma 2.1). There is a polynomial-time
algorithm that on input ann-variate 3-CNF formula F outputs a block-
width-O(1) CNF formula TreeRef(F) such that for proof systems
S = R,NS, PC, SA the following holds:

(i) If F is satisfiable, then TreeRef(F) admits a size-nO (1) block-
degree-O(1) S-refutation.

(ii) If F is unsatisfiable, then TreeRef(F) requires S-refutations of
block-degree nΩ(1).

Lemma 2.5 (Improved Lemma 2.3). There is a polynomial-time
algorithm that on input a block-width-O(1) CNF formula F outputs a
CNF formula Lift(F) such that for proof systems S = R,NS, PC, SA it
holds that

2
Ω(bdegS(F)) ≤ S(Lift(F)) ≤ 2

O (bdeg(P)) · ∥P∥,

where P is any S-refutation of F .

Upper Bound (i). The first challenge in generalizing the proof for

Resolution is that we do not know whether Ref(F) for a satisfiable
F admits a small Nullstellensatz refutation (we suspect not). This

is why we introduce in Section 3.2 a new tree-like variant of the

formula that intuitively says

TreeRef(F) ≡ “F admits a short tree-like Resolution refutation
where weakening is only applied on axioms.”

This formula is a strengthening of Ref(F), meaning that it is obtained

from Ref(F) by adding new variables and axioms. The addition of

the tree structure allows us to show the upper bound for Nullstel-

lensatz. The upper bound for Resolution is inherited from Ref(F),
and for other systems they follow by simulations. See Section 11

for the proof of Lemma 2.4(i).

Lower Bound (ii). Our simplified proof established the block-

width lower bound for Ref(F) by a reduction from rPHPn2 . In fact,

the same reductionworks even for TreeRef(F)withoutmodification.

Moreover, it is known that pigeonhole formulas require large degree

for PC [62] and SA [32]. We show, via low-degree reductions, that

these degree lower bounds apply also to our rPHPn2 encoding, and

hence to TreeRef(F). See Section 9 for the proof of Lemma 2.4(ii).

Lifting Block-Degree. Algebraic proofs are equally amenable to

analysis via random restrictions (the key technique behind the

proof of Lemma 2.3) as is Resolution. Hence it is straightforward to

strengthen Lemma 2.3 to Lemma 2.5. See Section 10 for the proof.

3 FORMULAS
In this section we define formulas that will be used throughout the

paper. In (§3.1) we introduce a variant of the refutation formula

Ref(F) of Atserias and Müller [7]; in (§3.2) we modify Ref(F) to
obtain our tree-like variant, TreeRef(F); and finally in (§3.3) we

define a convenient version of the usual pigeonhole principle.

3.1 Ref(F) Formula
Fix a CNF formula F with variables x1, . . . , xn and m = poly(n)
clauses. We define another CNF formula Ref(F) that states that “F

212

Automating Algebraic Proof Systems Is NP-Hard STOC ’21, June 21–25, 2021, Virtual, Italy

admits a short dag-like Resolution refutation.” Our definition differs

slightly from that of Atserias and Müller [7]; the differences are

discussed below.

Variables. The variables of Ref(F) come partitioned inton3
blocks

B1, . . . ,Bn3 . The intention is for a block of variables to encode or
represent a single clause in a purported Resolution refutation of F
of length at most n3

. More precisely, each block Bi contains the
following variables.

• Literal set. There are 2n many indicator variables yℓ for the
literals ℓ ∈ {x1, x̄1, . . . , xn, x̄n } of F . A boolean assignment

to the yℓ variables is intended to define the set of literals

for the clause represented by Bi . As a minor detail (relevant

in Section 11), we interpret yℓ = 0 to mean that literal ℓ is

included in the block.

• Block type. There are two boolean variables τ = (τ1, τ2) ∈

{0, 1}2 encoding the block’s type as one of three options:

axiom (τ = 00), derived (τ = 01), or disabled (τ1 = 1). We say

a block is enabled if its type is axiom or derived. Accordingly,
one of the following groups of variables becomes relevant.

(1) Axiom. There are logm many variables that encode an

axiom index j ∈ [m]. The intention is for an axiom block

Bi to be a weakening of the j-th axiom of F .
(2) Derived. There are O(logn) many variables that encode

a pair of child pointers (j, j ′) ∈ [n3] × [n3] and a resolved-
variable index k ∈ [n]. The intention is for a derived block

Bi to be obtained from Bj and Bj′ by first resolving on

variable xk and then weakening.

(3) Disabled. There are no additional relevant variables.

Axioms. It is now straightforward to write down a list of axioms

expressing that a truth assignment to the above variables encodes

a valid dag-like Resolution refutation of F . Namely, consider a list

of constraints defined as follows, where each constraint involves

O(logn) variables.

• Root.We require that the last block Bn3 (root of the dag) is

enabled and that it represents the empty clause, that is, all

literal indicator variables are set to 1. (This defines a list of

2n + 1 constraints, each involving at most two variables.)

• Derived. For every derived block Bi with an associated triple

(j, j ′,k) ∈ [n3] × [n3] × [n] we require that j, j ′ < i; and that

Bj (resp. Bj′) is enabled and contains literal xk (resp. x̄k);
and that every other literal in Bj (except xk) or Bj′ (except
x̄k) also appears in Bi .
• Axiom. For every axiom block Bi with an associated axiom

index j ∈ [m] we require that every literal appearing in the

j-th axiom of F also appears in Bi .
• Disabled.We impose no constraints on disabled blocks.

Each of these constraints can be written as a CNF formula over

O(logn) variables. While there are many ways of writing a given

constraint in CNF, any choice of encoding will do. (In fact, any two

encodings of aO(logn)-variate constraint can be proved equivalent

by Resolution, or any other of the proof systems we are inter-

ested in, in size exp(O(logn)) = poly(n).) We define Ref(F) as the
conjunction over all these constraints. In conclusion, Ref(F) is an
O(logn)-CNF formula with poly(n) clauses of block-width ≤ 3 (the

worst case is a clause involving a derived block and both children).

Comparison with Atserias–Müller. Our definition of Ref(F) dif-
fers from that of Atserias andMüller in two ways. Firstly, we encode

all pointers (and indices) in binary instead of unary. For the lifting-
based proof, this difference is inconsequential and done for con-

venience as it yields a formula of low width w(Ref(F)) ≤ O(logn),
which is nice to work with. For the tradeoff-based proof, in con-

trast, binary encoding is crucial in order for the lower bound

on wR(Ref(F)) to be large enough (in case F is unsatisfiable), so

that the lower bound on size in terms of width can be applied.

Secondly, we allow a block to be disabled, whereas Atserias and
Müller only introduced this option in the relativized version of

Ref(F). In our simplified proof for Resolution, this difference is

inconsequential: even if we cannot explicitly disable a block by

setting its type to disabled, we can “manually” achieve the same

effect by making the block represent an isolated axiom clause in

the refutation dag. More interestingly, the option to disable blocks

will be needed in extending our proof to the algebraic setting.

3.2 TreeRef(F) Formula
Next, we define a tree-like version of Ref(F) that states “F admits
a short tree-like Resolution refutation where the weakening rule is
only applied on axiom clauses.” Indeed, TreeRef(F) is obtained by

starting from Ref(F) and adding some new variables and axioms.

• New variables. We add to each block O(logn) many new

variables that encode a parent pointer p ∈ [n3]. The intention

is for p to point to the unique parent in a tree-like refutation.

• New axioms (tree-likeness). For a derived block Bi , we require
that both of its children have their parent pointers set to i .
In the other direction, for a non-root enabled block Bi , we
require that its parent Bp is an enabled derived block having

Bi as one of its children.
• New axioms (no weakening). For a derived block Bi , we re-
quire that every literal in Bi appears in both of its children.

This new axiom implies (together with the old axioms) that

if a derived block Bi (obtained by resolving on xk) has literal
set C , then its children have sets {xk } ∪ C and {x̄k } ∪ C .
(Note that we still allow an axiom block to be a weakening

of an axiom of F .)

3.3 rPHP Formula
Finally, we formulate the retraction weak pigeonhole principle rPHPn
[40, 60]. This variant features 2n pigeons and n holes. It uses a

binary encoding of the pigeon-mapping, and provides an efficient

way to invert the mapping. Specifically, the variables of rPHPn
describe two functions, f : [2n] → [n] and д : [n] → [2n], encoded
as follows.

• Pigeon map. For every pigeon i ∈ [2n] there are variables
fik , k ∈ [logn]. These variables encode in binary a hole

f (i) ∈ [n] that is expected to house pigeon i .
• Hole map. For every hole j ∈ [n] there are variables дjℓ ,
ℓ ∈ [log 2n]. These variables encode in binary a pigeonд(j) ∈
[2n] that is expected to occupy hole j.

The axioms of rPHPn state that for every i ∈ [2n] and j ∈ [n],

f (i) = j =⇒ д(j) = i . (1)

213

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

In other words, д is a left-inverse of f (meaning д(f (i)) = i). Note
that we do not require д to be a right-inverse (meaning f (д(j)) = j),
that is, the mapping f need not be surjective. In conclusion, rPHPn
can be written as a O(logn)-width CNF formula in the variables

(f ,д) = (fik ,дjℓ).

4 DECISION TREE REDUCTIONS
In this section, we define decision tree reductions, which will be used

in Section 5 to prove a lower bound on the block-width bwR(Ref(F))
of refuting the formula Ref(F) in Resolution. We assume the reader

is familiar with the standard notion of a decision tree computing

a boolean function f : {0, 1}n → {0, 1} (see, e.g., the textbook [41,

§14]). In particular, a depth-d decision tree T computing f natu-

rally gives rise to both a d-DNF and a d-CNF representation for f .
Namely, the associated d-DNF is given by

∨
ℓ Cℓ where ℓ ranges

over the leaves of T that output 1, and Cℓ is the conjunction of

literals (query outcomes) on the path from root to leaf ℓ. The d-CNF
is obtained by negating the d-DNF associated with the negated

decision tree ¬T (that is, T but with its output values flipped)

computing ¬f .

4.1 What is a Reduction?
A decision tree reduction between formulas F and G is a reduction

relating the variables ofG to the variables of F via shallow decision

trees, and moreover, showing that the axioms of F imply those ofG .
We formalize this as described next.

Definition 4.1 (Reduction). Let F (x) and G(y) be CNF formulas

over variables x = (x1, . . . , xn) and y = (y1, . . . ,ym). A depth-d
reduction, denoted F ≤dt

d G, consists of the following.

• Variables.The reduction is defined by a function f : {0, 1}n →

{0, 1}m such that each output bit fi : {0, 1}n → {0, 1} (thought

of as the value given to yi) for i ∈ [m] is computed by a

depth-d decision tree.

• Axioms. Let C(y) be a clause and view it as a function

C : {0, 1}m → {0, 1}. Consider the composed function C ◦ f .
It can be computed by a depth-(d · |C |) decision tree, and

hence we may naturally write it as a (d · |C |)-CNF formula.

We require that for every axiomC ∈ G , every clause ofC ◦ f
is a weakening of an axiom of F .

The key property of a reduction is that it translates width com-

plexity bounds.

Lemma 4.2. If F ≤dt

d G, then wR(F) ≤ d · wR(G).

This lemma is most elegantly proven using the standard game
semantics (or top-down) characterization of wR(F) [5, 58]. We recall

the details of this characterization but, due to space limitation, omit

the proof of the lemma.

Prover–Adversary games. The game associated with an n-variate
formula F is played between two competing players, Prover and

Adversary. The game proceeds in rounds. In each round the state of

the game is recorded by a partial assignment ρ ∈ {0, 1, ∗}n to the

variables of F . The game starts with the empty assignment ρ = ∗n .
In each round:

(1) Query a variable. Prover chooses an i ∈ [n]with ρi = ∗, after
which Adversary chooses b ∈ {0, 1}. The state is updated by

ρi ← b.
(2) Forget variables. Prover chooses a (possibly empty) subset

I ⊆ [n]. The state is updated by ρi ← ∗ for all i ∈ I .

An important detail is that if Prover queries the i-th variable, forgets
it, and then queries it again, Adversary is free to respond with any

value regardless of the answer given previously. The game ends

when ρ falsifies an axiom of F . The width complexity wR(F) of F is

characterized by the leastw such that there is a Prover strategy of

widthw (maximum number of non-∗ coordinates in the game state

at the end of a round) to end the game no matter how Adversary

plays.

4.2 Block-Aware Reductions
We also introduce a more fine-grained type of reduction, suitable

for studying block-width.

Definition 4.3 (Block-aware reduction). Let F (x) ≤dt

d G(y) via

f : {0, 1}n → {0, 1}m as in Definition 4.1. Suppose further that

the variables y = (y1, . . . ,ym) of G are partitioned into blocks. We

say that the reduction F ≤dt

d G is block-aware if for each block

B ⊆ [m] there is a depth-d decision tree that computes all the

values fB (x) B (fi (x) : i ∈ B) ∈ {0, 1}B simultaneously.

Lemma 4.4. If F ≤dt

d G via a block-aware reduction, then wR(F) ≤

d · bwR(G).

This lemma can also be proven by considering Prover–Adversary

games, since these can equally well characterize block-width (de-

fined naturally for a game state as the number of blocks that the

state records values from).

5 BLOCK-WIDTH LOWER BOUND FOR Ref(F)
We have now collected the tools we need to prove Lemma 2.2

stating that bwR(Ref(F)) ≥ Ω̃(wR(rPHPn2)/n) holds, where F is

any unsatisfiable n-variate CNF formula, and Ref(F) and rPHPm
are as defined in Sections 3.1 and 3.3, respectively. Our goal is to

describe a block-aware reduction

rPHPn2 ≤
dt

Õ (n)
Ref(F). (2)

This reduction, together with Lemma 4.4, would complete the proof

of Lemma 2.2.

5.1 Overview of Reduction
As in the original proof of Atserias and Müller [7], our reduction is

guided by the full tree-like Resolution refutation T of the unsatis-

fiable formula F . More specifically, T viewed as a refutation dag

is a binary tree of height n, it has the empty clause at its root, and

at depth i ∈ [n] the i-th variable is resolved. Thus, T has 2
n
leaves

corresponding to all possible width-n clauses; each such leaf clause

is a weakening of some axiom of F .
For any truth assignment to rPHPn2 , our reduction is going

to produce an assignment to Ref(F) that represents a purported

refutation of F isomorphic to a subtree T ′ of the full tree T . We

refer to the set of nodes of T ′ that have smaller degree in T ′

than in T as the boundary of the embedding T ′ ⊆ T . We note

214

Automating Algebraic Proof Systems Is NP-Hard STOC ’21, June 21–25, 2021, Virtual, Italy

rPHPn2 :

Ref(F) :

n2

n + 1

Re
du

ct
io
n

: 2n2
pigeons

: n2
holes

H
a
r
d
c
o
d
e
d

p
o
i
n
t
e
r
s

: root block Bn3∅

x1 x̄1

x1 x2 x1 x̄2 x̄1 x2 x̄1 x̄2

x1 x̄2 x3 x1 x2 x̄3 x1 x̄2 x̄3

x1 x2 x̄3 x4 x1 x̄2 x3 x̄4 x1 x2 x̄3 x̄4

x1x̄2x3x̄4x5 x1x2x̄3x4x̄5 x1x̄2x3x̄4x̄5

Figure 1: Reduction from rPHPn2 to Ref(F). An assign-
ment to the variables of rPHPn2 defines a partial matching
h : [2n2] → [n2] (drawn in blue). Using query access to h
we construct an assignment to the variables of Ref(F) that
describes a purported refutation of F . The refutation con-
sists of some n3 blocks arranged in n + 1 layers. Each block
has a type: either derived (yellow), axiom (purple), or dis-
abled (gray). In the refutation dag (as defined in Section 2.1),
we draw directed edges from children to parent (this is the
reverse direction of the child pointers). The top-most 2 logn
layers are hardcoded with a tree topology, and between any
two remaining layers we insert the partial matching h. The
literal set (and other local structure) for each block is com-
puted by locating its natural embedding in the full tree-like
refutation T.

that T ′ will not be a valid refutation of F , because the nodes on
the boundary are missing at least one child. However, the interior

“local neighborhoods” of T ′ will be indistinguishable from the

corresponding neighborhoods of T , and those parts do not violate

any axioms of Ref(F). The only axiom violations of Ref(F) result
from the boundary nodes.

We now describe the reduction in detail, relying heavily on the

illustration in Figure 1.

5.2 Construction
We start by defining how the variables of Ref(F) depend on the

variables of rPHPn2 . We think of the blocks of Ref(F) as being
arranged in n + 1 layers with layer ℓ ∈ {0, 1, . . . ,n} containing

min{2ℓ,n2} many blocks; see Figure 1. The top-most layer ℓ = 0

contains just the root block Bn3 . The remaining layers host blocks

in an arbitrary but fixed way that respects the block ordering: If

block Bi is on a lower layer than block Bj , then i < j . A small detail

is that so far we have not quite used up all the available n3
blocks.

Indeed, any such leftover blocks we define as disabled. From now

on, we ignore them and do not draw them in Figure 1.

We proceed to define the child pointers—which determine the

topology of the purported refutation—and then the literal sets (and

other local structure).

Pointers. The pointers for the top-most 2 logn layers we assign

so as to build a full binary tree (which in particular matches the

topology of T on these top-most layers). We say this part of the

pointer assignment is hardcoded, as it does not depend on the vari-

ables of rPHPn2 .

Defining the topology for the remaining non-hardcoded layers

is the crux of our reduction. Intuitively, we will copy-and-paste the
pigeon-mapping described by the variables fik and дjℓ of rPHPn2

(encoding the functions f : [2n] → [n] and д : [n] → [2n]) between
any two consecutive non-hardcoded layers. This results in several

copies of the pigeon-mapping being used in defining the topology.

We first define a partial matching (partial injection) h : [2n2] →

[n2] ∪ {∗} by

h(i) B

{
f (i) if д(f (i)) = i,

∗ otherwise.
(3)

Given a pigeon i ∈ [2n2], we can evaluate h(i) by making O(logn)
queries to the boolean variables defining f and д. Moreover, h is

easy to invert with query access to f and д. Note that if h(i) = ∗,
meaning f (i) = j butд(j) , i , then this witnesses an axiom violation

for rPHPn2 associated with the pair (i, j) as per Equation (1). At the

top of Figure 1, we illustrate one possible partial matching resulting

from a particular assignment to rPHPn2 .

Consider a layer ℓ ∈ {2 logn, . . . ,n − 1} that contains n2
blocks.

We think of the child pointers originating from layer ℓ as the 2n2

pigeons (each of the n2
blocks names two children), and the blocks

on the next layer ℓ+1 as the n2
holes. More precisely, we define the

left (resp. right) child of the i-th block on layer ℓ as the h(2i − 1)-

th (resp. h(2i)-th) block on layer ℓ + 1. If ever h(i) is undefined
(meaning an axiom of rPHPn2 associated with i is violated), we
define the corresponding pointer as null (say, by pointing to the

root Bn3 , which results in an axiom violation for Ref(F)).
This completes the definition of the topology of the purported

refutation described by the variables of Ref(F). Note that the result-
ing topology (where we ignore null pointers) is a forest of binary

trees: it is constructed by stitching together a binary tree at the

top with a layered sequence of partial matchings where we have

identified pairs of pigeons (each block couples two pigeons). The

lower part of Figure 1 shows how the rPHPn2 assignment at the top

defines the structure of the refutation claimed to exist by Ref(F).

Literal Sets. Recall that our goal is to make the purported proof

isomorphic to a subtree T ′ ⊆ T (plus some disabled blocks). But

now that we have already defined the topology of our purported

proof, the definitions of the literal sets (and other local structure) are

already determined. To see this, consider the following algorithm

215

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

(implementable by a moderate-depth decision tree) for computing

the literal set for a block B: Starting from B, walk up to its unique

parent in the binary forest (this can be done with O(logn) queries
by computing the inverse of h) and continue taking such upward

steps until we reach a block without a parent. We have two cases

depending on whether the walk terminates at the root block Bn3 .

(1) Root is reached. Consider the (reverse) path p (sequence of

left/right turns) from Bn3 to B. This identifies a node v in

the full tree T , namely, the node obtained by following the

path p starting at the root of T . We simply copy all the local

structure at v into B: We make the literal set of B equal that

of v . If v is derived in T by resolving the k-th variable, we

make B a derived block and set its resolved-variable index

to k . If v is a leaf of T , that is, a weakening of some, say

j-th, axiom of F , then we make B an axiom block and set its

axiom index to j.
(2) Root is not reached. In this case we make B a disabled block.

This completes the definition of how the variables of Ref(F)
depend on the variables of rPHPn2 . We finally note that the whole

contents of a particular block can be computed by a single decision

tree of depth Õ(n). Indeed, the most expensive part is to perform

the walk up the binary forest, which involves at most n (the depth

of the purported proof) evaluations of the inverse of h.

5.3 Correctness
It remains to show that every axiom in the composed version of

Ref(F) is implied by some axiom of rPHPn2 . We argue the con-

trapositive: any axiom violation for Ref(F) implies an axiom vi-

olation for rPHPn2 . Since our reduction, by construction, always

produces a purported refutation isomorphic to a subtree T ′ ⊆ T

(plus some disabled blocks which do not violate axioms of Ref(F)),
the only possible axiom violations are caused by a block on layer ℓ ∈

{2 logn, . . . ,n − 1} containing a null pointer. Any null pointer is

caused by the decision tree querying a pigeon i with h(i) = ∗. But
this means the decision tree has witnessed a violation of (1), that

is, an axiom violation for rPHPn2 , by the discussion following (3).

This completes the reduction (2).

5.4 Tree-Like Extension
To conclude this section, we observe for later use (in Section 9)

that the reduction described above can be easily extended to a

block-aware reduction

rPHPn2 ≤
dt

Õ (n)
TreeRef(F). (4)

In order to do so, we simply define the parent pointers (which are the
“new” variables) as the inverses (given by д outside the hardcoded

region) of the child pointers defined by the original reduction. To

see that the axioms of rPHPn2 imply those of TreeRef(T), we argue
similarly as in Section 5.3: Since T is a tree-like refutation that uses

no weakening (except for the axioms), the output of our reduction

(subtree T ′ of T) still has its axiom violations only at the boundary

of the embedding T ′ ⊆ T .

6 LIFTING BLOCK-WIDTH TO SIZE
In this section, we prove Lemma 2.3, saying that for the lifted version

Lift(F) of a CNF formula F it holds that 2
Ω(bwR(F)) ≤ R(Lift(F)) ≤

2
O (bw(P))∥P∥, where P is any Resolution refutation of F . We start

by describing how the formula Lift(F) is constructed.

6.1 Lift(F) Formula
Fix a CNF formula F whose variables x1, . . . , xn are partitioned

into m blocks. To construct the block-lifted formula Lift(F), we
replace each variable by a copy of a carefully chosen gadget, where

gadgets corresponding to the same block partially share variables.

Namely, we consider the 3-bit gadget д : {0, 1}3 → {0, 1} defined

by д(x0, x1, s) B xs . Note that д is computed by a depth-2 decision

tree. We now define Lift(F) formally:

• Variables. For every variable xi of F , the lifted formula will

have two variables x0

i and x
1

i . Moreover, for every block B
of F , we introduce a selector variable sB . Thus, altogether,
Lift(F) has 2n +m variables, called lifted variables.
• Axioms. Let C ∈ F be a clause and view it as a function

C : {0, 1}n → {0, 1}. We define a lifted constraint

Lift(C) : {0, 1}2n+m → {0, 1}

over the lifted variables as the composition

Lift(C) B C(д(x0

1
, x1

1
, sB(x1)), . . . ,д(x

0

n, x
1

n, sB(xn))),

where B(xi) denotes the unique block containing xi . Note
that Lift(C) can be computed by composing a depth-|C | de-
cision tree for C with depth-2 decision trees for the gad-

gets. This results in a decision tree whose depth is only d B
|C |+bw(C) as the gadgets share selector variables. Hence we
may write Lift(C) naturally as a d-CNF formula (as discussed

in Section 4). Finally, we define Lift(F) B
∧
C ∈F Lift(C).

6.2 Upper Bound for Lift(F)
Let us prove the upper bound R(Lift(F)) ≤ 2

O (bw(P))∥P∥. We again

use the language of Prover–Adversary games from Section 4.1.

Besides width, such games can also capture the refutation size [58].
Namely, size is characterized by strategy size: the total number

of states that can ever arise in play (over any number of runs of

the game). Thus, let P be a Prover strategy for F of size ∥P∥ and

block-width bw(P). Our goal is to find a small-size strategy L for

Lift(F).
We start by observing that Lift(F) ≤dt

2
F via f = (f1, . . . , fn)

given by fi B д(x0

i , x
1

i , sB(xi)). The strategy L is then constructed

by simulating P as in the proof of Lemma 4.2. We proceed to

bound ∥L∥ by analyzing the simulation carefully. At the start of a

simulation round, if P is in state ρ, then L is in one of 2
bw(ρ)

many

corresponding states; here the blow-up 2
bw(ρ)

comes from having

to record the values of bw(ρ) many selector variables. During a

simulation step, L might have to evaluate an fi , which gives rise

to O(1) intermediate states before the start of the next round. We

conclude that there is a factorO
(
2
bw(ρ))

overhead in a single round

of the simulation. Altogether, we get ∥L∥ ≤ O
(
2
bw(P)

)
∥P∥, which

proves the upper bound.

6.3 Lower Bound for Lift(F)
Finally, we establish the lower bound 2

Ω(bwR(F)) ≤ R(Lift(F)). We

show an equivalent claim, namely that bwR(F) ≤ O(log ∥P∥) holds

216

Automating Algebraic Proof Systems Is NP-Hard STOC ’21, June 21–25, 2021, Virtual, Italy

for any refutation P of Lift(F). Fix such a P henceforth. We will

proceed by a standard argument using random restrictions.

Recall that for a partial truth value assignment ρ and a clause C ,
the restricted clauseC ↾ρ is defined to be the trivially true clause 1 if

ρ satisfies some literal inC and otherwise the clauseC with all liter-

als falsified by ρ removed. This definition extends to sets/sequences

of clauses A in the natural way by restricting all clauses in A, re-

moving those which are satisfied. Given a Resolution refutation F

of a CNF formula F , it is a well-known fact that for any partial

assignment ρ it holds that F ↾ρ is a resolution refutation of the

restricted formula F ↾ρ in at most the same size and width.

We start by defining a random restriction ρ to a subset of the

variables of Lift(F) in two steps:

(1) Let ρ1 be a random restriction setting each selector variable

sB to a uniform random bit.

(2) Define Xρ1
as the set of variables that contains, for every

variable xi of F , the variable x
1−s
i where s B sB(xi) is de-

termined by ρ1. Let ρ2 be a random restriction setting each

variable in Xρ1
to a uniform random bit. Let ρ be the con-

catenation of ρ1 and ρ2.

Note that variables from different blocks are assigned independently.

Moreover, each literal evaluates to true with probability at least 1/4.

Thus, the probability that a clause of block-width at leastw is not

satisfied by ρ is at most (3/4)w . Consider the restricted refutation

P ↾ρ . By a union bound, we see that

Pr[P ↾ρ has a clause of block-width ≥ w] ≤ ∥P∥ · (3/4)w .

Forw B 3 log ∥P∥ > log ∥P∥/log(4/3) this probability is < 1, and

hence there exists some fixed ρ such that bw(P ↾ρ) ≤ w . But P ↾ρ
is a refutation of the formula Lift(F)↾ρ , which is easily seen to be

the same as F after renaming variables. Hence, bwR(F) ≤ w =
O(log ∥P∥), which completes the proof of Lemma 2.3.

6.4 Alternative Proof via Tradeoffs
We note that an alternative way of proving a Resolution size lower

bound for Ref(F) when F is unsatisfiable via the standard size–

width tradeoff in [14] (without the need for gadget composition).

We refer the reader to the full version of the paper for details.

7 RESOLUTION UPPER BOUND FOR Ref(F)
In order to establish Lemma 2.1(i), we must prove that if F is satis-

fiable, then Ref(F) admits a polynomial-size Resolution refutation.

As this was already shown by Atserias and Müller [7], our proof is

modelled on theirs and only requires some minor changes due to

the difference in formula encoding. We refer the reader to the full

version of this paper for a formal proof.

8 ALGEBRAIC DEFINITIONS
In this section, we define: (§8.1) the algebraic proof systems Nullstel-

lensatz (NS), Polynomial Calculus (PC), and Sherali–Adams (SA);
and (§8.2) algebraic reductions.

8.1 Algebraic Proof Systems
All the algebraic proof systems are going to share the following

basic setup. We work over the polynomial ring F[X] where F is a
fixed field and X B {x1, x2, . . . , xn } is a set of formal variables. We

define the size ∥p∥ of a polynomial p ∈ F[X] as the number of its

non-zero monomials (when expanded out as a linear combination

of monomials). If the variables X are partitioned into blocks, we

define the block-degree bdeg(r) of a monomial r as the number of

distinct blocks that r touches, and the block-degree of a polynomial

as the largest block-degree of any of its monomials.

For a CNF formula F over variables X we use the standard trans-

lation of F into a set of polynomial equations F ∗ defined as follows.

First, for each xi we include in F ∗ the boolean axiom x2

i − xi = 0

(enforcing xi ∈ {0, 1}). Second, for each clause

∨
i ∈I xi ∨

∨
j ∈J x̄ j

of F we include in F ∗ the equation∏
i ∈I
(1 − xi)

∏
j ∈J

x j = 0. (5)

This way, F and F ∗ have the same set of satisfying assignments.

Henceforth, we will sometimes identify F and F ∗. We are now ready

to define our algebraic proof systems.

Nullstellensatz (NS). Nullstellensatz is a static algebraic proof
system based on Hilbert’s Nullstellensatz. An NS-proof of f = 0

from a set of polynomial equations F = { f1 = 0, . . . , fm = 0} is a set

of polynomials P = {p1, . . . ,pm } such that, as formal polynomials,∑
i ∈[m]

pi fi = f .

The size of the proof is ∥P∥ B
∑
i ∈[m] ∥pi ∥∥ fi ∥, its degree is

deg(P) B maxi ∈[m](deg(pi) + deg(fi)) and, if the variables X are

partitioned into blocks, its block-degree is

bdeg(P) B max

i ∈[m]
(bdeg(pi) + bdeg(fi)).

An NS-refutation of F is an NS-proof of 1 = 0 from F .

Polynomial Calculus (PC). Polynomial Calculus is a dynamic

extension of Nullstellensatz. A PC-proof of f = 0 from a set of

polynomial equations F = { f1 = 0, . . . , fm = 0} is a sequence of

polynomials P = (p1, . . . ,ps) such that ps = f and for each i ∈ [s]
either (i) pi ∈ F or (ii) pi is derived from polynomials earlier in the

sequence using one of the following rules:

• Linear combination: From pj and pj′ derive αpj + βpj′ for
any α, β ∈ F.
• Multiplication: From pj derive xpj for any x ∈ X .

The size of the proof is ∥P∥ B
∑
i ∈[s] ∥pi ∥, its degree is deg(P) B

maxi ∈[s] deg(pi) and, if the variables X are partitioned into blocks,

its block-degree is bdeg(P) B maxi ∈[s] bdeg(pi). A PC-refutation
of F is a PC-proof of 1 = 0 from F .

Sherali–Adams (SA). Sherali–Adams is a static, (semi-)algebraic

proof system that is based on the Sherali–Adams hierarchy of LP

relaxations. The system is only defined over real numbers, so in

this case we fix F = R. An SA-proof of the inequality f ≥ 0 from

a set of polynomial equations F = { f1 = 0, . . . , fm = 0} is a set of

polynomials P = {p1, . . . ,pm,q} such that∑
i ∈[m]

pi fi + q = f ,

and where q is a conical junta, that is, of the form

q =
∑
I , J αI , J

∏
i ∈I xi

∏
j ∈J (1 − x j)

217

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

for αI , J ≥ 0 non-negative reals. The size of the proof is ∥P∥ B
∥q∥+

∑
i ∈[m] ∥pi ∥∥ fi ∥, its degree is deg(P) B max{deg(q), deg(pi)+

deg(fi) : i ∈ [m]} and, if the variables X are partitioned into blocks,

its block-degree is bdeg(P) B max{bdeg(q), bdeg(pi) + bdeg(fi) :

i ∈ [m]}. An SA-refutation of F is an SA-proof of −1 ≥ 0 from F .

Complexity Measures. We define complexity measures uniformly

across S = NS, PC, SA.

• The size complexity S(F) of a formula F is the minimum size

of an S-refutation of F .
• The degree complexity degS(F) is the minimum degree of an

S-refutation of F .
• The block degree complexity bdegS(F) is the minimum block-

degree of an S-refutation of F .

Twin Variables. Every algebraic proof systems can be extended

using so-called twin variables. This means that for every variable

x ∈ X we add another formal variable x̄ , and include the comple-
mentary axiom x + x̄ − 1 = 0. The translation of CNF formulas to

polynomial equations can be made more concise by the use of twin

variables. Polynomial Calculus with twin variables is often called

Polynomial Calculus Resolution (PCR). Using twin variables does not
affect the degree complexity in any of the proof systems, but their

introduction could potentially reduce size quite drastically. Our

main result (Theorem 1.1) holds in the best of all possible worlds:

All upper bounds holdwithout twin variables, and the lower bounds
hold with twin variables.

Relationships. It is well-known and easy to see that PC (and SA
if the field is R) can efficiently simulate NS. A surprising result of

Berkholz [15] is that SoS efficiently simulates PC over R. In this

paper, we need only the easy simulations.

Fact 8.1 (Simulations). Suppose a polynomial f admits an NS-proof
from a set of n-variate polynomials F in size s and (block-)degree d .
Then there is a PC-proof (and an SA-proof if the field is R) of f from
F in size poly(s,n) and (block-)degree d . □

Multilinear Polynomials. Themultilinearization of a polynomialp
is defined as the polynomial obtained by replacing all terms in p of

the form x i , i ≥ 2, with x ; that is, we work modulo the boolean ax-

ioms. It will be convenient to assume that all polynomials appearing

in our algebraic manipulations are implicitly multilinearized. For

example, the productpq of twomultilinear polynomialsp andqmay

not itself be multilinear, but pq can be efficiently proven equivalent

to its multilinearization by an application of the boolean axioms. It

is well known that this implicit multilinearization does not affect the

degree complexity of a formula except by a constant factor, and the

size complexity can increase at most polynomially. When we work

in a multilinear setting we can equate the syntactic representation
of a polynomial as an element of F[X] with its semantic represen-
tation as a boolean function {0, 1}n → {0, 1}, since each boolean

function has a unique representation as a multilinear polynomial.

8.2 Algebraic Reductions
We now develop algebraic analogues of the decision tree reductions

introduced in Section 4. Notions similar to the next definition have

occurred before in, for instance, [21, 45, 46]. As the proofs are

straightforward we omit them due to space limitations.

Definition 8.2 (Algebraic reduction). Let F and G be two sets

of polynomials encoding CNF formulas over a field F, defined on

variables x = (x1, . . . , xn) and y = (y1, . . . ,ym), respectively. An

algebraic reduction, denoted F ≤alg G, of degree d consists of the

following.

• Variables. The reduction is computed by a function

r : {0, 1}n → {0, 1}m

such that each output bit ri : {0, 1}n → {0, 1} is computed

by a degree-d polynomial.

• Axioms. For any д ∈ G , themultilinearization of the polyno-
mial д ◦ r has an NS-proof from F (over any field) of degree

d · deg(д).

This definition allows us to transform algebraic refutations of G
into refutations of F .

Lemma 8.3. If F ≤alg G with degree d , then degS(F) ≤ d · degS(G)
for all S = NS, PC, SA.

Next, we define the algebraic analogue of a block-aware reduction.
Note that when the algebraic reduction is a applied to a monomial∏

i ∈I yi this will produce the polynomial

∏
i ∈I ri on the variables

x = (x1, . . . , xn), and so we will need to control the degree and

block-degree of such polynomials.

Definition 8.4 (Algebraic block-aware reduction). Let F and G
be two sets of polynomials encoding CNF formulas over a field F,

and suppose that F ≤alg G by a degree-d reduction r : {0, 1}n →

{0, 1}m as in the previous definition. Suppose further that the vari-

ables ofG are partitioned into blocks. The reduction r is a degree-d ,
size-s block-aware reduction if the following two conditions hold:

• Blocks. For each block B and each T ⊆ B the polynomial

rT := multilinearization of

∏
i ∈T

ri

has degree at most d and size at most s .
• Axioms. For any д ∈ G , themultilinearization of the polyno-
mial д ◦ r has an NS-proof from F (over any field) of degree

d · bdeg(д) and size s .

Suppose in addition that the variables of F are also partitioned into

blocks. Then the reduction r is block-preserving if bdeg(rT) = O(1)
for every T contained in a block of G and if for every д ∈ G the

NS-proof of д ◦ r from F that satisfies the Axioms property above

has block-degree O(1).

We note that although the definition specifies both the degree

and the size of the reduction, often only one of these measures will

be relevant and hence mentioned.

Lemma 8.5. If F ≤alg G via a degree-d block-aware reduction, then
degS(F) ≤ d · bdegS(G) for all S = NS, PC, SA.

We end this section with the (intuively clear) claim that block-

aware decision-tree reductions are block-aware algebraic reductions.

Lemma 8.6. If F ≤dt

d G via a block-aware reduction then F ≤alg G

via a degree-d block-aware reduction.

218

Automating Algebraic Proof Systems Is NP-Hard STOC ’21, June 21–25, 2021, Virtual, Italy

9 BLOCK-DEGREE LOWER BOUND FOR
TreeRef(F)

In this section we sketch the proof of Lemma 2.4(ii), which says

that bdegS(TreeRef(F)) ≥ nΩ(1), where F is unsatisfiable and S =
R,NS, PC, SA. We already know that

bdegS(TreeRef(F)) ≥ Ω̃(degS(rPHPn2)/n)

by the reduction of Section 5.4 and Lemmas 8.5 and 8.6. Hence it

suffices to prove

degS(rPHPn) ≥ Ω̃(n). (6)

This turns out to follow immediately from known degree lower

bounds due to Razborov (for PC over any field) [62] and Georgiou

and Magen (for SA) [32]. These papers use a different algebraic

encoding of the pigeonhole principle, but we can prove (6) by a

reduction to their lower bound.We omit the details of this reduction

due to space limitations.

10 LIFTING BLOCK-DEGREE TO SIZE
In this section, we prove Lemma 2.5 that states that 2

Ω(bdegS(F)) ≤

S(Lift(F)) ≤ 2
O (bdeg(P))∥P∥ where P is any S-refutation of F and

S = R,NS, PC, SA. We use the same definition of the formula Lift(F)
as in Section 6. For Resolution this is exactly Lemma 2.3.

10.1 Upper Bound for Lift(F)
To prove the upper bound S(Lift(F)) ≤ 2

O (bdeg(P))∥P∥ for the alge-

braic proof systems, we start by observing that Lift(F) ≤alg F via the

degree-2 reduction r = (r1, . . . , rn) given by ri B д(x0

i , x
1

i , sB(xi)) =

x0

i (1 − sB(xi)) + x
1

i sB(xi). Note that for any polynomial p over the

variables of F ,

∥p ◦ r ∥ ≤ 3
bdeg(p) · ∥p∥.

We first prove the upper bound for Nullstellensatz by analyzing

this reduction (the proof for Sherali–Adams is analogous). Let F =
{ f1, . . . , fm } and let P = {p1, . . . ,pm } be an NS-refutation of F .
Recall that ∥P∥ =

∑
i ∈[m] ∥pi ∥∥ fi ∥. Consider the expression∑

i ∈[m]

(pi fi) ◦ r =
∑
i ∈[m]

(pi ◦ r)(fi ◦ r) = 1,

which, as argued in the proof of Lemma 8.3, is a refutation of

Lift(F). Note that the polynomial pi ◦r has at most 3
bdeg(pi) · ∥pi ∥ ≤

3
bdeg(P) · ∥pi ∥ monomials and that fi ◦ r is equal to the sum of the

2
bdeg(fi) = O(1) axioms of Lift(fi), each ofwhich has 3

bdeg(fi)∥ fi ∥ =
O(∥ fi ∥) monomials. Therefore, we can conclude there is a NS-
refutation of size

∑
i ∈[m] 3

bdeg(P) · ∥pi ∥ ·O(∥ fi ∥) ≤ O(3bdeg(P)∥P∥).
We now prove the upper bound for PC. Let P be a PC-refutation

of F . We construct a PC-refutation P ′ of Lift(F) in the same way

as done in the proof of Lemma 8.3: whenever P derives p, in P ′

we will derive the polynomial p ◦ r (which has at most 3
bdeg(p)∥p∥

monomials).

• Axioms. For any axiom f ∈ F , we noted already that the

polynomial f ◦ r is equal to the sum of the 2
bdeg(f) = O(1)

axioms of Lift(f), each of which has 3
bdeg(f)∥ f ∥ = O(∥ f ∥)

monomials. Thus, f ◦ r can be derived in PC in size O(∥ f ∥).
• Linear Combination. If the polynomial p3 is derived from p1

and p2 using a linear combination, then we derive p3 ◦r from
p1 ◦ r and p2 ◦ r using the same linear combination in P ′.

• Multiplication. If yip is derived from p by the multiplication

rule, then we can to derive (yip) ◦ r = ri (p ◦ r) from p ◦ r in
size O(∥p ◦ r ∥).

Therefore, the PC-refutation has size O(3bdeg(P)∥P∥).

10.2 Lower Bound for Lift(F)
The proof of the lower bound 2

Ω(bdegS(F)) ≤ S(Lift(F)) for S =
NS, SA, PC follows the random restriction argument used for Reso-

lution exactly (Section 6), so due to space limitations we omit the

argument and refer the reader to the full version.

11 ALGEBRAIC UPPER BOUND FOR
TreeRef(F)

In this section, we prove Lemma 2.4(i) that states that TreeRef(F),

where F is satisfiable, admits a size-nO (1) block-degree-O(1) S-
refutation for S = R,NS, PC, SA. We prove this for NS, which
implies the result for PC and SA by simulations (Fact 8.1). The

result holds for R by the upper bound for Ref(F) (in Section 7) and

the fact that TreeRef(F) was defined as a strengthening of Ref(F).
Therefore, the goal of this section is to prove the following lemma.

Lemma 11.1 (Algebraic upper bound). Let F be a satisfiable n-
variate formula. There is a size-nO (1) block-degree-O(1)NS-refutation
of TreeRef(F) (over any field, without twin variables).

The proof of this lemma essentially implements the algorithm

refuting Ref(F) as an algebraic reduction to the end-of-line formula

EoLn . We proceed in three steps:

(§11.1) First we define EoLn , which is a size-n
O (1)

block-degree-

O(1) CNF formula.

(§11.2) Then we reduce TreeRef(F) to EoLn3 .

(§11.3) Finally, we recall from prior work [33] that EoLn admits

a small NS-refutation.
The last two steps are formalized in the following two claims. As

we want our result to be as general as possible, our algebraic proofs

will be implemented over the integers Z (hence the computations

are valid over any field), and assume no twin variables.

Claim 11.2 (Reduction to EoL). Fix an n-variate satisfiable F . There
is a block-aware, block-preserving algebraic reductionTreeRef(F) ≤alg

EoLn3 of size nO (1).

Claim 11.3 (Upper bound for EoL). EoLn has a size-nO (1) block-
degree-O(1) NS-refutation over Z.

The algebraic upper bound (Lemma 11.1) follows by combining

these two lemmas.

11.1 EoL Formula
The end-of-line formula EoLn states that “there is an n-node digraph
where every node has in/out-degree 1, except for one distinguished
node that has in-degree 0 and out-degree 1.” The combinatorial prin-

ciple underlying EoLn is central in the theory of total NP search

problems [10, 54].

The variables of EoLn are intended to describe a digraph on

vertices [n] where n ∈ [n] is thought of as a distinguished node.

Namely, for each i ∈ [n], there is a block of 2 logn boolean variables

zi B (®zi , ®zi) that encode, in binary, a predecessor pointer ®zi ∈ [n]

219

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

and a successor pointer ®zi ∈ [n]. An assignment to the variables

z = (z1, . . . , zn) defines a digraph Gz B ([n], Ez) where

(i, j) ∈ Ez iff ®zi = j and ®z j = i .

A small detail is that we allow any node to be a self-loop, achieved
by setting ®zi = ®zi = i .

The axioms of EoLn are:

• Distinguished. The node n ∈ [n] has indegGz
(n) = 0 and

outdegGz
(n) = 1.

• Non-distinguished. Every node i ∈ [n − 1] has indegGz
(i) =

outdegGz
(i) = 1.

In particular, EoLn can be written as an O(logn)-CNF formula of

block-width 2. The reader familiar with pigeonhole principles can

observe that our definition is equivalent to a variant of the bijective

pigeonhole principle: EoLn claims the edges ofGz define a bijection

[n] → [n − 1].

11.2 Reduction to EoL
Next we prove Claim 11.2: For an n-variate satisfiable F , we give a

size-nO (1) block-aware, block-preserving algebraic reduction

TreeRef(F) ≤alg
EoLn3 .

∧-Decision Trees. For ease of understanding, we describe the re-
duction as an ∧-decision tree, that is, a decision tree that is allowed

to query, in a single step, the logical-and

∧
x ∈A x of any subset A

of variables. Note that ordinary “singleton” queries are still sup-

ported by choosing A to contain a single variable. Such trees can

be converted into polynomials by a standard method.

Fact 11.4. If r is computed by a depth-d ∧-decision tree, then r is
computed by size-2O (d) polynomial.

Proof. For each leaf ℓ in the tree, let rℓ(x) denote the indicator
function that is 1 iff the leaf ℓ is reached on input x . Every query∧
x ∈A x can be simulated by the monomial xA B

∏
x ∈A x . Hence

we can compute rℓ by taking the product along the unique path

from the root to ℓ of either xA or 1−xA (depending on the outcome

of the query on the path). Hence, as a multilinear polynomial, rℓ
satisfies ∥rℓ ∥ ≤ 2

d
. Moreover, r can be written as r =

∑
ℓ rℓ where

the sum is over leaves ℓ that output 1. There are at most 2
d
leaves,

and thus ∥r ∥ ≤ 2
2d
. □

Reduction. We describe a family of ∧-decision trees

T = (T1, . . . ,Tn3)

where each Ti has depth O(logn), queries at most 4 blocks of

TreeRef(F) and outputs values for the variables zi = (®zi , ®zi). Our
goal is to satisfy the following condition, which will imply (as we

will argue below) the Axiom property of a block-aware reduction.

(†) For each assignment y to TreeRef(F), if the output T(y) vio-
lates an axiom of EoLn3 involving node-blocks j and j ′, then
the execution of Tj (y) or Tj′(y) has witnessed by its singleton
queries an axiom violation for TreeRef(F).

Henceforth, fix a satisfying assignment x∗ of F . Given an assign-

ment y to TreeRef(F), we say a block B is feasible iff the clause

encoded by B is falsified by x∗. Note that the feasibility of a given

block can be decided by a single ∧-query (involving n indicator

variables; here we use our convention that literal indicators are set

to 1 iff the literal is not included in the block). The tree Ti computes

zi = (®zi , ®zi) as follows. We start by checking whether Bi is feasible:

Bi is not feasible: Two cases depending on whether Bi is root
(that is, i = n3

).

• Non-root. We make node i into a self-loop by outputting

®zi = ®zi B i .
• Root.We know that Bn3 contains some literal consistent with

x∗. By binary search (usingO(logn)many ∧-queries) we can

discover a specific literal indicator of Bn3 that is set to 0. This

violates an axiom of TreeRef(F). Hence by (†), it is safe to
output anything for (®zi , ®zi).

Bi is feasible: Query Bi ’s type.

• Disabled: If Bi is non-root, we make node i into a self-loop.
If Bi is root, then we have found an axiom violation for

TreeRef(F) (and by (†) we can output anything).

• Axiom: Here we can find an axiom violation. Query Bi ’s
axiom index j. Since the j-th axiom of F is satisfied by x∗,
it contains some literal ℓ consistent with x∗. But since Bi is
feasible, Bi does not contain ℓ. Hence ℓ is a literal in the j-th
axiom not in Bi , which is a violation.

• Derived:QueryBi ’s child pointers (j, j ′), the resolved-variable
index k , and the parent pointer p. Query whether Bj and Bj′

are feasible, and query their type and parent pointers. If Bi
is non-root, query also the type and child pointers of Bp .

We may assume the variables that are singleton-queried

above cause no axiom violations for TreeRef(F) (as otherwise
we are free to output anything). We may also assume we are

in the case where exactly one of Bj and Bj′ is feasible, say
Bj (otherwise we may use binary search to find a violation

related to a literal indicator), and both have their parent

pointers set to i . We also assume that, if Bi is non-root, then
it is a child of Bp . We output (®zi , ®zi) B (p, j).

We claim the condition (†) is satisfied: If the decision trees

Ti′ for i
′ = j, j ′,p do not find a violation either, then they will

not produce an axiom violation involving node i . Namely,

they output ®z j B i and ®zp B i (if Bi is non-root) and the

node j ′ will be made a self-loop.

We need to prove that this reduction is annO (1)-size block-aware,
block-preserving algebraic reduction. First, we show that each poly-

nomial rT generated by the reduction has size nO (1) and block-

degree O(1). Since each ∧-decision tree Ti has depth O(logn), by
Fact 11.4 each output bit (or even the product polynomial rT for a

subset T of output bits) of Ti can be converted to a polynomial of

size nO (1). Furthermore, since Ti queries variables from at most 4

blocks of TreeRef(F) it follows that bdeg(rT) = O(1).
It remains to show that for each polynomial д encoding an axiom

of EoLn3 , the polynomial д◦r has anNS proof from the axioms of F

in size nO (1) and block-degreeO(1). So, suppose that д is associated

to node-blocks j, j ′ in EoLn3 . There is a unique partial assignment

α to the variables of д such that д(α) = 1; this assignment falsifies

the clause of EoLn3 corresponding to д. Since the block-degree of д
is at most two we can write α = αTjαTj′ , where αTj ,αTj′ assign the

variables in the two blocks of д. For i = j, j ′ let Li denote the leaves
in the tree Ti that are consistent with the partial assignment αTi .

220

Automating Algebraic Proof Systems Is NP-Hard STOC ’21, June 21–25, 2021, Virtual, Italy

We can express

д ◦ r =

(∑
ℓ∈Lj

rℓ

) (∑
ℓ∈Lj′

rℓ

)
where each polynomial rℓ is an indicator function for the corre-

sponding leaf ℓ in each ∧-decision tree. Since Tj ,Tj′ are ∧-decision

trees, if (д ◦ r)(y) = 1 it follows that there are leaves ℓ1 ∈ Lj , ℓ2 ∈

Lj′ with indicators satisfying rℓ1
(y) = 1, rℓ2

(y) = 1, and all other

leaf indicators in both trees are 0. By (†), one of these two leaf in-

dicators rℓ1
, rℓ2

must witness an axiom violation for TreeRef(F) in
its singleton queries, and thus this leaf indicator is a weakening of

an axiom of TreeRef(F). Ranging over all y such that (д ◦ r)(y) = 1,

this implies that д ◦ r can be written as a sum of weakenings of ax-

ioms of TreeRef(F). Since each ∧-decision tree has depth O(logn)
and queries O(1) blocks from TreeRef(F) we can prove д ◦ r from

TreeRef(F) in NS in size nO (1) and block-degree O(1). This con-
cludes the proof of Claim 11.2.

11.3 Upper Bound for EoL
For the proof of Claim 11.3, we refer the reader to [33, Remark 4.2]

or to the full version of this paper.

ACKNOWLEDGEMENTS
We thank Jan Pich, Jan Krajíček, and Pavel Pudlák for comments

on an early version of this manuscript. We also thank Shuo Pang,

Aaron Potechin, and Madhur Tulsiani for discussions. Finally, we

thank the anonymous reviewers for many comments that helped

us improve the presentation.

Susanna F. de Rezende was supported by Knut and Alice Wal-

lenberg grant KAW 2018.0371. Jakob Nordström received funding

from the Swedish Research Council grant 2016-00782 and the In-

dependent Research Fund Denmark grant 9040-00389B. Toniann

Pitassi did this work supported by NSERC and NSF Grant CCF-

1900460. Robert Robere was supported by NSERC, the Charles

Simonyi Endowment, and indirectly supported by the National

Science Foundation Grant No. CCF-1900460. This material is based

on work supported by NSERC and NSF Grant CCF-1900460. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES
[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson.

2002. Space Complexity in Propositional Calculus. SIAM J. Comput. 31, 4 (2002),
1184–1211. https://doi.org/10.1137/S0097539700366735

[2] Michael Alekhnovich, Sam Buss, Shlomo Moran, and Toniann Pitassi. 2001. Min-

imum propositional proof length is NP-hard to linearly approximate. Journal of
Symbolic Logic 66, 1 (2001), 171–191. https://doi.org/10.2307/2694916

[3] Michael Alekhnovich and Alexander Razborov. 2008. Resolution Is Not Autom-

atizable Unless W[P] Is Tractable. SIAM J. Comput. 38, 4 (2008), 1347–1363.

https://doi.org/10.1137/06066850X

[4] Albert Atserias andMaria Luisa Bonet. 2004. On the automatizability of resolution

and related propositional proof systems. Information and Computation 189, 2

(2004), 182–201. https://doi.org/10.1016/j.ic.2003.10.004

[5] Albert Atserias and Víctor Dalmau. 2008. A combinatorial characterization of

resolution width. J. Comput. System Sci. 74, 3 (2008), 323–334. https://doi.org/10.

1016/j.jcss.2007.06.025

[6] Albert Atserias and Tuomas Hakoniemi. 2019. Size-Degree Trade-Offs for Sums-

of-Squares and Positivstellensatz Proofs. In Proceedings of the 34th Computational
Complexity Conference (CCC), Vol. 137. 24:1–24:20. https://doi.org/10.4230/LIPIcs.
CCC.2019.24

[7] Albert Atserias and Moritz Müller. 2020. Automating Resolution is NP-Hard.

J. ACM 67, 5, Article 31 (2020). https://doi.org/10.1145/3409472 Preliminary

version in FOCS ’19.

[8] Boaz Barak, Jonathan Kelner, and David Steurer. 2015. Dictionary Learning and

Tensor Decomposition via the Sum-of-Squares Method. In Proceedings of the 47th
Symposium on Theory of Computing (STOC). 143–151. https://doi.org/10.1145/

2746539.2746605

[9] Roberto J. Bayardo Jr. and Robert Schrag. 1997. Using CSP Look-Back Techniques

to Solve Real-World SAT Instances. In Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI). 203–208.

[10] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann

Pitassi. 1998. The Relative Complexity of NP Search Problems. J. Comput. System
Sci. 57, 1 (1998), 3–19. https://doi.org/10.1006/jcss.1998.1575

[11] Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák.

1994. Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. In

Proceedings of the 35th Symposium on Foundations of Computer Science (FOCS).
794–806. https://doi.org/10.1109/SFCS.1994.365714

[12] Paul Beame, Henry Kautz, and Ashish Sabharwal. 2004. Towards Understanding

and Harnessing the Potential of Clause Learning. Journal of Artificial Intelligence
Research 22 (2004), 319–351. https://doi.org/10.1613/jair.1410

[13] Zoë Bell. 2020. Automating Regular or Ordered Resolution is NP-Hard. Technical
Report TR20-105. Electronic Colloquium on Computational Complexity (ECCC).

https://eccc.weizmann.ac.il/report/2020/105/

[14] Eli Ben-Sasson and Avi Wigderson. 2001. Short Proofs Are Narrow—Resolution

Made Simple. J. ACM 48, 2 (2001), 149–169. https://doi.org/10.1145/375827.375835

[15] Christoph Berkholz. 2018. The Relation between Polynomial Calculus, Sherali-

Adams, and Sum-of-Squares Proofs. In Proceedings of the 35th Symposium on
Theoretical Aspects of Computer Science (STACS), Vol. 96. 11:1–11:14. https:

//doi.org/10.4230/LIPIcs.STACS.2018.11

[16] Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann

Pitassi. 2004. Non-Automatizability of Bounded-Depth Frege Proofs. Computa-
tional Complexity 13, 1-2 (2004), 47–68. https://doi.org/10.1007/s00037-004-0183-

5

[17] Maria Luisa Bonet and Nicola Galesi. 2001. Optimality of size-width tradeoffs for

resolution. Computational Complexity 10, 4 (2001), 261–276. https://doi.org/10.

1007/s000370100000

[18] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. 1997. No Feasible Interpolation

for TC
0
-Frege Proofs. In Proceedings of the 38th Symposium on Foundations of

Computer Science (FOCS). 254–263. https://doi.org/10.1109/SFCS.1997.646114

[19] María Luisa Bonet, Toniann Pitassi, and Ran Raz. 2000. On Interpolation and

Automatization for Frege Systems. SIAM J. Comput. 29, 6 (2000), 1939–1967.

https://doi.org/10.1137/S0097539798353230

[20] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann

Pitassi. 2002. Homogenization and the Polynomial Calculus. Computational
Complexity 11, 3-4 (2002), 91–108. https://doi.org/10.1007/s00037-002-0171-6

Preliminary version in ICALP ’00.

[21] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. 2001. Linear

Gaps between Degrees for the Polynomial Calculus Modulo Distinct Primes. J.
Comput. System Sci. 62, 2 (2001), 267–289. https://doi.org/0.1006/jcss.2000.1726

[22] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. 1996. Using the Groebner

Basis Algorithm to Find Proofs of Unsatisfiability. In Proceedings of the 28th
Symposium on Theory of Computing (STOC). 174–183. https://doi.org/10.1145/

237814.237860

[23] Stefan Dantchev and Søren Riis. 2003. On Relativisation and Complexity Gap for

Resolution-Based Proof Systems. In Computer Science Logic. Springer, 142–154.
https://doi.org/10.1007/978-3-540-45220-1_14

[24] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere,

and Marc Vinyals. 2020. Lifting with Simple Gadgets and Applications to Circuit

and Proof Complexity. In Proceedings of the 61st Symposium on Foundations of
Computer Science (FOCS). 24–30. https://doi.org/10.1109/focs46700.2020.00011

[25] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. 2016. How Limited

Interaction Hinders Real Communication (and What It Means for Proof and

Circuit Complexity). In Proceedings of the 57th Symposium on Foundations of
Computer Science (FOCS). 295–304. https://doi.org/10.1109/FOCS.2016.40

[26] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. 2019. Semialgebraic Proofs

and Efficient Algorithm Design. Foundations and Trends in Theoretical Computer

221

https://doi.org/10.1137/S0097539700366735
https://doi.org/10.2307/2694916
https://doi.org/10.1137/06066850X
https://doi.org/10.1016/j.ic.2003.10.004
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.1145/3409472
https://doi.org/10.1145/2746539.2746605
https://doi.org/10.1145/2746539.2746605
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1613/jair.1410
https://eccc.weizmann.ac.il/report/2020/105/
https://doi.org/10.1145/375827.375835
https://doi.org/10.4230/LIPIcs.STACS.2018.11
https://doi.org/10.4230/LIPIcs.STACS.2018.11
https://doi.org/10.1007/s00037-004-0183-5
https://doi.org/10.1007/s00037-004-0183-5
https://doi.org/10.1007/s000370100000
https://doi.org/10.1007/s000370100000
https://doi.org/10.1109/SFCS.1997.646114
https://doi.org/10.1137/S0097539798353230
https://doi.org/10.1007/s00037-002-0171-6
https://doi.org/0.1006/jcss.2000.1726
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/237814.237860
https://doi.org/10.1007/978-3-540-45220-1_14
https://doi.org/10.1109/focs46700.2020.00011
https://doi.org/10.1109/FOCS.2016.40

STOC ’21, June 21–25, 2021, Virtual, Italy Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov

Science 14, 1-2 (2019), 1–221. https://doi.org/10.1561/0400000086

[27] Nicola Galesi and Massimo Lauria. 2010. On the Automatizability of Polynomial

Calculus. Theory of Computing Systems 47, 2 (2010), 491–506. https://doi.org/10.

1007/s00224-009-9195-5

[28] Nicola Galesi and Massimo Lauria. 2010. Optimality of Size-Degree Tradeoffs

for Polynomial Calculus. ACM Transactions on Computational Logic 12, 1 (2010).
https://doi.org/10.1145/1838552.1838556

[29] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. 2018. Monotone

Circuit Lower Bounds from Resolution. In Proceedings of the 50th Symposium on
Theory of Computing (STOC). 902–911. https://doi.org/10.1145/3188745.3188838

[30] Michal Garlík. 2019. Resolution Lower Bounds for Refutation Statements. In

Proceedings of the 44th Mathematical Foundations of Computer Science (MFCS),
Vol. 138. 37:1–37:13. https://doi.org/10.4230/LIPIcs.MFCS.2019.37

[31] Michal Garlík. 2020. Failure of Feasible Disjunction Property for k -DNF Resolution
and NP-hardness of Automating It. Technical Report. Electronic Colloquium on

Computational Complexity (ECCC). https://eccc.weizmann.ac.il/report/2020/

037/

[32] Konstantinos Georgiou and Avner Magen. 2008. Limitations of the Sherali-Adams
lift and project system: Compromising local and global arguments. Technical Report.
University of Toronto. http://www.cs.utoronto.ca/pub/reports/csrg/587/CSRG-

587.pdf

[33] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. 2019. Adventures

in Monotone Complexity and TFNP. In Proceedings of the 10th Innovations in
Theoretical Computer Science Conference (ITCS). 38:1–38:19. https://doi.org/10.

4230/LIPIcs.ITCS.2019.38

[34] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. 2020. Automating

Cutting Planes is NP-Hard. In Proceedings of the 52nd Symposium on Theory of
Computing (STOC). 68–77. https://doi.org/10.1145/3357713.3384248

[35] Mika Göös and Toniann Pitassi. 2018. Communication Lower Bounds via Critical

Block Sensitivity. SIAM J. Comput. 47, 5 (2018), 1778–1806. https://doi.org/10.

1137/16M1082007 Preliminary version in STOC ’14.

[36] Samuel Hopkins, Pravesh Kothari, Aaron Potechin, Prasad Raghavendra, Tselil

Schramm, and David Steurer. 2017. The Power of Sum-of-Squares for Detect-

ing Hidden Structures. In Proceedings of the 58th Symposium on Foundations of
Computer Science (FOCS). 720–731. https://doi.org/10.1109/FOCS.2017.72

[37] Trinh Huynh and Jakob Nordström. 2012. On the Virtue of Succinct Proofs:

Amplifying Communication Complexity Hardness to Time–Space Trade-Offs in

Proof Complexity. In Proceedings of the 44th Symposium on Theory of Computing
(STOC) (New York, New York, USA). 233–248. https://doi.org/10.1145/2213977.

2214000

[38] Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. 1999. Lower Bounds for the

Polynomial Calculus and the Gröbner Basis Algorithm. Computational Complexity
8, 2 (1999), 127–144. https://doi.org/10.1007/s000370050024

[39] Kazuo Iwama. 1997. Complexity of finding short resolution proofs. In Mathemat-
ical Foundations of Computer Science (MFCS). 309–318. https://doi.org/10.1007/

BFb0029974

[40] Emil Jeřábek. 2007. On Independence of Variants of the Weak Pigeonhole

Principle. Journal of Logic and Computation 17, 3 (2007), 587–604. https:

//doi.org/10.1093/logcom/exm017

[41] Stasys Jukna. 2012. Boolean Function Complexity: Advances and Frontiers. Algo-
rithms and Combinatorics, Vol. 27. Springer.

[42] Pravesh Kothari, Jacob Steinhardt, and David Steurer. 2018. Robust moment

estimation and improved clustering via sum of squares. In Proceedings of the 50th
Symposium on Theory of Computing (STOC). 1035–1046. https://doi.org/10.1145/

3188745.3188970

[43] Jan Krajíček and Pavel Pudlák. 1998. Some Consequences of Cryptographical

Conjectures for S
1

2
and EF. Information and Computation 140, 1 (1998), 82–94.

https://doi.org/10.1006/inco.1997.2674

[44] Jean Lasserre. 2001. An Explicit Exact SDP Relaxation for Nonlinear 0–1 Programs.

In Proceedings of the 8th International Conference on Integer Programming and
Combinatorial Optimization (IPCO). 293–303. https://doi.org/10.1007/3-540-

45535-3_23

[45] Massimo Lauria and Jakob Nordström. 2017. Graph Colouring is Hard for

Algorithms Based on Hilbert’s Nullstellensatz and Gröbner Bases. In Proceed-
ings of the 32nd Computational Complexity Conference (CCC). 2:1–2:20. https:

//doi.org/10.4230/LIPIcs.CCC.2017.2

[46] Massimo Lauria and Jakob Nordström. 2017. Tight Size-Degree Bounds for

Sums-of-Squares Proofs. Computational Complexity 26, 4 (2017), 911–948. https:

//doi.org/10.1007/s00037-017-0152-4

[47] Tengyu Ma, Jonathan Shi, and David Steurer. 2016. Polynomial-Time Tensor

Decompositions with Sum-of-Squares. In Proceedings of the 57th Symposium on
Foundations of Computer Science (FOCS). 438–446. https://doi.org/10.1109/FOCS.

2016.54

[48] João P. Marques-Silva and Karem A. Sakallah. 1999. GRASP: A Search Algorithm

for Propositional Satisfiability. IEEE Trans. Comput. 48, 5 (May 1999), 506–521.

https://doi.org/10.1109/12.769433 Preliminary version in ICCAD ’96.

[49] Ian Mertz, Toniann Pitassi, and Yuanhao Wei. 2019. Short Proofs Are Hard to

Find. In Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming (ICALP), Vol. 132. 84:1–84:16. https://doi.org/10.4230/LIPIcs.

ICALP.2019.84

[50] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC). 530–535. https://doi.org/10.1145/378239.

379017

[51] Ryan O’Donnell. 2017. SOS Is Not Obviously Automatizable, Even Approximately.

In Proceedings of the 8th Innovations in Theoretical Computer Science Conference
(ITCS), Vol. 67. Schloss Dagstuhl, 59:1–59:10. https://doi.org/10.4230/LIPIcs.ITCS.

2017.59

[52] Ryan O’Donnell and Tselil Schramm. 2019. Sherali–Adams Strikes Back. In

Proceedings of the 34th Computational Complexity Conference (CCC). 8:1–8:30.
https://doi.org/10.4230/LIPIcs.CCC.2019.8

[53] Ryan O’Donnell and Yuan Zhou. 2013. Approximability and proof complexity.

In Proceedings of the 24th Symposium on Discrete Algorithms (SODA). 1537–1556.
https://doi.org/10.1137/1.9781611973105.111

[54] Christos Papadimitriou. 1994. On the Complexity of the Parity Argument and

Other Inefficient Proofs of Existence. J. Comput. System Sci. 48, 3 (1994), 498–532.
https://doi.org/10.1016/S0022-0000(05)80063-7

[55] Pablo Parrilo. 2000. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. Ph.D. Dissertation. California Institute
of Technology.

[56] Toniann Pitassi and Nathan Segerlind. 2012. Exponential Lower Bounds and

Integrality Gaps for Tree-Like Lovász–Schrijver Procedures. SIAM J. Comput. 41,
1 (2012), 128–159. https://doi.org/10.1137/100816833

[57] Aaron Potechin. 2020. Sum of Squares Bounds for the Ordering Principle. In

Proceedings of the 35th Computational Complexity Conference (CCC), Vol. 169.
38:1–38:37. https://doi.org/10.4230/LIPIcs.CCC.2020.38

[58] Pavel Pudlák. 2000. Proofs as Games. The American Mathematical Monthly 107,

6 (2000), 541–550. https://doi.org/10.2307/2589349

[59] Pavel Pudlák. 2003. On reducibility and symmetry of disjoint NP pairs. Theoretical
Computer Science 295 (2003), 323–339. https://doi.org/10.1016/S0304-3975(02)

00411-5

[60] Pavel Pudlák and Neil Thapen. 2019. Random resolution refutations. Compu-
tational Complexity 28, 2 (2019), 185–239. https://doi.org/10.1007/s00037-019-

00182-7

[61] Prasad Raghavendra and BenjaminWeitz. 2017. On the Bit Complexity of Sum-of-

Squares Proofs. In Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP). 80:1–80:13. https://doi.org/10.4230/LIPIcs.

ICALP.2017.80

[62] Alexander Razborov. 1998. Lower bounds for the polynomial calculus. Computa-
tional Complexity 7 (1998), 291–324. https://doi.org/10.1007/s000370050013

[63] Hanif Sherali andWarrenAdams. 1994. A hierarchy of relaxations and convex hull

characterizations for mixed-integer zero–one programming problems. Discrete
Applied Mathematics 52, 1 (1994), 83–106. https://doi.org/10.1016/0166-218X(92)

00190-W

[64] Naum Shor. 1987. An Approach to Obtaining Global Extremums in Polynomial

Mathematical Programming Problems. Cybernetics 23, 5 (1987), 695–700. https:

//doi.org/10.1007/BF01074929

222

https://doi.org/10.1561/0400000086
https://doi.org/10.1007/s00224-009-9195-5
https://doi.org/10.1007/s00224-009-9195-5
https://doi.org/10.1145/1838552.1838556
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.4230/LIPIcs.MFCS.2019.37
https://eccc.weizmann.ac.il/report/2020/037/
https://eccc.weizmann.ac.il/report/2020/037/
http://www.cs.utoronto.ca/pub/reports/csrg/587/CSRG-587.pdf
http://www.cs.utoronto.ca/pub/reports/csrg/587/CSRG-587.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1137/16M1082007
https://doi.org/10.1137/16M1082007
https://doi.org/10.1109/FOCS.2017.72
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1007/s000370050024
https://doi.org/10.1007/BFb0029974
https://doi.org/10.1007/BFb0029974
https://doi.org/10.1093/logcom/exm017
https://doi.org/10.1093/logcom/exm017
https://doi.org/10.1145/3188745.3188970
https://doi.org/10.1145/3188745.3188970
https://doi.org/10.1006/inco.1997.2674
https://doi.org/10.1007/3-540-45535-3_23
https://doi.org/10.1007/3-540-45535-3_23
https://doi.org/10.4230/LIPIcs.CCC.2017.2
https://doi.org/10.4230/LIPIcs.CCC.2017.2
https://doi.org/10.1007/s00037-017-0152-4
https://doi.org/10.1007/s00037-017-0152-4
https://doi.org/10.1109/FOCS.2016.54
https://doi.org/10.1109/FOCS.2016.54
https://doi.org/10.1109/12.769433
https://doi.org/10.4230/LIPIcs.ICALP.2019.84
https://doi.org/10.4230/LIPIcs.ICALP.2019.84
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://doi.org/10.4230/LIPIcs.CCC.2019.8
https://doi.org/10.1137/1.9781611973105.111
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1137/100816833
https://doi.org/10.4230/LIPIcs.CCC.2020.38
https://doi.org/10.2307/2589349
https://doi.org/10.1016/S0304-3975(02)00411-5
https://doi.org/10.1016/S0304-3975(02)00411-5
https://doi.org/10.1007/s00037-019-00182-7
https://doi.org/10.1007/s00037-019-00182-7
https://doi.org/10.4230/LIPIcs.ICALP.2017.80
https://doi.org/10.4230/LIPIcs.ICALP.2017.80
https://doi.org/10.1007/s000370050013
https://doi.org/10.1016/0166-218X(92)00190-W
https://doi.org/10.1016/0166-218X(92)00190-W
https://doi.org/10.1007/BF01074929
https://doi.org/10.1007/BF01074929

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Other Related Work

	2 Proof overview
	2.1 Resolution Basics
	2.2 A Simpler Proof for the Non-Automatability of Resolution
	2.3 Generalization to Algebraic Systems

	3 Formulas
	3.1 Ref(F) Formula
	3.2 TreeRef(F) Formula
	3.3 rPHP Formula

	4 Decision tree reductions
	4.1 What is a Reduction?
	4.2 Block-Aware Reductions

	5 Block-width lower bound for Ref(F)
	5.1 Overview of Reduction
	5.2 Construction
	5.3 Correctness
	5.4 Tree-Like Extension

	6 Lifting block-width to size
	6.1 Lift(F) Formula
	6.2 Upper Bound for Lift(F)
	6.3 Lower Bound for Lift(F)
	6.4 Alternative Proof via Tradeoffs

	7 Resolution upper bound for Ref(F)
	8 Algebraic definitions
	8.1 Algebraic Proof Systems
	8.2 Algebraic Reductions

	9 Block-degree lower bound for TreeRef(F)
	10 Lifting block-degree to size
	10.1 Upper Bound for Lift(F)
	10.2 Lower Bound for Lift(F)

	11 Algebraic upper bound for TreeRef(F)
	11.1 EoL Formula
	11.2 Reduction to EoL
	11.3 Upper Bound for EoL

	References

