
Certifying MIP-Based Presolve
Reductions for 0–1 Integer Linear

Programs

Alexander Hoen1(B) , Andy Oertel3,4 , Ambros Gleixner1,2 ,
and Jakob Nordström3,4

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
hoen@zib.de

2 HTW Berlin, 10313 Berlin, Germany
gleixner@htw-berlin.de

3 Lund University, Lund, Sweden
andy.oertel@cs.lth.se

4 University of Copenhagen, Copenhagen, Denmark
jn@di.ku.dk

Abstract. It is well known that reformulating the original problem can
be crucial for the performance of mixed-integer programming (MIP)
solvers. To ensure correctness, all transformations must preserve the fea-
sibility status and optimal value of the problem, but there is currently
no established methodology to express and verify the equivalence of two
mixed-integer programs. In this work, we take a first step in this direc-
tion by showing how the correctness of MIP presolve reductions on 0–1
integer linear programs can be certified by using (and suitably extend-
ing) the VeriPB tool for pseudo-Boolean proof logging. Our experimen-
tal evaluation on both decision and optimization instances demonstrates
the computational viability of the approach and leads to suggestions for
future revisions of the proof format that will help to reduce the verbosity
of the certificates and to accelerate the certification and verification pro-
cess further.

Keywords: Proof logging · Presolving · 0–1 integer linear
programming

1 Introduction

Boolean satisfiability solving (SAT) and mixed-integer programming (MIP) are
two computational paradigms in which surprisingly mature and powerful solvers
have been developed over the last decades. Today such solvers are routinely used
to solve large-scale problems in practice despite the fact that these problems are
NP -hard. Both SAT and MIP solvers typically start by trying to simplify the
input problem before feeding it to the main solver algorithm, a process known
as presolving in MIP and preprocessing in SAT. This can involve, e.g., fixing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Dilkina (Ed.): CPAIOR 2024, LNCS 14742, pp. 310–328, 2024.
https://doi.org/10.1007/978-3-031-60597-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60597-0_20&domain=pdf
http://orcid.org/0000-0003-1065-1651
http://orcid.org/0000-0001-9783-6768
http://orcid.org/0000-0003-0391-5903
http://orcid.org/0000-0002-2700-4285
https://doi.org/10.1007/978-3-031-60597-0_20

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 311

variables to values, strengthening constraints, removing constraints, or adding
new constraints to break symmetries. Such techniques are very important for
SAT solver performance [6], and for MIP solvers they often play a decisive role
in whether a problem instance can be solved or not, regardless of whether the
solver uses floating-point [2] or exact rational arithmetic [21].

The impressive performance gains for modern combinatorial solvers come
at the price of ever-increasing complexity, which makes these tools very hard
to debug. It is well documented that even state-of-the-art solvers in many
paradigms, not just SAT and MIP, suffer from errors such as mistakenly claim-
ing infeasibility or optimality, or even returning “solutions” that are infeasi-
ble [3,14,27,40,49]. During the last decade, the SAT community has dealt with
this problem in a remarkably successful way by requiring that solvers should use
proof logging, i.e., produce machine-verifiable certificates of correctness for their
computations that can be verified by a stand-alone proof checker. A number
of proof formats have been developed, such as DRAT [36,37,52], GRIT [18],
and LRAT [17], which are used to certify the whole solving process including
preprocessing.

Achieving something similar in a general MIP setting is much more challeng-
ing, amongst others because of the presence of continuous and general integer
variables, which may even have unbounded domains. For numerically exact MIP
solvers [15,21,22] the proof format VIPR [12] has been introduced, but it cur-
rently only allows verification of feasibility-based reasoning, which must preserve
all feasible solutions. In particular, it does not support the verification of dual
presolving techniques that may exclude feasible solutions as long as one optimal
solution remains. This means that while exact MIP solvers could in principle
generate a certificate for the main solving process, such a certificate would only
establish correctness under the assumption that all the presolving steps were
valid, as, e.g., in [21]. And, unfortunately, the proof logging techniques for SAT
preprocessing cannot be used to address this problem, since they can only reason
about clausal constraints.

Our contribution in this work is to take a first step towards verification of
the full MIP solving process by demonstrating how pseudo-Boolean proof logging
with VeriPB can be used to produce certificates of correctness for a wide range
of MIP presolving techniques for 0–1 integer linear programs (ILPs). VeriPB

is quite a versatile tool in that it has previously been employed for certifica-
tion of, e.g., advanced SAT solving techniques [8,35], SAT-based optimization
(MaxSAT) [4,50], subgraph solving [32,33], and constraint programming [34,42].
However, to the best of our knowledge this is the first time the tool has been
used to prove the correctness of reformulations of optimization problems, and
this presents new challenges. In particular, the proof system turns out not to
be well suited for problem reformulations with frequent changes to the objective
function, and therefore we introduce a new rule for objective function updates.

Our computational experiments confirm that this approach to certifying pre-
solve reductions is computationally viable and the overhead for certification
aligns with what is known from the literature for certifying problem transfor-

312 A. Hoen et al.

mations in other contexts [31]. The analysis of the results reveals new insights
into performance bottlenecks, and these insights directly translate to possible
revisions of the proof logging format that would be valuable to address in order
to decrease the size of the generated proofs and speed up proof verification.

We would like to note that, while our current methods are only applicable to
0–1 ILPs, this covers already a large and important class of MIPs. In particular,
there are applications where the exact and verified solution of 0–1 ILPs is highly
relevant, see [1,23,46] for some examples.

The rest of this paper is organized as follows. After presenting pseudo-
Boolean proof logging and VeriPB in Sect. 2, we demonstrate in Sect. 3 how
to produce VeriPB certificates for MIP presolving on 0–1 ILPs. In Sect. 4 we
report results of an experimental evaluation, and we conclude in Sect. 5 with a
summary and discussion of future work.

2 Pseudo-Boolean Proof Logging with VeriPB

We start by reviewing pseudo-Boolean reasoning in Sect. 2.1, and then explain
our extension to deal with objective function updates in Sect. 2.2. In order to
make the concept of proof logging more concrete, we conclude this section by
providing, in Table 1, a few examples of how the derivation rules explained below
are encoded in VeriPB syntax. For space reasons, this list does not include
examples of subproofs that may be necessary for some derivations that cannot
be proven automatically by VeriPB. Further details on practical aspects and
implementation of pseudo-Boolean proof logging can be found in the software
repository of VeriPB [30].

2.1 Pseudo-Boolean Reasoning with the Cutting Planes Method

Our treatment of this material will by necessity be somewhat terse—we refer the
reader to [9] for more information about the cutting planes method and to [8,31]
for detailed information about the VeriPB proof system and format.

We write x to denote a {0, 1}-valued variable and x as a shorthand for
1 − x, and write � to denote such positive and negative literals, respectively. By
a pseudo-Boolean (PB) constraint we mean a 0–1 linear inequality

∑
j aj�j ≥ b,

where when convenient we can assume all literals �j to refer to distinct variables
and all aj and b to be non-negative (so-called normalized form). A pseudo-
Boolean formula is just another name for a 0–1 integer linear program. For opti-
mization problems we also have an objective function f =

∑
j cjxj that should

be minimized (and f can be negated to represent a maximization problem).
The foundation of VeriPB is the cutting planes proof system [13]. At the

start of the proof, the set of core constraints C are initialized as the 0–1 linear
inequalities in the problem instance. Any constraints derived as described below
are placed in the set of derived constraints D, from where they can later be
moved to C (but not vice versa). Loosely speaking, VeriPB proofs maintain the
invariant that the optimal value of any solution to C and to the original input

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 313

problem is the same. New constraints can be derived from C ∪ D by performing
addition of two constraints or multiplication of a constraint by a positive integer,
and literal axioms � ≥ 0 can be used at any time. Additionally, for a constraint∑

j aj�j ≥ b written in normalized form we can apply division by a positive
integer d followed by rounding up to obtain

∑
j�aj/d��j ≥ �b/d�, and saturation

can be applied to yield
∑

j min{aj , b} · �j ≥ b.
For a PB constraint C

.=
∑

j aj�j ≥ b (where we use .= to denote syntactic
equality), the negation of C is ¬C

.=
∑

j aj�j ≤ b−1. For a partial assignment ρ
mapping variables to {0, 1}, we write C�ρ for the restricted constraint obtained
by replacing variables in C assigned by ρ by their values and simplifying the
result. We say that C unit propagates � under ρ if C�ρ cannot be satisfied unless
� is assigned to 1. If unit propagation on all constraints in C ∪D ∪{¬C} starting
with the empty assignment ρ = ∅, and extending ρ with new assignments as
long as new literals propagate, leads to contradiction in the form of a violated
constraint, then we say that C follows by reverse unit propagation (RUP) from
C∪D. Such (efficiently verifiable) RUP steps are allowed in VeriPB proofs when
it is convenient to avoid writing out an explicit derivation of C from C ∪ D. We
will also write C�ω to denote the result of applying to C a (partial) substitution ω
which can remap variables to other literals in addition to 0 and 1, and we extend
this notation to sets in the obvious way by taking unions.

In addition to the cutting planes rules, which can only derive semantically
implied constraints, VeriPB has a redundance-based strengthening rule that can
derive a non-implied constraint C as long as this does not change the feasibility
or optimal value of the problem. Formally, C can be derived from C∪D using this
rule by exhibiting in the proof a witness substitution ω together with subproofs

C ∪ D ∪ {¬C} � (C ∪ D ∪ {C})�ω ∪ {f ≥ f�ω} , (1)

of all constraints on the right-hand side from the premises on the left-hand side
using the derivation rules above. Intuitively, what (1) shows is that if α is any
assignment that satisfies C ∪ D but violates C, then α ◦ ω satisfies C ∪ D ∪ {C}
and yields at least as good a value for the objective function f .

During presolving, constraints in the input formula can be deleted or replaced
by other constraints, and the proof needs to establish that such modifications
are correct. While deletions from the derived set D are always in order, removing
a constraint from the core set C could potentially introduce spurious solutions.
Therefore, deleting a constraint C from C can only be done by the checked
deletion rule, which requires to show that C could be rederived from C\{C} by
redundance-based strengthening (see [8] for a more detailed explanation).

2.2 A New Rule for Objective Function Updates

When variables are fixed or identified during the presolving process, the objective
function f can be modified to a function f ′. This modified objective f ′ can then
be used in other presolver reasoning. This scenario arises also in, e.g., MaxSAT
solving, and can be dealt with by deriving two PB constraints f ≥ f ′ and
f ′ ≥ f in the proof, which encodes that the old and new objective are equal [4].

314 A. Hoen et al.

Table 1. Examples of basic derivation rules in VeriPB syntax. Here, (id) refers to the
constraint ID assigned by VeriPB.

Rule Syntax Explanation

cutting planes in

reverse Polish

notation

pol x1 4 + add x1 ≥ 0 and (4)

pol 3 2 d divides (3) by 2

pol 1 2 * ~x1 + multiplies (1) by 2 and adds x1 ≥ 0

redundance-based

strengthening

red +1 x1 >= 1; x1 1 verifies x1 ≥ 1 with ω = {x1 �→ 1}
red +1 x1 +1 x2 >= 1; x1 x2 x2 x1 verifies x1 + x2 ≥ 1 with

ω = {x1 �→ x2, x2 �→ x1}
RUP rup +1 x1 +1 x2 >= 1; verifies x1 + x2 ≥ 1 with RUP

move to core core id 3 moves (3) to the core constraints

deletion from core delc 3 deletes (3) from the core constraints

objective function

update

obju new +1 x1 +1 x2 1; defines x1 + x2 + 1 as new objective

obju diff +1 x1; adds x1 to the objective

Whenever the solver argues in terms of f ′, a telescoping-sum argument with
f ′ = f can be used to justify the same conclusion in terms of the old objective.

However, if the presolver changes f to f ′ and then uses reasoning that needs
to be certified by redundance-based strengthening, then tricky problems can
arise. One of the required proof goals in (1) is that the witness ω cannot worsen
the objective. If ω does not mention variables in f ′, then this is obvious to
the presolver—ω has no effect on the objective—but if ω assigns variables in
the original objective f , then one still needs to derive f ≥ f�ω in the formal
proof, which can be challenging. While this can often be done by enlarging
the witness ω to include earlier variable fixings and identifications, the extra
bookkeeping required for this quickly becomes a major headache, and results in
the proof deviating further and further from the actual presolver reasoning that
the proof logging is meant to certify.

For this reason, a better solution is to introduce a new objective function
update rule that formally replaces f by a new objective f ′, so that all future
reasoning about the objective can focus on f ′ and ignore f . Such a rule needs to
be designed with care, so that the optimal value of the problem is preserved. Due
to space constraints we cannot provide a formal proof here, but recall that intu-
itively we maintain the invariant for the core set C that it has the same optimal
value as the original problem. In agreement with this, the formal requirement
for updating the objective from f to f ′ is to present in the proof log derivations
of the two constraints f ≥ f ′ and f ′ ≥ f from the core set C only.

3 Certifying Presolve Reductions

We now describe how feasibility- and optimality-based presolving reductions
can be certified by using VeriPB proof logging enhanced with the new objec-
tive function update rule described in Sect. 2.2 above. We distinguish between
primal and dual reductions, where primal reductions strengthen the problem for-
mulation by tightening the convex hull of the problem and preserve all feasible
solutions, and dual reductions may additionally remove feasible solutions using

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 315

optimality-based arguments. More precisely, weak dual reductions preserve all
optimal solutions, but may remove suboptimal solutions. Strong dual reductions
may remove also optimal solutions as long as at least one optimal solution is
preserved in the reduced problem. Our selection of methods is motivated by the
recent MIP solver implementation described in [44]. Before explaining the indi-
vidual presolving techniques and their certification, we introduce a few general
techniques that are needed for the certification of several presolving methods.

3.1 General Techniques

Substitution. In order to reduce the number of variables, constraints, and non-
zero coefficients in the constraints, many presolving techniques first try to iden-
tify an equality E

.= xk =
∑

j �=k αjxj + β with αj , β ∈ Q. Subsequently, all
occurrences of xk in the objective and constraints besides E are substituted by
the affine expression on the right-hand side and xk is removed from the problem.
The simplest case when xk is fixed to zero or one, i.e., when β ∈ {0, 1} and all
αj = 0, is straightforward to handle by deriving a new lower or upper bound on
xk. During presolving, every fixed variable is removed from the model. In the
cases where some αj �= 0, first the equation is expressed as a pair of constraints
E≥ ∧ E≤ and then the variable is removed by aggregation as follows.

Aggregation. In order to substitute variables or reduce the number of non-zero
coefficients, certain presolving techniques add a scaled equality s ·E .= s ·E≥ ∧s ·
E≤, s ∈ Q, to a given constraint D. We call this an aggregation. Since VeriPB

certificates expect inequalities with integer coefficients, s is split into two integer
scaling factors sE , sD ∈ Z with s = sE/sD. In the certificate, the aggregation is
expressed as a newly derived constraint

Dnew
.=

{
|sE | · E≥ + |sD| · D if sD

sE
> 0

|sE | · E≤ + |sD| · D otherwise .

Note that the presolving algorithm may decide to keep working with the
constraint (1/sD)Dnew internally. In this case, it must store the scaling factor
sD in order to correctly translate between its own state and the state in the
certificate; this happens in the implementation used in Sect. 4.

Checked Deletion. The derivation of a new constraint Dnew can render a previous
constraint D redundant. A typical example is the case of substituting a variable
above. In a (pre)solver, the previous constraint is overwritten, and in order to
keep the constraint database in the proof aligned with the solver, one may want
to delete the previous constraint from the proof. In order to check the deletion
of D, a subproof is required that proves its redundancy. In most cases, this
subproof contains the “inverted” derivation of Dnew . As an example, consider
an aggregation Dnew

.= D + E≤ with an equality E
.= E≤ ∧ E≥. In this case,

the subproof for the checked deletion is Dnew + E≥. Unless stated otherwise,
the new constraints are moved to the core and redundant constraints are always
removed by inverting the derivation of the constraint that replaces them.

316 A. Hoen et al.

3.2 Primal Reductions

Primal reductions can be certified purely by implicational reasoning.

Bound Strengthening. This preprocessor [24,47] tries to tighten the variable
domains by iteratively applying well-known constraint propagation to all vari-
ables in the linear constraints. Each reduced variable domain is communicated
to the affected constraints and may trigger further domain changes. This process
is continued until no further domain reductions happen or the problem becomes
infeasible due to empty domains. Specifically, for an inequality constraint

∑

j∈N

ajxj ≥ b (2)

with ak �= 0, we first underestimate akxk via

akxk ≥ b −
∑

j �=k

ajxj ≥ b −
∑

j �=k,aj>0

aj .

If ak > 0, this yields the lower bound

xk ≥
⌈(

b −
∑

j �=k,aj>0

aj

)
/ak

⌉
, (3)

and if ak < 0 we can obtain an analogous upper bound on xk.
The bound change can be proven either by RUP, or more explicitly by stating

the additions and division needed to form (3) from (2) and the bound constraints.
We analyze the effect of both variants in Sect. 4.4.

Parallel Rows. Two constraints Cj and Ck are parallel if a scalar λ ∈ R+ exists
with λ(aj1, . . . , ajn, bj) = (ak1, . . . , akn, bk). Hence, one of these constraints is
redundant and can be removed from the model [2,26]. The subproof for deleting
the redundant rows must contain the remaining parallel row and λ to prove the
redundancy. For a fractional λ the two constraint are scaled to ensure integer
coefficients in the certificate.

Probing. The general idea of probing [1,47] is to tentatively fix a variable xj to
0 or 1 and then apply constraint propagation to the resulting model. Suppose
xk is an arbitrary variable with k �= i, then we can learn fixings or implications
in the following cases:

1. If xj = 0 implies xk = 1 and xj = 1 implies xk = 0 we can add the constraint
xj = 1 − xk. Analogously, we can derive xk = xj in the case that xj = 0
implies xk = 0 and xj = 1 implies xk = 1.

2. If xj = 0 propagates to infeasibility we can fix xj = 1. Analogously, if xj = 1
propagates to infeasibility we can fix xj = 0.

3. If xj = 0 implies xk = 0 and xj = 1 implies xk = 0 we can fix xk to 0.
Analogously, xk can be fixed to 1 if xj = 0 implies xk = 1 and xj = 1 implies
xk = 1.

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 317

Cases 1 and 2 can be proven with RUP. To prove correctness of fixing xk = 1
in Case 3 we first derive two new constraints xk + xj ≥ 1 and xk − xj ≥ 0 in
the proof log by RUP. Adding these two constraints leads to xk ≥ 1. To prove
xk = 0 we derive the constraints xk + xj ≤ 0 and xk − xj ≤ 0 leading to xk = 0.

Simple Probing. On equalities with a special structure, a more simplified ver-
sion of probing called simple probing [2, Sect. 3.6] can be applied. Suppose the
equation

∑

j∈N

ajxj = b with
∑

j∈N

aj = 2 · b and |ak| =
∑

j∈N,aj>0

aj − b

holds for a variable xk with ak �= 0. Let N̂ = {p ∈ N | ap �= 0}. Under these
conditions, xk = 1 implies xp = 0 and xk = 0 implies xp = 1 for all p ∈ N̂ with
ap > 0. Further, xk = 1 implies xp = 1 and xk = 0 implies xp = 0 for all p ∈ N̂
with ap < 0. These implications can be expressed by the constraints

xk = 1 − xp for all p ∈ N̂ with ap > 0 , (4)

xk = xp for all p ∈ N̂ with ap < 0 . (5)

The constraints (4) and (5) can be proven with RUP and used to substitute
variables xp for all p ∈ N̂ from the problem.

Sparsifying the Matrix. The presolving technique sparsify [2,11] tries to reduce
the number of non-zero coefficients by adding (multiples of) equalities to other
constraints using aggregations. This can be certified as described in Sect. 3.1.

Coefficient Tightening. The goal of this MIP presolving technique, which goes
back to [47], is to tighten the LP relaxation, i.e., the relaxation obtained when
the integrality requirements are replaced by xj ∈ [0, 1]. To this end, the coeffi-
cients of constraints are modified such that LP relaxation solutions are removed,
but all integer feasible solutions are preserved. Suppose we are given a constraint∑

j∈N ajxj ≥ b with ak ≥ ε := ak − b +
∑

j �=k,aj<0 aj > 0, then the constraint
can be strengthened to (ak − ε)xk +

∑
j �=k ajxj ≥ b . The case ak < 0 is handled

analogously. This technique is also known as saturation in the SAT commu-
nity [10] and VeriPB provides a dedicated saturation rule that can be used
directly for proving the correctness of coefficient tightening. The deletion of the
original, weaker constraint can be proven automatically.

GCD-Based Simplification. This presolving technique from [51] uses a divisibility
argument to first eliminate variables from a constraint and then tighten its right-
hand side. Given C

.=
∑

j∈N ajxj ≥ b with |a1| ≥ · · · ≥ |an| > 0. We define the
greatest common divisor gk = gcd(a1, . . . , ak) as the largest value g such that
aj/g ∈ Z for all j ∈ {1, . . . , k}. If for an index k it holds that b − gk ·

⌈
b

gk

⌉
≥

∑
k<j≤n,aj>0 aj and b − gk ·

⌈
b

gk

⌉
− gk ≤ ∑

k<j≤n,aj<0 aj , then all ak+1, . . . , an

can be set to 0. This first step can be certified as weakening [41] and VeriPB

provides an out-of-the-box verification function for it. Finally, b can be rounded

318 A. Hoen et al.

to gk · �b/gk�. This rounding step can be certified by dividing C with gk and
then multiply it again with gk.

Substituting Implied Free Variables. A variable xj is called implied free if its lower
bound and its upper bound can be derived from the constraints. For example,
the constraints x1 − x2 ≥ 0 and x2 ≥ 0 imply the lower bound x1 ≥ 0. If we
have an implied free variable xj in an equality E

.= ajxj +
∑

k �=j akxk = b
with aj > 0, then we can remove xj from the problem by substituting it with
xj =

(
b − ∑

k �=j akxk

)
/aj , see [2] for details.

To apply the substitution in the certificate we use aggregations to remove
xj from all constraints and the objective function update to remove xj from
the objective. If coefficients cj/aj or ak/aj are non-integer, then the resulting
constraints are scaled as described in Sect. 3.1. To prove the deletion of E, we
derive two constraints by adding xj ≥ 0 and 1 ≥ xj to E each, which results in

b ≥
∑

k �=j

akxk ∧
∑

k �=j

akxk ≥ b − aj . (6)

Then the deletion of E≥ can be certified by a witness ω = {xj → 1}. The
constraint simplifies to (6) and is therefore fulfilled. Analogously, we use the
witness ω = {xj → 0} to certify the deletion of E≤. Finally, to delete the con-
straints in (6) we generate a subproof that shows that negation of the auxiliary
constraints in (6) leads to xj �∈ {0, 1}. This is a contradiction to the implied
variable bounds 0 ≤ xj ≤ 1. Since these bounds are still present through the
implying constraints, we can add these implying constraints to (6) in the sub-
proof to arrive at a contradiction.

Singleton Variables. It is well-known that variables that appear only in one
inequality constraint or equality can be removed from the problem [2, Sect. 5.2].
This can be certified by applying one of the following primal or dual strategies
in this order: First, try to apply duality-based fixing, see Sect. 3.3; second, an
implied free singleton variable can be substituted as explained above; otherwise,
the singleton variable can be treated as a slack variable: substitute the variable in
the objective, then relax the equality as in (6), and delete the original constraint.

3.3 Dual Reductions

Dual reductions remove solutions while preserving at least one optimal solu-
tion. Hence, to prove the correctness of dual reductions we need to involve the
redundance-based strengthening rule of VeriPB. For each derived constraint C
we only explain how to prove f ≥ f�ω (subject to the negation ¬C); the proof
goals for C�ω can be derived in a very similar fashion.

Duality-Based Fixing. This presolving step described in [2, Sect. 4.2] counts
the down- and up-lock of a variable. A down-lock on variable xj is a negative
coefficient, an up-lock on variable xj is a positive coefficient (for ≥ constraints).
If xj has no down-locks and cj ≤ 0, it can be fixed to zero; if xj has no up-
locks and cj ≥ 0, it can be fixed to one. These reductions can be certified with

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 319

redundance-based strengthening using the witness ω = {xj → v}, where v is the
fixing value. The proof goal for f ≥ f�ω is equivalent to cjxj ≥ cjv, which is
fulfilled by the conditions of duality-based fixing.

Dominated Variables. A variable xj is said to dominate another variable xk [2,
25], in notation xj � xk, if

cj ≤ ck ∧ aij ≥ aik for all i ∈ {1, . . . ,m} , (7)

where aij and aik are the coefficients of variable xj and xk, respectively, in the
i-th constraint. Variable xj is then favored over xk since xj contributes less
to the objective function, but more to the feasibility of the constraints. For
every domination xj � xk, a constraint C

.= xj ≥ xk can be introduced. This
constraint can be certified by redundance-based strengthening with the witness
ω = {xk → xj , xj → xk}. The proof goal for f ≥ f�ω is equivalent to

cjxj + ckxk ≥ cjxk + ckxj . (8)

The negated constraint ¬C
.= xj < xk leads to xk = 1 and xj = 0. Substituting

these values in (8) leads to ck ≥ cj , which follows directly from Condition (7).

Dominated Variables Advanced. For an implied free variable we can drop the vari-
able bounds and pretend the variable is unbounded. This allows for additional
fixings in the following cases of dominated variables:

(a) If the upper bound of xj is implied and xj � xk, then xk = 0.
(b) If the lower bound of xk is implied and xj � xk, then xj = 1.
(c) If the upper bound of xj is implied and xj � −xk, then xk = 1.
(d) If the lower bound of xj is implied and −xj � xk, then xj = 0.

We use redundance-based strengthening with witness ω = {xk → 0} to prove the
correctness of (a) as follows. If the upper bound of xj is implied, this means there

exists a constraint with aij < 0 such that xj ≤
⌊

b�−∑
� �=j,ai�>0 ai�

aij

⌋
= 1 . Due to

Condition (7), it must hold that 0 > aij ≥ aik, and the constraint xj + xk ≤
1 can be derived. Hence, negating and propagating C

.= xk = 0 with RUP
leads to contradiction, which proves the validity of C. Case (b) can be handled
analogously using the witness ω = {xk → 1}. To derive C

.= xk = 1 in (c) we
use redundance-based strengthening with witness ω = {xk → 1, xj → 1}. Then,
the proof goal for f ≥ f�ω is cj · xj + ck · xk ≥ cj + ck. After propagating ¬C,
this becomes equivalent to cj ≤ −ck, which is true by Condition (7). Case (d)
can be handled analogously using the witness ω = {xk → 0, xj → 0}.

3.4 Example

We conclude this section with an example of a small certificate for the substi-
tution of an implied free variable in Fig. 1, also available with a more detailed
description at the software repository of PaPILO [38]. Consider the 0–1 ILP

min x1 + x2 s.t. x1 + x2 − x3 − x4 = 1 , (9)
−x1 + x5 ≥ 0 , (10)

320 A. Hoen et al.

* generates ID 4:
pol 1 ~x1 + ;
core id 4
* generates ID 5:
pol 2 x1 + ;
core id 5

* generates ID 6:
pol 3 1 + ;
core id 6
delc 3 ; ; begin

pol 6 2 +
end
obju new +1 x3 +1 x4 1 ;

delc 2 ; x1 -> 0
delc 1 ; x1 -> 1
delc 5
delc 4 ; ; begin

pol 6 -1 +
end

Fig. 1. A VeriPB certificate to substitute an implied free variable x1.

in which the lower bound of x1 is implied by (9) and the upper bound of x1 is
implied by (10). Hence, x1 is implied free and we can use (9) to substitute it.

In the left section of Fig. 1 we first derive the two auxiliary constraints

0 ≤ x2 − x3 − x4 ≤ 1 , (11)

which receives the constraint IDs 4 and 5 and are moved to the core. Note that
the equality in (9) is split into two inequalities with IDs 1 and 2. In the middle
section, we first remove x1 from (10) by aggregation with (9), perform checked
deletion, then remove x1 from the objective (automatically proven by VeriPB).
Last, in the right section, we delete the equality in (9) used for the substitution
and the auxiliary constraints in (11) and arrive at the reformulated problem
min x3 + x4 + 1 s.t. x2 − x3 − x4 + x5 ≥ 1. From here, we could continue to
derive x2 = 1 by duality-based fixing, since x2 has zero up-locks and objective
coefficient zero. This displays the importance of the objective update, as without
it x2 would still contribute to the objective with a positive coefficient, and this
would prohibit duality-based fixing to 1.

4 Computational Study

In this section we quantify the cost of certifying presolve reductions in a state-
of-the-art implementation for MIP-based presolve (Sect. 4.2) and the cost of
verifying the resulting certificates (Sect. 4.3). In Sect. 4.4, we analyze the impact
of certifying constraint propagation by RUP or by an explicit cutting planes
proof.

4.1 Experimental Setup

For generating the presolve certificates we use the solver-independent presolve
library PaPILO [44], which provides a large set of MIP and LP techniques from
the literature, described in Sect. 3. Additionally, it accelerates the search for pre-
solving reductions by parallelization, encapsulating each reduction in a so-called
transaction to avoid expensive synchronization [28]. Logging the certificate, how-
ever, is performed sequentially while evaluating the transactions.

We base our experiments on models from the Pseudo-Boolean Competition
2016 [45] including 1398 linear small integer decision and 532 linear small inte-
ger optimization instances of the competitions PB10, PB11, PB12, PB15, and
PB16 and 295 decision and 145 optimization instances from MIPLIB 2017 [29] in

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 321

the OPB translation [19], excluding 10 large-scale instances1 for which PaPILO

reaches the memory limit. This yields a total of 671 optimization and 1681 deci-
sion instances. We use PaPILO 2.2.0 [39] running on 6 threads and Veri-

PB 2.0 [30]. The experiments are carried out on identical machines with an 11th
Gen Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory and
are assigned 14,000 MB of memory. The strict time limit for presolve plus certifi-
cation and verification is three hours. Times (reported in seconds) do not include
the time for reading the instance file. For all aggregations, we use the shifted
geometric mean with a shift of 1 s.

4.2 Overhead of Proof Logging

In the first experiment, we analyze the overhead of proof logging in PaPILO.
The average results are summarized in Table 2, separately over decision (dec)
and optimization (opt) instances for PB16 and MIPLIB. Column “relative”
indicates the average slow-down incurred by printing the certificate.

The relative overhead of proof logging is less than 6% across all test sets.
VeriPB supports two variants to change the objective function. Either printing
the entire objective (obju new) or printing only the changes in the objective
(obju diff). In our experiments, we only print the changes, since printing the
entire objective for each change can lead to a large certificate and overhead,
especially for instances with large and dense objective functions. On the PB16

instance normalized-datt256, for example, PaPILO finds 135 206 variable
fixings. Updating the entire objective function with 262 144 non-zeros for each
of these variables leads to a huge certificate of about 138 GB and increases the
time from 3.3 s (when printing only the changes) to 6625 s.2

For 99% of the instances, we can further observe that the overhead per applied
reduction is below 0.001·10−3 s over both test sets. This means that the proof log-
ging overhead is not only small on average, but also small per applied reduction
on the vast majority of instances. These results show that the overhead scales
well with the number of applied reductions and that proof logging remains viable
even for instances with many transactions. Here, under applied reductions we
subsume all applied transactions and each variable fixing or row deletion in the
first model clean-up phase. During model clean-up, PaPILO fixes variables and
removes redundant constraints from the problem. While PaPILO technically
does not count these reductions as full transactions found during the parallel
presolve phase, their certification can incur the same overhead.

4.3 Verification Performance on Presolve Certificates

In this section, we analyze the time to verify the certificates generated by
PaPILO. The results are summarized in Table 3. The “verified” column lists
1
normalized-184, normalized-pb-simp-nonunif, a2864-99blp, ivu06-big, ivu59,
supportcase11, a2864-99blp.0.s/u, supportcase11.0.s/u.

2 Certificate generated on Intel Xeon Gold 5122 @ 3.60GHz 96 GB with 50,000 MB
of memory assigned.

322 A. Hoen et al.

Table 2. Runtime comparison of PaPILO with and without proof logging.

test set size default [s] w/proof log [s] relative

PB16-dec 1397 0.06 0.06 1.00

MIPLIB-dec 291 0.42 0.43 1.02

PB16-opt 531 0.65 0.66 1.02

MIPLIB-opt 142 0.33 0.35 1.06

Table 3. Time to verify the certificates. VeriPB timeouts are treated with PAR2.

test set size verified PaPILO time [s] VeriPB relative time w.r.t.

default w/proof log time [s] default w/proof log

PB16-dec 1397 1397 0.06 0.06 0.88 14.67 14.67

MIPLIB-dec 291 267 0.42 0.43 9.64 22.85 22.42

PB16-opt 531 520 0.65 0.66 10.44 16.06 15.82

MIPLIB-opt 142 139 0.33 0.35 5.25 15.91 15.00

the number of instances verified within 3 h. VeriPB timeouts are counted as
twice the time limit, i.e., PAR2 score. Similar to Table 2, the “relative” columns
report the relative overhead of VeriPB runtime compared to PaPILO.

First note that all certificates are verified by VeriPB (partially on the
38 instances where VeriPB times out). On average, it takes between 14.7 and
22.4 times as much time to verify the certificates than to produce them. Never-
theless, some instances take a longer than average time to verify. Over all test
sets, 25% of the instances have an overhead of at least a factor of 193, see also
Fig. 2.

To put this result into context, note that presolving amounts more to a
transformation than to a (partial) solution of the problem. Each reduction has
to be certified and verified while a purely solution-targeted algorithm may be
able to skip certifying of a larger part of the findings that are not form a part of
the final proof of optimality. Hence, it makes sense to compare the performance
of VeriPB on presolve certificates to the overhead for, e.g., for verifying CNF
translations [31]. For this study, a similar performance overhead is reported as
in Fig. 2.

4.4 Performance Analysis on Constraint Propagation

Finally, we investigate how the performance of VeriPB depends on whether
we use RUP (as in Sect. 4.2 and Sect. 4.3) or explicit cutting planes deriva-
tions (POL) to certify bound strengthening reductions from constraint propaga-
tion. Here, we additionally exclude 9 large-scale instances3 for which PaPILO

3
neos-4754521-awarau.0.s, neos-827015.0.s/u, neos-829552.0.s/u, s100.0.s/u,
normalized-datt256, s100.

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 323

10−2 10−1 100 101 102 103

100

101

102

103

104

PaPILO (time in seconds)

V
er

iP
B

(t
im

e
in

se
co
nd

s)

10−2 10−1 100 101 102 103

100

101

102

103

104

PaPILO (time in seconds)

V
er

iP
B

(t
im

e
in

se
co
nd

s)

Fig. 2. Running times of VeriPB vs. PaPILO on test sets PB16 (left) and MIPLIB

(right), including all instances with more than 1 s in VeriPB and less than 30 min in
PaPILO, and excluding timeouts. Green + signs mark optimization and blue × signs
mark decision instances. (Color figure online)

reaches the memory limit when certifying with POL. The results are summarized
in Table 4. The “verified” column contains the number of instances verified by
VeriPB within the time limit. The “time” column reports the time for verifi-
cation.

Deriving the propagation directly with cutting planes is 3.2% faster on PB16-
dec, 2.8% faster on MIPLIB-dec, 13.1% faster on MIPLIB-opt, and 0.7% faster
on PB16-opt. On 95% of the decision instances using RUP is at most 9.7%
slower. While it is expected that verification is faster when the cutting planes
proof is given explicitly, it is surprising that the performance difference between
the methods is not more pronounced. This is partly due to the cost of the
watched-literal scheme [43,48] used by VeriPB for unit propagation. The over-
head of maintaining the watches is present regardless of whether (reverse) unit
propagation is used or not. Furthermore, unit propagation is also used for auto-
matically verifying redundance-based strengthening. Together, this limits the
potential for runtime savings by providing the explicit cutting planes proof.

Furthermore, providing an explicit cutting planes proof for propagation
requires printing the constraint into the certificate. Hence, the certificate size
becomes dependent on the number of non-zeros in the constraints leading to
propagations. In contrast, the overhead of RUP is constant and much smaller.

All in all, these results suggest to prefer RUP when deriving constraint prop-
agation since it barely impacts the performance of VeriPB and keeps the size of
the certificate smaller. The computational cost of RUP could be further reduced
by extending it to accept an ordered list of constraints that shall be propagated
first, similar as in [16]. Such an extension could also be used for other presolving
techniques, in particular probing and simple probing.

324 A. Hoen et al.

Table 4. Comparison of the runtime of VeriPB with RUP and POL over instances
with at least 10 propagations.

test set size RUP POL relative

verified time [s] verified time [s]

PB16-dec 284 284 2.21 284 2.14 0.968

MIPLIB-dec 35 31 153.23 31 148.88 0.972

PB16-opt 153 142 28.43 142 28.22 0.993

MIPLIB-opt 16 14 147.11 14 127.83 0.869

5 Conclusion

In this paper we set out to demonstrate how presolve techniques from state-
of-the-art MIP solvers can be equipped with certificates in order to verify the
equivalence between original and reduced models. Although the pseudo-Boolean
proof logging format behind VeriPB [7] was not designed with this purpose in
mind, we could show that a limited extension needed for handling updates of
the objective function is sufficient to craft a certified presolver for 0–1 ILPs.

However, our experimental study on instances from pseudo-Boolean competi-
tions and MIPLIB also exhibited that the verification of MIP-based presolving
can suffer from large and overly verbose certificates. To shrink the proof size
we introduced a sparse objective update function but identified further possi-
ble improvements. First, a native substitution rule in VeriPB would remove
the need for the explicit derivation of new aggregations and the verification of
checked deletion as described in Sect. 3.1. For instances where presolving is dom-
inated by substitutions, we estimate that this would reduce certificate sizes by
up to 90%, and no more time would be spent on checked deletion for substitu-
tions. Second, augmenting the RUP syntax by the option to specify an ordered
list of constraints to propagate first, similarly as in [16], would accelerate RUP,
in particular for fast verification of bound strengthenings by constraint propa-
gation.

While VeriPB is currently restricted to operate on integer coefficients only,
the certification techniques presented in Sect. 3 do not rely on this assumption
and are applicable to general binary programs. It has been shown how to con-
struct VeriPB certificates for bounded integer domains [34,42], and within the
framework of the generalized proof system laid out in [20], our certificates would
even translate to continuous and unbounded integer domains. To conclude, we
believe our results show convincingly that this type of proof logging techniques
is a very promising direction of research also for MIP presolve beyond 0–1 ILPs.

Acknowledgements. The authors wish to acknowledge helpful technical discussions
on VeriPB in general and the objective update rule in particular with Bart Bogaerts,
Ciaran McCreesh, and Yong Kiam Tan. The work for this article has been partly con-
ducted within the Research Campus MODAL funded by the German Federal Ministry
of Education and Research (BMBF grant number 05M14ZAM). Jakob Nordström was

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 325

supported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B. Andy Oertel was supported by the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. The computational experiments were enabled by
resources provided by LUNARC at Lund University.

References

1. Achterberg, T.: Constraint Integer Programming. Doctoral thesis, Technische Uni-
versität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Berlin (2007).
https://doi.org/10.14279/depositonce-1634

2. Achterberg, T., Bixby, R., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions
in mixed integer programming. INFORMS J. Comput. 32 (2019). https://doi.org/
10.1287/ijoc.2018.0857

3. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Metamorphic test-
ing of constraint solvers. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp.
727–736. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 46

4. Berg, J., Bogaerts, B., Nordström, J., Oertel, A., Vandesande, D.: Certified core-
guided MaxSAT solving. In: Pientka, B., Tinelli, C. (eds.) CADE 2023. LNCS, vol.
14132, pp. 1–22. Springer, Cham (2023)

5. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, vol. 336, 2nd edn. IOS
Press, Amsterdam (2021)

6. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere et al.
[5], chap. 9, pp. 391–435

7. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. In: Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI 2022), pp. 3698–3707 (Feb 2022)

8. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified dominance and
symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023). preliminary version in AAAI 2022

9. Buss, S.R., Nordström, J.: Proof complexity and SAT solving. In: Biere et al. [5],
chap. 7, pp. 233–350

10. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 24(3), 305–
317 (2005). preliminary version in DAC ’03

11. Chang, S.F., McCormick, S.T.: Implementation and computational results for the
hierarchical algorithm for making sparse matrices sparser. ACM Trans. Math.
Softw. 19(3), 419-441 (1993). https://doi.org/10.1145/155743.152620

12. Cheung, K.K.H., Gleixner, A.M., Steffy, D.E.: Verifying integer programming
results. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp.
148–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 13

13. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discret. Appl. Math. 18(1), 25–38 (1987)

14. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach
for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–
344 (2013)

15. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach
for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–
344 (2013). https://doi.org/10.1007/s12532-013-0055-6

https://doi.org/10.14279/depositonce-1634
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1007/978-3-319-98334-9_46
https://doi.org/10.1145/155743.152620
https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/s12532-013-0055-6

326 A. Hoen et al.

16. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified rat verification. In: de Moura, L. (ed.) CADE 2017. LNCS, pp.
220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 14

17. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Jr., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS,
vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63046-5 14

18. Cruz-Filipe, L., Marques-Silva, J.P., Schneider-Kamp, P.: Efficient certified reso-
lution proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 118–135. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 7

19. Devriendt, J.: Miplib 0-1 instances in opb format (2020). https://doi.org/10.5281/
zenodo.3870965

20. Doornmalen, J.V., Eifler, L., Gleixner, A., Hojny, C.: A proof system for certify-
ing symmetry and optimality reasoning in integer programming. Technical report
2311.03877, arXiv.org (2023)

21. Eifler, L., Gleixner, A.: A computational status update for exact rational mixed
integer programming. Math. Program. (2022). https://doi.org/10.1007/s10107-
021-01749-5

22. Eifler, L., Gleixner, A.: Safe and verified gomory mixed integer cuts in a rational
MIP framework. SIAM J. Optim. 34(1), 742–763 (2024). https://doi.org/10.1137/
23M156046X

23. Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer
programming applied to chvátal’s conjecture. ACM Trans. Math. Softw. 48(2)
(2022). https://doi.org/10.1145/3485630

24. Fügenschuh, A., Martin, A.: Computational integer programming and cutting
planes. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimiza-
tion, Handbooks in Operations Research and Management Science, vol. 12, pp.
69–121. Elsevier (2005). https://doi.org/10.1016/S0927-0507(05)12002-7

25. Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D.: Progress in
presolving for mixed integer programming. Math. Programm. Comput. 7 (2015).
https://doi.org/10.1007/s12532-015-0083-5

26. Gemander, P., Chen, W.K., Weninger, D., Gottwald, L., Gleixner, A.: Two-row and
two-column mixed-integer presolve using hashing-based pairing methods. EURO
J. Comput. Optim. 8(3–4), 205–240 (2020). https://doi.org/10.1007/s13675-020-
00129-6

27. Gillard, X., Schaus, P., Deville, Y.: SolverCheck: declarative testing of constraints.
In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 565–582. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7 33

28. Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: a parallel presolving library
for integer and linear programming with multiprecision support. INFORMS J.
Comput. (2023). https://doi.org/10.1287/ijoc.2022.0171.cd, https://github.com/
INFORMSJoC/2022.0171

29. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 13, 443–490 (2021). https://doi.
org/10.1007/s12532-020-00194-3

30. Gocht, S., Oertel, A.: Veripb (2023). https://gitlab.com/MIAOresearch/software/
VeriPB, githash: dd7aa5a1

31. Gocht, S., Martins, R., Nordström, J., Oertel, A.: Certified CNF translations for
pseudo-Boolean solving. In: Proceedings of the 25th International Conference on

https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.5281/zenodo.3870965
https://doi.org/10.5281/zenodo.3870965
http://arxiv.org/abs/org
https://doi.org/10.1007/s10107-021-01749-5
https://doi.org/10.1007/s10107-021-01749-5
https://doi.org/10.1137/23M156046X
https://doi.org/10.1137/23M156046X
https://doi.org/10.1145/3485630
https://doi.org/10.1016/S0927-0507(05)12002-7
https://doi.org/10.1007/s12532-015-0083-5
https://doi.org/10.1007/s13675-020-00129-6
https://doi.org/10.1007/s13675-020-00129-6
https://doi.org/10.1007/978-3-030-30048-7_33
https://doi.org/10.1287/ijoc.2022.0171.cd
https://github.com/INFORMSJoC/2022.0171
https://github.com/INFORMSJoC/2022.0171
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs 327

Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 236, pp. 16:1–16:25 (Aug 2022)

32. Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., Trimble, J.: Cer-
tifying solvers for clique and maximum common (connected) subgraph problems.
In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 338–357. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58475-7 20

33. Gocht, S., McCreesh, C., Nordström, J.: Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI ’20), pp. 1134–1140 (2020)

34. Gocht, S., McCreesh, C., Nordström, J.: An auditable constraint programming
solver. In: Proceedings of the 28th International Conference on Principles and
Practice of Constraint Programming (CP ’22). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 235, pp. 25:1–25:18 (2022)

35. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: Proceedings of the 35th AAAI Conference on Artificial Intelli-
gence (AAAI ’21), pp. 3768–3777 (2021)

36. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Proceedings of the 13th International Conference on Formal Methods
in Computer-Aided Design (FMCAD ’13), pp. 181–188 (2013)

37. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended reso-
lution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 24

38. Hoen, A.: Papilo: Parallel presolve integer and linear optimization (2023). https://
github.com/scipopt/papilo/tree/develop/check/VeriPB, githash: 5df3dd6d

39. Hoen, A., Gottwald, L.: Papilo: parallel presolve integer and linear optimization
(2023). https://github.com/scipopt/papilo, githash: 3b082d4

40. Klotz, E.: Identification, assessment, and correction of ill-conditioning and numer-
ical instability in linear and integer programs. In: Newman, A., Leung, J. (eds.)
Bridging Data and Decisions, pp. 54–108. TutORials in Operations Research
(2014). https://doi.org/10.1287/educ.2014.0130

41. Le Berre, D., Marquis, P., Wallon, R.: On weakening strategies for PB solvers. In:
Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, pp. 322–331. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51825-7 23

42. McIlree, M., McCreesh, C.: Proof logging for smart extensional constraints. In:
Proceedings of the 29th International Conference on Principles and Practice of
Constraint Programming (CP ’23). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 280, pp. 26:1–26:17 (2023)

43. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC ’01), pp. 530–535 (2001)

44. PaPILO — parallel presolve for integer and linear optimization. https://github.
com/lgottwald/PaPILO

45. Roussel, O.: Pseudo-boolean competition 2016 (2016). http://www.cril.univ-artois.
fr/PB16/

46. Sahraoui, Y., Bendotti, P., D’Ambrosio, C.: Real-world hydro-power unit-
commitment: dealing with numerical errors and feasibility issues. Energy 184,
91–104 (2019). https://doi.org/10.1016/j.energy.2017.11.064, shaping research in
gas-, heat- and electric- energy infrastructures

47. Savelsbergh, M.: Preprocessing and probing techniques for mixed integer program-
ming problems. ORSA J. Comput. 6 (1994).https://doi.org/10.1287/ijoc.6.4.445

https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.1007/978-3-642-38574-2_24
https://github.com/scipopt/papilo/tree/develop/check/VeriPB
https://github.com/scipopt/papilo/tree/develop/check/VeriPB
https://github.com/scipopt/papilo
https://doi.org/10.1287/educ.2014.0130
https://doi.org/10.1007/978-3-030-51825-7_23
https://github.com/lgottwald/PaPILO
https://github.com/lgottwald/PaPILO
http://www.cril.univ-artois.fr/PB16/
http://www.cril.univ-artois.fr/PB16/
https://doi.org/10.1016/j.energy.2017.11.064
https://doi.org/10.1287/ijoc.6.4.445

328 A. Hoen et al.

48. Sheini, H.M., Sakallah, K.A.: Pueblo: a hybrid pseudo-Boolean SAT solver. J.
Satisfiability, Boolean Model. Comput. 2(1–4), 165–189 (2006). preliminary version
in DATE ’05

49. Steffy, D.E.: Topics in exact precision mathematical programming. Ph.D. thesis,
Georgia Institute of Technology (2011). http://hdl.handle.net/1853/39639

50. Vandesande, D., De Wulf, W., Bogaerts, B.: QMaxSATpb: a certified MaxSAT
solver. In: Gottlob, G., Inclezan, D., Maratea, M. (eds.) LPNMR 2022. LNCS, vol.
13416, pp. 429–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15707-3 33

51. Weninger, D.: Solving mixed-integer programs arising in production planning. Phd
thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2016)

52. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

http://hdl.handle.net/1853/39639
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

	Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs
	1 Introduction
	2 Pseudo-Boolean Proof Logging with VeriPB
	2.1 Pseudo-Boolean Reasoning with the Cutting Planes Method
	2.2 A New Rule for Objective Function Updates

	3 Certifying Presolve Reductions
	3.1 General Techniques
	3.2 Primal Reductions
	3.3 Dual Reductions
	3.4 Example

	4 Computational Study
	4.1 Experimental Setup
	4.2 Overhead of Proof Logging
	4.3 Verification Performance on Presolve Certificates
	4.4 Performance Analysis on Constraint Propagation

	5 Conclusion
	References

