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Abstract

This is the documentation for the pseudo-Boolean proof checker VeriPB together with its formally
verified backend CakePB as proposed for usage in the SAT competition 2025. If there are questions
regarding corner cases not covered by this documentation, or regarding how to use pseudo-Boolean
proof logging to certify correctness of different forms of reasoning, inquiries are are welcome and
may be directed to jn@di.ku.dk.
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1 Introduction

The pseudo-Boolean proof format used for the proof checker VeriPB [Ver] supports proof logging for de-
cision, enumeration, and optimization problems, as well as problem reformulations, all in a unified format.
So far, VeriPB has been used for proof logging of enhanced SAT solving techniques [GN21, BGMN23],
constraint programming [EGMN20, GMN22, MM23, MMN24], pseudo-Boolean CDCL-based solv-
ing [GMNO22], subgraph solving [GMN20, GMM+20, GMM+24], presolving in 0–1 integer linear
programming [HOGN24], dynamic programming and decision diagrams [DMM+24], and MaxSAT solv-
ing [VDB22, BBN+23, IOT+24, BBN+24], and this list of applications is expected to keep growing. In
this technical documentation paper we present a recently revised version of the proof format, focusing on
how it can be used to certify unsatisfiability of CNF formulas in the SAT competition 2025.

The full proof format makes it possible to specify different types of proofs, where it might only be
known towards the end of the proof what kind of proof was produced (e.g., if a preprocessor did not just
reformulate a problem but actually solved it). However, in this document we focus on the restricted version
of the format that is proposed to be supported in the SAT competition 2025.

2 Quickstart Guide for Boolean Satisfiability (SAT) Proof Logging

This section contains the bare minimum of information needed to use VeriPB and CakePB as proof
checkers for Boolean satisfiability (SAT) solvers with pseudo-Boolean proof logging. A good way to
learn more (in addition to reading this document) might be to study the example files in the directory
tests/integration_tests/correct/ in the repository [Ver] and run VeriPB with the option --
trace, which will output detailed information about the proofs and the proof checking.

2.1 Running the Proof Checkers

If a SAT solver with pseudo-Boolean proof logging has solved the instance input.cnf, the generated
proof input.pbp can be checked by VeriPB and CakePB by running the following commands:

# Translate to kernel format proof
veripb --cnf -- elaborate translated.pbp input . cnf input . pbp
# Check the kernel proof
cake_pb_cnf input.cnf translated.pbp

The first command recompiles the pseudo-Boolean proof input.pbp into a more restricted “kernel-
format” proof translated.pbp using VeriPB, after which the kernel proof is checked using CakePB.
In case of successful recompilation, VeriPB will output:

# Running veripb as shown above
...
Verification succeeded

Upon successful proof checking, CakePB will report success on the standard output stream:
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# Running cake_pb_cnf as shown above
s VERIFIED UNSATISFIABLE

All errors are reported on standard error.

2.2 Proof Format

The syntactic format of a pseudo-Boolean proof of unsatisfiability for a CNF formula as expected by the
version of VeriPB proposed for the SAT competition 2025 is

pseudo-Boolean proof version 3.0
[f ⟨N⟩ ;]
⟨derivation section⟩
output NONE;
conclusion UNSAT [: ⟨id⟩ ];
end pseudo-Boolean proof;

where square brackets [...] denote optional parts of the syntax. When specified, ⟨N⟩ must be the
number of clauses in the formula. The ⟨derivation section⟩ should contain the actual proof which derives
contradiction. The constraint ID ⟨id⟩ specifies which pseudo-Boolean constraint in the ⟨derivation section⟩
that is a contradiction. In the kernel format, the line f ⟨N⟩ ; and the constraint ID ⟨id⟩ are mandatory.

Although this document focuses on the VeriPB 3.0 format, we also still support the older VeriPB
2.0 format as supported in the SAT competition 2023 [BMM+23]. However, new features will only be
supported in the VeriPB 3.0 format.

In pseudo-Boolean format, a disjunctive clause like

x1 ∨ x2 ∨ x3 (2.1a)

is represented as the inequality
x1 + x2 + x3 ≥ 1 (2.1b)

claiming that at least one of the literals in the clause is true (i.e., takes value 1), and this inequality is
written as

+1 x1 +1 ~x2 +1 x3 >= 1

in the OPB format [RM16] used by VeriPB (except that we do not terminate constraints with a semicolon).
The proof checker can also read CNF formulas in the DIMACS and WDIMACS formats used for SAT
solving and MaxSAT solving, respectively. For such files, VeriPB will parse a clause

1 -2 3 0

to be identical to the constraint (2.1b), and the variables should be referred to in the pseudo-Boolean proof
file as x1, x2, x3, et cetera.

DRAT proofs [WHH14] can be transformed into valid VeriPB proofs by simple syntactic manipula-
tions. Most of the proof resulting from a CDCL SAT solver is the ordered sequence of clauses learned
during conflict analysis. Since all such clauses are guaranteed to be reverse unit propagation (RUP) clauses,
the easiest way to provide pseudo-Boolean proof logging for a learned clause (2.1a) would be to write

rup +1 x1 +1 ~x2 +1 x3 >= 1;

in the derivation section of the pseudo-Boolean proof (as explained in more detail in Section 5.2.2).
If instead the clause (2.1a) is a resolution asymmetric tautology (RAT) clause [JHB12, HHW13] that

is RAT on the literal x1, then this is written as

red +1 x1 +1 ~x2 +1 x3 >= 1 : x1 -> 1;
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in the pseudo-Boolean proof using the more general redundance-based strengthening rule (discussed in
Section 5.4.1). And if the RAT literal would instead have been x2, this would have been indicated by
ending the proof line above by x2 -> 0 instead.

Finally, in order to delete the clause (2.1a), the deletion command

del spec +1 x1 +1 ~x2 +1 x3 >= 1;

is issued. (This and other deletion rules are covered in Section 5.6.) An important difference from DRAT
proofs is that deletion is made also for unit clauses, i.e., clauses containing only a single literal—DRAT
proof checkers typically ignore such deletion commands [AR20]. Another crucial difference is that all
clauses learned during CDCL execution need to be written down in the proof log, including unit clauses.
If unit clauses are missing in a DRAT proof, the proof checkers will typically be helpful and silently infer
and add the missing clauses. No such patching of formally incorrect proofs is offered by VeriPB.

It should be noted, though, that if all the reasoning performed by some particular SAT solver can
efficiently be captured by standard DRAT proof logging, then there is no real reason to use pseudo-Boolean
proof logging for that solver. Pseudo-Boolean proof logging becomes relevant only if the solver uses
more advanced techniques such as, for instance, cardinality reasoning, Gaussian elimination, or symmetry
breaking. We refer the reader to [GN21] and [BGMN23], respectively, for detailed descriptions of how to
do efficient pseudo-Boolean proof logging for the latter two techniques.

3 Pseudo-Boolean and Proof Checker Preliminaries

In this section, we briefly review some pseudo-Boolean preliminaries and general principles for how
pseudo-Boolean proof checking works. We refer to the survey chapter [BN21] for more details on the
cutting plane proof system.

3.1 Pseudo-Boolean Notation and Terminology

A literal ℓ over a Boolean variable x is x itself or its negation x = 1− x, where variables take values 0
(false) or 1 (true). A pseudo-Boolean (PB) inequality is a 0–1 linear inequality

C
.
=

∑
iaiℓi ≥ A , (3.1)

where ai and A are integers (and where we write .
= to denote syntactic equality). We can assume without

loss of generality that pseudo-Boolean constraints are normalized; i.e., that all literals ℓi are over distinct
variables and that the coefficients ai and the degree (of falsity) A are non-negative. This is how constraints
are represented internally in the proof checker, but most of the time there is no need to worry about this,
and the proof checker accepts constraints written in non-normalized form.

A pseudo-Boolean formula is a conjunction F
.
=

∧
j Cj of pseudo-Boolean inequalities, which we

can also think of as the set
⋃

j{Cj} of inequality constraints in the formula. Since a (disjunctive) clause
ℓ1 ∨ · · · ∨ ℓk is equivalent to the pseudo-Boolean constraint ℓ1 + · · ·+ ℓk ≥ 1, formulas in conjunctive
normal form (CNF) can be viewed as special cases of pseudo-Boolean formulas.

To introduce some further convenient notation, we write equality
∑

i aiℓi = A as syntactic sugar
for the pair of pseudo-Boolean inequalities

∑
i aiℓi ≥ A and

∑
i−aiℓi ≥ −A. The negation ¬C of the

constraint C in (3.1) can be represented as the pseudo-Boolean inequality

¬C .
=

∑
i − aiℓi ≥ −A+ 1 , (3.2)

and the fact that the set of pseudo-Boolean inequalities is closed under negation is quite convenient for
proof logging purposes. If z is a Boolean variable and

∑
i aiℓi ≥ A is a pseudo-Boolean inequality in

normalized form with
∑

i ai = M , then we write

z ⇒
∑

i aiℓi ≥ A
.
= A · z +

∑
i aiℓi ≥ A (3.3a)

4
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to denote the right reification and

z ⇐
∑

i aiℓi ≥ A
.
= (M −A+ 1) · z +

∑
i aiℓi ≥ M −A+ 1 (3.3b)

for the left reification of
∑

i aiℓi ≥ A. As the notation suggests, the constraints (3.3a)–(3.3b) enforce that
z is true if and only if

∑
i aiℓi ≥ A holds.

A constraint C is weakly syntactically implied by D if C can be derived from D by adding literal
axioms. A constraint C is syntactically implied by D if C can be derived from D by adding literal axioms,
doing a saturation step, and again adding literal axioms.

3.2 Assignments, Substitutions, Slack, and Unit Propagation

A (partial) assignment ρ is a (partial) function from variables to {0, 1}; a substitution ω can also map
variables to literals. These are extended from variables to literals in the natural way by respecting the
meaning of negation. We also identify a partial assignment ρ with the set of literals set to true by ρ, so
that ℓ ∈ ρ if and only if ρ(ℓ) = 1. We can write x 7→ b when ρ(x) = b, for b a literal or truth value.

We write ρ ◦ ω to denote the composed substitution resulting from applying first ω and then ρ, i.e.,
ρ ◦ ω(x) = ρ(ω(x)). As an example, for ω = {x1 7→ 0, x3 7→ x4, x4 7→ x3} and ρ = {x1 7→
1, x2 7→ 1, x3 7→ 0, x4 7→ 0} we have ρ ◦ ω = {x1 7→ 0, x2 7→ 1, x3 7→ 1, x4 7→ 0}. Applying ω to a
pseudo-Boolean inequality C as in (3.1) yields

C↾ω
.
=

∑
iaiω(ℓi) ≥ A , (3.4)

substituting literals or values as specified by ω. For a formula F we define F↾ω
.
=

∧
j Cj↾ω. For a list of

variables x⃗ = x1, . . . , xn, we define x⃗↾ω = ω(x1), . . . , ω(xn) to be elementwise application of ω to x⃗.
IfF is a pseudo-Boolean formula over variables x⃗, we can writeF (x⃗) to make explicit the list of variables x⃗
over which F is defined. For a list of literals or truth values b⃗ = b1, . . . , bn, the notation F (⃗b) is syntactic
sugar for F↾ω with ω denoting the substitution (implicitly) defined by ω(xi) = bi for i = 1, . . . , n.

The (normalized) pseudo-Boolean inequality C in (3.1) is satisfied by ρ if
∑

ℓi∈ρ ai ≥ A. A pseudo-
Boolean formula F is satisfied by ρ if all constraints in it are, in which case it is satisfiable. If there is
no satisfying assignment, F is unsatisfiable. Two formulas are equisatisfiable if they are both satisfiable
or both unsatisfiable. We also consider optimisation problems, where in addition to F we are given an
integer linear (or affine) objective function f

.
=

∑
iwiℓi + k and the task is to find an assignment that

satisfies F and minimizes f . (To deal with maximization problems we can negate the objective function.)
For pseudo-Boolean formulas F , F ′ and constraints C, C ′, we say that F implies or models C, denoted
F |= C, if any assignment satisfying F also satisfies C, and write F |= F ′ if F |= C ′ for all C ′ ∈ F ′.

The slack of a normalized pseudo-Boolean inequality C as in (3.1) with respect to ρ measures how far
ρ is from falsifying C, and is defined formally as

slack
(∑

i aiℓi ≥ A; ρ
)
=

∑
ℓi /∈ρ ai −A . (3.5)

The constraintC is conflicting under ρ if slack(C; ρ) < 0. If ρ does not assign ℓj but 0 ≤ slack(C; ρ) < aj ,
then C propagates ℓj under ρ, meaning that if the literal ℓj is falsified, then the constraint will become
conflicting. See Figure 1 for some example calculations of slack. Note that a constraint can be conflicting
even though not all variables in it have been assigned.

During unit propagation on F under ρ, the assignment ρ is extended iteratively by any propagated
literals until an assignment ρ′ is reached under which no constraint C ∈ F is propagating, or under which
some constraint C is conflicting as described above. We refer to this latter scenario as a conflict, and say
that ρ′ violates the constraint C in this case. We say that F implies C by reverse unit propagation (RUP),
and that C is a RUP constraint with respect to F , if F ∧ ¬C unit propagates to conflict under the empty
assignment. Similarly to RUP clauses in clausal proof logging systems, the concept of RUP constraints
will be important in pseudo-Boolean proof logging.
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ρ slack(C; ρ) Remark
{} 8

{x5} 3 C propagates x4 (coefficient > slack)
{x5, x4} 3 Propagation does not change slack

{x5, x4, x3, x2} −2 Conflict (slack is negative)

Figure 1: Example slack calculations for the constraint C .
= x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7.

Finally, we introduce a special constraint. If for an optimization problem with objective function∑
iwiℓi to be minimized the solver finds a solution α, then we refer to∑

iwiℓi ≤ −1 +
∑

iwi · α(ℓi) (3.6)

as an objective-improving constraint enforcing solutions yielding a strictly better value of the objective
function during the rest of the search.

3.3 Syntax for Pseudo-Boolean Inequalities in Proofs

VeriPB expects pseudo-Boolean inequalities to be written in a format similar to the OPB format [RM16]
except that constraints do not end with a semicolon when used in rules. Some examples are provided in
Section 2.1. The proof checker also supports the usage of arbitrary variable names instead of only x1, x2,
x3, et cetera. Variable names in this extended format should:

• start with an underscore _ or an ASCII letter in A-Z or a-z;

• continue with characters in A-Z, a-z, 0-9, or []{}_ˆ (square and curly brackets, underscore, caret);

• contain at least two characters.

Variable names cannot contain spaces. Support for additional characters in variable names may be added
but is implementation-specific. Unsupported characters will generate an error upon parsing and can never
generate erroneous verification results.

3.4 General Principles for the Proof Checker

At any step in a proof the proof checker maintains a (multi-)set C of core constraints and a (multi-)set D
of derived constraints, where all constraints are pseudo-Boolean inequalities. At the outset, C contains
the constraints in the input formula. All derived constraints are added to D, but constraints can be
moved from D to C. New constraints are derived from C ∪ D using the cutting planes proof system as
described more formally in [BN21] together with the redundance-based strengthening and dominance-
based strengthening rules discussed in [BGMN23, GN21]. The syntactic form of the derivation rules and
their exact semantic meaning is explained in Section 5.

A general design principle behind VeriPB is that the core set C should be equivalent to the input
formula when it comes to satisfiability (for a decision problem) or optimal value of the objective function
(for an optimization problem), and therefore a constraint C should only be deleted from C if it can be
proven that C can be recovered from C \ {C} (without making the objective function worse, in case there
is an objective). A deletion from the core set that violates this is referred to as an unchecked deletion. SAT
solvers that only use proofs to establish unsatisfiability can perform such unchecked deletions.

3.5 General Principles for the Proof Checker Syntax

Finally, we mention a number of general principles used in the VeriPB syntax:

• Every proof line ends with a semicolon (;).

• A single proof line can be split over multiple lines in the file.

6



4 Overall Proof Structure

• Optional items (e.g., a hint, witness, or subproof) are preceded by a colon (:).

• The percent sign (%) is used for starting comments. Comments run until the end of the line.

• Subproofs and proofgoals are closed off with qed.

4 Overall Proof Structure

Let us now describe what different types of VeriPB proofs there are, although for the SAT competition
only proofs for decision problems are of interest. The most general version of the pseudo-Boolean proof
format also allows to compose proofs, but this is not supported for the proof checker in the SAT competition
and so we will not discuss it further here.

4.1 Proof Sections

A single, atomic VeriPB proof consists of three sections:

1. A derivation section, where derivations are performed on the input constraints using the cutting
planes and strengthening rules, and where solutions can also be logged.

2. An output section, where the constraints currently in the core set C of the constraint database can be
specified (for verification/debugging purposes or as input to the next stage of the solving process).

3. A conclusions section, which specifies what if anything was established by the derivation in terms
of satisfiability/unsatisfiability or optimality.

The syntactic format of the proof is

pseudo-Boolean proof version 3.0
[f ⟨N⟩ ;]
⟨derivation section⟩
output ⟨output section⟩ ;
conclusion ⟨conclusion section⟩ ;
end pseudo-Boolean proof;

(where the reason for the final line end pseudo-Boolean proof; is to make it very easy for experiment
scripts do decide when parsing log files whether proof logging terminated successfully or not). Let us now
discuss the different sections in more detail. The first part of the proof is

pseudo-Boolean proof version 3.0
[f ⟨N⟩ ;]
⟨derivation section⟩

where the parameter ⟨N⟩ is the number of pseudo-Boolean inequalities in the input formula. The line with
f ⟨N⟩ ; is optional and can be omitted. The ⟨derivation section⟩ consists of the different cutting planes
and strengthening rules as well as solution logging rules explained in Section 5.

4.2 Output Section

The output section specifies the output of the proof (if any). The output is a listing of the (potentially
multi-set of) core constraints at the end of the proof where every core constraint should be listed according
to its multiplicity. The output is specified by stating the guarantee of the output ⟨output guarantee⟩, how
the output is given ⟨output type⟩ and the actual output content ⟨output content⟩. In terms of syntax, the
output section has the format:

output ⟨output guarantee⟩ ⟨output type⟩ ⟨output content⟩ ;

7
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where ⟨output guarantee⟩ determines if ⟨output type⟩ needs to be specified and ⟨output type⟩ determines
if ⟨output content⟩ needs to be specified. The output guarantee NONE states that the proof has no output:

output NONE;

such that no further things have to be specified (which is the only supported option for the SAT competition).
The remaining output guarantees are:

1. DERIVABLE : The listed core set is derivable. This can be used to implement finalization [BCH21]
by requiring that all constraints in the core set should be listed exactly once and that the derived set
should be empty (which forces the solver to prove that it knows exactly what it has derived).

2. EQUISATISFIABLE : The listed core set is satisfiable if and only if the input problem at the start of
this (atomic) proof is satisfiable. This option might only be relevant for decision problems, and it
requires that the proof uses no unchecked deletion steps.1

3. EQUIOPTIMAL : The optimal solution for the listed core set with respect to the objective function
has the same value as the optimal solution for the input problem at the start of the proof, except if
the derivation section of the proof has happened to log an optimal solution, in which case the core
set is guaranteed to be unsatisfiable. This option is relevant for optimization problems, and requires
that the proof uses no unchecked deletion steps.

All output guarantees except NONE require to also specify an output type ⟨output type⟩, where it is possible
to specify any of the following options:

1. FILE : The output is given as an OPB file [RM16] that is specified as the (optional) third positional
argument when running VeriPB. Hence, to run VeriPB with an output section with output type
FILE on a CNF file input.cnf using the proof file input.pbp and the OPB file output.opb
as output, use:

veripb --cnf input . cnf input . pbp output . opb

The syntax in VeriPB is:

output ⟨output guarantee⟩ FILE;

where ⟨output guarantee⟩ is an output guarantee other than NONE . Example:

output EQUIOPTIMAL FILE;

2. CONSTRAINTS : The output is given as an OPB file explicitly in the proof. The syntax in VeriPB is:

output ⟨output guarantee⟩ CONSTRAINTS opb
* #variable= ⟨number of variables⟩ #constraint= ⟨number of constraints⟩
⟨objective (optional)⟩
⟨list of constraints⟩

end opb;

where ⟨number of variables⟩ is the number of variables in the OPB file, ⟨number of constraints⟩
is the number of constraints listed in the OPB file, ⟨objective (optional)⟩ is the objective function
to maximize or minimize (only for optimization problems) ending with a semicolon, and ⟨list of
constraints⟩ is a list of pseudo-Boolean constraints, each ending with a semicolon. Example:

1Note that standard SAT solvers should not necessarily be expected not to use unchecked deletions—they only use the proof
to show unsatisfiability, whereas for satisfiable instance the proof log is ignored and instead the proposed solution output directly
by the SAT solver is checked.
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output DERIVABLE CONSTRAINTS opb
* #variable= 3 #constraint= 2
min: +3 x1 +2 ~x2 ;
+1 x1 +1 ~x2 >= 1;
+1 ~x1 +1 ~x3 >= 1;

end opb;

3. IMPLICIT : The output is (implicitly) the current constraints in the core set. The syntax is:
output ⟨output guarantee⟩ IMPLICIT;

Example:
output EQUISATISFIABLE IMPLICIT;

4. PERMUTATION : The output is a permutation of the current constraints in the core set. The syntax is:
output ⟨output guarantee⟩ PERMUTATION ⟨list of constraint IDs⟩ ;

where ⟨list of constraint IDs⟩ is a list of constraint IDs separated by whitespace for each constraint in
the core. It is required that this list contains each non-deleted ID exactly once, i.e., is a permutation
of the list of non-deleted IDs. Example (assuming there are constraints with IDs 1, 2 and 4):
output EQUIOPTIMAL PERMUTATION 2 4 1;

4.3 Conclusions Section

Proof logging is supported for the following types of problems and conclusions:

Decision problems: For decision problems without objective function, possible solver conclusions are:

1. SAT : The problem instance is satisfiable.

2. UNSAT : Problem instance is unsatisfiable/infeasible.

3. NONE : Result unknown.

Optimization problems: For problems with an objective function, possible solver conclusions are:

1. BOUNDS : The optimal solution to the problem instance lies in a specified interval [LB ,UB ]. If
LB = UB , then optimality has been proven. If no solution has been found (or if one is only
interested in lower bounds), then we can set UB = ∞ (in which case VeriPB does not check
anything regarding the upper bound). Similarly, we can set LB equal to the constant term in the
(normalized) objective function if no nontrivial lower bound has been proven. If LB = ∞, then it
was shown that the problem instance is infeasible.

2. NONE : Result unknown—in particular, no solution or lower bound has been found.

The conclusion section has the format
conclusion ⟨conclusion section⟩ ;
end pseudo-Boolean proof;

and after the keyword conclusion the proof should state what has been established. If there are no
conclusions (as for, e.g., a pure reformulation of a problem), then
conclusion NONE;

signals this. In the syntax descriptions below, square brackets [...] denote optional parts of the syntax.
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Conclusion UNSAT For an unsatisfiability proof for a decision problem, the conclusion section should be

conclusion UNSAT [: ⟨id⟩ ];

where ⟨id⟩ is an optional reference to a constraint ID with negative slack. If the optional constraint ID
is provided, then VeriPB checks if the constraint is a contradiction (i.e., has negative slack), and throws
an error if it is not. If no constraint ID is provided, then VeriPB checks whether any constraint in the
database has negative slack, and throws an error otherwise. Note that the constraint ID ⟨id⟩ is not needed
for efficient verification—if indeed there is such a constraint, then 0 ≥ 1 is a reverse unit propagation
(RUP) constraint, which can easily be checked—but it can be helpful for debugging purposes or to be able
to reconstruct the actual proof found by a solver. In the kernel format, stating the ⟨id⟩ is mandatory.

Conclusion SAT If a solution to a decision problem is found, the conclusion section should be

conclusion SAT [: ⟨assignment⟩ ];

where ⟨assignment⟩ is a list of variables with the values they are mapped to. The assignment is provided
as a list of literals (e.g. x1 ~x2 x4). If the optional assignment is provided, then VeriPB propagates
the assignment with respect to the current database and checks if all original constraints are satisfied.
If all original constraints are satisfied by the propagated assignment, then the check is accepted. If no
assignment is provided, then the check is accepted if a solution has been logged while checked deletion
was enabled. In all other cases an error is thrown.

Conclusion BOUNDS The conclusion type conclusion BOUNDS for optimization problems is not
supported for the SAT competition, but is listed for completeness. Its syntactic format is

conclusion BOUNDS ⟨LB⟩ [: ⟨id⟩ ] ⟨UB⟩ [: ⟨assignment⟩ ];

for an optional constraint ID ⟨id⟩ and an optional assignment ⟨assignment⟩. The lower bound ⟨LB⟩ and the
upper bound ⟨UB⟩ can also have the value INF. If the lower bound is INF, then the optimization problem
is infeasible/unsatisfiable. In this case, the same checks as for conclusion UNSAT are performed and
the constraint ID ⟨id⟩ serves as the hint for the constraint with negative slack. In addition, it is checked
that no solutions were logged.2 If the upper bound is INF, then no claims regarding the upper bound are
made, e.g., this can be used if someone is only interested in a lower bound, or this has to be used if the
problem is infeasible/unsatisfiable. No checks will be performed for this case. Hence, even if there is a
solution logged, no error is thrown if the upper bound is INF.

If the lower bound or the upper bound is an integer (i.e., not INF), then the lower or upper bound is
this value. If there is a check that does not succeed in the following description, then an error is thrown.

For the lower bound, VeriPB keeps track of the value UBbest of the best solution logged so far (i.e.,
the solution with the lowest objective value). A necessary condition for the lower bound to be accepted
is that LB ≤ UBbest.3 If this condition holds, the following check is performed. The constraint ID ⟨id⟩
should refer to a constraint from which Obj final ≥ LB follows by weak syntactic implication (i.e., by
adding literal axioms), where Obj final is the objective at the end of the proof, so after possible objective
rewrite steps. Alternatively, the constraint ID ⟨id⟩ can refer to any contradictory constraint to justify the
lower bound. If no constraint ID is specified, then VeriPB loops over the full database at the end of the
proof, and checks for each constraint whether Obj final ≥ LB follows by weak syntactic implication or
whether the constraint is contradictory. In the kernel format, the hint ⟨id⟩ is required.

The assignment ⟨assignment⟩ should be an assignment corresponding to a solution with value UB . If
the optional assignment is provided, then VeriPB propagates the assignment with respect to the current
database and checks if the propagated assignment satisfies all original constraints and whether the original

2This check is required because otherwise the constraint with negative slack could have been derived from a solution improving
constraint, in which case it is not sound to claim unsatisfiability.

3Similarly, this check is required because otherwise the proof of the lower bound could use a stronger solution improving
constraint than the constraint that could be used when proving the lower bound by contradiction, which is again unsound.
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objective evaluates to UB under the propagated assignment. If so, then the check is accepted. If no
assignment is provided, then VeriPB checks whether there were solutions logged while checked deletion
was activated. If the best objective value of all solutions that were logged while checked deletion was
active is equal to the upper bound, then the upper bound is accepted.

5 Derivation Rules

In this section we describe the different rules or commands that can appear in a VeriPB proof. Every rule
in a proof file is terminated by a semicolon (;). Whitespace separates tokens, but is otherwise ignored.
Different rules can create different numbers of new constraints (or none).

The VeriPB proof checker accepts proofs in what we will refer to as an “augmented” proof format,
including a rich collection of rules intended to make proof logging as convenient as possible. The verified
proof checker CakePB only supports a “kernel” subset of these commands, where the intended workflow
for formally verified proof checking is to use VeriPB as a preprocessor to compile augmented proofs into
the kernel format to be formally checked by CakePB. In this section, we focus on describing the general
augmented proof format, but we also mention the restrictions in the kernel format. A summary of the
kernel format and the formally verified proof checker is presented in Section 6. We note that in the SAT
competition 2025, the only supported option is to run both VeriPB and CakePB (even if the provided
proof is already in kernel format).

The expected setting in a VeriPB proof is that there is an input formula F in (linear) pseudo-Boolean
form (note that CNF formulas are a special case of this). For a decision problem, the proof should establish
whether F has satisfying assignments or is unsatisfiable. For an optimization problem, the goal is to
minimize a 0–1 integer linear objective function f subject to the constraints in F , or at least to prove as
tightly matching upper and lower bounds on the objective function as possible. Decision problems can be
viewed as a special case of optimization problems by considering the trivial objective function f

.
= 0.

Proof checker state At all times, VeriPB maintains a current state with the following information:

• The input formula F (which is immutable once loaded as described in Section 5.1).

• The objective function f (which would be the trivial function 0 for a decision problem).

• A constraint database consisting of a (multi-)set C of core constraints and a (multi-)set D of derived
constraints, where all constraints are pseudo-Boolean inequalities. Each constraint is identified by a
unique positive integer referred to as a constraint ID.

• A counter of the largest integer maxId used for any constraint ID in the proof so far.

• The best objective function value v achieved for any solution found so far (which is ∞ if no solution
has been found).

• Two (possibly empty) sets of pseudo-Boolean inequalities, the specification S⪯(u⃗, v⃗, a⃗) and the
definition O⪯(u⃗, v⃗, a⃗), over ordered sets of variables u⃗ and v⃗ and a (possibly empty) set of auxiliary
variables a⃗. Together, these encode a preorder, i.e., a reflexive and transitive relation.

• A sequence of variables z⃗ (usually, but not necessarily, distinct) on which the preorder O⪯ is applied.

• The set of all variables that has appeared so far in the proof.

• The current proof level currLevel, offered as a convenience to help backtracking solvers keep track
of which constraints should be erased when.

11
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IDs When a constraint is expected by some proof command, as a general rule a positive integer N is
interpreted as referring to the constraint in the database with constraint ID N . Also, a negative integer
−N is interpreted in the augmented format as the constraint with identifier maxId + 1−N , i.e., the N th
most recent constraint derived, but this convention is not supported in the kernel format.

5.1 Manipulation of Constraints Database

Input formula size VeriPB always starts by loading the input formula. If the input formula contains
exactly N pseudo-Boolean inequalities, then these will get constraint IDs 1, 2, . . . , N . The command

f ⟨N⟩ ;

checks that the input formula contains exactly N pseudo-Boolean inequalities.
Note that any pseudo-Boolean equality

∑
i aiℓi = A in the input formula will be counted as two

constraints
∑

i aiℓi ≥ A and
∑

i aiℓi ≤ A in this order. As an example, if the OPB file

* #variable= 4 #constraint= 2
1 x1 2 x2 >= 1 ;
1 x3 1 x4 = 1 ;

is loaded in a pseudo-Boolean proof file then the formula stored in the proof checker core set is

1 x1 2 x2 >= 1 ; % Gets ID 1
1 x3 1 x4 >= 1 ; % Gets ID 2
1 ~x3 1 ~x4 >= 1 ; % Gets ID 3

For the purpose of the f command, equalities in the input count as two constraints.

Move to core Constraints can be moved from the derived set to the core set with the commands

core id ⟨list of constraint IDs⟩ ;
core range ⟨idStart⟩ ⟨idEnd⟩ ;

where the first command variant specifies a list of one or more constraint IDs separated by whitespace and
the second variant specifies a range between ⟨idStart⟩ (inclusive) and ⟨idEnd⟩ (exclusive). For core id,
all constraint IDs that are moved must be valid (i.e., at most maxId, and not deleted). For core range,
deleted IDs are ignored. Moving a constraint to the core that is already in the core has no effect. In the
kernel proof format only the core id command is supported.

5.2 Implicational Rules

Implicational rules derive new pseudo-Boolean inequalities C that are guaranteed to be semantically
implied by the constraint database C ∪ D. We write C ∪ D ⊢ C when a derivation of C from C ∪ D using
the implicational derivation rules below can be exhibited.

5.2.1 Implicational Rules in Kernel Format

Reverse polish notation The reverse polish notation rule

pol ⟨sequence of operations in reverse polish notation⟩;

derives a new pseudo-Boolean inequality that receives constraint ID maxId + 1 (after which maxId is
incremented). The derivation is specified by a sequence of operations in the cutting planes proof system
(as described in [BN21]). The sequence is given in reverse polish notation. That is, all operands in the
sequence are pushed on a stack, and operations are performed on the top one or two elements (where
⟨op1 ⟩ is below the top element ⟨op2 ⟩ of the stack), after which the result is pushed on the stack:

• ⟨op1 ⟩ ⟨op2 ⟩ + adds two constraints.
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• ⟨op1 ⟩ ⟨op2 ⟩ * multiplies the constraint ⟨op1 ⟩ by the positive integer ⟨op2 ⟩.

• ⟨op1 ⟩ ⟨op2 ⟩ d divides the constraint ⟨op1 ⟩ by the positive integer ⟨op2 ⟩ (rounding up all coefficients
and the right hand side to the next integer).

• ⟨op⟩ s saturates the constraint ⟨op⟩.

• ⟨op1 ⟩ ⟨op2 ⟩ w weakens the constraint ⟨op1 ⟩ by removing the variable ⟨op2 ⟩ (assuming that it
contributes towards satisfying the constraint, so the right hand side of ⟨op1 ⟩ will be decreased
accordingly), where ⟨op2 ⟩ should be a variable name without negation.

At the end of a reverse polish notation line the stack should contain a single constraint, which is the result
of the pol rule application. It is an error if the stack is instead empty or contains more than one element.

As is the case in general for derivation rules, when a constraint is expected by some arithmetic operation
a positive integer is interpreted as an absolute constraint ID and a negative integer −N as referring to the
constraint with ID maxId + 1−N . If instead a literal var or ~var is encountered where a constraint is
expected, then var is interpreted as the literal axiom constraint var ≥ 0 and ~var is interpreted as the
constraint ~var ≥ 0 (or, equivalently, var ≤ 1). Note that since variables must consist of at least two
characters, they cannot be confused with arithmetic operations.

Reverse unit propagation (RUP) The rule

rup ⟨pseudo-Boolean inequality C in OPB format⟩ [: ⟨list of constraint IDs⟩ ];

adds the specified pseudo-Boolean inequality C if it is implied by the constraint database C ∪D by reverse
unit propagation. That is, the proof checker temporarily adds ¬C to the constraint database and performs
unit propagation to check that this leads to conflict.

It is also possible to perform annotated RUP by specifying a list of constraint IDs such that only those
constraint IDs are used for unit propagation. The tilde character ~ may (only in this rule) be used in ⟨list of
constraint IDs⟩ to represent the constraint ¬C in the RUP check. Annotated RUP has slightly different
semantics in the augmented format and the kernel format. Specifically, we consider an annotation in the
augmented format to be a set annotation which only specifies the set of constraints on which we propagate.
The constraint ¬C (denoted by ~) is automatically added to this set. On the other hand, an annotation in
the kernel format is considered to be a list annotation, which specifies which constraints propagate and in
which order.

In the augmented format, VeriPB performs propagation on the constraints corresponding to the
constraint IDs in the hints until conflict, or it can be guaranteed that no further propagations happen from
this set of constraints. It is allowed to specify a hint that does not propagate anything. As soon as a conflict
is found, the propagation is terminated and the RUP check is accepted, except that it is still checked that
all hints are valid constraint IDs.

In the kernel format, CakePB goes through the hints in the order they appear in the proof file, and
propagates all literals that the constraint corresponding to the hint propagates. If the last constraint in the
hints is falsified by the propagated literals, the RUP check is accepted, otherwise an error is thrown. Any
conflicts in constraints corresponding to intermediate hints are ignored.

Proof by contradiction (pbc) The rule

pbc ⟨pseudo-Boolean inequality C in OPB format⟩ [: subproof
⟨contradiction proof⟩

qed [pbc] [: ⟨id⟩ ]];

derives a constraint C using a proof by contradiction. The contradiction itself can be derived in several
steps, and these steps are organized inside a subproof. If a subproof is provided (which is required unless
C is a tautology), then the constraint ¬C is introduced with constraint ID maxId+1. Within the subproof,
further implicational rules can be used that also introduce new IDs. These IDs are only valid within the
subproof. The derived constraint C receives its ID at the qed line. Hence, its ID is equal to maxId + 1,
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where maxId is the largest ID used within the subproof. Finally, the ⟨id⟩ at the end must (if specified) refer
to a contradictory constraint in the subproof (normally, this will be the last constraint, and one can also
use the relative ID −1). If the ID is not specified, VeriPB will search for a contradictory constraint and
throw an error if there is none. In the kernel format, the ⟨id⟩ is mandatory.

As an example, consider the input constraint C1
.
= 4x1 + 3x2 + 2x3 ≥ 5 which is loaded with ID 1,

and the following proof of the constraint C .
= 3x1 + 3x2 + 2x3 ≥ 5:

pbc +3 x1 +3 x2 + 2 x3 >= 5 : subproof
pol 1 2 +; % gets ID 3
rup >= 1; % gets ID 4

qed pbc : 4;

Then the constraint ¬C .
= 3x1+3x2+2x3 ≥ 4 receives ID 2. Adding this to C1

.
= 4x1+3x2+2x3 ≥ 5

yields x1 ≥ 1, which receives ID 3. Using this, we propagate to contradiction: now ¬C propagates x2 and
x3 to false, which contradicts C1. Hence, the pbc rule was applied successfully, the constraint C receives
ID 5, and ID 2, 3 and 4 may no longer be used throughout the rest of the proof.

5.2.2 Syntactic Implication Rules in Augmented Format

Next, we turn to the syntactic implication rules. These rules are provided in the augmented proof format
for convenience, but are not supported in the kernel format used by the formally verified proof checker.
The rule

i ⟨pseudo-Boolean inequality C in OPB format⟩ [: ⟨id⟩ ];

checks if there is a single constraint in the database that syntactically implies the specified pseudo-Boolean
inequality C (as discussed in [BGMN23]). The optional argument ⟨id⟩ specifies the constraint ID of the
syntactically implying constraint and throws an error if it does not syntactically imply C. If ⟨id⟩ is not
specified, then every constraint in the database is checked and only if none syntactically implies C, then
an error is thrown.

Finally, the rule

ia ⟨pseudo-Boolean inequality C in OPB format⟩ [: ⟨id⟩ ];

does the same as the i-rule and also adds the constraint C to the derived set.

5.3 Orders

Some rules make use of an order O⪯, which can be defined as a set of pseudo-Boolean inequalities.
Moreover, the order can make use of an optional specification S⪯, which is described further below.

A set of pseudo-Boolean inequalities encoding a preorder is introduced by using the following template,
in which square brackets denote the optional parts of the notation:

def_order ⟨order name⟩
vars

left ⟨ordered set of left variables⟩;
right ⟨ordered set of right variables (of same size)⟩;

[aux ⟨list of auxiliary variables⟩;]
end [vars];
[spec

⟨list of proof lines, whose corresponding constraints provide the specification S⪯ of the order⟩
end [spec];]
def

⟨list of pseudo-Boolean inequalities O⪯ providing the definition of the order⟩
end [def];

[transitivity
vars

fresh_right ⟨ordered set of extra variables (of same size)⟩;
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[fresh_aux_1 ⟨list of extra auxiliary variables (of same size as aux)⟩;
fresh_aux_2 ⟨list of extra auxiliary variables (of same size as aux)⟩;]

end [vars];
proof

proofgoal #1
⟨proof of transitivity of relation⟩;

qed [#1] [: ⟨id⟩ ];
...

qed [proof] [: ⟨id⟩ ];
end [transitivity];]

[reflexivity
proof

proofgoal #1
⟨proof of reflexivity of relation⟩;

qed [#1] [: ⟨id⟩ ];
...

qed [proof] [: ⟨id⟩ ];
end [reflexivity];]

end [def_order];

Notice: Orders with auxiliary variables and a specification (and its applications in the redundance and
dominance rules explained in Section 5.4) are still a beta feature, and its syntax and semantics might still
change after the SAT competition 2025.

Let us describe in more detail the different parts of the definition of a preorder O⪯(u⃗, v⃗, a⃗) over sets
of variables u⃗, v⃗, and possibly a set of auxiliary variables a⃗.

Name The heading
def_order ⟨order name⟩

introduces the preorder and gives it a unique name (with the same naming conventions as those for variables
discussed in Section 3.3).

Variables The next section
vars

left ⟨ordered set of left variables⟩;
right ⟨ordered set of right variables (of same size)⟩;

[aux ⟨list of auxiliary variables⟩;]
end [vars];

specifies the two sets of variables u⃗ and v⃗ used in O⪯. The list of auxiliary variables a⃗ is optional in the
augmented format. Note that all auxiliary variables must be prefixed with $ (and continue with one or
more characters in A-Z, a-z, 0-9, or []{}_ˆ, as usual). In particular, recall that the $ prefix is not allowed
for variables occuring elsewhere. This ensures that auxiliary variables are distinct from all the other
variables occuring in the proof. We may refer to variables not prefixed by $ as non-auxiliary variables.

Auxiliary variables are only allowed in very particular places in a proof. Specifically, they are
only allowed to be used in the derivation of the specification or in subproofs, where the corresponding
specification is a valid premise. This means they are exclusively allowed in the following places:

• Anywhere within a def_order section, except as a left, right or fresh_right variable.

• In a scope within the subproof of the redundance rule (see Section 5.4.1).

• In a scope within the subproof of the dominance rule (see Section 5.4.2).
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Note that in particular, auxiliary variables can neither be used in the domain nor the image of any witness
outside of the derivation of a specification. As a consequence, the constraint database can only contain
constraints containing auxiliary variables within scopes that are used in rules that define or use an order,
but never at the top-level.

Specification The next section

[spec
⟨list of proof lines, whose corresponding constraints provide the specification S⪯ of the order⟩

end [spec];]

provides the specification S⪯ of the order. The intuition is that S⪯ can define a circuit over the variables
u⃗, v⃗, and a⃗, which in turn helps us define our order. As mentioned previously, the specification is optional.
In particular, when an order does not use auxiliary variables a⃗, there is also no need for a specification.

In the specification, we provide a proof that derives a set of pseudo-Boolean constraints from the empty
set of premises. Specifically, each proof line corresponds to one application of a rudimentary redundance
rule. Formally, the derivation of a specification S⪯ is a list

(C1, ω1), (C2, ω2), . . . , (Cn, ωn)

which satisfies the following:

1. For each i ∈ {1, . . . , n} we have that Ci can be added by the redundance rule to
⋃i−1

j=1Cj with the
witness ωi. In other words, it should hold that

i−1⋃
j=1

Cj ∪ ¬Ci |=
i⋃

j=1

Cj↾ω.

2. For every witness ωi where i ∈ {1, . . . , n}, the support of ωi is a subset of a⃗.

The specification is then the set S⪯ := {Ci | i ∈ {1, . . . , n}} of all the derived constraints. For the syntax
of the redundance rule applications we refer to the definition of the general redundance rule in Section 5.4.1
(and to the example below).

A crucial property of a specification is that we can recover an assignment of the auxiliary variables from
the assignment of the non-auxiliary variables. Specifically, if ρ is any assignment over the non-auxiliary
variables, we can extend it to an assignment ρ′ over all variables that satisfies S⪯.

Definition Next, the section

def
⟨list of pseudo-Boolean inequalities O⪯ defining order⟩

end [def];

presents the pseudo-Boolean formula claimed to encode a preorder defined by u⃗ ⪯ v⃗ if and only if there
exists an assignment ρ to the auxililary variables a⃗ such that S⪯(u⃗, v⃗, a⃗↾ρ) ∧ O⪯(u⃗, v⃗, a⃗↾ρ). (In the case
that the specification is empty, this simplifies to: u⃗ ⪯ v⃗ if and only if O⪯(u⃗, v⃗)). Each constraint in the
list of pseudo-Boolean inequalities O⪯ must end with a semicolon.

Transitivity and reflexivity The definition of the preorder is concluded by proofs showing that the
defined order is transitive and reflexive (in this order). The transitivity proof has the following structure:

transitivity
vars

fresh_right ⟨ordered set of extra variables w⃗ (of same size as left)⟩;
[fresh_aux_1 ⟨list of extra auxiliary variables b⃗ (of same size as aux)⟩;
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fresh_aux_2 ⟨list of extra auxiliary variables c⃗ (of same size as aux)⟩;]
end [vars];
proof

proofgoal #1
⟨proof of transitivity of relation⟩;

qed [#1] [: ⟨id⟩ ];
...

qed [proof] [: ⟨id⟩ ];
end [transitivity];

This transitivity proof establishes that O⪯ defines a transitive relation, i.e., that the implication

S⪯(u⃗, v⃗, a⃗) ∧ S⪯(v⃗, w⃗, b⃗) ∧ S⪯(u⃗, w⃗, c⃗) ∧ O⪯(u⃗, v⃗, a⃗) ∧ O⪯(v⃗, w⃗, b⃗) ⊨ O⪯(u⃗, w⃗, c⃗)

provably holds. The transitivity proof has one proofgoal per constraint in the definition O⪯. To make the
premises available, the IDs 1 up to 3|S⪯|+ 2|O⪯| are used at the start of the proof section, providing
the constraints in S⪯(u⃗, v⃗, a⃗), S⪯(v⃗, w⃗, b⃗), S⪯(u⃗, w⃗, c⃗), O⪯(u⃗, v⃗, a⃗), and O⪯(v⃗, w⃗, b⃗), respectively, in
this order. Note that the def_order block uses its own constraint database for proving transitivity and
reflexivity, starting again from ID 1.

In addition to transitivity, also reflexivity must be shown. In the augmented format, the reflexivity
proof is optional if the proofgoals are trivial, i.e., if the negated proofgoals are already a contradiction. In
the kernel format, the reflexivity proof is required. The syntax for the reflexivity proof is

reflexivity
proof

proofgoal #1
⟨proof of reflexivity of relation⟩;

qed [#1] [: ⟨id⟩ ];
...

qed [proof] [: ⟨id⟩ ];
end [reflexivity];

There is one proofgoal for each constraint in the definition of the order. The proofgoal is the constraint
that results from the substitution of the variables in right with the variables in left.

Examples As an example, consider the lexicographic order over 3 bits defined by (u1, u2, u3) ⪯
(v1, v2, v3) when u⃗ viewed as a binary number is less than or equal to v⃗. We now show how to implement
this with or without auxiliary variables. Note that the claim that u⃗ is less than or equal to v⃗ as a binary
number can be expressed by the pseudo-Boolean inequality

−4u1 + 4v1 − 2u2 + 2v2 − u3 + v3 ≥ 0 (5.1)

and can be introduced as a preorder ternarylex (without auxiliary variables) as follows:

def_order ternarylex
vars

left u1 u2 u3;
right v1 v2 v3;

end;
def

-4 u1 4 v1 -2 u2 2 v2 -1 u3 1 v3 >= 0 ;
end;
transitivity

vars
fresh_right w1 w2 w3;

end;
proof

17



DOCUMENTATION OF VeriPB AND CakePB FOR THE SAT COMPETITION 2025

proofgoal #1;
pol 1 2 + 3 +;

qed : -1;
qed;

end;
end;

With auxiliary variables, we introduce the auxiliary variable a1 in the specification to mean that
u1 ≥ v1 and the auxiliary variable a2 to mean that a1 holds and that u2 ≥ v2. We can then define the
order (u1, u2, u3) ⪯ (v1, v2, v3) as follows: (i) we need u1 ≤ v1, (ii) if a1 holds (which together with
u1 ≤ v1 implies that u1 = v1), then we also need u2 ≤ v2, and (iii) if a2 holds (which similarly implies
that u1 = v1 and u2 = v2), then we also need u3 ≤ v3.

The following block now defines this order. We omit some details in the transitivity proof.

def_order ternarylex_aux
vars

left u1 u2 u3;
right v1 v2 v3;
aux $a1 $a2;

end;
spec

% expresses that $a1 ==> (u1 >= v1)
red +1 ~$a1 +1 u1 +1 ~v1 >= 1 : $a1 -> 0;
% expresses that $a1 <== (u1 >= v1)
red +2 $a1 +1 ~u1 +1 v1 >= 2 : $a1 -> 1;
% expresses that $a2 ==> ($a1 and u2 >= v2)
red +2 ~$a2 +2 $a1 +1 u2 +1 ~v2 >= 2 : $a2 -> 0;
% expresses that $a2 <== ($a1 and u2 >= v2)
red +3 $a2 +2 ~$a1 +1 ~u2 +1 v2 >= 3 : $a2 -> 1;

end;
def

+1 ~u1 +1 v1 >= 1;
+1 ~$a1 +1 ~u2 +1 v2 >= 1;
+1 ~$a2 +1 ~u3 +1 v3 >= 1;

end;
transitivity

vars
fresh_right w1 w2 w3;
fresh_aux_1 $b1 $b2;
fresh_aux_2 $c1 $c2;

end;
proof

proofgoal #1
pol -1 5 + 12 +;

qed : -1;
proofgoal #2

% long proof omitted
qed : -1;
proofgoal #3

% long proof omitted
qed : -1;

qed;
end;

end;

Loading an order The load_order command loads the named order (which must previously have
been successfully defined by a def_order command). The command
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load_order ternarylex x1 x2 x3;

loads our example order ternarylex and specifies that it will be applied to the variables x1, x2, x3.
Calling load_order in this way in the middle of a proof also has the effect of moving all constraints
currently in the derived set D to the core set C.

The load_order command can also be called with no arguments, in which case the currently loaded
order is unloaded and is replaced by the empty preorder, which we denote by O⊤. Derived constraints are
not moved to the core for such an empty order command.

5.4 Strengthening Rules

Most proof logging steps for a solver trying to minimize f subject to the constraints in the pseudo-Boolean
formula F (or trying to solve the decision problem F , in which case we recall that we can consider the
objective function f

.
= 0 to be trivial), are expected to be performed using the implicational rules in

Section 5.2. However, we also need to allow strengthening rules deriving constraints C that are not
semantically implied by the input formula. Adding such constraints C is in order as long as some optimal
solution is maintained, i.e., a satisfying assignment to F that minimizes f . This idea was formalized
in [BGMN23] by allowing the use of an additional pseudo-Boolean formula O⪯(u⃗, v⃗) that, together with
a sequence of variables z⃗, defines a relation on the set of truth value assignments. As a generalization
of this, but following the same ideas, we allow the use of an order with auxiliary variables O⪯(u⃗, v⃗, a⃗)
together with a specfication S⪯(u⃗, v⃗, a⃗).

We let O⪯ and S⪯ define a relation ⪯ as follows. For assignments α, β to non-auxiliary variables, we
let α ⪯ β hold, if and only if there exists an assignment ρ to the variables a⃗, such that

S⪯(z⃗↾α, z⃗↾β, a⃗↾ρ) ∧ O⪯(z⃗↾α, z⃗↾β, a⃗↾ρ)

evaluates to true. Then ⪯ can be combined with the objective function f to define a preorder ⪯f on
assignments by

α ⪯f β if α ⪯ β and f↾α ≤ f↾β , (5.2)

and we require that all strengthening rules preserve a solution that is minimal with respect to ⪯f .

5.4.1 Redundance-Based Strengthening

In this section, we introduce the redundance-based strengthening rule. We make a distinction as to whether
the loaded preorder uses a (non-empty) specification or not.

Without Specification We first consider the case where the loaded preorder has no specification and
uses no auxiliary variables. In this case, the redundance-based strengthening rule has the format

red ⟨pseudo-Boolean inequality C in OPB format⟩ [: ⟨substitution ω⟩ [: subproof
⟨subproof showing all proofgoals⟩

qed [red] [: ⟨id⟩ ]]];

where we are again denoting optional parts of the rule with square brackets [...]. This rule makes it
possible to derive a constraint C from C ∪ D even if C is not implied, provided that the proof logger
establishes that any assignment α that satisfies C ∪D can be transformed into another assignment α′ ⪯f α
that satisfies both C ∪ D and C. (In case the order is empty, which we write as O⪯ = O⊤, then the
condition α′ ⪯f α just means that the inequality f↾α′ ≤ f↾α should hold—note that this is vacuously true
for a decision problem). We remark that this rule is a generalized version of the RAT rule in [HHW13].
The redundance-based strengthening rule in the form we are using it here originated in [GN21], which in
turn relies heavily on [HKB17, BT19].
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More formally, if v is the best value for the objective function achieved by any solution so far (or ∞ if
no solution has been found), then C can be derived by redundance-based strengthening, or just redundance
for brevity, if there is a substitution ω (referred to as the witness) such that an explicit derivation

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ⊢ (C ∪ D ∪ C)↾ω ∪ {f↾ω ≤ f} ∪ O⪯(z⃗↾ω, z⃗, a⃗) (5.3)

can be provided. Intuitively, (5.3) says that if some assignment α satisfies C ∪ D but falsifies C, then
the assignment α′ = α ◦ ω still satisfies C ∪ D and also satisfies C. In addition, the condition f↾ω ≤ f
ensures that α ◦ ω achieves an objective function value that is at least as good as that for α.

Witness In a redundance rule application, the witness ω is presented as a space-separated list

var1 -> val1 var2 -> val2 var3 -> val3 ...

of variables in the domain of ω and what they are mapped to (i.e., truth values or literals). The arrow
symbols -> are optional in the augmented format, but not in the kernel format.

Subproof and proof goals The ⟨subproof showing all proofgoals⟩ part contains a derivation of every
constraint on the right-hand side of (5.3). One possible way to do this is to derive contradiction directly
within the subproof. To indicate this, the ⟨id⟩ should refer to a contradictory constraint. Otherwise,
each proof goal needs to be proven separately, except that some proof goals (e.g., RUP constraints and
syntactically implied constraints) may be autoproven by the proof checker. How much automatic proof
generation the proof checker will provide depends on whether the augmented or the kernel proof format
is used, with less generous support provided in the kernel format (see Sections 5.5.1 and 5.5.2 for more
details). To show the proof goals, the subproof can also include implicational rules at top level, which can
be used within the proofs for each proof goal.

We will discuss subproofs in more detail in Section 5.5, but note here that the constraints on the
right-hand of (5.3) for which subproofs are needed, and which are referred to as proof goals, are referred
by labels constructed as follows:

1. For (C ∪ D)↾ω, each proof goal D↾ω is labelled by the constraint ID of D in the database C ∪ D.

2. The remaining constraints have special labels with a distinguishing prefix “#” as follows:

(a) Label #1 refers to the proof goal C↾ω for the constraint C being derived by the redundance
rule application.

(b) Labels #2, #3, . . . , #N + 1 refer to proof goals for the order O⪯ with N = |O⪯|, i.e., there is
one goal per constraint in the order (or N = 0 if no order is loaded).

(c) Label #N + 2 refers to the proof goal for the constraint f↾ω ≤ f saying that the objective
function must not get worse, if the problem contains an objective function f .

We note that proof goals are always proven by contradiction. In particular, providing an explicit proof of a
proof goal automatically introduces the negation of that proof goal as a premise.

With Specification When an order with a specification S⪯(z⃗↾ω, z⃗, a⃗) is loaded, then the redundance-
based strengthening rule requires an explicit derivation

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ∪ S⪯(z⃗↾ω, z⃗, a⃗)

⊢ (C ∪ D ∪ C)↾ω ∪ {f↾ω ≤ f} ∪ O⪯(z⃗↾ω, z⃗, a⃗),
(5.4)

i.e., the specification S⪯(z⃗↾ω, z⃗, a⃗) is added as an extra premise compared to (5.3). Intuitively, the reason
that it is sound to add the specification as an extra premise is that the specification can be derived from an
empty set of premises. Moreover, since any variables witnessed over are fresh variables, this derivation is
still valid in the presence of larger core and derived sets C ∪ D.
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When using a specification, the premises corresponding to the specification S⪯(z⃗↾ω, z⃗, a⃗) are not
introduced directly, but only upon entering the scope leq scope. The scope leq scope may only be
introduced once in each subproof. We show the precise syntax below. Finally, we note that autoproving
is by default done without the specification constraints, but it is possible to specify a proof goal with an
empty proof within the scope leq to indicate that that proof goal should be autoproven with help of the
constraints introduced in the scope.

We now illustrate the syntax of a possible subproof:

red ⟨pseudo-Boolean inequality C in OPB format⟩ : ⟨substitution ω⟩ : subproof
% ¬C is introduced here
pol -1 5 2 * +; % implicational rules are allowed here
proofgoal #1 % proof goal C↾ω

% ¬C↾ω is introduced here
pol -1 -2 +; % add ¬C↾ω and the previous pol line

qed #1 : -1; % -1 indicates that previous line was a contradiction
scope leq

% introduce all constraints from S⪯(z⃗↾ω, z⃗, a⃗) (each gets a new ID)
% the scope is typically used for proofgoals from the order,
% but for redundance, there are no restrictions
proofgoal #2

% introduces the negation of the first constraint in O⪯(z⃗↾ω, z⃗, a⃗)
rup x1 >= 1 : -1;
pol -1 -3 +;

qed;
pol -4 5 +; % implicational rules are still allowed here
proofgoal #3 qed; % autoprove proofgoal #3 using the scope

end scope leq;
% any remaining proof goals will be autoproven here

qed [red];

5.4.2 Dominance-Based Strengthening

We now discuss the dominance-based strengthening rule. We again make a distinction as to whether the
loaded preorder uses a (non-empty) specification or not.

Without Specification We first consider the case where the loaded preorder has no specification and
uses no auxiliary variables. In this case, the dominance-based strengthening rule has the format

dom ⟨pseudo-Boolean inequality C in OPB format⟩ [: ⟨substitution ω⟩ [: subproof
⟨subproof showing all proofgoals⟩

qed [dom] [: ⟨id⟩ ]]];

(with optional parts within square brackets).
In order to explain how it works we first make a quick detour to discuss order relations. For any

preorder ⪯, we can define a strict order ≺ by postulating that α ≺ β if α ⪯ β and β ̸⪯ α (which means that,
as a special case, the empty preorder yields a “strict order” that does not relate any elements at all). The
relation ≺f obtained in this way from the preorder (5.2) coincides with what is called a dominance relation
in [CS15] in the context of constraint optimization, which is the reason for why the dominance-based
strengthening rule has received its name.

Just as for the redundance rule, the dominance rule allows to derive a constraint C from C ∪ D even
if C is not implied. A crucial difference, however, is that in the dominance rule, an assignment α satisfying
C ∪D but falsifying C only needs to be mapped to an assignment α′ that satisfies C, but not necessarily D
or C. On the other hand, the new assignment α′ should satisfy the strict inequality α′ ≺f α and not
just α′ ⪯f α as in the redundance rule.
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To see that this is sound, we can argue by induction that if these conditions are satisfied, then it must
be possible to construct an assignment that satisfies C ∪ D ∪ {C}, and achieves at least as good a value
with respect to the objective function f , by iteratively applying the witness of the dominance rule. Note,
however, that the derivation in the proof log does not actually carry out this construction, but just provides
an existential proof that such a construction would be possible in principle. We sketch the proof of the
soundness of this argument here, referring the reader to [BGMN23] for the missing details.

For the base case, if the assignment α′ obtained from α satisfies C ∪D∪{C}, we are done. Otherwise,
since α′ satisfies C, and since D has previously been derived from C, it can be shown that there exists
an assignment α′′ that satisfies C ∪ D and is such that α′′ ≺f α′ ≺f α holds. If α′′ does not satisfy C,
then this assignment satisfies exactly the same conditions as the assignment α that we started with, and
the whole argument can be repeated to get α(4) ≺f α(3) ≺f α′′. Arguing by induction, we get a strictly
decreasing sequence of assignments with respect to ≺f . Since the set of possible assignments is finite, this
sequence has to terminate eventually with an assignment α∗ that satisfies all constraints in C ∪ D ∪ {C}
and for which the inequality f↾α∗ ≤ f↾α holds.

More formally, we would like to say that if v is the best value for the objective function achieved so far
(or ∞), and if the preorder O⪯ has been loaded to be applied to z⃗, then the pseudo-Boolean inequality C
can be derived by dominance-based strengthening given a substitution ω such that

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ⊢ C↾ω ∪ O⪯(z⃗↾ω, z⃗) ∪ ¬O⪯(z⃗, z⃗↾ω) ∪ {f↾ω ≤ f} , (5.5)

whereO⪯(z⃗↾ω, z⃗) and¬O⪯(z⃗, z⃗↾ω) taken together imply thatα ◦ ω ≺ α for any assignmentα. A technical
problem with this proposal is that the pseudo-Boolean formula O⪯ may contain multiple constraints, so
that the negation of it is not a set of pseudo-Boolean inequalities and thus is not in the correct syntactic
format. To get around this, one can divide (5.5) into two separate conditions and move ¬O⪯(z⃗, z⃗↾ω) to
the premise of the implication, which eliminates the negation. After this rewriting step, we get the formal
definition that C is derivable by the dominance-based strengthening rule if there is a substitution ω such
that explicit derivations

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ⊢ C↾ω ∪ O⪯(z⃗↾ω, z⃗) ∪ {f↾ω ≤ f} (5.6a)
C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ∪ O⪯(z⃗, z⃗↾ω) ⊢ ⊥ (5.6b)

can be provided.
As for the redundance rule, ω should be given as a list var1 -> val1 var2 -> val2 ... of

variables and what these variables are mapped to by ω, with the arrow symbols -> being optional in the
augmented format.

Subproof and proof goals As for the redundance rule, the ⟨subproof showing all proofgoals⟩ part
contains a derivation for every constraint on the right-hand side of (5.6b)–(5.6b) with the same conventions
as in Section 5.4.1. The proof goals for a dominance rule application are labelled as follows:

1. For C↾ω, each proof goal D↾ω is labelled by the constraint ID of D in the core constraint set C.

2. The remaining proof goals get labels with a distinguishing prefix “#” as follows:

(a) Labels #1, #2, . . . , #N for N = |O⪯| refer to proof goals for the order O⪯ with one proof
goal per constraint in the order (or N = 0 if no order is loaded).

(b) Label #N + 1 refers to the proof goal for the negated order in (5.6b). Note that this proof goal
behaves slightly differently from the others in that it directly adds a list of assumptions from
which contradiction must be derived.

(c) Label #N + 2 refers to the proof goal for the inequality f↾ω ≤ f if applicable, i.e., if the
problem contains an objective function f .
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With Specification Let us now consider the case where we are using a non-trivial specification S⪯ and
set of auxiliary variables a⃗. Similarly to the redundance rule, we now have the specification as an additional
premise in our derivations. There is, however, a crucial technical detail. Looking at Equation (5.5), we
can see that it contains two instantiations of our pre-order O⪯. The first one for establishing that z⃗↾ω is
less than or equal to z⃗, that is, we have O⪯(z⃗↾ω, z⃗). The second one for establishing that the order is strict,
that is we have ¬O⪯(z⃗, z⃗↾ω). Regarding the specification, it should be clear that these two instantiations
can not be established over the same set of auxiliary variables when written in the form of Equation (5.5).

However, in Equation (5.6a) and Equation (5.6b) these two separate instatiations only occur in one of
the two, respectively. Hence, the required derivations for the dominance rule become the following:

C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ∪ S⪯(z⃗↾ω, z⃗, a⃗) ⊢ C↾ω ∪ O⪯(z⃗↾ω, z⃗, a⃗) ∪ {f↾ω ≤ f} (5.7a)
C ∪ D ∪ {f ≤ v − 1} ∪ {¬C} ∪ S⪯(z⃗, z⃗↾ω, a⃗) ∪ O⪯(z⃗, z⃗↾ω, a⃗) ⊢ ⊥. (5.7b)

In the proof, we establish access to these different premises of Equation (5.7a) and Equation (5.7b) through
the use of the scope leq and scope geq scopes, respectively. The meaning is that the first set of
premises S⪯(z⃗↾ω, z⃗, a⃗) is only made available inside the scope leq scope. The second set of premises
S⪯(z⃗, z⃗↾ω, a⃗) is only available in the scope geq scope. In the scope leq scope, any proof goal except
proof goal #N + 1 can be proven. Conversely, in the scope geq scope, only proof goal #N + 1 may be
proven. Proof goals can also be shown outside of both scopes. Each scope may only be introduced once in
each subproof, but the scopes can occur in either order. Otherwise, the list of proof goals and in particular
the identifiers of the proof goals do not change when using auxiliary variables.

Finally, we give an example of the syntax (where we assume N = 3):

dom ⟨pseudo-Boolean inequality C in OPB format⟩ [: ⟨substitution ω⟩ [: subproof
proofgoal #5 % proof goal f↾ω ≤ f

% f↾ω > f is introduced here
pol -1 3 2 * +;

qed #5 : -1; % -1 indicates that previous line was a contradiction
scope leq

% introduce all constraints from S⪯(z⃗↾ω, z⃗, a⃗) (each gets a new ID)
% only proofgoal #1, #2, #3 and #5 would be allowed here
proofgoal #1 % first constraint in O⪯(z⃗↾ω, z⃗, a⃗)

% introduces the negation of the first constraint in O⪯(z⃗↾ω, z⃗, a⃗)
pol -1 -2 +;

qed #1 : -1;
end scope leq;
scope geq

% introduce all constraints from S⪯(z⃗, z⃗↾ω, a⃗) (each gets a new ID)
% only proofgoal #4 is allowed here
proofgoal #4

% introduce all N constraints from O⪯(z⃗, z⃗↾ω, a⃗)
pol -4 -3 +; % add last constraint specification

% and first constraint in O⪯(z⃗, z⃗↾ω, a⃗)
qed #4 : -1;

end scope geq;
% any remaining proof goals will be autoproven here

qed [dom] [: ⟨id⟩ ]]];

5.5 Subproofs

The rules for subproofs are arguably somewhat complex. A good way to understand the syntax is to run
VeriPB on files such as tests/integration_tests/correct/dominance/example.pbp in the
repository with the options --trace, which will (among other things) display the required proof goals.

If all proof goals for a strengthening rule application can be automatically derived by the proof checker,
then there is no need for a list of subproofs and the strengthening rule can be stated as
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⟨strengthening rule⟩ ⟨derived constraint C⟩ [: ⟨substitution ω⟩];

on a single line, where ⟨strengthening rule⟩ is red or dom. In the general case, however, the proof checker
will need to be provided with a list of explicit subproofs, and then the format of the strengthening rules is

⟨strengthening rule⟩ ⟨derived constraint C⟩ [: ⟨substitution ω⟩ [: subproof
⟨list of proofgoals or top-level contradiction proof⟩

qed [⟨strengthening rule⟩] [: ⟨id⟩ ]]];

The optional constraint ID at the end of the red or dom rule with subproofs, if such a final constraint ID is
provided, refers to a contradiction that is derived in the top-level subproof of these rules. As soon as such
a constraint has been derived, there is no need to check any remaining proof goals.

In ⟨list of proofgoals or top-level contradiction proof⟩ implicational derivation steps can be interleaved
with proof goals, where the latter of which are formatted as follows:

proofgoal ⟨pid⟩
[⟨list of implicational steps⟩]

qed [⟨pid⟩] [: ⟨id⟩ ];

Each proof goal is labeled with a proof goal ID ⟨pid⟩ which is on the form ⟨id⟩ or #⟨id⟩ as explained at
the end of Sections 5.4.1 and 5.4.2 for redundance and dominance, respectively.

Proof checking proceeds through subproofs sequentially, populating the database according to the
implicational commands, and checking proof goals with the accumulated database up to that proof goal.
This is illustrated below with a commented trace, starting from a constraint database S which is the union
of the core set and the derived set at this point in the overall proof.

% Initial database S
⟨list of implicational steps⟩
% Derived database S ′ from S following implicational steps
proofgoal ⟨pid⟩

% Add constraint(s) from proof goal for ⟨pid⟩ to S ′

⟨list of implicational steps⟩
% Derived database S ′′ from S ′ implicationally

qed ⟨pid⟩ [: ⟨id⟩ ];
% Check if ⟨id⟩ is a contradiction
% Rewind to database S ′ and continue
...

If subproof checking succeeds, the argument at the end of the explicit subproofs specifies a constraint ID
at which ⟨list of proofgoals or top-level contradiction proof⟩ derives contradiction. If such a contradiction
is derived, the proof of the redundance or dominance step is complete. Otherwise, all proof goals for the
given redundance or dominance step are checked to either be explicitly covered by a proof goal in the
subproofs or implicitly covered by automatic proof.

IDs in subproofs The rules for incrementing maxId in subproof checking are as follows.

• All implicational steps increment the global maxId count whenever they add a new constraint to the
database. This includes both top-level implicational steps as well as steps within each proof goal.

• The maxId counter is not reset to its original value after finishing a subproof even after the database
is rewound, e.g., when rewinding to S ′ in the illustration above.

• For each proof goal with an explicit subproof, there is a constraint D to be derived from the current
constraint database (as described in Section 5.4.1 and Section 5.4.2). The negated constraint ¬D is
added to the constraint database with the current ID maxId and maxId is incremented.
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• The sole exception is the proof goal labeled #N +1 for dominance-based strengthening, which adds
all constraints from the substituted order O⪯(z⃗, z⃗↾ω, a⃗) with IDs maxId up to maxId + |O⪯| − 1 to
the database. The constraints are ordered as in their specification; maxId is incremented accordingly.

• When entering scope leq, all constraints from the specification S⪯(z⃗↾ω, z⃗, a⃗) are added with
IDs maxId up to maxId + |S⪯| − 1 to the database (in the same order as they were derived in the
specification in the def_order block). Similarly, when entering scope geq, all constraints from
the specification S⪯(z⃗, z⃗↾ω, a⃗) are added with IDs maxId up to maxId + |S⪯| − 1.

• All of the above applies to proof goals with explicit subproofs, i.e., no incrementing of maxId
happens for automatically generated subproofs.

Scopes At all times, the checker keeps track of the constraints in the current scope. Here, a scope should
be interpreted in the broad sense: besides scope leq and scope geq (which introduce constraints of
a specification as explained in Section 5.4), also subproof and proofgoal blocks define scopes. A
general design principe in the proof system is that each ID is valid for a contiguous block in the proof,
starting when the constraint is introduced (and hence given its ID) and ending when the scope in which
the ID was introduced (or when the ID is deleted, which is only allowed at top level; see Section 5.6).

5.5.1 Autoproven Proof Goals in Kernel Format

The kernel format uses the following rules to determine if a proof goal requires explicit proofs (assuming
contradiction has not been derived). Let C be the constraint that is derived using the redundance or the
dominance step and let ω be the substitution of the redundance or the dominance step.

1. For #⟨id⟩ proof goals, only limited autoproving is supported. Let D be the constraint corresponding
to #⟨id⟩. The proof goal #⟨id⟩ can be skipped if:

(a) D is a tautology;
(b) D is weakly syntactically implied by ¬C;
(c) The order proofgoals #2, #3, . . . , #N + 1 of the redundance rule can only be skipped if the

variables over which the order is loaded are untouched by the substitution ω (since the proof
goal is then implied by reflexivity of the order).

2. For ⟨id⟩ proof goals, let D be the constraint corresponding to ⟨id⟩ in the database. The proof goal
⟨id⟩ can be skipped if:

(a) D is untouched by the substitution ω;
(b) ω only assigns literals to true in (the normalized form of) D;
(c) D↾ω is weakly syntactically implied by D;
(d) D↾ω is weakly syntactically implied by ¬C;
(e) D↾ω is contained in the database (at the start of the redundance or the dominance step);
(f) D↾ω is identical to a proof goal that has already been proven.

Note that the case that D↾ω is a tautology is a special case of item 2c (or 2d), since any (non-
tautological) constraint weakly syntactically implies a tautology.

5.5.2 Autoproven Proof Goals in Augmented Format

In addition to what is mentioned in Section 5.5.1, in the augmented format a constraint D can also be
autoproven if D can be derived using reverse unit propagation or using syntactic implication from any
constraint currently in the database.
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5.6 Deletion Rules

Deletion is a complex topic, not least because the pseudo-Boolean proof format supports both deleting by
reference (i.e., by specifying a constraint ID) and deleting by specification (i.e., describing the constraint
to be deleted). The latter type of deletion is not a good fit for the proof format, but is supported for ease of
integration with SAT solvers using standard DRAT-style proof logging.

As a further complication, a pseudo-Boolean constraint C in the core set C should ideally be deleted
only if it can be proven that C can be recovered from C \ {C}, which is referred to as checked deletion
in [BGMN23]. In the version of VeriPB proposed for the SAT competition 2025 only unchecked deletion
is supported, however.

5.6.1 Deletion Rules in Kernel Format

The kernel format only supports deleting constraints by referring to their constraint IDs, and in addition
forces the proof logger to specify whether a core set constraint or a derived set constraint is being erased.

Deletion from derived set The command
deld ⟨list of constraint IDs⟩ ;

deletes a list of constraints with specified IDs from the derived set D. It is an error if any constraint is
instead in the core set C or is not in the constraint database at all.

Deletion from core set The unchecked core deletion command
delc ⟨list of constraint IDs⟩ ;

provided for the SAT competition 2025 first checks that all constraint IDs in the specified list identify
constraints currently in the core set. Provided that no order (or the empty order) has been loaded, or
alternatively that the derived set D is currently empty, all the specified constraints are deleted from the
core. Otherwise the command generates an error.

Note that the fact that core deletion is unchecked means that the current database C ∪ D can turn
satisfiable although the input formula is unsatisfiable.

5.6.2 Deletion Rules in Augmented Format

The augmented proof format supports a general deletion-by-reference command, where the proof logger
is required to know the constraint ID but does not need to be aware of the difference between core set
and derived set. It also provides a deletion-by-specification command that provides the encoding of the
constraint to be deleted. Deletion by specification should be avoided if possible, but is supported as a
convenience for SAT solvers already equipped with DRAT-style proof logging as well as for solvers in
more powerful paradigms where the constraints in the proof constraints database might not match well
what the solver is keeping track of in its own constraints database.

Deletion by reference The command
del id ⟨list of constraint IDs⟩ ;

has the same effect as checking the type of each constraint ⟨id⟩ in the list and then issuing a delete core
command delc or delete derived command deld depending on the type of the constraint. All constraint
IDs must be valid references to constraints currently in the database.

Deletion by specification The command
del spec ⟨pseudo-Boolean inequality C in OPB format⟩ ;

is an error if there is no constraint C in the database. Otherwise, C is marked for deletion as per the
description in Section 5.6.3.

Note that if del spec has been used in the proof, then it is not allowed to specify an output (see
Section 4.2). In particular, it is only allowed to specify output NONE; .
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5.6.3 Semantics for Mixed Deletion by Reference and Specification

We implement a multiset deletion semantics for deletion by associating to constraint C in the database a
delete-by-specification kill counter Ks(C) and two lists LD(C) and LC(C) containing the constraint IDs
with which C appears in the derived set D and core set C, respectively.

When deletion by reference for a constraint C is encountered, the specified constraint ID is removed
from the appropriate list LD(C) or LC(C). When deletion by specification of C is encountered, Ks(C) is
incremented by 1. After any of the above updates to Ks(C), LD(C), or LC(C), the following procedure
is run:

1. If Ks(C) < |LD(C)|+ |LC(C)|, then there are still derived copies of C left, and no action is taken.

2. Else if Ks(C) = |LD(C)| + |LC(C)|, then as many copies of C as are available in the database
have been deleted. Therefore the constraint C is completely removed from the database by issuing
deld commands for all IDs in LD(C) and delc commands for all IDs in LC(C), after which we
set LD(C) = LC(C) = ∅ and Ks(C) = 0.

3. The case Ks(C) > |LD(C)|+ |LC(C)| is impossible, as the proof checker preserves the invariant
Ks(C) ≤ |LD(C)|+ |LC(C)| (as a result of the semantics in the previous case).

6 Formally Verified Proof Checking

The kernel proof checker CakePB has been formally verified in the HOL4 theorem prover [SN08] using the
CakeML suite of tools for program verification, extraction, and compilation [TMK+19, GMKN17, MO14].
In this section, we present the verification guarantees for CakePB cnf, a version of CakePB equipped
with a DIMACS CNF parser frontend for UNSAT proof checking with pseudo-Boolean proof logging.

6.1 Summary of Kernel Format

We summarize the kernel format with reference to the derivation rules presented in Section 5. In general,
rules in the kernel format have the same semantics on the proof state, but may have additional syntactic
restrictions or requirements, e.g., requiring more explicit subproofs.

Constraint IDs The kernel format does not support the interpretation of a negative integer −N as the
constraint with ID maxId + 1−N .

Load formula The f command behaves identically in the kernel format. It must be the first command in
the input pseudo-Boolean proof after the header (see Section 2.1 for an example).

Move to core Only the core id command for moving constraints to the core is supported.

Implicational rules Only the pol, rup and pbc implicational rules are supported. For rup, it is
mandatory to annotate which constraints propagate and in which order.

Orders The kernel format requires an aux line. In addition, there must be explicit proofs for all proof
goals in the transitivity proof for the specified order.

Strengthening rules and subproofs The kernel format supports both red and dom strengthening
commands, but requires more explicit subproofs. See Section 5.5.1 for the exact explicit subproof
requirements in the kernel format.

Deletion rules Only the deld and delc deletion by ID commands are supported in kernel format.
Notably, deletion by specification is not supported.

Conclusions section In the kernel format, the conclusion section must be explicitly given all required
IDs (cf. Section 4.3). In particular, for an unsatisfiability proof, the conclusion section
conclusion UNSAT : ⟨id⟩ ;

must have a constraint ID specifying the contradictory constraint in the database.
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⊢ cake pb cnf run cl fs mc ms ⇒ (6.1)
machine sem mc (basis ffi cl fs) ms ⊆

extend with resource limit
{ Terminate Success (cake pb cnf io events cl fs) } ∧

 (6.2)

∃out err .
extract fs fs (cake pb cnf io events cl fs) =

SOME (add stdout (add stderr fs err) out) ∧

 (6.3)

if out = ≪s VERIFIED UNSAT\n≫ then
LENGTH cl = 3 ∧ inFS fname fs (EL 1 cl) ∧
∃ fml .

parse dimacs (all lines fs (EL 1 cl)) = SOME fml ∧
unsatisfiable (interp fml)

else out = ≪≫


(6.4)

Figure 2: The end-to-end correctness theorem for the CakeML pseudo-Boolean proof checker with a CNF parser

6.2 Verified Correctness Theorem for CakePB cnf

The end-to-end verified correctness theorem for CakePB cnf is shown in Figure 2. This theorem can be
intuitively understood in four parts, corresponding to the indicated lines (6.1)–(6.4):

• The theorem assumes (6.1) that the CakeML-compiled machine code for CakePB cnf is executed
in an x64 machine environment set up correctly for CakeML. The definition of cake pb cnf run is
shown below, where the first line (wfcl cl ∧ wfFS fs ∧ ...) says the command line cl and filesystem
fs match the assumptions of CakeML’s FFI model. The second line says that the compiled code
(cake pb cnf code) is correctly set up for execution on an x64 machine.

cake pb cnf run cl fs mc ms
def
=

wfcl cl ∧ wfFS fs ∧ STD streams fs ∧ hasFreeFD fs ∧
installed x64 cake pb cnf code mc ms

• Under these assumptions, the CakePB cnf program is guaranteed to never crash (6.2). However, it
may run out of resources such as heap or stack memory (extend with resource limit ...). In these cases,
CakePB cnf will fail gracefully and report out-of-heap or out-of-stack on standard error.

• Upon termination, the CakePB cnf program will output some (possibly empty) strings out and
err to the standard output and standard error streams, respectively (6.3).

• The key verification guarantee (6.4) is that, whenever the string “s VERIFIED UNSAT” is printed
to standard output, the input CNF file (first command line argument) parses in DIMACS format to a
CNF which is unsatisfiable. No other output is possible on standard output; error strings are always
printed to standard error.

Internally, CakePB cnf transforms input CNF clauses (in DIMACS format) to normalized pseudo-
Boolean constraints, as exemplified by (2.1a) and (2.1b). This transformation is formally verified to
preserve satisfiability as part of the end-to-end correctness theorem shown in Figure 2.

Note that the CakePB cnf tool has an essentially identical correctness theorem to an existing verified
Boolean unsatisfiability proof checking tool [THM21]. In fact, these tools share exactly the same definitions
of DIMACS CNF parsing, Boolean satisfiability semantics, and all of the CakeML’s standard assumptions.
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6.3 Complexity

All of the commands in the kernel format are designed to minimize the need to search over the entire
constraint database. For example, each implicational and deletion proof step can be performed in linear
time with respect to the size of that step.

The only proof steps that scale linearly with respect to the size of the constraint database are redundancy
and dominance-based strengthening steps. For either of these steps, the proof checker potentially needs to
loop over the entire constraint database to check all the necessary proof goals. However, the maximum size
of the database is linear in the size of the input formula and the proof. Therefore, the overall complexity of
the verified proof checker is polynomial in the size of the input formula and proof, as required.
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