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Abstract

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas
and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering
the challenge to establish strong lower bounds in the regime between balanced constant-degree
expanders as in [Ben-Sasson and Wigderson ’01] and highly unbalanced, dense graphs as in [Raz ’04]
and [Razborov ’03, ’04]. We obtain our results by revisiting Razborov’s pseudo-width method for
PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the
power of the pseudo-width method, and we believe it could potentially be useful for attacking also
other longstanding open problems for resolution and other proof systems.
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28:2 Weak Pigeonhole Principle and Perfect Matching over Sparse Graphs

1 Introduction

In one sentence, proof complexity is the study of efficient certificates of unsatisfiability for
formulas in conjunctive normal form (CNF). In its most general form, this is the question of
whether coNP can be separated from NP or not, and as such appears out of reach for current
techniques. However, if one instead focuses on concrete proof systems, which can be thought
of as restricted models of nondeterministic computation, this opens up the view to a rich
landscape of results.

One line of research in proof complexity has been to prove superpolynomial lower
bounds for stronger and stronger proof systems, as a way of approaching the distant goal
of establishing NP 6= coNP. A perhaps even more fruitful direction, however, has been to
study different combinatorial principles and investigate what kind of reasoning is needed to
efficiently establish the validity of these principles. In this way, one can quantify the “depth”
of different mathematical truths, measured in terms of how strong a proof system is required
to prove them.

In this paper, we consider the proof system resolution [10], in which one derives new
disjunctive clauses from the formula until an explicit contradiction is reached. This is arguably
the most well-studied proof system in proof complexity, for which numerous exponential
lower bounds on proof size have been shown (starting with [19, 31, 13]). Yet many basic
questions about resolution remain stubbornly open. One such set of questions concerns the
pigeonhole principle (PHP) stating that there is no injective mapping of m pigeons into n
holes if m > n. This is one of the simplest, and yet most useful, combinatorial principles in
mathematics, and it has been topic of extensive study in proof complexity.

When studying the pigeonhole principle, it is convenient to think of it in terms of a
bipartite graph G = (U

.
∪ V,E) with pigeons U = [m] and holes V = [n] for m ≥ n + 1.

Every pigeon i can fly to its neighbouring pigeonholes N(i) as specified by G, which for now
we fix to be the complete bipartite graph Km,n with N(i) = [n] for all i ∈ [m]. Since we wish
to study unsatisfiable formulas, we encode the claim that there does in fact exist an injective
mapping of pigeons to holes as a CNF formula consisting of pigeon axioms

P i =
∨

j∈N(i)

xij for i ∈ [m] (1a)

and hole axioms
Hi,i′

j = (xij ∨ xi′j) for i 6= i′ ∈ [m], j ∈ N(i) ∩N(i′) (1b)

(where the intended meaning of the variables is that xi,j is true if pigeon i flies to hole j).
To rule out multi-valued mappings one can also add functionality axioms

F ij,j′ = (xij ∨ xij′) for i ∈ [m], j 6= j′ ∈ N(i) , (1c)

and a further restriction is to include surjectivity or onto axioms

Sj =
∨

i∈N(j)

xij for j ∈ [n] (1d)

requiring that every hole should get a pigeon. Clearly, the “basic” pigeonhole principle (PHP)
formulas with clauses (1a) and (1b) are the least constrained. As one adds clauses (1c) to
obtain the functional pigeonhole principle (FPHP) and also clauses (1d) to get the onto
functional pigeonhole principle (onto-FPHP), the formulas become more overconstrained and
thus (potentially) easier to disprove, meaning that establishing lower bounds becomes harder.
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A moment of reflection reveals that onto-FPHP formulas are just saying that complete
bipartite graphs with m left vertices and n right vertices have perfect matchings, and so
these formulas are also referred to as perfect matching formulas.

Another way of varying the hardness of PHP formulas is by letting the number of pigeonsm
grow larger as a function of the number of holes n. What this means is that it is not necessary
to count exactly to refute the formulas. Instead, it is sufficient to provide a precise enough
estimate to show that m > n must hold (where the hardness of this task depends on how
much larger m is than n). Studying the hardness of such so-called weak PHP formulas gives
a way of measuring how good different proof systems are at approximate counting. A second
application of lower bounds for weak PHP formulas is that they can be used to show that
proof systems cannot produce efficient proofs of the claim that NP * P/poly [24, 28].

Yet another version of more constrained formulas is obtained by restricting what choices
the pigeons have for flying into holes, by defining the formulas not over Km,n but sparse
bipartite graphs with bounded left degree – such instances are usually called graph PHP
formulas. Again, this makes the formulas easier to disprove in the sense that pigeons are
more constrained, and it also removes the symmetry in the formulas that plays an essential
role in many lower bound proofs.

Our work focuses on the most challenging setting in terms of lower bounds, when all of
these restrictions apply: the PHP formulas contain both functionality and onto axioms, the
number of pigeons m is very large compared to the number of holes n, and the choices of
holes are restricted by a sparse graph. But before discussing our contributions, let us review
what has been known about resolution and pigeonhole principle formulas. We emphasize that
what will follow is a brief and selective overview focusing on resolution only – see Razborov’s
beautiful survey paper [26] for a discussion of upper and lower bounds on PHP formulas in
other proof systems.

1.1 Previous Work
In a breakthrough result, which served as a strong impetus for further developments in
proof complexity, Haken [19] proved a lower bound exp(Ω(n)) on resolution proof length
for m = n+ 1 pigeons. Haken’s proof was for the basic PHP formulas, but easily extends
to onto-FPHP formulas. This result was simplified and improved in a sequence of works
[12, 7, 8, 32] to a lower bound of the form exp

(
n2/m

)
, which, unfortunately, does not yield

anything nontrivial for m = Ω
(
n2) pigeons.

Buss and Pitassi [11] showed that the pigeonhole principle does in fact get easier for
resolution when m becomes sufficiently large: namely, for m = exp

(
Ω
(√
n logn

))
PHP

formulas can be refuted in length exp
(
O
(√
n logn

))
. This is in contrast to what holds for

the weaker subsystem tree-like resolution, for which the formulas remain equally hard as the
number of pigeons increases, and where the complexity was even sharpened in [11, 15, 17, 9]
to an exp(Ω(n logn)) length lower bound.

Obtaining lower bounds beyond m = n2 pigeons for non-tree-like resolution turned out
to be quite challenging. Haken’s bottleneck counting method fundamentally breaks down
when the number of pigeons is quadratic in the number of holes, and the same holds for the
celebrated length-width lower bound in [8]. Some progress was made for restricted forms
of resolution in [30] and [22], leading up to an exp

(
nε
)
lower bound for so-called regular

resolution. In a technical tour de force, Raz [23] finally proved that general, unrestricted
resolution requires length exp

(
nε
)
to refute the basic PHP formulas even with arbitrary

many pigeons. Razborov followed up on this in three papers where he first simplified and
slightly strengthened Raz’s result in [25], then extended it to FPHP formulas in [27] and
lastly established an analogous lower bound for onto-FPHP formulas in [28].

CCC 2020



28:4 Weak Pigeonhole Principle and Perfect Matching over Sparse Graphs

More precisely, what Razborov showed is that for any version of the PHP formula with
m pigeons and n holes, the minimal proof length required in resolution is exp

(
Ω
(
n/ log2m

))
.

It is easy to see that this implies a lower bound exp
(
Ω
(

3
√
n
))

for any number of pigeons – for
m = exp

(
O
(

3
√
n
))

we can appeal directly to the bound above, and if a resolution proof would
use exp

(
Ω
(

3
√
n
))

pigeons, then just mentioning all these different pigeons already requires
exp
(
Ω
(

3
√
n
))

distinct clauses. It is also clear that considering complexity in terms of the
number of holes n is the right measure. Since any formula contains a basic PHP subformula
with n+1 pigeons that can be refuted in length exp(O(n)), we can never hope for exponential
lower bounds in terms of formula size as the number of pigeons m grows to exponential.

So far we have stated results only for the standard PHP formulas over Km,n, where any
pigeon can fly to any hole. However, the way Ben-Sasson and Wigderson [8] obtained their
result was by considering graph PHP formulas over balanced bipartite expander graphs of
constant left degree, from which the lower bound for Km,n easily follows by a restriction
argument. It was shown in [20] that an analogous bound holds for onto-FPHP formulas,
i.e., perfect matching formulas, on bipartite expanders. In this context is is also relevant
to mention the exponential lower bounds in [1, 16] on mutilated chessboard formulas, which
can be viewed as perfect matching formulas on balanced, sparse bipartite graphs with very
bad expansion. At the other end of the spectrum, Razborov’s PHP lower bound in [28] for
highly unbalanced bipartite graphs also applies in a more general setting than Km,n: namely,
for any graph where the minimal degree of any left vertex is δ, the minimal length of any
resolution proof is exp

(
Ω
(
δ/ log2m

))
. Thus, for graph PHP formulas we have exponential

lower bounds on the one hand [8] for m � n2 pigeons, where each pigeon is adjacent to
a constant number of holes, and on the other hand [28] for any number of pigeons given
that each pigeon is adjacent to a polynomial nΩ(1) number of holes, but nothing has been
known in between these extremes. In [28], Razborov asks whether a “common generalization”
of the techniques in [8] and [27, 28] can be found “that would uniformly cover both cases?”
Urquhart [33] also discusses Razborov’s lower bound technique, but notes that “the search
for a yet more general point of view remains a topic for further research.”

1.2 Our Results

In this work, we give an answer to the questions raised in [28, 33] by presenting a general
technique that applies for any number of pigeons m all the way from linear to weakly
exponential, and that establishes exponential lower bounds on resolution proof length for
all flavours of graph PHP formulas (including perfect matching formulas) even over sparse
graphs.

Let us state below three examples of the kind of lower bounds we obtain – the full, formal
statements will follow in later sections. Our first theorem is an average-case lower bound for
onto-FPHP formulas with slightly superpolynomial number of pigeons.

I Theorem 1 (Informal). Let G be a randomly sampled bipartite graph with n right vertices,
m = no(logn) left vertices, and left degree Θ

(
log3m

)
. Then refuting the onto-FPHP for-

mula (a.k.a. perfect matching formula) over G in resolution requires length exp
(
Ω
(
n1−o(1)))

asymptotically almost surely.

Note that as the number of pigeons grow larger, it is clear that the left degree also has to
grow – otherwise we will get a small number of pigeons constrained to fly to a small number
of holes by a birthday paradox argument, yielding a small unsatisfiable subformula that can
easily be refuted by brute force.
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If the number of pigeons increases further to weakly exponential, then randomly sampled
graphs no longer have good enough expansion for our technique to work, but there are
explicit constructions of unbalanced expanders for which we can still get lower bounds.

I Theorem 2 (Informal). There are explicitly constructible bipartite graphs G with n right
vertices, m = exp

(
O
(
n1/16)) left vertices, and left degree Θ

(
log4m

)
such that refuting the

perfect matching formula over G requires length exp
(
Ω
(
n1/8−ε)) in resolution.

Finally, for functional pigeonhole principle formulas we can also prove an exponential
lower bound for constant left degree even if the number of pigeons is a large polynomial.

I Theorem 3 (Informal). Let G be a randomly sampled bipartite graph with n right vertices,
m = nk left vertices, and left degree Θ

(
(k/ε)2). Then refuting the functional pigeonhole

principle formula over G in resolution requires length exp
(
Ω
(
n1−ε)) asymptotically almost

surely.

1.3 Techniques
At a very high level, what we do in terms of techniques is to revisit the pseudo-width
method introduced by Razborov for functional PHP formulas in [27]. We strengthen this
method to work in the setting of sparse graphs by combining it with the closure operation on
expander graphs in [4, 3], which is a way to restore expansion after a small set of (potentially
adversarially chosen) vertices have been removed. To extend the results further to perfect
matching formulas, we apply a “preprocessing step” on the formulas as in [28]. In what
remains of this section, we focus on graph FPHP formulas and give an informal overview of
the lower bound proof in this setting, which already contains most of the interesting ideas
(although the extension to onto-FPHP also raises significant additional challenges).

Let FPHP(G) denote the functional pigeonhole principle formula over the graph G

consisting of clauses (1a)–(1c). A first, quite naive (and incorrect), description of the proof
structure is that we start by defining a pseudo-width measure on clauses C that counts
pigeons i that appear in C in many variables xij for distinct j. We then show that any short
resolution refutation of FPHP(G) can be transformed into a refutation where all clauses have
small pseudo-width. By a separate argument, we establish that any refutation of FPHP(G)
requires large pseudo-width. Hence, no short refutations can exist, which is precisely what
we were aiming to prove.

To fill in the details (and correct) this argument, let us start by making clear what
we mean by pseudo-width. Suppose that the graph G has left degree ∆. In what follows,
we identify a mapping of pigeon i to a neighbouring hole j with the partial assignment ρ
such that ρ(xi,j) = 1 and ρ(xi,j′) = 0 for all j′ ∈ N(i) \ {j}. We denote by di(C) the
number of mappings of pigeon i that satisfy C. Note that if C contains at least one negated
literal xi,j , then di(C) ≥ ∆− 1, and otherwise di(C) is the number of positive literals xi,j
for j ∈ N(i). Given a judiciously chosen “filter vector” ~d = (d1, . . . , dm) for di ≈ ∆ and a
“slack” δ ≈ ∆/ logm, we say that pigeon i is heavy in C if di(C) ≥ di − δ and super-heavy
if di(C) ≥ di. We define the pseudo-width of a clause C to be the number of heavy pigeons
in C.

With these definitions in hand, we can give a description of the actual proof:
1. Given any resolution refutation π of FPHP(G) in small length L, we argue that all clauses

can be classified as having either low or high pseudo-width, where an important additional
guarantee is that the high-width clauses not only have many heavy pigeons but actually
many super-heavy pigeons.

CCC 2020
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2. We replace all clauses C with many super-heavy pigeons with “fake axioms” C ′ ⊆ C

obtained by throwing away literals from C until we have nothing left but a medium
number of super-heavy pigeons. By construction, the set A of such fake axioms is
of size |A| ≤ L, and after making the replacement we have a resolution refutation π′

of FPHP(G) ∪ A in low pseudo-width.
3. However, since A is not too large, we are able to show that any resolution refutation of

FPHP(G) ∪ A must still require large pseudo-width. Hence, L cannot be small, and the
lower bound follows.
Part 1 is similar to [27], but with a slight twist. We show that if the length of π is

L < 2w0 and if we choose δ ≤ ε∆ logn/ logm, then there exists a vector ~d = (d1, . . . , dm)
such that for all clauses in π either the number of super-heavy pigeons is at least w0 or else
the number of heavy pigeons is at most O

(
w0 · nε

)
. The proof of this is by sampling the

coordinates di independently from a suitable probability distribution and then applying a
union bound argument. Once this has been established, part 2 follows easily: we just replace
all clauses with at least w0 super-heavy pigeons by (stronger) fake axioms. Including all
fake axioms A yields a refutation π′ of FPHP(G) ∪ A (since we can add a weakening rule
deriving C from C ′ ⊆ C to resolution without loss of generality) and clearly all clauses in π′
have pseudo-width O

(
w0 · nε

)
.

Part 3 is where most of the hard work is. Suppose that G is an excellent expander
graph, so that for some value r all left vertex sets U ′ of size

∣∣U ′∣∣ ≤ r have at least
(1− ε logn/logm)∆|U ′| unique neighbours on the right-hand side. We show that, under the
assumptions above, refuting FPHP(G)∪A requires pseudo-width Ω

(
r · logn/logm

)
. Tuning

the parameters appropriately, this yields a contradiction with part 2.
Before outlining how the proof of part 3 goes, we remark that the requirements we place

on the expansion of G are quite severe. Clearly, any left vertex set U can have at most
∆|U ′| neighbours in total, and we are asking for all except a vanishingly small fraction of
these neighbours to be unique. This is why we can etablish Theorem 1 but not Theorem 2
for randomly sampled graphs. We see no reason to believe that the latter theorem would
not hold also for random graphs, but the expansion properties required for our proof are so
stringent that they are not satisfied in this parameter regime. This seems to be a fundamental
shortcoming of our technique, and it appears that new ideas would be required to circumvent
this problem.

In order to argue that refuting FPHP(G) ∪ A in resolution requires large pseudo-width,
we want to estimate how much progress the resolution derivation has made up to the point
when it derives some clause C. Following Razborov’s lead, we measure this by looking at
what fraction of partial matchings of all the heavy pigeons in C do not satisfy C (meaning,
intuitively, that the derivation has managed to rule out this part of the search space). It
is immediate by inspection that all pigeons mentioned in the real axiom clauses (1a)–(1c)
are heavy, and any matching of such pigeons satisfies the clauses. Thus, the original axioms
in FPHP(G) do not rule out any matchings. Also, it is easy to show that fake axioms rule
out only an exponentially small fraction of matchings, since they contain many super-heavy
pigeons and it is hard to match all of these pigeons without satisfying the clause. However,
the contradictory empty clause ⊥ rules out 100% of partial matchings, since it contains no
heavy pigeons to match in the first place.

What we would like to prove now is that for any derivation in small pseudo-width it holds
that the derived clause cannot rule out any matching other than those already eliminated
by the clauses used to derive it. This means that the fake axioms together need to rule out
all partial matchings, but since every fake axiom contributes only an exponentially small
fraction they are too few to achieve this. Hence, it is not possible to derive contradiction in
small pseudo-width, which completes part 3 of our proof outline.
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There is one problem, however: the last claim above is not true, and so what is outlined
above is only a fake proof. While we have to defer the discussion of what the full proof
actually looks like in detail, we conclude this section by attempting to hint at a couple of
technical issues and how to resolve them.

Firstly, it does not hold that a derived clause C eliminates only those matchings that
are also forbidden by one of the predecessor clauses used to derive C. The issue is that a
pigeon i that is heavy in both predecessors might cease to be heavy in C – for instance, if C
was derived by a resolution step over a variable xi,j . If this is so, then we would need to
show that any matching of the heavy pigeons in C can be extended to match also pigeon i
to any of its neighbouring holes without satisfying both predecessor clauses. But this will
not be true, because a non-heavy pigeon can still have some variable xi,j occurring in both
predecessors. The solution to this, introduced in [27], is to do a “lossy counting” of matchings
by associating each partial matching with a linear subspace of some suitable vector space,
and then to consider the span of all matchings ruled out by C. When we accumulate a
“large enough” number of matchings for a pigeon i, then the whole subspace associated to i
is spanned and we can stop counting.

But this leads to a second problem: when studying matchings of the heavy pigeons in C
we might already have assigned pigeons i′1, . . . , i′w that occupy holes where pigeon i might
want to fly. For standard PHP formulas over complete bipartite graphs this is not a problem,
since at least n− w holes are still available and this number is “large enough” in the sense
described above. But for a sparse graph it will typically be the case that w � ∆, and
so it might well be the case that pigeons i′1, . . . , i′w are already occupying all the ∆ holes
available for pigeon i according to G. Although it is perhaps hard to see from our (admittedly
somewhat informal) discussion, this turns out to be a very serious problem, and indeed it is
one of the main technical challenges we need to overcome.

To address this problem we consider not only the heavy pigeons in C, but also any other
pigeons in G that risk becoming far too constrained when the heavy pigeons of C are matched.
Inspired by [4, 3], we define the closure to be a superset S of the heavy pigeons such that
when S and the neighbouring holes of S are removed it holds that the residual graph is still
guaranteed to be a good expander. Provided that G is an excellent expander to begin with,
and that the number of heavy pigeons in C is not too large, it can then be shown that an
analogue of the original argument outlined above goes through.

1.4 Outline of This Paper

We review the necessary preliminaries in Section 2 and introduce two crucial technical tools in
Section 3. The lower bounds for weak graph FPHP formulas are then presented in Section 4,
after which the perfect matching lower bounds follow in Section 5. We conclude with a
discussion of questions for future research in Section 6. We refer to the full-length version of
this paper for any details missing in this extended abstract.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation x (a negative literal). A clause C = `1 ∨ · · · ∨ `w is a disjunction of literals. We
write ⊥ to denote the empty clause without any literals. A CNF formula F = C1 ∧ · · · ∧Cm
is a conjunction of clauses. We think of clauses and CNF formulas as sets: order is irrelevant
and there are no repetitions. We let Vars(F ) denote the set of variables of F .

CCC 2020
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A resolution refutation π of an unsatisfiable CNF formula F , or resolution proof for (the
unsatisfiability of) F , is an ordered sequence of clauses π = (D1, . . . , DL) such that DL = ⊥
and for each i ∈ [L] either Di is a clause in F (an axiom) or there exist j < i and k < i such
that Di is derived from Dj and Dk by the resolution rule

B ∨ x C ∨ x
B ∨ C . (2)

We refer to B∨C as the resolvent of B∨x and C ∨x over x, and to x as the resolved variable.
For technical reasons it is sometimes convenient to also allow clauses to be derived by the
weakening rule

C
D

[C ⊆ D] (3)

(and for two clauses C ⊆ D we will sometimes refer to C as a strengthening of D).
The length L(π) of a refutation π = (D1, . . . , DL) is L. The length of refuting F is

minπ:F `⊥{L(π)}, where the minimum is taken over all resolution refutations π of F . It is
easy to show that removing the weakening rule (3) does not increase the refutation length.

A partial assignment or a restriction on a formula F is a partial function ρ : Vars(F )→
{0, 1}. The clause C restricted by ρ, denoted C�ρ, is the trivial 1-clause if any of the literals
in C is satisfied by ρ and otherwise it is C with all falsified literals removed. We extend this
definition to CNF formulas in the obvious way by taking unions. For a variable x ∈ Vars(F )
we write ρ(x) = ∗ if x /∈ dom(ρ), i.e., if ρ does not assign a value to x.

We write G = (V,E) to denote a graph with vertices V and edges E, where G is always
undirected and without loops or multiple edges. Moreover, for bipartite graphs we write
G = (U

.
∪V,E), where edges in E have one endpoint in the left vertex set U and the other in

the right vertex set V . A partial matching ϕ in G is a subset of edges that are vertex-disjoint.
Let V (ϕ) = {v | ∃e ∈ ϕ : v ∈ e} be the vertices of ϕ and for v ∈ V (ϕ) denote by ϕv the
unique vertex u such that {u, v} ∈ ϕ. A vertex v is covered by ϕ if v ∈ V (ϕ). If ϕ is a partial
matching in a bipartite graph G = (U

.
∪ V,E), we identify it with a partial mapping of U

to V . When referring to the pigeonhole formula, this mapping will also be identified with an
assignment ρϕ to the variables defined by

ρϕ(xi,j) =


∗ if i /∈ dom(ϕ),
0 if i ∈ dom(ϕ) and ϕ(i) 6= j,
1 if i ∈ dom(ϕ) and ϕ(i) = j.

(4)

Given a vertex v ∈ V(G), we write NG(v) to denote the set of neighbours of v in the
graph G and ∆G(v) = |NG(v)| to denote the degree of v. We extend this notion to sets and
denote by NG(S) = {v | ∃ (u, v) ∈ E for u ∈ S} the neighbourhood of a set of vertices S ⊆ V .
The boundary, or unique neighbourhood, ∂G(S) = {v ∈ V \ S : |NG(v) ∩ S| = 1} of a set of
vertices S ⊆ V contains all vertices in V \ S that have a single neighbour in S. We will
sometimes drop the subscript G when the graph is clear from context. We denote by G \ U
the subgraph of G induced by the vertex set V \ U .

A graph G = (V,E) is an (r,∆, c)-expander if all vertives v ∈ V have degree at most ∆
and for all sets S ⊆ V , |S| ≤ r, it holds that |N(S) \ S| ≥ c · |S|. Similarly, G = (V,E) is
an (r,∆, c)-boundary expander if all vertices v ∈ V have degree at most ∆ and for all sets
S ⊆ V , |S| ≤ r, it holds that |∂(S)| ≥ c · |S|. For bipartite graphs, the degree and expansion
requirements only apply to the left vertex set: G = (U

.
∪V,E) is an (r,∆, c)-bipartite expander

if all vertices u ∈ U have degree at most ∆ and for all sets S ⊆ U , |S| ≤ r, it holds that
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|N(S)| ≥ c · |S|, and an (r,∆, c)-bipartite boundary expander if for all sets S ⊆ U , |S| ≤ r, it
holds that |∂(S)| ≥ c · |S|. For bipartite graphs we will only ever be interested in bipartite
notions of expansions, and so which kind of expansion is meant will always be clear from
context. A simple but useful observation is that

|N(S) \ S| ≤ |∂(S)|+ ∆|S| − |∂(S)|
2 = ∆|S|+ |∂(S)|

2 , (5)

since all non-unique neighbours in N(S) \ S have at least two incident edges. This implies
that if a graph G is an (r,∆, (1− ξ)∆)-expander then it is also an (r,∆, (1−2ξ)∆)-boundary
expander.

We often denote random variables in boldface and write X ∼ D to denote that X is
sampled from the distribution D.

For n,m,∆ ∈ N, we denote by G(m,n,∆) the distribution over bipartite graphs with
disjoint vertex sets U = {u1, . . . , um} and V = {v1, . . . , vn} where the neighbourhood of
a vertex u ∈ U is chosen by sampling a subset of size ∆ uniformly at random from V .
A property is said to hold asymptotically almost surely on G(f(n), n,∆) if it holds with
probability that approaches 1 as n approaches infinity.

For the right parameters, a randomly sampled graph G ∼ G(m,n,∆) is asymptotically
almost surely a good boundary expander as stated next.

I Lemma 4. Let m,n and ∆ be large enough integers such that m > n ≥ ∆. Let ξ, χ ∈ R+ be
such that ξ < 1/2, ξ lnχ ≥ 2 and ξ∆ lnχ ≥ 4 lnm. Then for r = n/(∆ ·χ) and c = (1− 2ξ)∆
it holds asymptotically almost surely for a randomly sampled graph G ∼ G(m,n,∆) that G is
an (r,∆, c)-boundary expander.

We will also consider some parameter settings where randomly sampled graphs do not have
strong enough expansion for our purposes, but where we can resort to explicit constructions
as follows.

I Theorem 5 ([18]). For all positive integers m, r ≤ m, all ξ > 0, and all constant ν > 0,
there is an explicit (r,∆, (1 − ξ)∆)-expander G = (U

.
∪ V,E), with |U | = m, |V | = n,

∆ = O
(
((logm)(log r)/ξ)1+1/ν) and n ≤ ∆2 · r1+ν .

I Corollary 6. Let κ, ε, ν be positive constants, κ < 1
8 , and let n be a large enough integer.

Then there is an explicit graph G = (U
.
∪ V,E), with |U | = m = 2Ω(nκ) and |V | ≤ n, that is

an (n
1

1+ν−
4κ
ν ,∆, (1− 2ξ)∆)-boundary expander for ξ = ε logn

logm and ∆ = O(log2(1+1/ν)m).

3 Two Key Technical Tools

In this section we review two crucial technical ingredients of the resolution lower bound
proofs.

3.1 Pigeon Filtering
The following lemma is a generalization of [27, Lemma 6]. The difference is that we have an
additional parameter α (which is implicitly fixed to α = 2 in [27]) that allows us to get a
better upper bound on the numbers ri. This turns out to be crucial for us – we discuss this
in more detail in Section 4.
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I Lemma 7 (Filter lemma). Let m,L ∈ N+ and suppose that w0, α ∈ [m] are such that
w0 > lnL and w0 ≥ α2 ≥ 4. Further, let ~r(1), . . . , ~r(L) be integer vectors, each of the form
~r(`) = (r1(`), . . . , rm(`)). Then there exists a vector ~r = (r1, . . . , rm) of positive integers
ri ≤

⌊ logm
logα

⌋
− 1 such that for all ` ∈ [L] at least one of the following holds:

1.
∣∣{i ∈ [m] : ri(`) ≤ ri}

∣∣ ≥ w0 ,
2.
∣∣{i ∈ [m] : ri(`) ≤ ri + 1}

∣∣ ≤ O(α · w0) .

Proof sketch. We first define a weight function W (~r) for vectors ~r = (r1, . . . , rm) as

W (~r) =
∑
i∈[m]

α−ri . (6)

In order to establish the lemma, it is sufficient to show that there exist constants γ and γ′
and a vector r = (r1, . . . , rm) such that for all ` ∈ [L] the implications

W (~r(`)) ≥ γ′w0

α
⇒ |{i ∈ [m] | ri(`) ≤ ri}| ≥ w0 , (7a)

W (~r(`)) ≤ γ′w0

α
⇒ |{i ∈ [m] | ri(`) ≤ ri + 1}| ≤ γαw0 (7b)

hold. Let t =
⌊ logm

logα
⌋
− 1 and let µ be a probability distribution on [t] given by Pr[rrr = i] =

β · α−i for all i ∈ [t], where β = α−1
1−α−t . Let us write ~r~r~r = (r1r1r1, . . . , rmrmrm) to denote a random

vector with coordinates sampled independently according to µ. We claim that for every
` ∈ [L] the implications (7a) and (7b) are true asymptotically almost surely. The proof of
this fact follows by applying Chernoff bounds as in [27]. A union bound argument over all
vectors in {~r(`) : ` ∈ [L]} for both cases shows that for γ′ ≥ 13 and γ ≥ 5γ′ there exists a
choice of ~r = (r1, . . . , rm) such that both implications (7a) and (7b) hold. J

3.2 Graph Closure
A key concept in our work will be that of a closure of a vertex set, which seems to have
originated in [4, 3]. Intuitively, for an expander graph G, the closure of T ⊆ V (G) is a suitably
small set S that contains T such that G \ S is an expander. In order to have a definition
that makes sense for both expanders and bipartite expanders, we define Vexp(G) to be the
set of vertices of G that expand, that is, if G = (V,E) is an expander then Vexp(G) = V , and
if G = (U

.
∪ V,E) is a bipartite expander then Vexp(G) = U .

I Definition 8 (Closure). For an expander graph G and vertex sets S ⊆ Vexp(G) and
U ⊆ V (G), we say that the set S is (U, r, ν)-contained if |S| ≤ r and

∣∣∂(S) \ U
∣∣ < ν · |S|.

For any expander graph G and any set T ⊆ Vexp(G) of size |T | ≤ r, we will let closurer,ν(T )
denote an arbitrary but fixed maximal set such that T ⊆ closurer,ν(T ) ⊆ Vexp(G) and
closurer,ν(T ) is (N(T ), r, ν)-contained.

Note that the closure of any set T of size |T | ≤ r as defined above does indeed exist,
since T itself is (N(T ), r, ν)-contained.

I Lemma 9. Suppose that G is an (r,∆, c)-boundary expander and that T ⊆ Vexp(G) has
size |T | ≤ k ≤ r. Then |closurer,ν(T )| < k∆

c−ν .

Proof. By definition we have that
∣∣∂(closurer,ν(T ))\N(T )

∣∣ < ν · |closurer,ν(T )|. Furthermore,
since |closurer,ν(T )| ≤ r by definition, we can use the expansion property of the graph to derive
the inequality

∣∣∂(closurer,ν(T ))\N(T )
∣∣ ≥ |∂(closurer,ν(T ))|−|N(T )| ≥ c · |closurer,ν(T )|−k∆.

Note that we also use the fact that the neighbourhood of T is of size at most k∆. The
conclusion follows by combining both statements. J
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Suppose G is an excellent boundary expander and that T ⊆ Vexp(G) is not too large.
Then Lemma 9 shows that the closure of T is not much larger. And if the closure is not too
large, then after removing the closure and its neighbourhood from the graph we are still left
with a decent expander, a fact which will play a key role in the technical arguments in later
sections. The following lemma makes this intuition precise.

I Lemma 10. For G an (r,∆, c)-boundary expander, let T ⊆ Vexp(G) be such that |T | ≤ r
and |closurer,ν(T )| ≤ r/2, let G′ = G \

(
closurer,ν(T ) ∪ N(closurer,ν(T ))

)
and Vexp(G′) =

Vexp(G) ∩ V (G′). Then any set S ⊆ Vexp(G′) of size |S| ≤ r/2 satisfies |∂G′(S)| ≥ ν|S|.

Proof. Suppose the set S ⊆ Vexp(G′) is of size |S| ≤ r/2 and does not satisfy |∂G′(S)| ≥ ν|S|.
Since closurer,ν(T ) is also of size at most r/2, we have that the set (closurer,ν(T ) ∪ S) is
(N(T ), r, ν)-contained in G. But this contradicts the maximality of closurer,ν(T ). J

4 Lower Bounds for Weak Graph FPHP Formulas

We now proceed to establish lower bounds on the length of resolution refutations of functional
pigeonhole principle formulas defined over bipartite graphs. We write G = (VP

.
∪ VH , E) to

denote the graph over which the formulas are defined andM to denote the set of partial
matchings on G (also viewed as partial mappings of VP to VH). Let us start by making more
precise some of the technical notions discussed in the introduction (which were originally
defined in [25]).

For a clause C and a pigeon i we denote the set of holes j with the property that C is
satisfied if i is matched to j by

NC(i) = {j ∈ VH | e = {i, j} ∈ E and ρ{e}(C) = 1} (8)

and we define the ith pigeon degree ∆C(i) of C as ∆C(i) = |NC(i)|. We think of a pigeon i
with large ∆C(i) as a pigeon on which the derivation has not made any significant progress
up to the point of deriving C, since the clause rules out very few holes. The pigeons with
high enough pigeon degree in a clause are the heavy pigeons of the clause as defined next.

I Definition 11 (Pigeon weight, pseudo-width and
(
w0, ~d

)
-axioms). Let C be a clause and

let ~d = (d1, . . . , dm) and ~δ = (δ1, . . . , δm) be two vectors of positive integers such that ~d is
elementwise greater than ~δ. We say that pigeon i is ~d-super-heavy for C if ∆C(i) ≥ di and
that pigeon i is (~d, ~δ)-heavy for C if ∆C(i) ≥ di − δi. When ~d and ~δ are understood from
context, which is most often the case, we omit the parameters and just refer to super-heavy
and heavy pigeons. Pigeons that are not heavy are referred to as light pigeons. The set of
pigeons that are super-heavy for C is denoted by

P~d(C) = {i ∈ [m] | ∆C(i) ≥ di}

and the set of pigeons that are heavy for C is denoted by

P~d,~δ(C) = {i ∈ [m] | ∆C(i) ≥ di − δi} .

The pseudo-width of C is the number of heavy pigeons in C and the pseudo-width of a
resolution refutation π, denoted by w~d,~δ(π), is maxC∈π w~d,~δ(C). Finally, we will refer to
clauses C with precisely w0 super-heavy pigeons, i.e., such that |P~d(C)| = w0, as

(
w0, ~d

)
-

axioms.
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Note that according to Definition 11 super-heavy pigeons are also heavy. Making the
connection back to the introduction, the “fake axioms” mentioned there are nothing other
than

(
w0, ~d

)
-axioms.

Now that we have all the notions needed, let us give a detailed proof outline. Given a
short resolution refutation π of the formula FPHP(G), we use the Filter lemma (Lemma 7) to
get a filter vector ~d = (d1, . . . , dm) such that each clause either has many super-heavy pigeons
or there are not too many heavy pigeons (for an appropriately chosen vector ~δ). Clearly,
clauses that fall into the second case of the filter lemma have bounded pseudo-width. On the
other hand, clauses in the first case may have very large pseudo-width. In order to obtain a
proof of low pseudo-width, these clauses are strengthened to

(
w0, ~d

)
-axioms and added to

a special set A. This then gives a refutation π′ that refutes the formula FPHP(G) ∪ A in
bounded pseudo-width. The following lemma summarizes the upper bound on pseudo-width
that we obtain.

I Lemma 12. Let G = (VP
.
∪ VH , E) be a bipartite graph with |VP | = m and |VH | = n;

let π be a resolution refutation of FPHP(G); let w0, α ∈ [m] be such that w0 > log L(π)
and w0 ≥ α2 ≥ 4, and let ~δ = (δ1, . . . , δm) be defined by δi = ∆G(i) logα

logm . Then there
exists an integer vector ~d = (d1, . . . , dm), with δi < di ≤ ∆G(i) for all i ∈ VP , a set of(
w0, ~d

)
-axioms A with |A| ≤ L(π), and a resolution refutation π′ of FPHP(G)∪A such that

w~d,~δ(π
′) = O(α · w0).

As mentioned above, this upper bound is a straightforward application of Lemma 7. We
defer the formal proof to a later point in this section. What we will need from Lemma 12 is
that a resolution refutation of FPHP(G) in length less than 2w0 can be transformed into a
refutation of FPHP(G) ∪ A in pseudo-width at most O(α · w0).

The second step in the proof is to show that any resolution refutation π of FPHP(G)∪A
requires large pseudo-width. The high-level idea is to define a progress measure on clauses
C ∈ π by counting the number of matchings on P~d,~δ(C) that do not satisfy C. We then show
that in order to increase this progress measure we need large pseudo-width. The following
lemma states the pseudo-width lower bound.

I Lemma 13. Let ξ ≤ 1/4 and m,n, r,∆ ∈ N; let G = (VP
.
∪ VH , E) with |VP | = m and

|VH | = n be an (r,∆, (1− 2ξ)∆)-boundary expander, and let ~δ = (δ1, . . . , δm) be defined by
δi = 4∆G(i)ξ. Suppose that ~d = (d1, . . . , dm) is an integer vector such that δi < di ≤ ∆G(i)
for all i ∈ VP . Let w0 be an arbitrary parameter and A be an arbitrary set of

(
w0, ~d

)
-axioms

with |A| ≤ (1 + ξ)w0 . Then every resolution refutation π of FPHP(G) ∪ A must satisfy
w~d,~δ(π) ≥ rξ/4.

In one sentence, the lemma states that if the set of “fake axioms” A is not too large, then
resolution requires large pseudo-width to refute FPHP(G) ∪ A. Note that this lemma holds
for any filter vector and not just for the one obtained from Lemma 12.

In order to prove Lemma 13, we wish to define a progress measure on clauses that indicates
how close the derivation is to refuting the formula (i.e., it should be small for axiom clauses
but large for contradiction). A first attempt would be to define the progress of a clause C as
the number of ruled-out matchings (i.e., matchings that do not satisfy C) on the pigeons
mentioned by C. This definition does not quite work, but we can refine it by counting
matchings less carefully. Namely, if for a pigeon i there are more than ∆G(i) − di + δi/4
holes to which it can be mapped without satisfying C, then we think of C as ruling out all
holes for this pigeon. Since the pigeon degree of a light pigeon i is at most di − δi, such a
pigeon will certainly have at least ∆G(i)− di + δi ≥ ∆G(i)− di + δi/4 holes to which it can
be mapped, and the “lossy counting” will ensure that all holes are considered as ruled out.
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We realize this “lossy counting” through a linear space Λ, in which each partial matching ϕ
is associated with a subspace λ(ϕ). Roughly speaking, the progress λ(C) of a clause C is
then defined to be the span of all partial matchings that are ruled out by C. We design the
association between matchings and subspaces so that the contradictory empty clause ⊥ has
λ(⊥) = Λ but so that the span of all the axioms span({λ(A) | A ∈ FPHP(G) ∪ A}) is a
proper subspace of Λ. This implies that in a refutation π of FPHP(G) ∪ A there must exist
a resolution step deriving a clause C from clauses C0 and C1 such that the linear space of
the resolvent λ(C) is not contained in span(λ(C0), λ(C1)). But the main technical lemma of
this section (Lemma 20) says that for any derivation in low pseudo-width the linear space
of the resolvent is contained in the span of the linear spaces of the clauses being resolved.
Hence, in order for π to be a refutation it must contain a clause with large pseudo-width,
and this establishes Lemma 13.

So far our argument follows that of Razborov very closely, but it turns out we cannot
realize this proof idea if we only keep track of heavy and light pigeons. Let us attempt a
proof of the claim in Lemma 20 that low-width resolution steps cannot increase the span to
illustrate what the problem is. The interesting case is when there is a pigeon i that is heavy
for C0 or C1 but not for their resolvent C. Then, following Razborov, for any matching ϕ on
the heavy pigeons of C that fails to satisfy C, we need to be able to extend ϕ in at least
∆G(i)− di + δi/4 different ways to a matching including also pigeon i that falsifies either C0
or C1. If this can be done, then we think of C0 and C1 as together ruling out (essentially)
all holes for i, and the linear space associated with C will be contained in the span of the
spaces for C0 and C1. The problem, though, is that ϕ may send all heavy pigeons to the
neighbourhood of pigeon i. In this scenario, there might be very few holes, or even no holes,
to which i can be mapped when extending ϕ, and even our lossy counting will not be able to
pick up enough holes for the argument to go through. We resolve this problem by not only
considering the heavy pigeons but a larger set of relevant pigeons including all pigeons i′
that can become overly constrained when some matching on the heavy pigeons shrinks the
neighbourhood of i′ too much. Formally, the closure of the set of heavy pigeons, as defined
in Definition 8, is the notion that we need.

4.1 Formal Statements of Graph FPHP Formula Lower Bounds
Deferring the proofs of all technical lemmas for now, let us state our lower bounds for graph
FPHP formulas and see how they follow from Lemmas 12 and 13 above.

I Theorem 14. Let m = |U | and n = |V | and suppose that G = (U
.
∪ V,E) is an

(
r,∆,

(
1−

logα
2 logm

)
∆
)
-boundary expander for α ∈ [m] such that 8 ≤ α3

logα = o
(

r
logm

)
. Then resolution

requires length exp
(

Ω
(
r log2 α
α log2 m

))
to refute FPHP(G).

Note that, on the one hand, the larger α is, the more relaxed we can be with respect to
the expansion requirements, and hence the set of formulas to which the lower bound applies
becomes larger. On the other hand, the strength of the lower bound deteriorateswith α.
Hence, we need to choose α carefully to find a good compromise between these two concerns.

Proof of Theorem 14. Let ξ = logα
4 logm and let w0 = ε0rξ

α for some small enough ε0 > 0.
We note that the choice of parameters and the condition on α ensure that 4 ≤ α2 ≤ w0.
Furthermore, in terms of ξ, the graph G is an (r,∆, (1− 2ξ)∆)-boundary expander.

We proceed by contradiction. Suppose π is a resolution refutation with L(π) < 2ε′w0ξ for
a small enough constant ε′ > 0. Applying Lemma 12 we get a set of

(
w0, ~d

)
-axioms A with

|A| ≤ L(π) and a resolution refutation π′ of FPHP(G) ∪ A such that w~d,~δ(π
′) ≤ Kαw0 for

some large enough constant K.
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Note that |A| ≤ L(π) < 2ε′w0ξ ≤ (1 + ξ)w0 for ε′ < 1/2. Applying Lemma 13 to π′ yields
a pseudo-width lower bound of rξ/4. We conclude that

rξ/4 ≤ w~d,~δ(π
′) ≤ Kαw0 = ε0Krξ . (9)

Choosing ε0 <
1

4K yields a contradiction. J

The following corollary summarizes our claims for random graphs.

I Corollary 15. Let m and n be positive integers and let ∆ : N+ → N+ and ε : N+ → [0, 1] be
any monotone functions of n such that n < m ≤ n(ε/16)2 logn and n ≥ ∆ ≥

(
16 logm
ε logn

)2
. Then

asymptotically almost surely resolution requires length exp
(
Ω
(
n1−ε)) to refute FPHP(G) for

G ∼ G
(
m,n,∆

)
.

Proof sketch. We first note that it is sufficient to prove the claim for m = n(ε/16)2 logn and
∆ =

(
(16 logm)/(ε logn)

)2. By applying Lemma 4 for χ = α = nε/4 and ξ = logα
4 logm , we

conclude that asymptotically almost surely, G ∼ G (m,n,∆) is an
(
n1−ε/2,∆, (1 − 2ξ)∆

)
-

boundary expander. Theorem 14 then gives a length lower bound of exp
(
Ω
(
n1−ε)). J

The following two corollaries are simple consequences of Corollary 15, optimizing for
different parameters. The first corollary gives the strongest lower bounds, while the second
minimizes the degree.

I Corollary 16. Let m,n be such that m ≤ no(logn). Then asymptotically almost surely
resolution requires length exp

(
Ω
(
n1−o(1))) to refute FPHP(G) for G ∼ G (m,n, logm).

Proof. Let m = nf(n), where f(n) = o(logn). Applying Corollary 15 for ε = 16
√

f(n)
logn = o(1)

we get the desired statement. J

I Corollary 17 (Restatement of Theorem 3). Let k and n be positive integers and let m = nk

and ε ∈ R+. Then asymptotically almost surely resolution requires length exp
(
Ω
(
n1−ε)) to

refute FPHP(G) for G ∼ G
(
m,n,

( 16k
ε

)2).
Proof. We appeal to Corollary 15 with ∆ =

( 16k
ε

)2, m = nk and ε constant. A short
calculation shows that all conditions are met. J

Our final corollary shows that we can get meaningful lower bounds even for a weakly
exponential number of pigeons. Unfortunately, the statement does not hold for random
graphs.

I Corollary 18. Let κ < 3/2−
√

2 and ε > 0 be constant and n be integer. Then there is a
family of explicitly constructible graphs G with m = 2Ω(nκ) and left degree O

(
log1/

√
κ(m)

)
such that resolution requires length exp

(
Ω
(
n1−2

√
κ(2−

√
κ)−ε)) to refute FPHP(G).

Proof. Let G be the graph from Corollary 6 with ν = 2
√
κ

1−2
√
κ
. An appeal to Theorem 14

using the graph G yields the desired lower bound. J
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4.2 A Pseudo-Width Upper Bound for Graph FPHP Formulas with
Extra Axioms

Let us now prove Lemma 12. For this proof, let us identify VP with [m]. For every clause C
in the refutation π, let ~r(C) = (r1(C), . . . , rm(C)) be the vector where each coordinate is
given by

ri(C) =
⌊

∆G(i)−∆C(i)
δi

⌋
+ 1 . (10)

We apply the filter lemma (Lemma 7) to the set of vectors {~r(C) | C ∈ π}. Denote by
~r = (r1, . . . , rm) a vector as guaranteed to exist by Lemma 7. Let

di = ∆G(i)− dδirie+ 1 . (11)

A short calculation establishes that di is the smallest integer such that
⌊∆G(i)−di

δi

⌋
+ 1 ≤ ri.

Note that every pigeon i ∈ [m] such that ri(C) ≤ ri is super-heavy for C. Also, every
heavy pigeon of a clause C satisfies that ri(C) ≤ ri + 1.

To obtain a refutation π′ that satisfies the conclusions of the lemma, we consider every
clause C ∈ π and either add a strengthening of C to the

(
w0, ~d

)
-axiom set A or conclude

that the pseudo-width of C is small enough that the clause can stay in π′. More concretely,
we make a case distinction whether ~r(C) satisfies case 1 of Lemma 7 or only case 2. In one
case C can be strengthened to a

(
w0, ~d

)
-axiom, while in the other the pseudo-width of C is

bounded:
1. C satisfies

∣∣{i ∈ [m] | ri(C) ≤ ri}
∣∣ ≥ w0: As every pigeon i ∈ [m] with ri(C) ≤ ri also

satisfies ∆C(i) ≥ di, we can strengthen this clause to a
(
w0, ~d

)
-axiom and add it to A.

This reduces the pseudo-width of this clause to w0.
2. C satisfies

∣∣{i ∈ [m] | ri(C) ≤ ri+ 1}
∣∣ ≤ O(α ·w0): As every heavy pigeon always satisfies

ri(C) ≤ ri + 1, the pseudo-width of C is O(α · w0).
This concludes the proof as |A| ≤ L(π) and the pseudo-width of π′ is O(α·w0) by construction.

4.3 A Pseudo-Width Lower Bound for Graph FPHP Formulas with
Extra Axioms

We continue to the proof of Lemma 13. Using Definition 8, we define the set of relevant
pigeons of a clause C as

closure(C) = closurer,(1−3ξ)∆(P~d,~δ(C)) , (12)

where P~d,~δ(C) denotes the set of (~d, ~δ)-heavy pigeons for C as defined in Definition 11. By
definition, the closure of a set T contains T itself but is only defined if |T | ≤ r. However,
if
∣∣P~d,~δ(C)

∣∣ ≥ r ≥ rξ/4 then we already have the lower bound claimed in the lemma, and
so we may assume that the closure is well defined for all clauses in the refutation π. This
implies, in particular, that for every clause C ∈ π we have P~d,~δ(C) ⊆ closure(C).

Let us next construct the linear space Λ and describe how matchings are mapped into it.
Fix a field F of characteristic 0 and for each pigeon i ∈ VP let Λi be a linear space over F
of dimension ∆G(i)− di + δi/4. Let Λ be the tensor product Λ =

⊗
i∈VP Λi and denote by

λi : VH 7→ Λi a function with the property that any subset of holes J ⊆ VH of size at least
dim(Λi) spans Λi. In other words, for J as above we have that Λi = span(λi(j) : j ∈ J).
This is how we will realize the idea of “lossy counting.” For J ⊆ VH such that |J | ≤ dim(Λi)
we have exact counting dim(span({λi(j) | j ∈ J})) = |J |, but when |J | > dim(Λi) gets large
enough we have dim(span({λi(j) | j ∈ J})) = dim(Λi).
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In order to map functions VP 7→ VH into Λ, we define λ : V VPH 7→ Λ by λ(j1, . . . , jm) =⊗
i∈VP λi(ji), where will we abuse notions slightly in that we identify a vector with the

1-dimensional space spanned by this vector. For a partial function ϕ : VP 7→ VH , we let λ(ϕ)
be the span of all total extensions of ϕ (not necessarily matchings), or equivalently

λ(ϕ) =
⊗

i∈dom(ϕ)

λi(ϕi)⊗
⊗

i6∈dom(ϕ)

Λi . (13)

Recall thatM is the set of all partial matchings on the graph G and that we interchangeably
think of partial matchings as partial functions ϕ : VP → VH or as Boolean assignments ρϕ as
defined in (4). For each clause C, we are interested in the partial matchings ϕ ∈ M with
domain dom(ϕ) = closure(C) such that ρϕ does not satisfy C. We refer to the set of such
matchings as the zero space of C and denote it by

Z(C) = {ϕ ∈M | dom(ϕ) = closure(C) ∧ ρϕ(C) 6= 1} . (14)

We associate C with the linear space

λ(C) = span({λ(ϕ) | ϕ ∈ Z(C)}) . (15)

Note that contradiction is mapped to Λ, i.e., λ(⊥) = Λ.
We assert that the span of the axioms span({λ(A) | A ∈ FPHP(G) ∪ A}) is a proper

subspace of Λ.

I Lemma 19. If |A| ≤ (1 + ξ)w0 , then span({λ(A) | A ∈ FPHP(G) ∪ A}) ( Λ.

Accepting this claim without proof for now, this implies that in π there is some resolution
step deriving C from C0 and C1 where the subspace of the resolvent is not contained in the
span of the subspaces of the premises, or in other words λ(C) * span(λ(C0), λ(C1)). Our
next lemma, which is the heart of the argument, says that this cannot happen as long as the
closures of the clauses are small.

I Lemma 20. Let C be a clause derived from clauses C0 and C1. If it is the case that
max{|closure(C0)|, |closure(C1)|, |closure(C)|} ≤ r/4, then λ(C) ⊆ span(λ(C0), λ(C1)).

Since contradiction cannot be derived while the closure is of size at most r/4, any
refutation π must contain a clause C with |closure(C)| > r/4. But then Lemma 9 implies
that C has pseudo-width at least rξ/4, and Lemma 13 follows. All that remains for us is to
establish Lemmas 19 and 20.

Proof of Lemma 19. We need to show that the axioms FPHP(G) ∪A do not span all of Λ.
We start with the axioms in FPHP(G).

Let A be pigeon axiom P i as in (1a) or a functionality axiom F ij,j′ as in (1c). Note that i
is a heavy pigeon for A. Clearly, there are no pigeon-to-hole assignments for pigeon i that
do not satisfy A. Thus there are no matchings on closure(A) that do not satisfy A. We
conclude that λ(A) = ∅. If instead A is a hole axiom Hi,i′

j as in (1b), then we can observe
that ∆G(i) − 1 ≥ di − δi since δi = 4ξ∆G(i) ≥ 2ξ∆ ≥ 1 (by boundary expansion). This
implies that A has two heavy pigeons. Observe that there are no matchings on these two
pigeons that do not satisfy A. Thus Z(A) = ∅ and we conclude that λ(A) = ∅.

Now consider the
(
w0, ~d

)
-axioms in A. We wish to show that any A ∈ A can only span a

very small fraction of Λ. We can estimate the the number of dimensions λ(A) spans by

dimλ(A) ≤
∏

i/∈P~d(A)

dim Λi ·
∏

i∈P~d(A)

(∆G(i)− di) . (16)
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closure(C)

closure(C1)

closure(C0)

D
dom(ϕ′)

Figure 1 Depiction of relations between closure(C), closure(Ci), i = 1, 2, dom(ϕ′) and D in proof
of Lemma 20.

Hence the fraction of the space Λ that A may span is bounded by

dimλ(A)
dim Λ ≤

∏
i∈P~d(A)

∆G(i)− di
∆G(i)− di + δi/4

≤ (1− ξ)w0 . (17)

As |A| ≤ (1 + ξ)w0 we can conclude that not all of Λ is spanned by the axioms. J

Proof of Lemma 20. For conciseness of notation, let us write S01 = closure(C0)∪closure(C1)
and S = closure(C). In order to establish the lemma, we need to show for all ϕ ∈ Z(C) that

λ(ϕ) ⊆ span(λ(C0), λ(C1)) . (18)

To comprehend the argument that will follow below, it might be helpful to refer to the
illustration in Figure 1.

Denote by ϕ′ the restriction of ϕ to the domain S ∩ S01 and note that C is not satisfied
under ρϕ′ . Also, observe that if a matching η extends a matching η′, then λ(η) is contained
in λ(η′). This is so since for any pigeon i ∈ dom(η) \ dom(η′) we have from (13) that η′
picks up the whole subspace Λi while η only gets a single vector. Thus, if we can show that
λ(ϕ′) ⊆ span(λ(C0), λ(C1)), then we are done as ϕ extends ϕ′ and hence λ(ϕ) ⊆ λ(ϕ′).

Let D = S01 \ S and denote byMD the set of matchings that extend ϕ′ to the domain
D and do not satisfy C. Since each matching ψ ∈MD fails to satisfy C, by the soundness of
the resolution rule we have that it also fails to satisfy either C0 or C1. Assume without loss
of generality that ψ does not satisfy C0 and denote by ψ′ the restriction of ψ to the domain
of closure(C0). From (14) we see that ψ′ ∈ Z(C0) and therefore λ(ψ) ⊆ λ(ψ′) ⊆ λ(C0).

So far we have argued that for all ψ ∈MD it holds that λ(ψ) ⊆ span(λ(C0), λ(C1)). Let
λ(MD) = span(λ(ψ) | ψ ∈ MD). If we can show that the set of matchings MD is large
enough for λ(MD) = λ(ϕ′) to hold, then the lemma follows. In other words, we want to
show that λ(MD) projected to ΛD =

⊗
i∈D Λi spans all of the space ΛD .

To argue this, note first that D is completely outside the closure(C). Furthermore, by
assumption we have |closure(C)| ≤ r/4 and |D| ≤ |S01| ≤ r/2. An application of Lemma 10
now tells us that

|∂G\(closure(C)∪N(closure(C)))(D)| ≥ (1− 3ξ)∆|D| . (19)
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By an averaging argument, there must exist a pigeon i1 ∈ D that has more than (1− 3ξ)∆
unique neighbours in ∂G\(closure(C)∪N(closure(C)))(D). The same argument applied to D \ {i1}
show that some pigeon i2 has more than (1−3ξ)∆ unique neighbours on top of the neighbours
reserved for pigeon i1. Iterating this argument, we derive by induction that for each pigeon
i ∈ D we can find (1− 3ξ)∆ distinct holes in N(D). Since all pigeons in D are light in C, it
follows that at most di − δi mappings of pigeon i can satisfy the clause C. Hence, there are
at least

(1− 3ξ)∆− (di − δi) ≥ (1− 3ξ)∆G(i)− di + 4ξ∆G(i) ≥ ∆G(i)− di + δi/4 (20)

many holes to which each pigeon in D can be sent, independently of all other pigeons in D,
without satisfying C. As we have that dim(Λi) = ∆G(i)−di+ δi/4, we conclude that λ(MD)
projected to ΛD spans the whole space. This concludes the proof of the lemma. J

5 Lower Bounds for Perfect Matching Principle Formulas

In this section, we show that the perfect matching principle formulas defined over even highly
unbalanced bipartite graphs require exponentially long resolution refutations if the graphs
are expanding enough.

Just as in [28], our proof is by an indirect reduction to the FPHP lower bound, and
therefore there is a significant overlap in concepts and notation with Section 4. However,
since there are also quite a few subtle shifts in meaning, we restate all definitions in full
below to make the exposition in this section self-contained and unambiguous.

We first review some useful notions from [25]. Let G = (V,E) denote the graph over which
the formulas are defined. For a clause C and a vertex v ∈ V (G), let the clause-neighbourhood
of v in C, denoted by NC(v), be the vertices u ∈ V (G) with the property that C is satisfied
if v is matched to u, that is,

NC(v) = {u ∈ V | e = {u, v} ∈ E and ρ{e}(C) = 1} . (21)

For a set V ⊆ V (G) let NC(V ) be the union of the clause-neighbourhoods of the vertices in
V , i.e., NC(V ) =

⋃
v∈V NC(v) and let the vth vertex degree of C be

∆C(v) = |NC(v)| . (22)

We think of a vertex v with large degree ∆C(v) as a vertex on which the derivation has
not made any progress up to the point of deriving C, since the clause rules out very few
neighbours. The vertices with high enough vertex degree in a clause are the heavy vertices of
the clause as defined next.

I Definition 21 (Vertex weight, pseudo-width and
(
w0, ~d

)
-axioms). Let ~d = (d1, . . . , dm+n)

and ~δ = (δ1, . . . , δm+n) be two vectors such that ~d is elementwise greater than ~δ. We say that
a vertex v is ~d-super-heavy for C if ∆C(v) ≥ dv and that vertex v is (~d, ~δ)-heavy for C if
∆C(v) ≥ dv − δv. When ~d and ~δ are understood from context we omit the parameters and
just refer to super-heavy and heavy vertices. Vertices that are not heavy are referred to as
light vertices. The set of vertices that are super-heavy for C is denoted by

V~d(C) = {v ∈ V | ∆C(v) ≥ dv} (23)

and the set of heavy vertices for C is denoted by

V~d,~δ(C) = {v ∈ V | ∆C(v) ≥ dv − δv} . (24)
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The pseudo-width w~d,~δ(C) = |V~d,~δ(C)| of a clause C is the number of heavy vertices in it,
and the pseudo-width of a resolution refutation π is w~d,~δ(π) = maxC∈π w~d,~δ(C). We refer to
clauses C with precisely w0 super-heavy vertices as

(
w0, ~d

)
-axioms.

To a large extent, the proof of the lower bounds for perfect matching formulas follows
the general idea of the proof of Theorem 14: given a short refutation we first apply the filter
lemma to obtain a refutation of small pseudo-width; we then prove that in small pseudo-width
contradiction cannot be derived and can thus conclude that no short refutation exists. In
more detail, given a short resolution refutation π, we use the filter lemma (Lemma 7) to get
a filter vector ~d = (d1, . . . , dm+n) such that each clause either has many super-heavy vertices
or not too many heavy vertices (for an appropriately chosen vector ~δ). Clearly, clauses that
fall into the second case of the filter lemma have bounded pseudo-width. Clauses in the
first case, however, may have very large pseudo-width. In order to obtain a proof of low
pseudo-width, these latter clauses are strengthened to

(
w0, ~d

)
-axioms and added to a special

set A. This then gives a refutation π′ that refutes the formula PM (G) ∪ A in bounded
pseudo-width as stated in the next lemma.

I Lemma 22. Let G = (VL
.
∪ VR, E) be a bipartite graph with |VL| = m and |VR| = n; let

π be a resolution refutation of PM (G); let w0, α ∈ [m+ n] be such that w0 > log L(π) and
w0 ≥ α2 ≥ 4, and let ~δ = (δ1, . . . , δm+n) be defined by δv = ∆G(v) logα

log(m+n) for v ∈ V (G). Then
there exists an integer vector ~d = (d1, . . . , dm+n), with δv < dv ≤ ∆G(v) for all v ∈ V (G), a
set of

(
w0, ~d

)
-axioms A with |A| ≤ L(π), and a resolution refutation π′ of PM (G) ∪ A such

that L(π′) ≤ L(π) and w~d,~δ(π
′) ≤ O(α · w0).

The proof of the above lemma is omitted as it is syntactically equivalent to the proof
of Lemma 12. Until this point, we have almost mimicked the proof of Theorem 14. The
main differences will appear in the proof of the counterpart to Lemma 22, which states a
pseudo-width lower bound.

I Lemma 23. Assume for ξ ≤ 1/64 and m,n, r,∆ ∈ N that G = (VL
.
∪ VR, E) is

an (r,∆, (1− 2ξ) ∆)-boundary expander with |VL| = m, |VR| = n, ∆ ≥ logm/ξ2, and
min{∆G(v) : v ∈ VR} ≥ r/ξ. Let ~δ = (δv | v ∈ V (G)) be defined by δv = 64∆G(v)ξ and
suppose that ~d = (dv | v ∈ V (G)) is an integer vector such that δv < dv ≤ ∆G(v) for
all v ∈ V (G). Fix w0 such that 64 ≤ w0 ≤ rξ − logn and let A be an arbitrary set of(
w0, ~d

)
-axioms with |A| ≤ (1 + 16ξ)w0/8. Then every resolution refutation π of PM (G) ∪ A

has either length L(π) ≥ 2w0/32 or pseudo-width w~d,~δ(π) ≥ rξ.

The proof of the above lemma is based on a sort of reduction to the FPHP(G) case.
The idea, due to Razborov [28], is to first pick a partition of the vertices of G that looks
random to every clause in the refutation and then simulate the FPHP(G) lower bound on this
partition. In our setting, however, this process gets quite involved. Already implementing
the partition idea of Razborov is non-trivial: for a fixed clause C some vertices that are light
may be super-heavy with respect to the partition, and we do not have an upper bound on the
pseudo-width any longer. The insight needed to solve this issue is to show that by expansion
there are not too many such vertices per clause, and then adapt the closure definition to
take these vertices into account.

Another issue we run into is that the span argument from Section 4 cannot be applied
to all the vertices in the graph. Instead, for the vertices in VR, we need to resort to the
span argument from [27]. Moreover, vertices in the neighbourhood of D (as defined in the
proof of Lemma 20) may already be matched and we are hence unable to attain enough
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matchings. Our solution is to consider a “lazy” edge removal procedure from the original
matching, which with a careful analysis can be shown to circumvent the problem. We refer
to the full-length version of this paper for the proof of Lemma 23.

5.1 Formal Statements of Perfect Matching Formula Lower Bounds
Let us state the lower bounds we obtain for the perfect matching formulas.

I Theorem 24. Let G = (U
.
∪ V,E) be a bipartite graph with m = |U | and n = |V |. Suppose

that G is an (r,∆, (1− 2ξ) ∆)-boundary expander for ∆ ≥ log(m+n)
ξ2 and ξ = logα

64 log(m+n)

where α ≥ 2 and α3

logα = o
(

r
log(m+n)

)
, which furthermore satisfies the degree requirement

min{∆G(v) : v ∈ V } ≥ r/ξ. Then resolution requires length exp
(

Ω
(

r log2 α
α log2(m+n)

))
to refute

the perfect matching formula PM (G) defined over G.

We remark that this theorem also holds if we replace the minimum degree constraint
of V with an expansion guarantee from V to U . We state the theorem in the above form
as we want to apply it to the graphs from [18] for which we have no expansion guarantee
from V to U .

Proof of Theorem 24. Let w0 = ε0rξ
α , for some small enough ε0 > 0 . Suppose for the sake of

contradiction that π is a resolution refutation of PM (G) such that L(π) < (1+16ξ)w0/8. Since
w0 > log L(π), by Lemma 22 we have that there exists an integer vector ~d = (d1, . . . , dm+n),
with δv < dv ≤ ∆G(v), a set of

(
w0, ~d

)
-axioms A with |A| ≤ L(π) < (1 + 16ξ)w0/8, and a

resolution refutation π′ of PM (G) ∪ A such that L(π′) ≤ L(π) and w~d,~δ(π
′) ≤ Kαw0 for

some large enough constant K. Since L(π′) < (1 + 16ξ)w0/8 ≤ 2w0/32, by Lemma 23, we
have that w~d,~δ(π

′) ≥ rξ ≥ αw0/ε0. Choosing ε0 < 1/K, we get a contradiction and, thus,

L(π) ≥ (1 + 16ξ)w0/8 = exp
(

Ω
(
rξ2

α

))
. J

As in Section 4, we have a general statement for random graphs.

I Corollary 25. Let m and n be positive integers, let ∆ : N+ → N+ and ε : N+ →
[0, 1] be any monotone functions of n such that n3 < m ≤ n(ε/128)2 logn and n ≥ ∆ ≥
log(m + n)

(
128 log(m+n)

ε logn

)2
. Then asymptotically almost surely resolution requires length

exp
(
Ω
(
n1−ε)) to refute PM (G) for G ∼ G

(
m,n,∆

)
.

Proof sketch. It suffices to prove the claim for m = n(ε/128)2 logn and ∆ = log(m + n) ·(
(128 log(m+ n))/(ε logn)

)2. By applying Lemma 4 for χ = α = nε/4 and ξ = logα
64 logm , we

conclude that asymptotically almost surely, G ∼ G (m,n,∆) is an
(
n1−ε/2,∆, (1 − 2ξ)∆

)
-

boundary expander. Furthermore, by the Chernoff inequality asymptotically almost surely
all right vertices have degree at least n · 64 log(m+n)

ε logn . Thus, Theorem 24 gives a length lower
bound of exp

(
Ω
(
n1−ε)) as claimed. J

The following corollary is a simple consequence of Corollary 25, optimizing for the
strongest lower bounds.

I Corollary 26 (Restatement of Theorem 1). Let m,n be such that m ≤ no(logn). Then
asymptotically almost surely resolution requires length exp

(
Ω
(
n1−o(1))) to refute PM (G) for

G ∼ G
(
m,n, 8 log2m

)
.
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Proof. Let m = nf(n), where f(n) = o(logn). Applying Corollary 25 for ε = 128
√

f(n)
logn =

o(1), we get the desired statement. J

Our final corollary shows that we even get meaningful lower bounds for highly unbalanced
bipartite graphs. As was the case for FPHP(G), the required expansion is too strong to hold
for random graphs with such large imbalance, but does hold for explicitly constructed graphs
from [18].

I Corollary 27 (Restatement of Theorem 2). Let κ < 3/2−
√

2 and ε > 0 be constants, and let
n be an integer. Then there is a family of (explicitly constructible) graphs G with m = 2Ω(nκ)

and left degree O(log1/
√
κ(m)), such that resolution requires length exp(Ω(n1−2

√
κ(2−

√
κ)−ε))

to refute PM (G).

Proof. Let G be the graph from Corollary 6 with ν = 2
√
κ

1−2
√
κ
. In order to apply Theorem 24

we need to satisfy the minimum right degree constraint. A simple way of doing this is by
adding n2 edges to G such that each vertex on the right has exactly n incident edges added
while each vertex on the left has at most one incident edge added. This will leave us with
a graph which has large enough right degree while each left degree increased by at most
one. The additional edges may reduce the boundary expansion a bit, but a short calculation
shows that by choosing ξ = logα

128 log(m+n) in Corollary 6, we can still guarantee the needed
boundary expansion for Theorem 24. The corollary bound follows. J

6 Concluding Remarks

In this work, we extend the pseudo-width method developed by Razborov [27, 28] for proving
lower bounds on severely overconstrained CNF formulas in resolution. In particular, we
establish that pigeonhole principle formulas and perfect matching formulas over highly
unbalanced bipartite graphs remain exponentially hard for resolution even when these graphs
are sparse. This resolves an open problem in [28].

The main technical difference in our work compared to [27, 28] goes right to the heart
of the proof, where one wants to argue that resolution in small pseudo-width cannot make
progress towards a derivation of contradiction. Here Razborov uses the global symmetry
properties of the formula, whereas we resort to a local argument based on graph expansion.
This argument needs to be carefully combined with a graph closure operation as in [4, 3]
to ensure that the residual graph always remains expanding as matched pigeons and their
neighbouring holes are removed. It is this change of perspective that allows us to prove lower
bounds for sparse bipartite graphs with the size m of the left-hand side (i.e., the number of
pigeons) varying all the way from linear to exponential in the size n of the right-hand size
(i.e., the number of pigeonholes), thus covering the full range between [8] on the one hand
and [23, 27, 28] on the other.

One shortcoming of our approach is that the sparse expander graphs are required to have
very good expansion – for graphs of left degree ∆, the size of the set of unique neighbours of
any not too large left vertex set has to scale like (1− o(1))∆. We would like to prove that
graph PHP formulas are hard also for graphs with constant expansion (1 − ε)∆ for some
ε > 0, but there appear to be fundamental barriers to extending our lower bound proof to
this setting.

Another intriguing problem left over from [28] is to determine the true resolution com-
plexity of weak PHP formulas over complete bipartite graphs Km,n as m→∞. The best
known upper bound from [11] is exp

(
O
(√
n logn

))
, whereas the lower bound in [27, 28] is
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exp
(
Ω
(

3
√
n
))
. It does not seem unreasonable to hypothesize that exp

(
Ω
(

2
√
n
))

should be the
correct lower bound (ignoring lower-order terms), but establishing such a lower bound again
appears to require substantial new ideas.

We believe that one of the main contributions of our work is that it again demonstrates
the power of Razborov’s pseudo-width method, and we are currently optimistic that it could
be useful for solving other open problems for resolution and other proof systems.

For resolution, an interesting question mentioned in [28] is whether pseudo-width can be
useful to prove lower bounds for formulas that encode the Nisan–Wigderson generator [3, 29].
Since the clauses in such formulas encode local constraints, we hope that techniques from
our paper could be helpful. Another long-standing open problem is to prove lower bounds
on proofs in resolution that k-clique free sparse graph do not contain k-cliques, where the
expected length lower bound would be nΩ(k). Here we only know weakly exponential lower
bounds for quite dense random graphs [6, 21], although an asymptotically optimal nΩ(k)

lower bound has been established in the sparse regime for the restricted subsystem of regular
resolution [5].

Finally, we want to highlight that for the stronger proof system polynomial calculus [2, 14]
no lower bounds on proof size are known for PHP formulas with m ≥ n2 pigeons. It would
be very interesting if some kind of “pseudo-degree” method could be developed that would
finally lead to progress on this problem.
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