
Certifying Without Loss of Generality Reasoning in
Solution-Improving Maximum Satisfiability
Jeremias Berg #

Department of Computer Science, HIIT, Helsinki, Finland
University of Helsinki, Finland

Bart Bogaerts #

Vrije Universiteit Brussel, Belgium

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Andy Oertel #

Lund University, Sweden
University of Copenhagen, Denmark

Tobias Paxian #

University of Freiburg, Germany

Dieter Vandesande #

Vrije Universiteit Brussel, Belgium

Abstract
Proof logging has long been the established method to certify correctness of Boolean satisfiability
(SAT) solvers, but has only recently been introduced for SAT-based optimization (MaxSAT). The
focus of this paper is solution-improving search (SIS), in which a SAT solver is iteratively queried for
increasingly better solutions until an optimal one is found. A challenging aspect of modern SIS solvers
is that they make use of complex “without loss of generality” arguments that are quite involved to
understand even at a human meta-level, let alone to express in a simple, machine-verifiable proof.

In this work, we develop pseudo-Boolean proof logging methods for solution-improving MaxSAT
solving, and use them to produce a certifying version of the state-of-the-art solver Pacose with
VeriPB proofs. Our experimental evaluation demonstrates that this approach works in practice.
We hope that this is yet another step towards general adoption of proof logging in MaxSAT solving.
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1 Introduction

Thanks to tremendous progress over the last decades on algorithms for combinatorial search
and optimization, today NP-hard problems are routinely solved in many practical applications.
Unfortunately, as these algorithms get more and more sophisticated, it also gets more and
more challenging to avoid errors sneaking in during algorithm design and implementation.
It is well-known that modern combinatorial solving algorithms in different paradigms can
sometimes produce “solutions” that violate hard constraints, claim that suboptimal solutions
are optimal, or declare that feasible problems lack solutions [9, 15,16,19,30,39].

Although there are many ways to address this problem, including software testing
techniques such as fuzzing [15, 50], and design of formally verified software [28], the most
promising approach appears to be the use of certifying algorithms [1, 48] with so-called proof
logging. What this means is the algorithm should not only produce an answer, but also a
proof that this answer is correct. Such proofs should follow simple rules, as specified by a
formal proof system, so that they can easily be verified by an independent proof checker. In
addition to guaranteeing correctness, proof logging brings many other advantages: it enables
advanced testing (since one can detect correct answers found for invalid reasons, and also
test instances for which the answer is not known), detailed debugging (since invalid proof
steps pinpoint where errors happened), auditability (since proofs can be stored and verified
independently of which algorithm was used), and performance analysis (since proofs can be
mined for insights on which reasoning steps were crucial for reaching the final conclusion).

Proof logging has been particularly successful in the domain of Boolean satisfiability
(SAT) solving [11], where a large variety of proof systems has seen the light of day [4,10,35,63].
Using proof logging has long been mandatory in the main track of the SAT competitions,
and it is hard to overestimate the impact this has had on improving overall correctness
and reliability of SAT solvers. This has stimulated the spread of proof logging into other
combinatorial solving paradigms, including SAT modulo theories (SMT) [7,57], automated
planning [25–27,56], and mixed integer linear programming [21,24].

1.1 Proof Logging for MaxSAT Solving

In view of the above discussion, it is interesting to compare the developments in other
combinatorial optimization paradigms to the state of affairs in maximum satisfiability
(MaxSAT), the optimization version of the SAT problem. Without loss of generality, MaxSAT
can be described as the problem of maximizing a linear objective O subject to satisfying a
Boolean formula F in conjunctive normal form (CNF). Although MaxSAT is arguably the
one optimization paradigm closest to SAT, and although several proof systems for formalizing
MaxSAT reasoning have been proposed [14,42,49,53–55], for a long time there has been no
practically feasible proof logging method for state-of-the-art MaxSAT solvers. This changed
only recently when pseudo-Boolean proof logging using VeriPB [12,34] was proposed for
MaxSAT [59,60], a proposal that was followed by the successful design and implementation
of VeriPB proof logging for modern core-guided MaxSAT solvers [9].
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In this paper, we revisit proof logging work for solution-improving search (SIS) [59,60],
also referred to as model-improving search or linear SAT-UNSAT (LSU) search, and consider
state-of-the-art solving techniques. In the SIS approach – which is much simpler to explain
than, e.g., core-guided [29] or implicit hitting set [20] search – a SAT solver is repeatedly
called on the formula F , each time with an added solution-improving constraint asking for
increasingly better solutions with respect to the objective O, and the problem turns infeasible
when the last solution found was optimal. In the work by Vandesande et al. [59, 60], the
main technical challenge was to certify correctness of the CNF encodings of these solution-
improving constraints, which could then essentially be concatenated with the proof logging
generated by the SAT solver (modulo some non-trivial engineering).

At first sight, it seems that implementing pseudo-Boolean proof logging in a state-of-the-
art MaxSAT solver using solution-improving search would mostly be a matter of carefully
transferring already developed techniques [59,60], perhaps combining them with proof logging
ideas developed for other CNF encodings [31]. After all, the distinguishing feature of a
top-of-the-line SIS solver is the choice of CNF translation for reasoning about the objective
function, such as, in the case of Pacose, the polynomial watchdog (DPW) encoding [6]. Once
proof logging for such a CNF encoding is in place, it seems reasonable to expect that the
rest should be plain sailing.

It is all the more surprising, then, that it turns out nothing could be further from the truth.
To minimize the time the MaxSAT solver spends on generating PW encodings, an essential
step is to introduce completely unconstrained variables that can be used to perform different
comparisons with a single CNF encoding; this is referred to as the dynamic polynomial
watchdog encoding (DPW) [52]. Loosely speaking, if we know that the best possible objective
value lies in the range [lo, hi], then instead of generating repeated encodings O ≥ V to probe
different possible objective values V in this range, one can introduce free variables ti encoding
a tare sum T taking values between 0 and hi − lo and try to maximize the value T = T ∗ for
which one single DPW-encoded constraint O − T ≥ lo holds. Once the maximum T ∗ has
been found, it is clear that O = lo + T ∗ is the best possible objective value, since without loss
of generality T could be set to any value. But how can such a meta-argument be expressed
in simple propositional logic reasoning?

In what follows, we provide a brief, if still high-level, discussion of some of the challenges
that arise when trying to design simple proofs to certify such fairly complex “without loss of
generality” arguments, and then outline how such challenges can be overcome.

1.2 Solution-Improving “Without Loss of Generality” Reasoning
As already discussed above, the key aspect in which different solution-improving MaxSAT
solvers differ is how they encode the solution-improving constraints. In order to compute the
value of a linear expression L over 0–1 variables of interest, Pacose uses the polynomial
watchdog encoding to describe a Boolean circuit BC with output variables zk such that zk = 0
implies L ≥ 1 + k · 2P (for some fixed integer P ). If we chose L to be the objective function O

that we are maximizing, this would allow to find the interval
[
1 + k∗ · 2P , (k∗ + 1) · 2P

]
in

which the optimal value lies by calling the SAT solver with the prechosen partial assign-
ment zk = 0 (referred to as an assumption) for increasing values of k until the solver returns
that there is no satisfying assignment. To determine the exact location of the optimum in
this interval, additional, completely unconstrained, variables ti, called tare variables, are
used to encode an integer T =

∑P −1
i=0 2iti in the range

[
0, 2P − 1

]
. The actual circuit in the

encoding uses the linear form L = O − T , so that zk = 0 means O − T ≥ 1 + k · 2P . By
making SAT solver calls with suitable assumptions on the unconstrained ti-variables, the
optimal value of the objective function can be computed.

CP 2024



4:4 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Given the CNF encoding of a circuit BC
(
O − T ≥ 1 + k · 2P

)
evaluating the inequality

O − T ≥ 1 + k · 2P as outlined above, the solution-improving search proceeds in two phases:
(i) The coarse convergence phase identifies the largest k for which zk = 0 is possible.
(ii) The fine convergence phase then maximizes the tare variable sum T .

Let us discuss this process in slightly more detail, and explain why it presents challenges
from a proof logging point of view.

If during the coarse convergence phase a SAT solver call with assumption zk = 0 returns
a satisfying assignment α achieving objective value at least 1 + k · 2P , the solver stores
the information zk = 0 (in the form of a unit clause zk), which enforces that any future
solutions found have to be at least this good. The SAT solver is then called again with
zk′ = 0 for some k′ > k to probe whether a solution exists with value at least 1 + k′ · 2P .
Here it is relevant to note that fixing zk = 0 could remove assignments corresponding to
optimal solutions. For instance, if the optimal value is V = V ∗ + 1 + k · 2P , this value could
be achieved by an assignment α′ setting T = T ∗ > V ∗ + 1. For such an α′ we would have
O − T = −T ∗ + V ∗ + 1 + k · 2P ≤ k · 2P , which would violate zk = 0. However, since the
tare variables are unconstrained, in this case there would also exist another assignment α′′

achieving objective value V ∗ +k ·2P for which T = 0, and so it is safe to require that solutions
improving on α should satisfy zk = 0.

In the fine convergence phase the zk-variables are all fixed, and assumptions on the
tare variables are made in the SAT solver calls to determine the exact value of the optimal
solution. This again relies on reasoning without loss of generality, claiming that one can
always choose T ≥ s for any value 0 ≤ s < 2P . But now we are treading on dangerous
ground: clearly, we cannot assume both T = 0 and T ≥ s > 0 simultaneously! How can we
convince ourselves, and more importantly, how can we convince a proof checker, that our
derivations are consistent? At a meta-level, we can argue that since the tare variables are
completely unconstrained in the original encoding, we should be able to fix them to any
value we like at any given point in time. But how do we produce a simple, machine-verifiable
proof that this is sound? And are we even sure this is sound?

1.3 Discussion of Our Contribution
In this work, we show how pseudo-Boolean proof logging with VeriPB [12,34] can certify
correctness of the complex CNF encodings used in state-of-the-art solution-improving MaxSAT
solvers, as well as of the subtle without loss of generality reasoning applied on these encodings.
To give a sense of how this can be done, we need to give a high-level description how VeriPB
proofs work (referring the reader to later sections for the missing technical details).

A VeriPB proof maintains a set of core constraints C, initialized to the formula F ,
together with a set of derived constraints D inferred by the solver. The proof semantics
ensures that C and F have the same optimal value for O and that any solution to C
can be extended to D. A new constraint C can be derived “without loss of generality”
by the redundance-based strengthening rule, which requires the explicit specification of a
substitution ω (mapping variables to truth values or literals) together with explicit proofs

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {O↾ω ≥ O} (1)

that all consequences on the right (with the substitution ω applied to the constraints) follow
from previously derived constraints C ∪ D together with the negation ¬C of the constraint
to be inferred. This guarantees that if some assignment α satisfies everything so far but
violates C, the “patched” assignment α ◦ ω satisfies also C and does not worsen the objective.
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To make our informal discussion simple and concrete, suppose that we have a CNF
encoding of a circuit BC(O−T ≥ lo) evaluating O−T ≥ lo, and that the solver has derived no
constraints but only has the input formula F . If we want to fix T = T ∗ using the redundance
rule (1), we would have to find a substitution ω such that F ∪ {BC(O − T ≥ lo)} ∪ {T ̸= T ∗}
implies

(
F ∪ {BC(O − T ≥ lo)} ∪ {T = T ∗}

)
↾ω. But it seems like this would force us to

prove that if we take any assignment satisfying the Boolean circuit and modify the value of
some of its inputs (the tares), the circuit would remain satisfied, and this is just not true. So
although the redundance-based strengthening rule is very strong, it is not clear how it can
be used to argue that the tare variables are unconstrained.

We get around this problem by first deriving a copy shadow circuit BC′ of the original
circuit, but substituting fixed values t∗

i for the tare variables, so that BC′(O − T ∗ ≥ lo)
evaluates O − T ∗ ≥ lo. We then let ω be the substitution setting ti = t∗

i for all i and
mapping all other variables x in BC to the corresponding shadow variables x′ in BC′, so that,
effectively, the shadow circuit computes the substitution needed. This turns our application
of the redundance rule (1) into

F ∪ {BC(O − T ≥ lo)} ∪ {BC′(O − T ∗ ≥ lo)} ∪ {T ̸= T ∗} (2a)
⊢

(
F ∪ {BC(O − T ≥ lo)} ∪ {BC′(O − T ∗ ≥ lo)} ∪ {T = T ∗}

)
↾ω ∪ {O↾ω ≥ O} (2b)

= F ∪ {BC′(O − T ∗ ≥ lo)} ∪ {BC′(O − T ∗ ≥ lo)} ∪ {T ∗ = T ∗} ∪ {O ≥ O} (2c)

(where the final line (2c) is simply the result of applying the substitution ω to (2b)). If we
study (2c) carefully, we see that all we need to prove about the circuit now is that the two
copies of the shadow circuit in the consequences are implied by the same shadow circuit in
the premises, and so (2c) follows trivially from the premises (2a).

This idea of using shadow circuits is crucial for certifying the correctness of assigning tare
variables without loss of generality. However, we need to get rid of the completely unrealistic
assumption that the solver would not have learned any constraints in D. This is a problem
in that the above argument fails when such learned constraints D ∈ D contain variables in
the BC-circuit, since then there is no way to prove D↾ω as required in (1).

Here a second idea discovered in recent VeriPB development turns out to be very helpful.
Very briefly, it can be shown that if in the proof we enforce the requirement that all new
constraints D derived by strengthening are immediately moved to the core set C, referred to
as strengthening-to-core, then the redundance rule (1) can be simplified to

C ∪ D ∪ {¬C} ⊢ (C ∪ {C})↾ω ∪ {O↾ω ≥ O}, (3)

omitting the proof obligations for the derived set D. This means that we can ignore the
problems arising from derived constraints when using shadow circuit reasoning.

We stress that this is only a brief and informal discussion that sweeps many technical
challenges under the rug. Perhaps one of the most annoying such challenges is that the tare
variables are sometimes fixed one at a time, and then a new shadow circuit is required for
every new fixing. It would be desirable to find better ways of dealing with this problem.

We have implemented our methods in the state-of-the-art solution-improving MaxSAT
solver Pacose [52] to make it output VeriPB proofs, and have performed an extensive
evaluation of how such proof logging works in practice. While there is certainly room for
performance improvements in both proof generation and proof checking, the significance of
our contribution is that we present practical methods to certify correctness for a solving
paradigm that has previously been beyond the reach of proof logging. We hope that our
work can serve as an impetus towards general adoption of proof logging for MaxSAT, and
can stimulate further research on how to make these proof logging techniques more efficient.
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4:6 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

As a final remark, we note that an interesting aspect of recent progress in proof logging
is that it brings together all three software quality assurance methods discussed in the
opening paragraphs above. While proof logging does seem like the most viable approach
to certify correctness in combinatorial solving, extensive use of fuzzing techniques has been
instrumental in our work to debug both proof logging routines and the VeriPB proof checker.
This fuzzing, in turn, relies on the use of proof logging and on feedback from the proof
checker. Finally, although we do not address this aspect in the current paper, formally
verified proof checking backends as in [33, 37] are crucially needed to ensure that the verdict
of proof checkers for increasingly powerful proof logging systems can be trusted.

1.4 Outline of This Paper
After reviewing some preliminaries in Section 2, we discuss the dynamic polynomial watchdog
(DPW) encoding in Section 3. In Section 4 we describe how to design proof logging for solution-
improving solvers using the DPW encoding, including a discussion of possible variations of
our method (and of why simply using SAT proof logging for the final unsatisfiability call
does not work). We report results from an empirical evaluation in Section 5 and end with
some conclusions and a discussion of future research directions in Section 6.

2 Preliminaries

In this section, we review some pseudo-Boolean basics and then discuss MaxSAT in general
and solution-improving search in particular, referring the reader to [3,17,44] for more details.

2.1 Pseudo-Boolean Constraints and Proofs
We write x to denote a {0, 1}-valued Boolean variable, and write x as a shorthand for 1 − x,
using ℓ to denote such positive and negative literals, respectively. A (linear) pseudo-Boolean
(PB) constraint C is a 0–1 integer linear inequality

∑
i wiℓi ≥ A. Without loss of generality,

we will often assume our constraints to be normalized, meaning that all literal are over
distinct variables and the coefficients wi and the degree A are non-negative. A PB formula
is a conjunction of PB constraints.

A (disjunctive) clause is a PB constraint
∑

i ℓi ≥ 1 with all coefficients and degree equal
to 1. We sometimes refer to constraints ℓ ≥ 1 with a single literal as unit clauses ℓ. We
say that a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. A
(linear) pseudo-Boolean term is a weighted sum

∑
i wiℓi of literals with integer coefficients.

A (partial) assignment α is a (partial) function from variables to {0, 1}; it is extended to
literals by respecting the meaning of negation. We write C↾α for the constraint obtained
from C by substituting all assigned variables x by α(x) (and simplifying). A constraint C is
satisfied under α if

∑
α(ℓi)=1 wi ≥ A, and a formula F is satisfied if all its constraints are.

We say that F implies C, denoted F |= C, if all assignments that satisfy F also satisfy C.
A pseudo-Boolean optimization (PBO) instance consists of a formula F and a linear

term O =
∑

i wiℓi (called the objective). An assignment α to the variables in F and O

that satisfies F is a solution to the instance, which is optimal if it maximizes the value
O↾α =

∑
i wiα(ℓi).1 For a PBO instance (F, O) the VeriPB proof system maintains a

1 Note that most of the PBO literature is formulated in terms of minimization, and this is also the
perspective of VeriPB, but reasoning in terms of maximization is in line with the papers on solution-
improving MaxSAT relevant for this work. We therefore adopt this perspective here, although the
actual VeriPB proofs will argue in terms of minimizing the negation of the objective as described here.
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proof configuration of core and derived constraints (C, D), initialized to F and ∅, respectively.
The VeriPB proofs we consider are in the so-called strengthening-to-core mode, which
maintains the invariant that all constraints in the derived set D are implied by the core set C.
Constraints can be moved from D to C but not vice versa. New constraints can be derived
from C ∪ D and added to D using the cutting planes proof system [18] as follows:
Literal Axioms. For any literal ℓi, ℓi ≥ 0 is an axiom.
Linear Combination. Given two previously derived PB constraints C1 and C2, any positive

integer linear combination of these constraints can be inferred.
Division. Given the normalized PB constraint

∑
i wiℓi ≥ A and a positive integer c, the

constraint
∑

i⌈wi/c⌉ℓi ≥ ⌈A/c⌉ can be inferred.
Some additional VeriPB proof rules extending cutting planes are as listed below – we refer
to [12, 34, 36] for more details. For optimization problems we have rules for improvements of
or rewriting of the objective function:
Objective Improvement. Given a total assignment α that satisfies C ∪ D, one can add the

constraint O ≥ 1 + O↾α to C, which forces the search for strictly better solutions.
Objective Reformulation. The current objective O can be replaced by a new objective Onew

given explicit proofs from the core set C (using the VeriPB proof rules above) of the
constraints O − Onew ≥ 0 and Onew − O ≥ 0 (i.e., a proof that O = Onew holds).

Importantly, there are also rules for deriving non-implied constraints as long as the optimal
value of the objective is preserved. VeriPB has a generalization of the RAT rule [39] that
makes use of substitutions ω, mapping variables to truth values or literals (where we extend
the meaning of C↾ω to denote C with each x replaced by ω(x)):
Redundance-Based Strengthening. The constraint C can be inferred and added to C by

explicitly specifying a substitution ω and proofs C ∪D∪{¬C} ⊢ (C ∪ {C})↾ω ∪{O↾ω ≥ O}.
This assumes strengthening-to-core mode – otherwise derivations for all constraints in D↾ω

are also needed (but then C can be placed in D instead of C).
Intuitively, this rule shows that ω remaps any solution of C that does not satisfy C to a
solution of C that satisfies also C without worsening the objective value. A typical use case of
redundance-based strengthening is reification, which is the derivation of two pseudo-Boolean
constraints that encode ℓ ⇔ D for some PB constraint D and for some fresh literal ℓ.

Finally, VeriPB has rules for deleting constraint in a way that guarantees that no
spurious better-than-optimal solutions are introduced:
Deletion. A constraint D ∈ D in the derived set can be deleted at any time. If strengthening-

to-core mode is used, then deleting a constraint C ∈ C in the core set requires an explicit
proof that C is implied by C \ {C}. Otherwise, it is sufficient to show the weaker property
that C can be derived from C \ {C} by redundance-based strengthening.

2.2 MaxSAT, Incremental SAT Solving, and Solution-Improving Search

An instance of (weighted partial) Maximum Satisfiability (MaxSAT) consists of a CNF
formula F and a pseudo-Boolean objective O =

∑
i wiℓi to be maximized under satisfying

assignments to F , where we can assume without loss of generality that all literals in O are
over distinct variables and that the constants are positive. Viewing MaxSAT in terms of
an objective function and a CNF formula is equivalent to the more classical definition in
terms of hard and soft clauses, in the sense that maximizing the objective corresponds to
maximizing the total weight of satisfied soft clauses (see, e.g., [43] for more details).

CP 2024



4:8 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

The solution-improving search (SIS) algorithm we focus on in this work makes extensive
use of incremental SAT solving with assumptions [22]. Invoking a SAT solver on a CNF
formula F with a set of assumptions A, i.e., a partial assignment, returns either (i) SAT and
an extension of A that satisfies F or (ii) UNSAT if no such assignment exists.

Given a MaxSAT instance (F, O), solution-improving search (SIS) computes an optimal
solution by issuing a sequence of queries to a SAT solver asking for solutions of improving
quality until an optimal one is found. More precisely, during search SIS maintains the best
known solution α∗. In each iteration, the algorithm queries a SAT solver on the working
formula F ∧ AsCNF(O > O↾α∗), where AsCNF(O > O↾α∗) is a CNF formula that is satisfied
by an assignment α if and only if it is a better solution than α∗, i.e., if O↾α > O↾α∗ . If
the SAT solver returns SAT, a better solution has been obtained and the working formula
updated accordingly. Otherwise, if the SAT solver reports UNSAT, the best known solution
α∗ is determined to be optimal and the search is terminated.

The existing practical instantiations of SIS differ mainly in how the encoding of the formula
AsCNF(O > O↾α∗) is realized. Numerous CNF encodings of pseudo-Boolean constraints
have been proposed for this task [23, 38, 40, 45, 58]. For many instantiations of SIS the
main challenge for proof logging is to certify the clauses added when encoding the objective
constraint [59, 60], but as we will explain in the rest of this paper the so-called Dynamic
Polynomial Watchdog encoding requires much more subtle arguments.

3 The Dynamic Polynomial Watchdog Encoding for SIS

The polynomial watchdog (PW) encoding [6] is currently one of the best approaches for en-
coding pseudo-Boolean constraints in CNF, in terms of being compact while still propagating
well. Using it for solution-improving search requires some non-trivial alternations, however,
such as the addition of a dynamic constant. In this section we review this dynamic poly-
nomial watchdog (DPW) encoding to the extent required for MaxSAT solution-improving
search (SIS), referring the reader to [52] for more details.

3.1 Initialization
Given a linear pseudo-Boolean term L =

∑
i wiℓi, we define wmax to be the largest constant

appearing in L. Additionally, we let P := ⌊log2(wmax)⌋ be one smaller than the number of
bits in the binary representation of wmax and W :=

∑
i wi be the maximum value for L.

The polynomial watchdog encoding for L is a CNF formula PW(L) with c :=
⌈

W
2P

⌉
output

variables zk for k ∈ [0, c − 1] enforcing the implications zk ⇒ L ≥ 1 + k · 2P . In words, a
satisfying assignment α of PW(L) that sets α(zk) = 0 will also satisfy

∑
i wiα(ℓi) ≥ 1+k ·2P .

We describe the formula PW(L) in more detail in Section 4.1.

▶ Example 1. Consider a MaxSAT instance (F, O) and a working formula F w = F ∧ PW(O).
Assume we first invoke a SAT solver on F w under the assumption zk−1 = 0 and then a
second time under the assumption zk = 0, and that the solver reports SAT for the first
call and UNSAT for the second. At this point, we know that an optimal solution αopt has
value O↾αopt in the range

[
1 + (k − 1) · 2P , k · 2P

]
.

The PW encoding was proposed as a way of enforcing a fixed bound B on the term L by
considering a (static) constant T = B − (1 + k · 2P ), where k is the largest integer for which
B ≥ 1 + k · 2P , and encoding PW(L − T ) [6]. Then a solution that sets the kth output zk

of PW(L − T ) to 0 will also satisfy
∑

i wiα(ℓi) − T ≥ 1 + k · 2P , which is equivalent to
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∑
i wiα(ℓi) ≥ B. The dynamic polynomial watchdog (DPW) encoding [52] is an extension

of the PW encoding that allows dynamically changing the value of T , and therefore also
of B, so that the optimal value can be determined precisely with a single CNF encoding.

Consider a MaxSAT instance (F, O) and let P = ⌊log2(wmax)⌋ as described above.
Instantiations of SIS with DPW introduce a “dynamic constant” in the form of a tare term
T :=

∑P −1
i=0 2i · ti, for fresh variables ti not appearing anywhere else in the instance. The

SAT solver is instantiated with the working formula F ∧ PW(O − T ). Now we can use the
output variables zk to determine the optimal value within an additive constant 2P , and then
assign the tare T to values in

[
0, 2P − 1

]
to determine the precise value in that range. These

are the coarse convergence and fine convergence phases mentioned in Section 1.2, which we
describe in more detail next.

3.2 Coarse Convergence Phase
During the initial coarse convergence phase, only assumptions over the output variables zk are
made. Whenever a solution α is found, a call to the SAT solver is made with the assumption
zk = 0 where k is the largest natural number such that O↾α ≥ 1 + (k − 1) · 2P . The
coarse convergence phase ends when the solver reports UNSAT. The following observation
summarizes the relevant conclusions of coarse convergence.

▶ Observation 2. Assume F is satisfiable and the SAT solver returns UNSAT under an
assumption zk∗ = 0 in the coarse convergence phase. Then (i) there is a solution α∗ to
F ∧PW(O−T ) that assigns the tare variables so that (O − T )↾α∗ ≥ 1+(k∗ −1) ·2P holds, and
(ii) no solution β to F assigning also the tare variables can satisfy (O − T )↾β ≥ 1 + k∗ · 2P .

In words, coarse convergence provides bounds on the maximum value of O − T obtainable
by any solution of F . Importantly, as the tare term T is unconstrained by the formula F , its
value can without loss of generality be assumed to be 0 at this stage, resulting in bounds on
the objective value of optimal solutions as well. From now on, the algorithm commits to
only searching for solutions that have O − T in the specified interval, adding the unit clauses
zk∗−1 and zk∗ to the working formula before proceeding to the fine convergence phase. In
practice, whenever the SAT solver returns SAT after being called with assumption zk, the
unit clause zk is added immediately, allowing the SAT solver to simplify its clause database.

3.3 Fine Convergence Phase
During the fine convergence phase, assumptions for the tare variables are used to pinpoint the
precise optimal value. Let k∗ be the value for which the assumption zk∗ = 0 returned UNSAT
in coarse convergence, and o∗ = O↾α∗ the objective value of the currently best known solution
α∗. Then we define s := o∗ − (k∗ − 1) · 2P to be the smallest value of the tare that would force
an improved solution. The next call to the SAT solver assumes ti = 1 for all tare variables
for which the ith bit in the binary representation of s is 1. These assumptions enforce T ≥ s,
so any solution α to the working formula (which now includes the unit clause zk∗−1 ≥ 1)
that extends the assumptions will satisfy O↾α ≥ o∗ + 1.

The fine convergence phase continues in this manner until the SAT solver reports UNSAT,
at which point an optimal solution has been found. As the value of s is monotonically
increasing, we add unit clauses ti to the working formula whenever we have deduced that the
ith bit ti in the tare T can safely be set to 1 in any solution (and hence in any future SAT
call), which is the case when s − 1 ≥ 1 +

∑P −1
j=i 2i · tj holds. The fact that we have s − 1

rather than s in this last inequality is related to stratification, which we discuss next.
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3.4 Stratification
Stratification is a technique for partitioning the indices of an objective O =

∑m
i=1 wiℓi into

two sets {H, L} in a way that allows computing the maximum values first of OH =
∑

i∈H wiℓi

and then of OL =
∑

i∈L wiℓi, and finally combining them to get the maximum value of O.
Specifically, stratification is applied when gcd{wi | i ∈ H} ≥

∑
i∈L wi, i.e., when the

greatest common divisor of the coefficients in OH is at least the sum of all coefficients in OL.
SIS with the DPW encoding and stratification will first run coarse and fine convergence
only on OH as described above. At the end of the fine convergence, the SAT solver returns
UNSAT after being invoked with assumptions that enforce TH ≥ s for the tare term TH

added to the DPW encoding of OH and some constant s. At this stage, the value of TH

will be fixed to s − 1 with unit clauses, effectively fixing OH to its maximum value. This
fixing of OH is consistent with the unit clauses learned in the previous section. After this
OL is optimized via coarse and fine convergence under the fixed value of OH . The solution
obtained at the end of the final fine convergence phase will be optimal with respect to the
original instance. For more details on stratification, we refer the reader to [2, 51].

▶ Example 3. Consider the objective O = 10x1 + 5x2 + 5x3 + 3x4 + 2x5 and the partition
H = {1, 2, 3} and L = {4, 5}. Since gcd{10, 5, 5} = 5 ≥ 3 + 2, changes of the objective
restricted to {x1, x2, x3} will dominate any contributions from 3x4 + 2x5. If a solution α

with OH↾α = 15 is found, we can without loss of generality assume OH ≥ 15, since for any
solution β with OH↾β < 15 we have O↾β ≤ O↾α. Notice that maximizing first OH and then OL

can remove some optimal solutions from the search space, but never all of them.

4 Certifying Solution-Improving MaxSAT with the DPW Encoding

We are now ready to describe how to do proof logging for solution-improving MaxSAT with
the dynamic polynomial watchdog encoding. In addition to certifying the correctness of
CNF encodings, as done in previous work on proof logging SIS for MaxSAT [59,60], we need
to certify the without loss of generality reasoning discussed in Section 3. This turns out to
require quite intricate proof logging methods.

We start with a brief discussion how to certify the DPW encoding. We then turn to proof
logging for the without loss of generality reasoning during the coarse and fine convergence
phases. Afterwards, we deal with proof logging for stratification. We defer a discussion of
minor additional heuristics used in state-of-the-art solvers to Appendix B. We note that for
all clauses learned by the SAT solver we can use standard VeriPB proof logging, and since
all such learned clauses are logically implied by the working formula it is safe to add them to
the derived set D. This means that we can ignore all constraints added to the database by
the SAT solver when we perform redundance-based strengthening steps.

4.1 Proof Logging for Clauses of the DPW Encoding
Figure 1 depicts the structure of the DPW encoding of the term 2x1 + 3x2 + 5x3 + 7x4. For
a term L in which the largest coefficient has P bits, the encoding introduces P totalizers [5]
(which are circuits that sort their inputs), and P − 1 mergers. The ith totalizer takes as
input all variables in L for which the corresponding coefficient has its ith bit equal to 1.

Proof logging for the DPW encoding boils down to taking care of the totalizer encodings
as described in [60]. At a high level, the proof for PW(O − T ) derives a number of constraints
encoding implications y ⇒ Cy and y ⇐ Cy, where y are variables in the auxiliary variable
set Y and Cy are suitably chosen PB constraints over the variables in O − T . A concrete
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Figure 1 Illustration of the polynomial watchdog encoding.

example is the output variable zk for which the constraint Czk
is chosen as O − T ≤ k · 2P .

From these pseudo-Boolean definitions all clauses in the CNF encoding added to the solver
database can be derived with explicit VeriPB derivations. A technical point that is crucial
for the proof logging is that in this way we only need to add the PB definitions of new
variables to the core set C. The clauses actually used for the SAT solver calls are implied
from these definitions, and can therefore be placed in the derived set D.

4.2 Proofs Without Loss of Generality Using Shadow Circuits

The MaxSAT solving algorithm uses without loss of generality (wlog) reasoning when
(i) introducing fresh variables for encoding PW(O − T ); (ii) adding unit clauses zk during
coarse convergence; (iii) learning unit clause over the tare variables ti during fine convergence;
and (iv) concluding that the optimal value has been found.

To see why unit clauses zk ≥ 1 require wlog reasoning, suppose in the coarse convergence
phase that the SAT solver returns a solution α when invoked with the assumption zk = 0,
indicating that (O − T )↾α ≥ 1 + k · 2P . The constraint zk ≥ 1 is not entailed by the
solution-improving constraint O ≥ O↾α, since some other (possibly optimal) solution β might
have O↾β ≥ O↾α but assign the tare variables so that (O − T )↾β < 1 + k · 2P ≤ (O − T )↾α

holds. However, since the tare variables are not constrained by the original formula F , any
solution to F could be extended to any fixed value for the tare T . Hence, in particular, we
can assume without loss of generality that T = 0, which in turn implies that zk ≥ 1.

The fine convergence phase makes use of the fact that the DPW encoding does not
constrain T , which takes values in the range

[
0, 2P − 1

]
. The unit clauses ti ≥ 1 learned

are not entailed, but can be deduced since the tare variables are unconstrained in the DPW
encoding. This requires a VeriPB proof that wlog T ≥ s − 1. When the SAT solver reports
UNSAT during fine convergence, it does so under the assumption that a specific set of tare
variables take value 1. If this yields UNSAT, then we can conclude that the current solution
is optimal (since we can wlog assume T to be equal to the value that led to UNSAT).

It is worth noticing that the without loss of generality arguments above are quite intricate
even at a human meta-level. The coarse convergence phase repeatedly claims to be able
to assume T = 0, after which the fine convergence phase picks an increasing sequence
0 < s1 < s2 < . . . and assumes T ≥ si − 1 wlog. Finally, a specific value T = si∗ is used to
argue about optimality. The meta-level argument for why this works is that no conclusions
are drawn from the assumptions made during coarse and fine convergence that invalidate
subsequent assumptions. The challenge is how to convince a mechanical proof checker of this.
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Consider first proof logging for the coarse convergence phase, and suppose the solver
returns SAT when invoked with assumption zk. The only rule that would allow us to
derive zk ≥ 1 without loss of generality (from the argument that we can set T = 0 wlog)
is redundance-based strengthening, which requires specification of a witness substitution ω

that can be used to “patch” any assignment α in which zk ≥ 1 is violated. More formally,
our witness should guarantee that C ∪ D ∪ {¬(zk ≥ 1)} |=

(
C ∪ {zk ≥ 1}

)
↾ω ∪ {O ≤ O↾ω}.

A natural approach would be to choose a witness ω that maps (i) zk to 0, (ii) all original
variables to themselves, and (iii) T to 0. Such a witness would make (zk ≥ 1)↾ω trivially true
and would incur no proof obligations for the formula F or the objective O. However, setting
T = 0 will not work for the constraints C ∈ C defining variables in the DPW encoding. If
we fix T = 0, then we also need to update all auxiliary variables Y in the circuit evaluating
PW(O − T ). But how this should be done depends on which assignment α we need to patch,
and the redundance rule has no mechanism for defining “conditional witnesses” ω = ω(α).

To determine how the witness should assign the auxiliary variables in PW(O − T ), we
devise a new proof logging technique that we call shadow circuits. Corresponding to each
auxiliary variable y defined as the reification of a PB constraint Cy in the original circuit,
a shadow circuit for a fixed value v has a fresh variable yT =v defined by yT =v ⇔ Cy↾T 7→v.
In words, the defining constraints of yT =v and y are the same except that we fix the tare
variables ti so that T = v. The definitions of such shadow circuits are stored in the core
set C since they are derived using the redundance rule. Note that the shadow circuit only
“copies” the pseudo-Boolean definitions of the variables and not their clausal encodings.

Shadow circuits provide us with a mechanism to compute witnesses for the redundance
rule that allow us to assume the value of T and certify the without loss of generality reasoning.
During coarse convergence, each addition of a constraint zi ≥ 1 is logged with a witness
that maps all tare variables ti to 0 and other auxiliary variables y in PW(O − T ) to their
counterparts yT =0 in the shadow circuit for T = 0. During fine convergence, the constraints
T ≥ s − 1 are derived using shadow circuits for s − 1, which allows adding unit constraints
over individual tare variables to the proof. Finally, for proving optimality a shadow circuit
for the final value s∗ for which the SAT solver returned UNSAT will be used to derive
contradiction.

The next proposition gives a more formal summary of the wlog proof logging performed
during the coarse convergence phase. The proof for this proposition, together with precise
descriptions of the other wlog proof logging steps, are given in Appendix A.

▶ Proposition 4. Suppose the VeriPB proof log contains derivations of reification con-
straints zk ⇔ O − T ≥ 1 + k · 2P and a shadow circuit for T = 0 as well as the constraint
O ≥ 1 + k · 2P . Then the constraint zk ≥ 1 can be derived using redundance-based strength-
ening with witness ω = {ti 7→ 0 | 0 ≤ i ≤ P − 1} ∪

{
y 7→ yT =0 | y ∈ Y

}
.

The constraint O ≥ 1 + k · 2P in Proposition 4 can be obtained by weakening the solution-
improving constraint O ≥ O↾α + 1 for the previously found solution α. If stratification is
used, deriving OH ≥ 1 + k · 2P requires more work (see Section 3.4 for details).

Our technique with shadow circuits and repeated without loss of generality arguments
selecting (different) values for the same variables in T heavily relies on that VeriPB proofs
in the strengthening-to-core mode maintain the guarantee that all constraints in the derived
set D are entailed by the core set C. In particular, what this means is that whenever we want
to apply redundance-based strengthening, fixing tare variables and using the corresponding
shadow circuit, we do not need to worry about reproving any clauses learned by the SAT
solver under the witness ω. It turns out that for all non-trivial proof obligations, the solution-
improving constraint O ≥ O↾α for the latest solution α obtained is helpful. This also makes it
easier to see why the entire pipeline is consistent. During coarse convergence, we never derive
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T = 0, but instead derive zk = 0 for certain values of k using the fact that we could set T = 0
wlog. This constraint zk = 0 will be used by the solver for deriving several consequences.
Later, when we make the wlog argument that T ≥ s − 1 for some value s, this incurs the
obligation to reprove that zk = 0 holds! That is, the proof checker realizes that zk = 0 was
also derived wlog, and we need to prove that this is still consistent with the current wlog
assumption to justify that we can “change our mind” about the value of T .

The use of strengthening-to-core requires some extra care when dealing with constraint
deletions. SAT solvers use heuristics to aggressively erase clauses that are believed to no
longer be useful, and this is crucial for performance. Also, clauses in the input are removed
whenever some literal in the clause is deduced to be true. In strengthening-to-core mode, we
can still do unrestricted deletions of constraints in the derived set D, but a core constraint
C ∈ C can only be erased if the implication C \ {C} |= C can be shown to hold. For this
reason we did not implement deletion from the core set in our proof logging routines.

4.3 Stratification
For proof logging of stratification steps as in Section 3.4, we need to be able to convert
known facts about the whole objective O to statements about the split objectives OH and OL.
To certify a unit constraint added during coarse convergence or to derive the constraints
T ≥ s − 1 during fine convergence when maximizing OH , we need to derive OH ≥ OH↾α from
O ≥ O↾α + 1. We do this by weakening away all terms in OL – meaning that for every term
wiℓi in OL we add wiℓi ≥ 0 to cancel the term – to get OH ≥ O↾α + 1 − g, where g is the
greatest common divisor of the coefficients in OH . This clearly also entails OH ≥ OH↾α −g +1.
Dividing by g and rounding up yields 1

g OH ≥ OH↾α

g − 1 + 1, and multiplying this again by g

yields OH ≥ OH↾α.
By applying this reasoning, we can derive the constraint OH ≥ o∗

H right after finding
the optimal value o∗

H for OH . Moreover, after introducing a shadow circuit for T = s,
we can derive (local) optimality in the form of the constraint OH ≤ o∗

H . Hence, we can
reformulate the objective by replacing OH with the constant o∗

H , from which we can now
derive the constraint OL + o∗

H ≥ O↾α +1. Observe that this constraint coincides with the
solution-improving constraint for OL. Once the constraints OL ≥ o∗

L and OL ≤ o∗
L have been

derived in a similar way, the objective will be rewritten to a constant, for which proving
optimality boils down to logging a solution that has objective value o∗ = o∗

H + o∗
L.

4.4 Limiting the Use of Shadow Circuits
Our proof logging method makes repeated use of shadow circuits, which are copies of the
original circuit, and repeatedly deriving all constraints defining such circuits could potentially
incur serious overhead for proof generation in the solver. Let us discuss ways of limiting or
completely eliminating the use of shadow circuits and the downside of such approaches.

First, the shadow circuits are introduced each time the solver deduces a unit clause over
an output variable zk or tare variable ti. Instead of learning these unit clauses, we could do
all subsequent solver calls with those literals as assumptions. At the very end of the fine
convergence phase, we could then introduce a single shadow circuit to prove optimality (or,
in case of stratification, two shadow circuits: one to prove optimality and one to fix the value
of the tare variables). The disadvantage is that when variables used as assumptions, the
solver cannot use them to simplify its clause database; so while this would have a positive
effect on the time required to do the actual proof logging, it could have negative effects on
solving time. Appendix C.2 reports on an experimental evaluation of this approach.
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Second, there is a way to completely eliminate shadow circuits. By the end of the
execution, the solver knows which value T = s resulted in the final UNSAT call in the fine
convergence. What we could do at this point is insert at the beginning of the proof constraints
saying that T = s holds (which at this point can easily be derived by redundance-based
strengthening). The rest of the proof will then be checked for a fixed value of T that happens
to be the value needed at the end. There are two important reasons why we prefer the shadow
circuit approach. The first reason is that it is not clear if and how this would work together
with stratification, where after a stratification level we want to fix T = s − 1. The second
reason is that fixing T in advance adds substantial new information that the solver did not
have available when constructing the proof. This means that we would not be verifying that
the reasoning the solver actually performed was correct, but only that its reasoning checks
out given advance information about the optimal solution. While this could still be used to
certify the correctness of the final answer, it would not provide any guarantees about the
process leading there. It has been shown repeatedly that proof logging can catch subtle bugs
in solvers that only report correct results but for the wrong reasons [9,24,32,41], but in order
for this to be possible the correctness of solver-generated proofs should only depend on what
the solver actually knows when the proof is being produced.

4.5 Discussion of an Even Simpler Approach and Why It Does Not Work
The proof logging techniques in this paper certify every single reasoning step in the solver.
An alternative, and seemingly much simpler, way to get proofs of correctness for any MaxSAT
solver would be to (i) compute an optimal solution by running the MaxSAT solver without
proof logging, (ii) check that this solution is feasible, (iii) encode a solution-improving
constraint into CNF, and (iv) call a SAT solver to generate a proof of unsatisfiability (and
hence of optimality of the solution) with standard SAT proof logging. However, there are
several serious issues with this approach that we would like to point out.

First, proofs of correctness are needed for the CNF encodings used in step (iii), and
such proofs cannot be done with SAT proof logging since it cannot reason about values of
objective functions. Second, it is not possible to just repeat the “final UNSAT call” of the
MaxSAT solver in step (iv). Even if the same SAT solver is used, in the original UNSAT call
this solver had access to all constraints learned in previous calls, and there is no guarantee
that the solver will learn these constraints again, or other equally good constraints, when it
is now run in a different way and with a different input. It is therefore impossible to know for
sure whether the final SAT solver invocation with the solution-improving constraint would
be faster or, more likely, slower, than the original solving process, and by how much. This
defeats the whole idea of generating proofs with a small and predictable overhead, since there
would be no way of knowing in advance whether “proof logging” for a previously claimed
result would succeed or not. Moreover, when a solution-improving MaxSAT solver makes
use of stratification (as discussed in Section 3.4), then optimality is not derived by a single
UNSAT call but by a combination of UNSAT calls at different levels. It is hard to see how
such a combination of calls could be replicated with the simple approach described above.

Third, an increasingly popular usage scenario for MaxSAT solvers is so-called anytime
solving, where the solver can be terminated at any point and then returns the best upper
and lower bounds on the objective computed so far. Proofs constructed as described in this
paper (as well as in other MaxSAT papers using VeriPB proof logging) will at all times
contain formal proofs of everything the solver knows about upper and lower bounds on the
objective. Whenever the solver is terminated, it can therefore just end the generated proof
at that point by printing a concluding line stating what upper and lower bounds have been
proven. This functionality would be lost in the alternative approach.
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time using DPW encoding.

Finally, even if this approach could be made to work efficiently – which, as explained
above, is not really the case, for several reasons – we would have the same problem as in
Section 4.4 that we would only certify the final result and not the solver reasoning process.

5 Experimental Evaluation

To evaluate our proof logging approach in practice, we implemented it in the state-of-the-art
solution-improving MaxSAT solver Pacose [52]. The source code for all software tools used,
as well as all experimental data, are available in [8]. During development, we extensively
checked the correctness of our implementation with a fuzzer [50] and minimized failed
instances with a delta debugger. This process accelerated the development, as we did
not need to create instances for special cases, and helped us fix unexpected and sporadic
bugs. The proofs emitted by Pacose were verified by the pseudo-Boolean proof checker
VeriPB [61], and our fuzzing also helped to debug the proof checker.

The experiments were performed on identical machines with an 11th Gen Intel(R)
Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each benchmark ran
exclusively on a machine and the memory limit was set to 14 GB. The time limits were
set to 3 600 seconds for solving a MaxSAT instance with Pacose and to 36 000 seconds
for checking the proof with VeriPB. As our benchmark set we used the 558 weighted and
572 unweighted MaxSAT instances from the MaxSAT Evaluation 2023 [47].

Our implementation supports all techniques Pacose employed in the MaxSAT Evaluation
2023. This means that in addition to the dynamic polynomial watchdog encoding we also
implemented proof logging for the binary adder encoding [62] following the approach in [31,59]
as well as support for stratification as described in Section 3.4 and for the preprocessing
techniques in TrimMaxSAT [51]. Appendix B discusses TrimMaxSAT in detail and
Appendix C contains detailed experimental results for the default setup in which Pacose
employs heuristics to choose between different encodings. In this section, we focus on the
main novelty of this paper, namely proof logging for SIS with the DPW encoding.

To show the viability of enabling proof logging while solving, we analyse the overhead of
generating proofs. In Figure 2 we compare the running time of Pacose with and without
proof logging. With proof logging enabled 674 instances were solved within the resource
limits, which is 11 fewer instances than without proof logging. Out of the 11 instances that
were not solved with proof logging enabled, 9 instances failed due to the memory limit and
2 instances due to the time limit. For the solved instances, Pacose with proof logging was
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on average 1.93× slower than without proof logging. About 90% of the solved instances were
solved at most 5.26× more slowly with proof logging enabled. This overhead for solving is to
some extent caused by our shadow circuits approach. While we demonstrate that shadow
circuits can be used to justify the without loss of generality reasoning in Pacose, it remains
to investigate whether there is a better approach. It is important to note, though, that the
average overhead of 1.93× is heavily biased by small instances: the cumulative solving time
of all 674 instances, with proof logging is only 1.32× the cumulative solving time without
proof logging. This suggests that proof logging overhead decreases for harder instances.

For proof logging to be maximally useful in practice, it is also desirable that it should be
possible to check generated proofs within a time limit that is some small constant factor of
the solving time for the instance. To evaluate the efficiency of proof checking, we compared
the running time of Pacose with proof logging enabled with the running time of VeriPB,
with results plotted in Figure 3. Out of the 674 instances solved by Pacose with proof
logging, 592 were successfully checked by VeriPB, but 53 instances failed due to the memory
limit and 29 instances due to the time limit. On average, checking the proof with VeriPB
was 22.5× slower than solving and generating the proof with Pacose. 90% of the proofs
were checked within 100× the running time of Pacose. These results for checking are in
line with what has been reported in other works on proof logging for MaxSAT [9,59]. While
there is certainly room for further improvements, this shows that proof logging and checking
is viable. It should also be emphasized that the only sources of problems for VeriPB were
the time and memory limits – other than that all proofs were successfully checked.

6 Conclusion

In this paper, we demonstrate how to design proof logging for solution-improving MaxSAT
solving using the dynamic polynomial watchdog encoding. This turns out to be surprisingly
challenging, mainly due to the heavy use of reasoning without loss of generality. To understand
the correctness of this reasoning at a human level is one thing, but convincing a proof checker
by producing machine-verifiable proofs is quite another. What we show is that by combining
the redundance-based strengthening rule and the strengthening-to-core mode in VeriPB,
together with a technique we call shadow circuits for having more expressive witnessing
capabilities, we are able to devise efficient pseudo-Boolean proof logging techniques.

We have implemented our approach in the state-of-the-art MaxSAT solver Pacose. Our
experimental evaluation shows that while enabling proof logging is feasible, it does incur a
non-negligible overhead in solving time. Moreover, the time needed to check the generated
proofs is several times larger than the time needed to generate them, suggesting that more
efficient algorithms and more optimized engineering are needed in VeriPB. This is not so
surprising, since the focus of VeriPB development so far has been on providing support for
certifying algorithms in combinatorial optimization paradigms previously beyond the reach
of proof logging, rather than on optimizing the proof checker code base.

The addition of Pacose to the collection of certifying MaxSAT solvers using VeriPB
proofs provides further support to the hypothesis that pseudo-Boolean proof logging hits
a sweet spot for MaxSAT solving, being rich enough to support a wide variety of solving
algorithms and complex reasoning tricks, but still being simple enough to support even
formally verified proof checking as in [13,33,37].

We believe that in the longer term VeriPB can have a strong positive impact on the
reliability and robustness of MaxSAT solvers. In the other direction, MaxSAT solving is
likely to provide excellent benchmarks and performance challenges to further improve pseudo-
Boolean proof logging and checking. Our suggestion for speeding up these developments is
to introduce a certifying track in the yearly MaxSAT Evaluation [46].
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A Formalization of the Proof Logging of SIS with the DPW

In this appendix, we provide formal details on the claims made in the main body of the
paper. In the proofs, we follow the same notation. The formalization of the reasoning in the
coarse convergence is discussed in Section 4.2, here we discuss the other phases.

A.1 Coarse Convergence
Our first proposition formalizes the wlog performed during the coarse convergence phase.

▶ Proposition 5 (Proposition 4, restated). Assume the definition of zk has been derived and
a complete shadow circuit for T = 0 has been introduced. Furthermore assume the constraint

O ≥ 1 + k · 2P (4)

has been derived. The constraint zk ≥ 1 can be derived using redundance-based strengthening
with witness

ω = T 7→ 0, Y 7→ Y T =0.

The notation for the witness in this proposition is a shorthand for the mapping that sends
each variable ti to 0 and every introduced circuit variable y to the corresponding shadow
circuit variable yT =0.

Proof. To verify this is indeed possible, we need to show that from

C ∪ D ∪ {zk ≥ 1}

we can derive the following constraints:
zk↾ω≥ 1; in other words we need to show that zT =0

k ≥ 1 holds. Recall that zT =0
k is defined

by the reification

zT =0
k ⇔ O − 0 ≥ 1 + k · 2P .

Adding up one direction of this definition to (4), immediately yields that zT =0
k ≥ 1, as

desired.
C↾ω for each C ∈ C.

If C is a clause in the original input, C↾ω= C and this is trivial.
If C is a previously derived solution-improving constraint, also C↾ω= C (since ω does
not touch any variable in O.
If C is a previously derived constraint of the form zk′ ≥ 1 with k′ < k, this can either
be derived analogously to zk↾ω≥ 1 or directly from the fact that the definitions of zk

and z′
k immediately imply that zk = 0 implies that zk′ = 0 .

O↾ω≥ O; this is obvious since the variables in O are unaltered by ω. ◀

▶ Remark 6. Proposition 5 assumes the existence of a constraint (4). It can be seen that
this constraint is actually a (potentially weakened version of a) non-strict solution improving
constraint O ≥ O↾α where α is a previously found solution. During the coarse convergence
phase, this constraint can be obtained by weakening the solution-improving constraint.
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At the end of the coarse convergence phase, also the unit clause zk∗ ≥ 1 is derived. This
requires no additional proof logging: this clause is obtained by running the SAT solver with
the assumption that zk∗ = 0 and failing. Whenever this is the case; we know that zk∗ ≥ 1 is
internally derived by standard conflict analysis; hence this constraint is added to D without
any additional effort.

A.2 Fine Convergence
As with the coarse convergence, the constraints derived during fine convergence that require
a justification in the proof are the unit clauses added to the solver. Proving this relies again
on redundance-based strengthening and a shadow circuit.

▶ Proposition 7. Assume zk∗−1 ≥ 1 has been derived. Let s be any number and assume a
complete shadow circuit for T = s−1 has been introduced. Furthermore assume the constraint

O ≥ s + (k∗ − 1) · 2P (5)

has been derived. The constraint T ≥ s−1 can be derived using redundance-based strengthening
with witness

ω = T 7→ s, Y 7→ Y T =s−1.

Proof. As in the proof of Proposition 4, this yields several proof obligations. The only
non-trivial ones are

Previously derived constraints of this form T ≥ s′ − 1, but they are trivially satisfied
under ω since s ≥ s′.
The unit clause zk∗−1 ≥ 1↾ω. In other words we need to show that zT =s−1

k∗−1 holds. Recall
that zT =s−1

k∗−1 is defined by the reification

zT =s−1
k∗−1 ⇔ O − (s − 1) ≥ 1 + (k∗ − 1) · 2P

which simplifies to

zT =s−1
k∗−1 ⇔ O − s ≥ (k∗ − 1) · 2P .

Now (5) tells us precisely that the right-hand side of this equivalence is satisfied, hence a
straightforward cutting planes derivation indeed allows us to conclude that zT =s

k∗−1 ≥ 1. ◀

▶ Remark 8. Just like Proposition 4, also Proposition 7 does not make use of the model-
improving constraint, but rather makes the assumption on O it uses explicit in (5). As before,
this turns out to be useful when applying Proposition 7 in the context of stratification.

Proposition 7 will be applied when a solution α is found taking

s := O↾α −(k∗ − 1) · 2P .

In this case, the solution-improving tells us that

O ≥ O↾α +1 = s + (k∗ − 1) · 2P + 1,

and (5) is indeed satisfied. Unit clauses are derived if for a certain j, s ≥ 2P − 2j + 1. In this
case, the derived constraint T ≥ s − 1 guarantees that T ≥ 2P − 2j , i.e., that all dominant
bits of T up to j must be equal to one. This follows using reverse unit propagation or a
straightforward cutting planes derivation.
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A.3 Conclusion of Optimality
When the very last call to the SAT solver is unsatisfiable, we need to derive a contradiction
in the proof, to complete the proof that the previously best found solution is optimal. We
proceed as follows. First, we introduce a fresh variable, let us call it p using the reification

p ⇔ O ≥ o∗ + 1. (6)

Our goal will be to show that p is false, which then allows us to conclude that the objective
can no longer be improved, meaning we have indeed proven optimality. Recall that at this
point, we have s defined as s := o∗ − (k∗ − 1) · 2P . The crucial step in our proof is showing
that without loss of generality T can be set equal to s. We proceed as follows.

▶ Proposition 9. Assume zk∗−1 ≥ 1 and the definition of p have been derived. Furthermore
suppose that a shadow circuit for T = s has been introduced. Using redundance-based
strengthening with witness

ω = T 7→ s, Y 7→ Y T =s

we can derive the PB constraints representing

p ⇒ T = s, (7)

i.e., in normalised form, the constraints

s · p + T ≥ s, and (8)

(2P − s − 2) · p +
P −1∑
j=0

2j · T j ≥ (2P − 1) − s − 1. (9)

Proof. The proof for the two constraints is similar. The only proof goal where they differ is
showing that the constraint to-be-derived is satisfied under ω, but this is trivial since the
witness sets T equal to s by construction.

For all the other proof goals, we can make use the negation of the constraint to be derived
(the negation of (8) or of (9)). From this negation, we can directly derive p ≥ 1. Adding this
up to (one direction of (6) yields O ≥ o∗ + 1, i.e., that

O ≥ s + (k∗ − 1) · 2P + 1. (10)

In other words, the conditions of 7 are satisfied. All the other proof obligations are the same
as the ones in the proof of that proposition and hence, making use of (10), the proof proceeds
identically to the proof of Proposition 7. ◀

In words, Proposition 9 tells us is that if the objective is strictly improving on the previously
found best value, then we can set T equal to s without loss of generality. The SAT solver,
however, has in its last call that yielded UNSAT already derived a clause telling us that at
least one of the bits of T does not correspond to s. So we can now straightforwardly derive
that p ≥ 1 and hence that O ≤ o∗, which is what we needed for concluding optimality.

B Proof Logging of Additional Techniques Implemented in Pacose

We detail some of the additional search techniques implemented in and how we proof log
them. As a minor point, we note for completeness that in addition to the gcd-based criterion
described in Section 3.4, Pacose attempts to find more partitions of the objective during
stratification via exhaustive search, as illustrated by the following example:
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▶ Example 10. Consider the objective O := 14x1 + 9x2 + 5x3 + 2x4 + 1x5 + 1x6 and
the partition H = {1, 2, 3} and L = {4, 5, 6}. According to the gcd-based criterion from
Section 3.4, this partition is not viable due to the gcd not aligning with any single divisor
that groups the weights cohesively. However, this partition still validly separates the weights
of x1 to x6 through an alternative method: Define LC as the set containing all possible
summed combinations of weights from L: LC := 5, 9, 14, 5 + 9, 5 + 14, 9 + 14, 5 + 9 + 14. To
validate this partitioning, ensure that the total weight WL from L is at most the difference
between any two sums in LC . This ensures that L forms a consistent grouping, as there is
no weight combination of L invalidating a prior result of solving H.

A more in-depth explanation together with a proof can be found in [51]. While certifying
the exhaustive search remains interesting future work, we note that it did not result in
additional partitions on any of the benchmarks in our evaluation, nor on the weighted
instances of the 2019 and 2020 MaxSAT Evaluation.

We would like to mention that a naive approach to certify the exhaustive search would be
to derive the desired constraint OH ≥ OH↾α from the weakened constraint OH ≥ O↾α −WL +1
using redundance-based strengthening with an empty witness. As OH ↾α is the sum of a
subset of the coefficients in OH and the distance between any two sums is at least WL, the
negation OH < OH↾α of the desired constraint can only be satisfied if the sum of true literals
in OH is at most OH↾α −WL. As O↾α≥ OH↾α, the weakened constraint can only be satisfied
if the sum of true literals in OH is at least OH↾α −WL + 1. Hence, there exists no assignment
to the variables in OH for which both constraints are satisfied. To show this we can iterate
through every possible assignment α of the variables in OH and derive the clause excluding
this assignment by reverse unit propagation. This step works, as reverse unit propagation
for this clause assigns all variables in OH , which will falsify either the negated constraint or
the weakened constraint by the arguments above. Resolving all the clauses will result in a
contradiction that proves that OH ≥ OH↾α is implied.

B.1 TrimMaxSAT
TrimMaxSAT [51] is a preprocessing technique applied before the main SIS algorithm in
order to decrease the number of literals in the objective that need to be encoded by the
DPW and to get a good initial value of the objective. TrimMaxSAT heuristically splits
the variables in the objective into partitions and queries the SAT solver for a solution that
assigns at least one of the literals in each partition to 1. If such an assignment is found, the
objective variables set to 1 are removed from consideration and the number of partitions
are decreased. If the partition size is 1 and the SAT solver reports UNSAT, all remaining
literals are fixed to 0 for the rest of the search. In other words TrimMaxSAT aims to find
objective literals whose negation is implied by the constraints in the formula and fix their
value, thus conceptually decreasing the size of the objective under consideration and–as a
consequence–also the size of the DPW encoding built over it.

In more detail, assume L contains the set of objective variables that have not been set to
1 in any solutions found so far during TrimMaxSAT. During an iteration of TrimMaxSAT,
L is partitioned into m subsets Li for i = 1, . . . , m. A new variable r is introduced and
the clauses r ⇒ (

∑
ℓ∈Li ℓ ≥ 1) for every i = 1, . . . , m are added to the SAT solver and the

proof via redundance-based strengthening to the core set. The SAT solver is then queried
under the assumption that r is true. If the result is SAT, the literals in L assigned to 1
in the obtained solution are removed from the set under consideration and the unit clause
r ≥ 1 is added to the solver such that the SAT solver can remove the clauses of the form



J. Berg, B. Bogaerts, J. Nordström, A. Oertel, T. Paxian, and D. Vandesande 4:25

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
o
f
lo
g
g
in
g
(s
)

unweighted
weighted

Figure 4 Proof logging overhead for Pa-
cose using the binary adder encoding.
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Figure 5 Pacose vs. VeriPB running
time using binary adder encoding.

r ⇒ (
∑

ℓ∈Li ℓ ≥ 1). This unit clause can be derived by redundance-based strengthening with
witness ω = r 7→ 0. If, on the other hand, the result is UNSAT, the unit clause r ≥ 1 is
added to the SAT solver and the SAT solver can simplify its clause database. This clause
is derived by standard cutting planes reasoning in the conflict analysis by the SAT solver
and is therefore added to the derived set in the proof. If in this case m = 1, we can also
conclude that all literals ℓ ∈ L are implied to be false. Hence, the solver learns the unit
clauses ℓ ≥ 1. In order to derive ℓ ≥ 1 for each ℓ ∈ Li, we first introduce the second part of
the reification r ⇐ (

∑
ℓ∈Li ℓ ≥ 1) using the redundance rule with witness r 7→ 1 and then

use cutting planes reasoning to derive that since r is false, all literals in Li must be false.
Interestingly, thanks to the use of strengthening-to-core, the unit clause r ≥ 1 derived earlier
does not interfere with the derivation of the second direction of the reification.

B.2 Hardening
Hardening refers to the addition of the unit clause li for an objective literal li if the currently
best known solution o∗ is larger than the sum of all weights in O excluding wi. In the
proof, the unit clause li can be derived easily from the solution-improving constraint and the
objective reformulation rule can be used to replace li by the constant wi in the objective.

C Additional Experimental Evaluation

In this appendix, we present some additional experimental analysis with data and plots to
give some further insights into proof logging for Pacose. In Section C.1, we present results
for the binary adder encoding that is also used in Pacose and how detail how well proof
logging performs for Pacose when it heuristically selects the encoding. We present data
for an additional approach that uses assumptions instead of unit clauses for fixing variables
in the coarse convergence in Section C.2. To better understand the proof logging overhead
in Pacose, we have a deeper look at some additional data for the proof logging process in
Section C.3.

C.1 Binary Adder Encoding and Encoding Selection Heuristic
Pacose also uses the binary adder encoding [62] instead of the DPW encoding. A comparison
between these two encodings is beyond the scope of this paper, but as we implemented
proof logging for both encodings, we can also have a look at the data for the binary adder
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Figure 6 Proof logging overhead for Pa-
cose using heuristic encoding selection.
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Figure 7 Pacose vs. VeriPB running
time using heuristic encoding selection.

encoding. A comparison of solving with and without proof logging for this encoding can be
found in Figure 4. With proof logging for the binary adder encoding 722 instances could be
solved within the resource limits, which are 6 fewer instances than without proof logging.
This also demonstrates that the heuristic for selecting the encoding works, as the number of
solved instances for the heuristic is bigger than for any of the two encodings on their own.
In the mean, Pacose with proof logging is 1.63× slower than without proof logging. This
overhead is smaller than for the DPW encoding, which lead to the conclusion that more
work is required to certify the DPW encoding compared to the binary adder encoding.

Out of the 722 instances that were solved with the binary adder encoding, 658 instances
were successfully checked by VeriPB within the resource limits. In Figure 5, the running
time of Pacose is compared to that of VeriPB. In the mean, VeriPB is 21.1× slower than
Pacose for solving the instance with proof logging, which is similar to the DPW encoding.
This could mean that the bottleneck for checking the proofs is the implementation of the
checker.

Using the default settings, Pacose heuristically selects between the DPW and binary
adder encoding. A plot comparing Pacose with and without proof logging in the default
settings in Figure 6 and a plot comparing Pacose with proof logging with VeriPB for
checking the proof in Figure 7. With this heuristic activated, 698 instances are solved within
the resource limits with proof logging enabled and 707 instances without. Pacose with proof
logging is 1.83× slower in the mean than Pacose without proof logging. Checking the proof
with VeriPB is 21.8× slower than running Pacose with proof logging in the mean.

C.2 Coarse Convergence with Assumptions Instead of Unit Clauses
An alternative approach for representing the information that output variables of the DPW
encoding are fixed to a value in the coarse convergence is to use additional assumptions for
the SAT solver instead of unit clauses. As we need a shadow circuit to derive each unit
clause, we could reduce the number of shadow circuits by using assumptions. The idea is
that we add the variable fixing to the assumptions for all future calls to the SAT solver. This
approach is supported in Pacose, and we ran additional experiments using this approach.

The following data always use assumptions instead of unit clauses for fixing variables. In
Figure 8, Pacose with proof logging is compared to Pacose without proof logging. Using
assumptions Pacose with proof logging could solve 666 instances, which is 10 fewer instances
than without proof logging. Pacose with proof logging is 1.81× slower than without proof
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Figure 8 Proof logging overhead for Pa-
cose using DPW encoding and assumptions.
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Figure 9 Pacose vs. VeriPB running
time using DPW encoding and assumptions.
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Figure 10 Solving time vs. proof size vs.
solving overhead for proof logging for the
DPW encoding.
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Figure 11 Solving time vs. proof size vs.
solving overhead for proof logging for the
binary adder encoding.

logging in the mean. This is very similar to Pacose with the DPW encoding where the
variables are fixed by unit clauses and introducing shadow circuits. In the mean, the proof
checking is 22.2× slower than solving the instance with proof logging.

It can be concluded that this alternative approach of fixing variables by adding assumptions
is about as good as doing the fixing by unit clauses. Hence, it could be that introducing
additional shadow circuits for deriving the unit clauses does not slow down the solving a
lot, or it is a coincidence that the performance gains are countered by the additional work
required for keeping track of the assumptions.

C.3 Proof Logging Overhead Analysis

To get a better understanding of the 1.93× slowdown of Pacose with proof logging compared
to without proof logging, we investigate different causes for the extra running time with
proof logging. The idea for doing so is to get insights into how to improve the running time
of the solvers.
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The expectation is that the proof size scales linearly with the running time of the solver.
It would be interesting to look into the instances where this is not the case and if there
is a correlation with the solving overhead. We can illustrate this by plotting the solving
time against the proof size and colour the marks depending on the overhead as it is done
in Figure 10 for the DPW encoding and in Figure 11 for the binary adder encoding. We
added a diagonal line representing linear scaling of proof size with running time for better
orientation, which is not related to the data at all. It can be seen that for the instances
that have a proof size that is significantly bigger than expected, the overhead also seems
to increase similarly. To confirm this observation, we compute the correlation of the proof
logging overhead and the proof size divided by the solving time. For the DPW encoding we
have a correlation of 0.92 and for the binary adder encoding we have a correlation of 0.88,
which shows that the two parameters are highly correlated. This mean that the slowdown is
due to proof being larger than expected for some instances.

We can conclude with some ideas to improve the performance of proof logging in Pacose.
First, the performance can be improved by engineering better data structures to handle the
proof logging to increase the speed for writing the proof. This idea only works if we have not
reached the maximum persistent disk write speed, which is not the case for our experiments.
Second, the proof could be done in a smarter way to reduce the size of the proof, where slow
parts of the proof logging could be identified by profiling. Considering that we also have a
1.63× slowdown for the binary adder encoding, the slowdown is not purely caused by the
shadow circuits, as they are not used for this encoding.
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