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Abstract

This is the documentation for the pseudo-Boolean proof checker VeriPB together with its formally
verified backend CakePB as proposed for usage in the SAT competition 2023. If any questions arise
regarding corner cases not covered by this documentation, or regarding how to use pseudo-Boolean
proof logging to certify correctness of different forms of reasoning, any inquiries are are welcome and
may be directed to jn@di.ku.dk.
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1 Introduction

The pseudo-Boolean proof format used for the proof checker VeriPB [Ver] supports proof logging for de-
cision, enumeration, and optimization problems, as well as problem reformulations, all in a unified format.
So far, VeriPB has been used for proof logging of enhanced SAT solving techniques [GN21, BGMN22],
pseudo-Boolean CDCL-based solving [GMNO22], constraint programming [EGMN20, GMN22], sub-
graph solving [GMN20, GMM+20], and MaxSAT solving [VDB22], and this list of applications is
expected to keep growing. In this paper we present a recently revised version of the proof format, focusing
on how it can be used to certify unsatisfiability of CNF formulas in the SAT competition 2023.

The full proof format makes it possible to specify different types of proofs, where an important
consideration is that it might only be known towards the end of the proof what kind of proof was produced
(e.g., if a preprocessor did not just reformulate a problem but actually solved it). It also supports composition
of proofs, so that different solvers can collaborate simultaneously or in sequence on solving a problem.
However, in this document we focus on the restricted version of the format that is proposed to be supported
in the SAT competition 2023.

2 Quickstart Guide for Boolean Satisfiability (SAT) Proof Logging

This section contains the bare minimum of information needed to use VeriPB and CakePB as proof
checkers for Boolean satisfiability (SAT) solvers with pseudo-Boolean proof logging. A good way to
learn more (in addition to reading this document) might be to study the example files in the directory
tests/integration_tests/correct/ in the repository [Ver] and run VeriPB with the options

--trace --useColor, which will output detailed information about the proofs and the proof checking.

2.1 Running the Proof Checkers

If a SAT solver with pseudo-Boolean proof logging has solved the instance input.cnf, the generated
proof input.pbp can be checked by VeriPB and CakePB by runnning the following commands:

# Translate to kernel format proof
veripb --cnf -- proofOutput translated.pbp input . cnf input . pbp
# Check the kernel proof
cake_pb_cnf input.cnf translated.pbp

The first command recompiles the pseudo-Boolean proof input.pbp into a more restricted “kernel-
format” proof translated.pbp using VeriPB, after which the kernel proof is checked using CakePB.
In case of successful recompilation, VeriPB will output:

# Running veripb as shown above
...
Verification succeeded

Upon successful proof checking, CakePB will report success on the standard output stream:
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# Running cake_pb_cnf as shown above
s VERIFIED UNSAT

All errors are reported on standard error.

2.2 Proof Format

The syntactic format of a pseudo-Boolean proof of unsatisfiability for a CNF formula as expected by the
version of VeriPB proposed for the SAT competition 2023 is

pseudo - Boolean proof version 2.0
f 〈N〉
Derivation section
output NONE
conclusion UNSAT : 〈id〉
end pseudo - Boolean proof

where 〈N〉 should be the number of clauses in the formula and Derivation section should contain the
actual proof which derives contradiction as the pseudo-Boolean constraint with constraint ID 〈id〉.

In pseudo-Boolean format, a disjunctive clause like

x1 ∨ x2 ∨ x3 (2.1a)

is represented as the inequality
x1 + x2 + x3 ≥ 1 (2.1b)

claiming that at least one of the literals in the clause is true (i.e., takes value 1), and this inequality is
written as

+1 x1 +1 ∼x2 +1 x3 >= 1 ;

in the OPB format [RM16] used by VeriPB. The proof checker can also read CNF formulas in the DIMACS
and WDIMACS formulas used for SAT solving and MaxSAT solving, respectively. For such files, VeriPB
will parse a clause

1 -2 3 0

to be identical to (2.1b), and the variables should be referred to in the pseudo-Boolean proof file as x1,
x2, x3, et cetera.

DRAT proofs can be transformed into valid VeriPB proofs by simple syntactic manipulations. Most
of the proof resulting from a CDCL SAT solver is the ordered sequence of clauses learnedduring conflict
analysis. Since all such clauses are guaranteed to be reverse unit propagation (RUP) clauses, in pseudo-
Boolean proofs such learned clauses can be derived most easily by writing lines like

rup +1 x1 +1 ∼x2 +1 x3 >= 1 ;

(assuming that the learned clause was (2.1a)) in the derivation section of the pseudo-Boolean proof (as
explained in more detail in Section 5.2.2).

If instead the clause (2.1a) is a resolution asymmetric tautology (RAT) clause that is RAT on x1, then
this is written as

red +1 x1 +1 ∼x2 +1 x3 >= 1 ; x1 -> 1

in the pseudo-Boolean proof using the more general redundance-based strengthening rule (discussed in
Section 5.4.1). And if the RAT literal would instead have been x2, this would have been indicated by
ending the proof line above by x2 -> 0 instead.

Finally, in order to delete the clause (2.1a), the deletion command

del spec +1 x1 +1 ∼x2 +1 x3 >= 1 ;
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is issued. (This and other deletion rules are covered in Section 5.6.) An important difference from DRAT
proofs is that deletion is made also for unit clauses, i.e., clauses containing only a single literal—DRAT
proof checkers typically ignore such deletion commands. Another crucial difference is that all clauses
learned during CDCL execution need to be written down in the proof log, including unit clauses. If unit
clauses are missing in a DRAT proof, the proof checkers will typically be helpful and silently infer and
add the missing clauses. No such patching of formally incorrect proofs is offered by VeriPB.

It should be noted, though, that if all the reasoning performed by some particular SAT solver can
efficiently be captured by standard DRAT proof logging, then there is no real reason to use pseudo-Boolean
proof logging for that solver. Pseudo-Boolean proof logging becomes relevant if the solver uses more
advanced techniques such as, for instance, cardinality reasoning, Gaussian elimination, or symmetry
breaking. We refer the reader to [GN21] and [BGMN22], respectively, for detailed descriptions of how to
do efficient pseudo-Boolean proof logging for the latter two techniques.

3 Pseudo-Boolean and Proof Checker Preliminaries

In this section, we briefly review some pseudo-Boolean preliminaries and general principles for how
pseudo-Boolean proof checking works.

3.1 Pseudo-Boolean Notation and Terminology

A literal ` over a Boolean variable x is x itself or its negation x = 1− x, where variables take values 0
(false) or 1 (true). A pseudo-Boolean (PB) inequality is a 0–1 linear inequality

C
.
=
∑

iai`i ≥ A , (3.1)

where ai and A are integers (and where we write .
= to denote syntactic equality). We can assume without

loss of generality that pseudo-Boolean constraints are normalized; i.e., that all literals `i are over distinct
variables and that the coefficients ai and the degree (of falsity) A are non-negative. This is how constraints
are represented internally in the proof checker, but most of the time there is no need to worry about this,
and the proof checker accepts constraints written in non-normalized form.

A pseudo-Boolean formula is a conjunction F .
=
∧
j Cj of pseudo-Boolean inequalities, which we

can also think of as the set
⋃
j{Cj} of inequality constraints in the formula. Since a (disjunctive) clause

`1 ∨ · · · ∨ `k is equivalent to the pseudo-Boolean constraint `1 + · · ·+ `k ≥ 1, formulas in conjunctive
normal form (CNF) can be viewed as special cases of pseudo-Boolean formulas.

To introduce some further convenient notation, we write equality
∑

i ai`i = A as syntactic sugar
for the pair of pseudo-Boolean inequalities

∑
i ai`i ≥ A and

∑
i−ai`i ≥ −A. The negation ¬C of the

constraint C in (3.1) can be represented as the pseudo-Boolean inequality

¬C .
=
∑

i − ai`i ≥ −A+ 1 , (3.2)

and the fact that the set of pseudo-Boolean inequalities is closed under negation is quite convenient for
proof logging purposes. If z is a Boolean variable and

∑
i ai`i ≥ A is a pseudo-Boolean inequality in

normalized form with
∑

i ai =M , then we write

z ⇒
∑

i ai`i ≥ A
.
= A · z +

∑
i ai`i ≥ A (3.3a)

to denote the right reification and

z ⇐
∑

i ai`i ≥ A
.
= (M −A+ 1) · z +

∑
i ai`i ≥M −A+ 1 (3.3b)

for the left reification of
∑

i ai`i ≥ A. As the notation suggests, the constraints (3.3a)–(3.3b) enforce that
z is true if and only if

∑
i ai`i ≥ A holds.
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ρ slack(C; ρ) Remark
{} 8
{x5} 3 C propagates x4 (coefficient > slack)
{x5, x4} 3 Propagation does not change slack

{x5, x4, x3, x2} −2 Conflict (slack is negative)

Figure 1: Example slack calculations for the constraint C .
= x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7.

If for an optimization problem with objective function
∑

iwi`i to be minimized the solver finds a
solution α, then we refer to ∑

iwi`i ≤ −1 +
∑

iwi · α(`i) (3.4)

as a objective-improving constraint enforcing solutions yielding a strictly better value of the objective
function during the rest of the search.

If ρ is a (possibly partial) assignment that is (provably) sufficient to uniquely specify a solution to an
enumeration problem, then we refer to ∑

`i : ρ(`i)=0

`i ≥ 1 (3.5)

as a solution-excluding constraint enforcing that different solutions will be found in the rest of the search.

3.2 Assignments, Substitution, Slack, and Unit Propagation

A (partial) assignment ρ is a (partial) function from variables to {0, 1}; a substitution ω can also map
variables to literals. These are extended from variables to literals in the natural way by respecting the
meaning of negation. We also identify a partial assignment ρ with the set of literals set to true by ρ, so
that ` ∈ ρ if and only if ρ(`) = 1. We can write x 7→ b when ρ(x) = b, for b a literal or truth value.

We write ρ ◦ ω to denote the composed substitution resulting from applying first ω and then ρ, i.e.,
ρ ◦ ω(x) = ρ(ω(x)). As an example, for ω = {x1 7→ 0, x3 7→ x4, x4 7→ x3} and ρ = {x1 7→
1, x2 7→ 1, x3 7→ 0, x4 7→ 0} we have ρ ◦ ω = {x1 7→ 0, x2 7→ 1, x3 7→ 1, x4 7→ 0}. Applying ω to a
pseudo-Boolean inequality C as in (3.1) yields

C�ω
.
=
∑

iaiω(`i) ≥ A , (3.6)

substituting literals or values as specified by ω. For a formula F we define F�ω
.
=
∧
j Cj�ω.

The (normalized) pseudo-Boolean inequality C in (3.1) is satisfied by ρ if
∑

`i∈ρ ai ≥ A. A pseudo-
Boolean formula F is satisfied by ρ if all constraints in it are, in which case it is satisfiable. If there is
no satisfying assignment, F is unsatisfiable. Two formulas are equisatisfiable if they are both satisfiable
or both unsatisfiable. We also consider optimisation problems, where in addition to F we are given
an integer linear objective function f .

=
∑

iwi`i and the task is to find an assignment that satisfies F
and minimizes f . (To deal with maximization problems we can just negate the objective function.) For
pseudo-Boolean formulas F , F ′ and constraints C, C ′, we say that F implies or models C, denoted
F |= C, if any assignment satisfying F also satisfies C, and write F |= F ′ if F |= C ′ for all C ′ ∈ F ′.

The slack of a normalized pseudo-Boolean inequality C as in (3.1) with respect to ρ measures how far
ρ is from falsifying C, and is defined formally as

slack
(∑

i ai`i ≥ A; ρ
)
=
∑

`i /∈ρ ai −A . (3.7)

The constraintC is conflicting under ρ if slack(C; ρ) < 0. If ρ does not assign `j but 0 ≤ slack(C; ρ) < aj ,
then C propagates `j under ρ, meaning that if the literal `j is falsified, then the constraint will become
conflicting. See Figure 1 for some example calculations of slack. Note that constraint can be conflicting
though not all variables in it have been assigned.

During unit propagation on F under ρ, the assignment ρ is extended iteratively by any propagated
literals until an assignment ρ′ is reached under which no constraint C ∈ F is propagating, or under which
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some constraint C is conflicting as described above. We refer to this latter scenario as a conflict, and say
that ρ′ violates the constraint C in this case. We say that F implies C by reverse unit propagation (RUP),
and that C is a RUP constraint with respect to F , if F ∧ ¬C unit propagates to conflict under the empty
assignment. Just as is the clause for clausal proof logging systems, the concept of RUP constraints will be
important in pseudo-Boolean proof logging.

3.3 Syntax for Pseudo-Boolean Inequalities in Proofs

VeriPB expects pseudo-Boolean inequalities to be written in the OPB format [RM16], for which some
examples are provided in Section 2.1. The proof checker also supports an extension to the OPB format
that allows to use arbitrary variable names instead of only x1, x2, x3, . . .Variable names in this extended
format should:

• start with a letter in A-Z or a-z;

• continue with characters in A-Z, a-z, 0-9, or []{}-_ˆ (square and curly brackets, hyphen, under-
score, and caret);

• contain at least two characters.

Variable names cannot contain spaces. The proof checker has a reserved namespace of variable names
starting with _ (underscore) for internal variables. Support for additional characters in variable names
may be added but is implementation-specific. Unsupported characters may generate a proof checker error
message, but can never generate erroneous verification results.

3.4 General Principles for the Proof Checker

At any step in a proof the proof checker maintains a (multi-)set C of core constraints and a (multi-)set D
of derived constraints, where all constraints are pseudo-Boolean inequalities. At the outset, C contains
the constraints in the input formula. All derived constraints are added to D, but constraints can be
moved from D to C. New constraints are derived from C ∪ D using the cutting planes proof system as
described more formally in [BN21] together with the redundance-based strengthening and dominance-
based strengthening rules discussed in [BGMN22, GN21]. The syntactic form of the derivation rules and
their exact semantic meaning is explained in Section 5.

A general design principle behind VeriPB is that the core set C should be equivalent to the input
formula when it comes to satisfiability (for a decision problem) or optimal value of objective function
(for an optimization problem), and therefore a constraints C should only be deleted from C if it can be
proven that C can be recovered from C \ {C}. A deletion from the core set that violates this is referred to
as an unchecked deletion. SAT solvers that only use proofs to establish unsatisfiability can perform such
unchecked deletions.

4 Overall Proof Structure

Let us now describe what different types of VeriPB proofs there are, although for the SAT competition
only proofs for decision problems are of interest. The most general version of the pseudo-Boolean proof
format also allows to compose proofs, but this is not supported for the proof checker in the SAT competition
and so we will not discuss it further here.

4.1 Proof Sections

A single, atomic VeriPB proof consists of three sections:

1. A derivation section, where the input constraints are specified and derivations are performed on
these constraints using the cutting planes and strengthening rules, and where solutions can also be
logged.
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2. An output section, where the constraints currently in the core set C of the constraint database can be
specified (for verification/debugging purposes or as input to the next stage of the solving process).

3. A conclusions section, which specifies what if anything was established by the derivation in terms
of satisfiability/unsatisfiability, optimality, or listing of solutions.

The syntactic format of the proof is

pseudo - Boolean proof version 2.0
f 〈N〉
Derivation section
output output type
Output section (optional)
conclusion conclusion section (single line)
end pseudo - Boolean proof

(where the reason for the final line end pseudo-Boolean proof is to make it very easy for experiment
scripts do decide when parsing log files whether proof logging terminated successfully or not). Let us now
discuss the different sections in more detail.

4.2 Derivation Section

The proof starts with the proof header and the “load formula” f command, after which the derivations
from the input follow in the derivation section. The precise syntax is:

pseudo - Boolean proof version 2.0
f 〈N〉
Derivation section

where the parameter 〈N〉 is the number of pseudo-Boolean inequalities in the input formula. The derivation
consists of the different cutting planes and strengthening rules as well as solution logging rules explained
in the rest of this document.

4.3 Output Section

The output section, if non-empty, should be is a listing of the (potentially multi-set of) core constraints,
where every core constraint should be listed according to its multiplicity, preceded by a description of
what is guaranteed for this list of constraints:

1. DERIVABLE : The listed core set is derivable. This can be used to implement finalization as
in [BCH21] by requiring that all constraints in the core set should be listed exactly once and that
the derived set should be empty (which forces the solver to prove that it knows exactly what it has
derived).

2. EQUI-SATISFIABLE : The listed core set is satisfiable if and only if the input problem at the start
of this (atomic) proof is satisfiable. This option might only be relevant for decision problems, and it
requires that the proof uses no unchecked deletion steps.1

3. EQUI-OPTIMAL : The optimal solution for the listed core set with respect to the objective function
has the same value as the optimal solution for the input problem at the start of the proof, except if
the derivation section of the proof has happened to log an optimal solution, in which case the core
set is guaranteed to be unsatisfiable. This option is relevant for optimization problems, and requires
that the proof uses no unchecked deletion steps.

1Note that standard SAT solvers should not necessarily be expected to follow this—they only use the proof to show unsatisfia-
bility, whereas for satisfiable instance the proof log is ignored and instead the proposed solution output directly by the SAT solver
is checked.
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4. EQUI-SOLVABLE : There is a bijection between solutions to the input problem and solutions to the
listed core constraints, except for any solutions found and logged during the course of the proof.

In terms of syntax, the output section has the format
output output type
Output section (optional)

where
output NONE

indicates that the proof has no output section (and this is the only supported option for the SAT competition).
If there is output, then output type should be a pair of parameters guarantee and list type, where

guarantee is one of DERIVABLE , EQUI-SATISFIABLE , EQUI-OPTIMAL , or EQUI-SOLVABLE , and
list type is one of CONSTRAINTS , PERMUTATION , or IMPLICIT . The output section should list any
meta-information needed to connect the input formula and the output formula, such as how the input
formula objective has been rewritten to the output formula objective, in case the objective has changed.
After this, the output formula should be listed as a valid OPB file (possibly in the extended OPB format
that VeriPB uses).

In slightly more detail, the output section format for an optimization problem should look like:
output EQUI - OPTIMAL CONSTRAINTS
〈Obj input〉 =〈Obj output〉
* # variable =〈number of variables〉 # constraint =〈number of constraints〉
min : 〈Obj output〉

followed by an ordered sequence of pseudo-Boolean constraints listing every constraint in the core set C
exactly once. Above, 〈Obj input〉 and 〈Obj output〉 are the original and reformulated objectives, respectively.

Regarding the ordered list of pseudo-Boolean constraints in the output formula, for large formulas it is
desirable to allow a variant
output EQUI - OPTIMAL PERMUTATION
〈Obj input〉 =〈Obj output〉
* # variable =〈number of variables〉 # constraint =〈number of constraints〉
min : 〈Obj output〉

which is followed by the constraint IDs in the core set in the desired order (with every ID of a constraint in
the core set listed exactly once), as well as an even more concise variant
output EQUI - OPTIMAL IMPLICIT
〈Obj input〉 =〈Obj output〉
* # variable =〈number of variables〉 # constraint =〈number of constraints〉
min : 〈Obj output〉

which is not followed by anything, and instead just implicitly assumes that we want the constraints in the
core set listed in increasing order of constraint IDs.

The output from a preprocessor for a decision problem, where the problem instance has been reformu-
lated while maintaining equi-satisfiability, should instead look like e.g.,
output EQUI - SATISFIABLE CONSTRAINTS
* # variable =〈number of variables〉 # constraint =〈number of constraints〉

followed by the list of constraints resulting from the preprocessing phase.

4.4 Conclusions Section

Proof logging is supported for the following types of problems and conclusions:

Decision problems: For decision problems without objective function, possible solver conclusions are:

1. SAT : The problem instance is satisfiable.

8
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2. UNSAT : Problem instance is unsatisfiable/infeasible.

3. NONE : Result unknown.

Optimization problems: For problems with an objective function, possible solver conclusions are:

1. BOUNDS : The optimal solution to the problem instance lies in a specified interval [LB ,UB ].
If LB = UB , then optimality has been proven. We could also have UB =∞, in which case
no solution has been found, and/or LB being equal to the constant term in the (normalized)
objective function, in which case no nontrivial lower bound has been proven.

2. UNSAT : Problem instance is unsatisfiable/infeasible.

3. NONE : Result unknown—in particular, no solution or lower bound has been found.

Enumeration problems: For enumeration problems (which should not have objective functions), possible
solver conclusions are:

1. UNSAT : Problem instance is unsatisfiable/infeasible.

2. ENUMERATION PARTIAL : The proof has logged one or more solutions, but there is no
derivation of contradiction ruling out the existence of further solutions.

3. ENUMERATION COMPLETE : The proof has logged one or more solutions and has also derived
contradiction, ruling out the existence of further solutions.

4. NONE : Result unknown (in particular, no solution has been found).

The conclusion section has the format

conclusion conclusion line
end pseudo - Boolean proof

and after the keyword conclusion the proof should state what has been established. If there are no
conclusions (as for, e.g., a pure reformulation of a problem), then

conclusion NONE

signals this. In the syntax descriptions below, square brackets are used to denote optional parts of the
syntax.

For an unsatisfiability proof for a decision problem, the conclusion section should be

conclusion UNSAT [: 〈id〉 ]

where 〈id〉 is an optional reference to a constraint ID with negative slack. Note that such a constraint ID is
never needed for verification purposes—if indeed there is such a constraint, then 0 ≥ 1 is a reverse unit
propagation (RUP) constraint, which can easily be checked—but it can be helpful for debugging purposes
or to be able to reconstruct the actual proof found by a solver. If a solution to a decision problem is found,
the conclusion section should be

conclusion SAT [: assignment]

where assignment is a list of variables with the values they are mapped to, but this is not supported for the
SAT competition, since the proof log is not used to check the result if the instance is satisfiable.

None of the other conclusion types below are supported for the SAT competition, but are listed for
completeness.

For an optimization problem, the syntactic format of the conclusion section is

conclusion BOUNDS 〈LB〉 〈UB〉 [: 〈id1 〉 〈id2 〉 ]

for optional constraint IDs 〈id1 〉 and 〈id2 〉. The constraint ID 〈id1 〉 should refer to a constraint from which
Obj input ≥ LB follows by so-called syntactic implication (note that this constraint could be contradiction
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0 ≥ 1).2 The constraint ID 〈id2 〉 should be the objective-improving constraint corresponding to when a
solution with value UB was logged.

For an enumeration problem, the conclusion section should look like

conclusion ENUMERATION PARTIAL 〈N〉

for a partial enumeration of N solutions and

conclusion ENUMERATION COMPLETE 〈N〉 [: 〈id〉 ]

for a complete enumeration of N solutions (with an optional reference id to a constraint with negative
slack showing that the enumeration is complete).

5 Derivation Rules

In this section we describe the different rules or commands that can appear in a VeriPB proof. Every
rule in a proof file has to be written on a single line, and no single line may contain more than one rule.
Different rules can create different numbers of new constraints (or none).

The VeriPB proof checker accepts proofs in what we will refer to as an “augmented” proof format,
including a rich collection of rules intended to make proof logging as convenient as possible. The verified
proof checker CakePB only supports a “kernel” subset of these commands, where the intended workflow
for formally verified proof checking is to use VeriPB as a preprocessor to compile augmented proofs into
the kernel format to be formally checked by CakePB. In this section, we focus on describing the general
augmented proof format, but we also mention the restrictions in the kernel format. A summary of the
kernel format and the formally verified proof checker is presented in Section 6.

The expected setting in a VeriPB proof is that there is an input formula F in (linear) pseudo-Boolean
form (and note that CNF formulas would be a special case of this). For a decision problem, the proof
should establish whether F has satisfying assignments or is unsatisfiable. For an optimization problem
the goal is to minimize a 0–1 integer linear objective function f subject to the constraints in F , or at least
to prove as tightly matching upper and lower bounds on the objective function as possible (and decision
problems can be viewed as a special cases of optimization problems by considering the objective function
f
.
= 0 to be trivial). For an enumeration problem the solver should provide an (ideally exhaustive) list of

solutions to F .
At all times, the VeriPB proof checker maintains a current state with the following information:

• The input formula F (which is immutable once loaded as described in Section 5.1).

• The objective function f (which would be the trivial function 0 for a decision problem).

• A constraint database consisting of a (multi-)set C of core constraints and a (multi-)setD of derived
constraints, where all constraints are pseudo-Boolean inequalities. Each constraint is identified by a
unique positive integer referred to as a constraint ID.

• A counter of the largest integer maxId used for any constraint ID in the proof so far.

• The best objective function value v achieved for any solution found so far (which is∞ if no solution
has been found).

• A (possibly empty) set of pseudo-Boolean inequalities O�(~u,~v) over ordered sets of variables ~u
and ~v, which encodes a preorder, i.e., a reflexive and transitive relation.

• A sequence of literals ~z (normally, but not necessarily, distinct) on which the preorder O� should
be applied.

2Work in progress: If no constraint ID is specified, VeriPB should loop over all constraints currently in the core set and
check for each constraint whether it syntactically implies Obj input ≥ LB .
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• The set of all variables that has appeared so far in the proof.

• The current proof level currLevel, offered as a convenience to help backtracking solvers keep track
of which constraints should be erased when.

When a constraint is expected by some proof command, as a general rule a positive integerN is interpreted
as referring to the constraint in the database with constraint ID N . Also, a negative integer −N is
interpreted in the augmented format as the constraint with ID maxId + 1−N , i.e., the N th most recent
constraint derived, but this convention is not supported in the kernel format.

5.1 Manipulation of Constraints Database

Load formula The command

f 〈N〉

loads the input formula (as specified in the invocation of the proof checker) and stores all constraints in
the core set C. The input formula is expected to contain N pseudo-Boolean inequalities, which will get
constraint IDs 1, 2, . . . , N .

Note that any pseudo-Boolean equality
∑

i ai`i = A in the input formula will be counted as two
constraints

∑
i ai`i ≥ A and

∑
i ai`i ≤ A in this order. As an example, if the OPB file

* # variable = 4 # constraint = 2
1 x1 2 x2 >= 1 ;
1 x3 1 x4 = 1 ;

is loaded in a pseudo-Boolean proof file starting

pseudo - Boolean proof version 2.0
f 3

then the formula stored in the proof checker core set is

1 : 1 x1 2 x2 >= 1 ;
2 : 1 x3 1 x4 >= 1 ;
3 : -1 x3 -1 x4 >= -1 ;

(with the constraint ID listed at the start of each line just for purposes of illustration).

Move to core Constraints can be moved from the derived set to the core set with the commands

core id 〈id1 〉 〈id2 〉 〈id3 〉 ...
core range 〈idStart〉 〈idEnd〉

where the first command variant specifies a list of one or more constraint IDs and the second variant
specifies a range between 〈idStart〉 and 〈idEnd〉. All constraint IDs must be valid. Moving a constraint
to the core that is already in the core has no effect. In the kernel proof format only the core id command
is supported.

5.2 Implicational Rules

Implicational rules derive new pseudo-Boolean inequalities C that are guaranteed to be semantically
implied by the constraint database C ∪ D. We write C ∪ D ` C when a derivation of C from C ∪ D using
the implicational derivation rules below can be exhibited.

5.2.1 Implicational Rules in Kernel Format: Reverse Polish Notation

Reverse polish notation The reverse polish notation rule

pol 〈sequence of operations in reverse polish notation〉

11
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derives a new pseudo-Boolean inequality that receives constraint ID maxId + 1 (after which maxId is
incremented). The derivation is specified by a sequence of operations in the cutting planes proof system
(as described in [BN21]). The sequence is given in reverse polish notation. That is, all operands in the
sequence are pushed on a stack, and operations are performed on the top one or two elements (where
〈op1 〉 is below the top element 〈op2 〉 of the stack), after which the result is pushed on the stack:

• 〈op1 〉 〈op2 〉 + adds two constraints.

• 〈op1 〉 〈op2 〉 * multiplies the constraint 〈op1 〉 by the positive integer 〈op2 〉.

• 〈op1 〉 〈op2 〉 d divides the constraint 〈op1 〉 by the positive integer 〈op2 〉 (with integer rounding).

• 〈op〉 s saturates the constraint 〈op〉.

• 〈op1 〉 〈op2 〉 w weakens the constraint 〈op1 〉 by removing the variable 〈op2 〉 (assuming that it
contributes so as to satisfy the constraint), where 〈op2 〉 should be a variable name without negation.

At the end of a reverse polish notation line the stack should contain a single constraint, which is the result
of the pol rule application. If the stack is instead empty or contains more than one element, then this is an
error. It is possible to write just p instead of pol.

As is the case in general for derivation rules, when a constraint is expected by some arithmetic operation
a positive integer is interpreted as an absolute constraint ID and a negative integer −N as referring to the
constraint with ID maxId + 1 −N . If instead a literal var or ∼var is encountered where a constraint
is expected, then var is interpreted as the literal axiom constraint var ≥ 0 and ∼var is interpreted as
∼var ≥ 0 (or, equivalently, var ≤ 1). Note that since variables must consist of at least two characters
they cannot be confused with arithmetic operations.

5.2.2 Shorthand Implicational Rules in Augmented Format

The implicational derivation rules listed below are provided in the augmented proof format for convenience,
but are not supported in the kernel format used by the formally verified proof checker.

Reverse unit propagation (RUP) The rule
rup 〈pseudo-Boolean inequality C in OPB format〉

adds the specified pseudo-Boolean inequality C if it is implied by the constraint database C ∪D by reverse
unit propagation. That is, the proof checker temporarily adds ¬C to the constraint database and performs
unit propagation to check that this leads to conflict.

Syntactic implication The rule
ia 〈id〉 : 〈pseudo-Boolean inequality C in OPB format〉

adds the specified pseudo-Boolean inequality C if there is a single constraint in the database that syn-
tactically implies C (as discussed in [BGMN22]). The argument 〈id〉 specifies the constraint ID of this
syntactically implying constraint.3

5.3 Orders

A set of pseudo-Boolean inequalitiesO� encoding a preorder is introduced by using the following template,
in which square brackets denote optional parts of the notation:
pre_order 〈order name〉

vars
left 〈ordered set of left variables〉
right 〈ordered set of right variables (of same size)〉

3Work in progress: The intention is to make the constraint ID argument optional in future revisions, but this has not yet
been implemented. However, for efficiency reasons it will always be best to specify this argument explicitly.
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[ aux 〈list of auxiliary variables that are currently ignored〉 ]
end
def

〈list of pseudo-Boolean inequalities O� defining order〉
end
transitivity

vars
fresh_right 〈ordered set of extra variables (of same size)〉

end
proof

proofgoal #1
〈proof of transitivity of relation〉

end 〈id〉
end

end
end

Let us describe in more detail the different parts of the definition of a preorder O�(~u,~v) over sets of
variables ~u and ~v. The heading

pre_order 〈order name〉

introduces the preorder and gives it a unique name (with the same naming conventions as those for variables
discussed in Section 3.3), after which

vars
left 〈ordered set of left variables〉
right 〈ordered set of right variables (of same size)〉

[ aux 〈list of auxiliary variables that are currently ignored〉 ]
end

specifies the two sets of variables ~u and ~v used in O�. The list of auxiliary variables is optional and is
anyway ignored,4 except that an empty aux line is required in the kernel format. Next, the section

def
〈list of pseudo-Boolean inequalities O� defining order〉

end

presents the pseudo-Boolean formula claimed to encode a preorder defined by α � β if and only if
O�(α, β) evaluates to true (except that the proof checker postulates α � α to hold by definition, regardless
of O�). The definition of the preorder is concluded by a subproof

transitivity
vars

fresh_right 〈ordered set of extra variables (of same size)〉
end
proof

proofgoal #1
〈proof of transitivity of relation〉

end 〈id〉
end

end

establishing thatO� defines a transitive relation, i.e., that the implicationO�(~u,~v)∧O�(~v, ~w) � O�(~u, ~w)
provably holds.

As an example, lexicographic order over 3 bits defined by (u1, u2, u3) � (v1, v2, v3) when ~u viewed
as a binary number is less than or equal to ~v can be expressed by the pseudo-Boolean inequality

− 4u1 + 4v1 − 2u2 + 2v2 − u3 + v3 ≥ 0 (5.1)
4Work in progress: This syntax is to allow for the introduction of auxiliary variables in future revisions of the proof format

in a backwards-compatible way.
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and can be introduced as a preorder ternarylex as follows:
pre_order ternarylex

vars
left u1 u2 u3
right v1 v2 v3
aux

end
def

-4 u1 4 v1 -2 u2 2 v2 -1 u3 1 v3 >= 0 ;
end
transitivity

vars
fresh_right w1 w2 w3

end
proof

proofgoal #1
pol 1 2 + 3 +

end -1
end

end
end

We will discuss subproofs in more detail in Section 5.5 below, but remark here that in the kernel format
there must be explicit proofs for each proof goal in the transitivity proof. Also, the kernel format requires
that the aux variable list is empty.

The load_order command loads the named order (which must previously have been successfully
defined by a pre_order command). The command
load_order ternarylex x1 x2 x3

loads our example order ternarylex and specifies that it will be applied to the variables x1, x2, x3.
Calling load_order in this way in the middle of a proof also has the effect of moving all constraints
currently in the derived set D to the core set C.

The load_order command can also be called with no arguments, in which case the currently loaded
order is unloaded. Derived constraints are not moved to the core for such an empty order command. We
denote the empty preorder by O>.

5.4 Strengthening Rules

Most proof logging steps for a solver trying to minimize f subject to the constraints in the the pseudo-
Boolean formula F (or trying to solve the decision problem F , in which case we recall that we can consider
the objective function f .

= 0 to be trivial), are expected to be performed using the implicational rules
in Section 5.2. However, we also need to allow strengthening rules deriving constraints C that are not
semantically implied by the input formula. Adding such constraints C is in order as long as some optimal
solution is maintained, i.e., a satisfying assignment to F that minimizes f . This idea was formalized
in [BGMN22] by allowing the use of an additional pseudo-Boolean formula O�(~u,~v) that, together with
a sequence of variables ~z, defines a relation on the set of truth value assignments.

Since we will need to make somewhat advanced use of substitutions below, let us discuss some nota-
tional conventions from [BGMN22]. If F is a pseudo-Boolean formula over variables ~x = {x1, . . . , xm},
we can write F (~x) to make explicit the set of variables ~x over which F is defined. For a substitution ω
with domain (contained in) ~x, the notation F

(
~x�ω
)

is understood to be a synonym of F�ω. For the same
formula F and ~y = {y1, . . . , ym}, the notation F (~y) is syntactic sugar for F�ω with ω denoting the
substitution (implicitly) defined by ω(xi) = yi for i = 1, . . . , n. Finally, for a formula G = G(~x, ~y)
over ~x ∪ ~y and substitutions α and β defined on ~z = {z1, . . . , zn} (either of which could be the identity
function), we write G(~z�α, ~z�β) to denote G�ω for ω defined by ω(xi) = α(zi) and ω(yi) = β(zi) for
i = 1, . . . , n.
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Using this notation, we let O� define a relation α � β that holds when O�(~z�α, ~z�β) evaluates to
true, or when ~z�α

.
= ~z�β , as also discussed in Section 5.3. Then � can be combined with the objective

function f to define a preorder �f on assignments by

α �f β if α � β and f�α ≤ f�β , (5.2)

and we require that all strengthening rules should preserve some solution that is minimal with respect to
this preorder �f .

5.4.1 Redundance-Based Strengthening

The format of the redundance-based strengthening rule is
red 〈pseudo-Boolean inequality C in OPB format〉 ; 〈substitution ω〉 [; begin
〈subproofs〉

end [ 〈id〉 ]]

where we are again denoting optional parts of the rule with square brackets. This rule makes it possible
to derive a constraint C from C ∪ D even if C is not implied, provided that the proof logger establishes
that any assignment α that satisfies C ∪ D can be transformed into another assignment α′ �f α that
satisfies both C ∪ D and C. (In case the order is empty, which we write as O� = O>, then the condition
α′ �f α just means that the inequality f�α′ ≤ f�α should hold—note that this is vacuously true for a
decision problem). We remark that this rule is a generalized version of the RAT rule in [HHW13]. The
redundance-based strengthening rule in the form we are using it here originated in [GN21], which in turn
relies heavily on [HKB17, BT19].

More formally, if v is the best value for the objective function achieved by any solution so far (or∞ if
no solution has been found), then C can be derived by redundance-based strengthening, or just redundance
for brevity, if there is a substitution ω (referred to as the witness) such that an explicit derivation

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ` (C ∪ D ∪ C)�ω ∪ {f�ω ≤ f} ∪ O�(~z�ω, ~z) . (5.3)

can be provided. Intuitively, (5.3) says that if some assignment α satisfies C ∪ D but falsifies C, then
the assignment α′ = α ◦ ω still satisfies C ∪ D and also satisfies C. In addition, the condition f�ω ≤ f
ensures that α ◦ ω achieves an objective function value that is at least as good as that for α.

In a redundance rule application, the witness ω is presented as a space-separated list
var1 -> val1 var2 -> val 2 var3 -> val3 ...

of variables in the domain of ω and what they are mapped to (i.e., truth values or literals). The arrow
symbols -> are optional in the augmented format, but not in the kernel format.

The 〈subproofs〉 part contains a derivation of every constraint on the right-hand side of (5.3), except
that for, e.g., RUP constraints and syntactically implied constraints the proof checker can be asked to fill in
the proof. How much automatic proof generation the proof checker will provide depends on whether the
augmented or the kernel proof format is used, with less generous support provided in the kernel format.
We will discuss subproofs in more detail in Section 5.5, but note here that the constraints on the right-hand
of (5.3) for which subproofs are needed, and which are referred to as proof goals, are referred by labels
constructed as follows:

1. For (C ∪ D)�ω, each proof goal D�ω is labelled by the constraint ID of D in the database C ∪ D.

2. The remaining constraints have special labels with a distinguishing prefix “#” as follows:

(a) Label #1 refers to the proof goal C�ω for the constraint C being derived by the redundance
rule application.

(b) Labels #2, #3, . . . , #N + 1 refer to proof goals for the order O� with N = |O�|, i.e., there is
one goal per constraint in the order (or N = 0 if no order is loaded).

(c) Label #N + 2 refers to the proof goal for the constraint f�ω ≤ f saying that the objective
function must not get worse, if the problem contains an objective function f .
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5.4.2 Dominance-Based Strengthening

The dominance-based strengthening rule has the format

dom 〈pseudo-Boolean inequality C in OPB format〉 ; 〈substitution ω〉 [; begin
〈subproofs〉

end [ 〈id〉 ]]

(with optional parts within square brackets), and to explain how it works we first make a quick detour to
discuss order relations. For any preorder �, we can define a strict order ≺ by postulating that α ≺ β if
α � β and β 6� α (which means that, as a special case, the empty preorder yields a “strict order” that does
not relate any elements at all). The relation ≺f obtained in this way from the preorder (5.2) coincides
with what is called a dominance relation in [CS15] in the context of constraint optimization, which is the
reason for why the dominance-based strengthening rule has received its name.

Just as for the redundance rule, the dominance rule allows to derive a constraint C from C ∪ D even
if C is not implied. A crucial difference, however, is that in the dominance rule an assignment α satisfying
C ∪ D but falsifying C need only be mapped to an assignment α′ that satisfies C, but not necessarily D
or C. On the other hand, the new assignment α′ should satisfy the strict inequality α′ ≺f α and not
just α′ �f α as in the redundance rule.

To see that this is sound, we can argue by induction that if these conditions are satisfied, then it must
be possible to construct an assignment that satisfies C ∪ D ∪ {C}, and achieves at least as good a value
with respect to the objective function f , by iteratively applying the witness of the dominance rule. Note,
however, that the derivation in the proof log does not actually carry out this construction, but just provides
an existential proof that such a construction would be possible in principle. We sketch the proof of the
soundness of this argument here, referring the reader to [BGMN22] for the missing details.

For the base case, if the assignment α′ obtained from α satisfies C ∪D∪{C}, we are done. Otherwise,
since α′ satisfies C, and since D has previously been derived from C, it can be shown that there exists
an assignment α′′ that satisfies C ∪ D and is such that α′′ ≺f α′ ≺f α holds. If α′′ does not satisfy C,
then this assignment satisfies exactly the same conditions as the assignment α that we started with, and
the whole argument can be repeated to get α(4) ≺f α(3) ≺f α′′. Arguing by induction, we get a strictly
decreasing sequence of assignments with respect to≺f . Since the set of possible assignments is finite, this
sequence has to terminate eventually with an assignment α∗ that satisfies all constraints in C ∪ D ∪ {C}
and for which the inequality f�α∗ ≤ f�α holds.

More formally, we would like to say that if v is the best value for the objective function achieved so far
(or∞), and if the preorder O� has been loaded to be applied to ~z, then the pseudo-Boolean inequality C
can be derived by dominance-based strengthening given a substitution ω such that

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ` C�ω ∪ O�(~z�ω, ~z) ∪ ¬O�(~z, ~z�ω) ∪ {f�ω ≤ f} , (5.4)

whereO�(~z�ω, ~z) and ¬O�(~z, ~z�ω) taken together imply that α ◦ ω ≺ α for any assignment α. A technical
problem with this proposal is that the pseudo-Boolean formula O� may contain multiple constraints, so
that the negation of it is not a set of pseudo-Boolean inequalities and thus is not in the correct syntactic
format. To get around this, one can divide (5.4) into two separate conditions and move ¬O�(~z, ~z�ω) to the
premise of the implication, which eliminates the negation. After this rewriting step, we get the formal
definition that C is derivable by the dominance-based strengthening rule if there is a substitution ω such
that explicit derivations

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ` C�ω ∪ O�(~z�ω, ~z) ∪ {f�ω ≤ f} (5.5a)
C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ∪ O�(~z, ~z�ω) ` ⊥ (5.5b)

can be provided.
As for the redundance rule, ω should be given as a list var1 -> val1 var2 -> val2 ... of

variables and what these variables are mapped to by ω, with the arrow symbols -> being optional in the
augmented format. The 〈subproofs〉 part contains a derivation for every constraint on the right-hand side
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of (5.5b)–(5.5b) with the same conventions that simple proofs can be automatically filled in by the proof
checker, and with the level of proof checker helpfulness depending on whether we use the augmented or
kernel format. We will discuss the syntax and semantics of such subproofs next, after writing down for the
record that the proof goals for a dominance application are labelled as follows:

1. For C�ω, each proof goal D�ω is labelled by the constraint ID of D in the core constraint set C.

2. The remaining proof goals get labels with a distinguishing prefix “#” as follows:

(a) Labels #1, #2, . . . , #N for N = |O�| refer to proof goals for the order O� with one proof
goal per constraint in the order (or N = 0 if no order is loaded).

(b) Label #N + 1 refers to the proof goal for the negated order in (5.5b). Note that this proof goal
behaves slightly differently from the others in that it directly adds a list of assumptions from
which contradiction must be derived.

(c) Label #N + 2 refers to the proof goal for the inequality f�ω ≤ f if applicable, i.e., if the
problem contains an objective function f .

5.5 Subproofs

The rules for subproofs are arguably somewhat complex. A good way to understand the syntax is to run
VeriPB on files such as tests/integration_tests/correct/dominance/example.pbp in the
repository with the options --trace --useColor, which will (among other things) display the required
proof goals.

If all proof goals for a strengthening rule application can be automatically derived by the proof checker,
then there is no need for a list of subproofs and the strengthening rule can be stated as

〈strengthening rule〉 〈derived constraint C〉 ; 〈substitution ω〉

on a single line, where 〈strengthening rule〉 is red or dom. In the general case, however, the proof checker
will need to be provided with a list of explicit subproofs, and then the the format of the strengthening rules
is

〈strengthening rule〉 〈derived constraint C〉 ; 〈substitution ω〉 ; begin
〈list of subproofs〉

end [ 〈id〉 ]

The optional constraint ID at the end of the red or dom rule with subproofs, if provided, refers to a
contradiction that is derived in the top-level subproof of these rules. As soon as such a constraint has been
derived, there is no need to check any remaining proof goals.

In 〈list of subproofs〉 implicational derivation steps can be interleaved with proof goals, where the
latter of which are formatted as follows:

proofgoal 〈pid〉
[ 〈list of implicational steps〉 ]

end 〈id〉

Each proof goal is labeled with a proof goal ID 〈pid〉 which is on the form 〈id〉 or #〈id〉 as explained at
the end of Sections 5.4.1 and 5.4.2 for redundance and dominance, respectively.

Proof checking proceeds through subproofs sequentially, populating the database according to the
implicational commands, and checking proof goals with the accumulated database up to that proof goal.
This is illustrated below with a commented trace, starting from a constraint database S which is the union
of the core set and the derived set at this point in the overall proof.

* Initial database S
〈list of implicational steps〉
* Derived database S ′ from S following implicational steps
proofgoal 〈pid〉

* Add constraint (s) from proof goal for 〈pid〉 to S ′
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〈list of implicational steps〉
* Derived database S ′′ from S ′ implicationally

end 〈id〉
* Check if 〈id〉 is a contradiction
* Rewind to database S ′ and continue
...

If subproof checking succeeds, the argument at the end of the explicit subproofs specifies a constraint
ID at which 〈list of subproofs〉 derives contradiction. If such a contradiction is derived, the proof of
the redundancy or dominance step is complete. Otherwise, all proof goals for the given redundancy or
dominance step are checked to either be explicitly covered by a proof goal in the subproofs or implicitly
covered by automatic proof.

5.5.1 Automatically Generated Subproofs in Kernel Format

The kernel format uses the following rules to determine if a proof goal requires explicit proofs (assuming
contradiction has not been derived):

1. All #〈id〉 proof goals must have explicit proofs.

2. For 〈id〉 proof goals, let C be the constraint corresponding to 〈id〉 in the database and ω be the
substitution of the redundancy or dominance step. The proof goal 〈id〉 can be skipped if:5

(a) C is untouched by the substitution;
(b) ω only assigns literals to true in (the normalized form of) C;
(c) C and C�ω are contradictory;
(d) C is a duplicated constraint and one copy of it already has an explicit proof.

5.5.2 Automatically Generated Subproofs in Augmented Format

In addition to what is mentioned in Section 5.5.1, in the augmented format automatic checks for reverse
unit propagation and syntactic implication from each constraint in the database can be performed.

5.6 Deletion Rules

Deletion is a complex topic, not least because the pseudo-Boolean proof format supports both deleting by
reference (i.e., by specifying a constraint ID) and deleting by specification (i.e., describing the constraint
to be deleted). The latter type of deletion is not a good fit for the proof format, but is supported for ease of
integration with SAT solvers using standard DRAT-style proof logging.

As a further complication, a pseudo-Boolean constraint C in the core set C should ideally be deleted
only if it can be proven that C can be recovered from C \ {C}, which is referred to as checked deletion
in [BGMN22]. In the version of VeriPB proposed for the SAT competition 2023 only unchecked deletion
is supported, however.

5.6.1 Deletion Rules in Kernel Format

The kernel format only supports deleting constraints by referring to their constraint IDs, and in addition
forces the proof logger to be aware of whether a core set constraint or a derived set constraint is being
erased.

Deletion from derived set The command

deld 〈id1 〉 〈id2 〉 〈id3 〉 ...

5Work in progress: And additional case that is intended to be covered in the kernel format is when the constraint C�ω is
already contained in the database, but this has not yet been implemented.
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deletes a list of constraints with specified IDs from the derived set D. It is an error if any constraint is
instead in the core set C or is not in the constraint database at all.

Deletion from core set The unchecked core deletion command

delc 〈id1 〉 〈id2 〉 〈id3 〉 ...

provided for the SAT competition 2023 first checks that all constraint IDs in the specified list identify
constraints currently in the core set. Provided that no order (or the empty order) has been loaded, or
alternatively that the derived set D is currently empty, all the specified constraints are deleted from the
core. Otherwise the command generates an error.

Note that the fact that core deletion is unchecked means that the current database C ∪ D can turn
satisfiable although the input formula is unsatisfiable.

5.6.2 Deletion Rules in Augmented Format

The augmented proof format supports a general deletion-by-reference command, where the proof logger
is required to know the constraint ID but does not need to be aware of the difference between core set
and derived set. It also provides a deletion-by-specification command that provides the encoding of the
constraint to be deleted. Deletion by specification should be avoided if possible, but is supported as a
convenience for SAT solvers already equipped with DRAT-style proof logging as well as for solvers in
more powerful paradigms where the constraints in the proof constraints database might not match well
what the solver is keeping track of in its own constraints database.

Deletion by reference The command

del id 〈id1 〉 〈id2 〉 〈id3 〉 ...

has the same effect as checking the type of each constraint 〈id〉 in the list and then issuing a delete core
command delc or delete derived command deld depending on the type of the constraint. All constraint
IDs must be valid references to constraints currently in the database.

Deletion by specification The command

del spec 〈pseudo-Boolean inequality C in OPB format〉

is an error if there is no constraint C in the database. Otherwise, C is marked for deletion as per the
description in Section 5.6.3.

5.6.3 Semantics in Augmented Format for Mixed Deletion by Reference and Specification

We implement a multiset deletion semantics for deletion by associating to constraint C in the database a
delete-by-specification kill counter Ks(C) and two lists LD(C) and LC(C) containing the constraint IDs
with which C appears in the derived set D and core set C, respectively.

When deletion by reference for a constraint C is encountered, the specified constraint ID is removed
from the appropriate list LD(C) or LC(C). When deletion by specification of C is encountered, Ks(C) is
incremented by 1. After any of the above updates to Ks(C), LD(C), or LC(C), the following procedure
is run:

1. If Ks(C) < |LD(C)|+ |LC(C)|, then there are still derived copies of C left, and no action is taken.

2. Else if Ks(C) = |LD(C)| + |LC(C)|, then as many copies of C as are available in the database
have been deleted. Therefore the constraint C is completely removed from the database by issuing
deld commands for all IDs in LD(C) and delc commands for all IDs in LC(C), after which we
set LD(C) = LC(C) = ∅ and Ks(C) = 0.

3. The case Ks(C) > |LD(C)|+ |LC(C)| is impossible, as the system ensures Ks(C) ≤ |LD(C)|+
|LC(C)|.
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6 Formally Verified Proof Checking

The kernel proof checker CakePB has been formally verified in the HOL4 theorem prover [SN08] using the
CakeML suite of tools for program verification, extraction, and compilation [TMK+19, GMKN17, MO14].
In this section, we present the verification guarantees for CakePB cnf, a version of CakePB equipped
with a DIMACS CNF parser frontend for UNSAT proof checking with pseudo-Boolean proof logging.

6.1 Summary of Kernel Format

We summarize the kernel format with reference to the derivation rules presented in Section 5. In general,
rules in the kernel format have the same semantics on the proof state, but may have additional syntactic
restrictions or requirements, e.g., requiring more explicit subproofs.

Constraint IDs The kernel format does not support the interpretation of a negative integer −N as the
constraint with ID maxId + 1−N .

Load formula The f command behaves identically in the kernel format. It must be the first command in
the input pseudo-Boolean proof after the header (see Section 2.1 for an example).

Move to core Only the core id command for moving constraints to the core is supported.

Implicational rules Only the pol implicational rule is supported.

Orders The kernel format requires an empty aux line. In addition, there must be explicit proofs for all
proof goal in the transitivity proof for the specified order.

Strengthening rules and subproofs The kernel format supports both red and dom strengthening com-
mands, but requires more explicit subproofs. see Section 5.5.1 for the exact explicit subproof requirements
in the kernel format.

Deletion rules Only the deld and delc deletion by ID commands are supported in kernel format.
Notably, deletion by specification is not supported and must be compiled away.

Conclusions section In the kernel format, the conclusion section must be explicitly given all required
IDs (cf. Section 4.4). In particular, for an unsatisfiability proof, the conclusion section

conclusion UNSAT : 〈id〉

must have a constraint ID specifying the contradictory constraint in the database.

6.2 Verified Correctness Theorem for CakePB cnf

The end-to-end verified correctness theorem for CakePB cnf is shown in Figure 2. This theorem can be
intuitively understood in four parts, corresponding to the indicated lines (6.1)–(6.4):

• The theorem assumes (6.1) that the CakeML-compiled machine code for CakePB cnf is executed
in an x64 machine environment set up correctly for CakeML. The definition of cake pb cnf run is
shown below, where the first line (wfcl cl ∧ wfFS fs ∧ ...) says the command line cl and filesystem
fs match the assumptions of CakeML’s FFI model. The second line says that the compiled code
(cake pb cnf code) is correctly set up for execution on an x64 machine.

cake pb cnf run cl fs mc ms
def
=

wfcl cl ∧ wfFS fs ∧ STD streams fs ∧ hasFreeFD fs ∧
installed x64 cake pb cnf code mc ms

• Under these assumptions, the CakePB cnf program is guaranteed to never crash (6.2). However, it
may run out of resources such as heap or stack memory (extend with resource limit ...). In these cases,
CakePB cnf will fail gracefully and report out-of-heap or out-of-stack on standard error.
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` cake pb cnf run cl fs mc ms ⇒ (6.1)
machine sem mc (basis ffi cl fs) ms ⊆

extend with resource limit
{ Terminate Success (cake pb cnf io events cl fs) } ∧


(6.2)

∃out err .
extract fs fs (cake pb cnf io events cl fs) =

SOME (add stdout (add stderr fs err) out) ∧


(6.3)

if out = �s VERIFIED UNSAT\n� then
LENGTH cl = 3 ∧ inFS fname fs (EL 1 cl) ∧
∃ fml .

parse dimacs (all lines fs (EL 1 cl)) = SOME fml ∧
unsatisfiable (interp fml)

else out = ��


(6.4)

Figure 2: The end-to-end correctness theorem for the CakeML pseudo-Boolean proof checker with a CNF parser

• Upon termination, the CakePB cnf program will output some (possibly empty) strings out and
err to the standard output and standard error streams, respectively (6.3).

• The key verification guarantee (6.4) is that, whenever the string “s VERIFIED UNSAT” is printed
to standard output, the input CNF file (first command line argument) parses in DIMACS format to a
CNF which is unsatisfiable. No other output is possible on standard output; error strings are always
printed to standard error.

Internally, CakePB cnf transforms input CNF clauses (in DIMACS format) to normalized pseudo-
Boolean constraints, as exemplified by 2.1a and 2.1b. This transformation is formally verified to preserve
satisfiability as part of the end-to-end correctness theorem shown in Figure 2.

Note that the CakePB cnf tool has an essentially identical correctness theorem to an existing verified
Boolean unsatisfiability proof checking tool [THM21]. In fact, these tools share exactly the same definitions
of DIMACS CNF parsing, Boolean satisfiability semantics, and all of the CakeML’s standard assumptions.

6.3 Complexity and Empirical Evaluation

All of the commands in the kernel format are designed to minimize the need to search over the entire
constraint database. For example, each implicational and deletion proof step can be performed in linear
time with respect to the size of that step.

The only proof steps that scale linearly with respect to the size of the constraint database are redundancy
and dominance-based strengthening steps. For either of these steps, the proof checker potentially needs to
loop over the entire constraint database to check all the necessary proof goals. However, the maximum size
of the database is linear in the size of the input formula and the proof. Therefore, the overall complexity of
the verified proof checker is polynomial in the size of the input formula and proof, as required.

Table 1 shows an empirical evaluation of the verified proof checking pipeline on a selected suite of
example proofs, generated using BreakID[Bre] 6 and Kissat[Kis]7 to solve SAT competition instances of
the last years and theoretical instances.

6https://bitbucket.org/krr/breakid/src/veriPB/
7https://gitlab.com/MIAOresearch/tools-and-utilities/kissat fork
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Table 1: Example timings for verified proof checking using VeriPB and CakePB cnf. All times are in seconds.

Benchmark VeriPB Time (s) CakePB Time (s)

queen14 14.col.14.cnf 6.5 52.3
harder-php-025-024.sat05-1191.reshuffled-07.cnf 9.3 30.5
Pb-chnl15-16 c18.cnf 13 43.2
tseitin n104 d3.cnf 4.2 3.9
rphp p6 r28.cnf 123 68.2
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[GMKN17] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael Norrish. Verified
characteristic formulae for CakeML. In Hongseok Yang, editor, ESOP, volume 10201 of
LNCS, pages 584–610. Springer, 2017.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Proceedings of the 26th International Conference on Principles and Practice
of Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science,
pages 338–357. Springer, September 2020.

22

https://bitbucket.org/krr/breakid


References

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint program-
ming solver. In Proceedings of the 28th International Conference on Principles and Practice
of Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF transla-
tions for pseudo-Boolean solving. In Proceedings of the 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI ’21), pages 3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using
Pseudo-Boolean Reasoning. PhD thesis, Lund University, Lund, Sweden, June
2022. Available at https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[HHW13] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In Proceedings of the 24th International Conference on Automated
Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359.
Springer, June 2013.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables.
In Proceedings of the 26th International Conference on Automated Deduction (CADE-26),
volume 10395 of Lecture Notes in Computer Science, pages 130–147. Springer, August 2017.

[Kis] Kissat SAT solver. http://fmv.jku.at/kissat/.

[MO14] Magnus O. Myreen and Scott Owens. Proof-producing translation of higher-order logic into
pure and stateful ML. J. Funct. Program., 24(2-3):284–315, 2014.

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for
the competitions of pseudo-Boolean solvers. Revision 2324. Available at http://www.
cril.univ-artois.fr/PB16/format.pdf, January 2016.

[SN08] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aı̈t Mohamed,
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