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Preface

In this book you, the reader, are going to see some results on the space complexity of
some propositional proof systems. This book is a revised version of my PhD thesis1

and indeed it is not intended to be a survey of all the results known on the space
complexity of propositional proof systems. It will rather be a long walk touching
some topics in proof complexity, mostly about space of course, but not exclusively.
Hopefully this could be used too as a rather reader-friendly exposition of some game
theoretic methods used in proof complexity. This is indeed an underground theme
connecting most of the results we show. Of course there will be some survey(-ish)
parts but mainly the focus will be on the new game theoretic techniques and their
application to the analysis of the space complexity of propositional proof systems.
That is the results arising from my PhD thesis [Bon15] and some earlier works
[BG13, BGT14, BT15, BG15, BBG+17, BT16a, BT16b, BGT16, Bon16].

This is a work about proof complexity, so let’s start by introducing it informally.
Proof complexity is a research area that studies the concept of complexity from the
point of view of logic. In particular, in proof complexity we are interested in questions
such as: “how difficult is it to prove a theorem?” Or, more precisely, given a formal
system, we are interested in measuring the complexity of a theorem, that is answering
questions such as “what is the shortest proof of the theorem in a given formal system?”
This mirrors questions in computational complexity about, for example, the number
of steps that a Turing machine needs to compute a given function f ; or the size of
circuits needed to compute f .2

In this book we investigate the space complexity of propositional proof systems,
so what is the space of a proof? We could state this question pictorially as “what
is the smallest blackboard a teacher needs to present the proof of a theorem to a
class of students?”3 As before, this notion is analogous to the space complexity

1 This revised version is due to the fact that my thesis was awarded “Best Italian PhD Thesis in
Theoretical Computer Science” for the year 2016 by the Italian chapter of the European Association
for Theoretical Computer Science (EATCS).
2 On the other hand, we could also measure the complexity of a theorem as the strength of a theory
needed to prove the theorem. This also has a counterpart in computational complexity, it is linked
with questions about the smallest complexity class to which a given function belongs.
3 We suppose here that the students can understand just proofs written on the blackboard in some
given formal system and they do not have any additional memory except the minimal one to
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in the context of uniform computations, measured, for example, as the size of a
working-tape needed by a Turing machine to compute a given function.

Propositional proof complexity, that is the complexity of propositional proofs,
plays a role in the context of feasible proofs as important as the role of Boolean
circuits in the context of efficient computations. Although the original motivations to
study the complexity of propositional proofs came from proof-theoretical questions
about first-order theories, it turns out that, essentially, the complexity of propositional
proofs deals with the following question: “what can be proved by a prover with
bounded computational abilities?” For example, if its computational abilities are lim-
ited to small circuits from some circuit class. Hence, propositional proof complexity
mirrors non-uniform computational complexity and indeed there is a very productive
cross-fertilization of techniques between the two fields. Our understanding of propo-
sitional proof systems is, unfortunately, similar to the general situation in complexity
theory. In both fields we can prove lower bounds in very special cases and indeed
there are several major open problems that are very basic, way more basic than the
well-known question P

?
= NP. The situation is similar in the sense that we can prove

super-polynomial lower bounds on the length of proofs only for restricted proof
systems. Indeed, by a result of [CR79], proving super-polynomial lower bounds on
the length of proofs for every propositional proof system is equivalent to showing
that NP �= coNP, which in turn is one of the open and very important problems in
computational complexity. Propositional proof complexity is important also from
the practical point of view. The implementations of state-of-the-art SAT algorithms
ultimately rely on rather simple propositional proof systems. Hence the study of
those systems helps in clarifying the limitations of such algorithms that are essential
in various aspects of computer science, cf. [Nor15].

We will focus on the space complexity of two particular proof systems: resolution,
a well studied proof system that is at the core of state-of-the-art SAT-solvers; and
polynomial calculus, a proof system that uses polynomials to refute propositional
formulas that are contradictions. We will show some generic combinatorial techniques
to prove space lower bounds in both those systems and then we will apply those
techniques to show concrete space lower bounds for refutations of several particular
(unsatisfiable) propositional formulas. Since the very first exponential size lower
bound for resolution size in [Hak85], game theoretic methods and combinatorial
characterisations of hardness measures have a long history in proof complexity. This
book could be seen as the latest contribution to this topic.

For resolution the new techniques we introduce allowed for the first time to
obtain—in a quite easy way actually—lower bounds for the space of proofs when the
space is measured as the total number of variables to be kept in memory (total space).
For polynomial calculus the techniques we introduce—which is more involved than
those for resolution—allow us to address space lower bounds when the space takes
into account the number of distinct monomials to be kept in memory (monomial
space). Notably those techniques allow us to prove, among other results, that almost

understand the content of the blackboard. Moreover the teacher has to write with fonts of a fixed
size.
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all k-CNF formulas are hard with respect to total space in resolution and monomial
space in polynomial calculus. That is we prove asymptotically optimal lower bounds
for the monomial space (and total space in resolution) for random k-CNF formulas
in n variables and a linear number of clauses. This was an open problem mentioned
for the first time in [BS01, ABRW02] and since then reported many times in the
literature.

Book Structure After an introduction to propositional proof complexity (Chap. 1),
this work consists of 3 parts. Each chapter ends with a section containing open
questions and a History section collecting some facts about the main theorems of
the chapter and how they fit in the previous literature.

In Part I there are two chapters on resolution: one containing results already
known in the literature before this work (Chap. 2) and one just focused on space in
resolution (Chap. 3). More precisely on the combinatorial techniques to prove total
space lower bounds. Then we move to polynomial calculus and its space complexity
(Chap. 4). The focus will be now on the combinatorial technique to prove monomial
space lower bounds.

In Part II we collect the main applications of the techniques we built previously.
First there is a short chapter about the proof complexity and space complexity of the
pigeon principles (PHPm

n and its variations), cf. Chap. 5. Then there is an interlude
on some new type of games, the cover games, defined on bipartite graphs (Chap. 6).
This chapter is essentially independent from the rest of the book and it collects some
results on graph theory. The motivation behind this chapter though is that the results
in it will be needed in Chap. 7 to prove the space lower bound for random k-CNF
formulas and other graph-based propositional formulas.

In the last part, Part III, we analyse the size of resolution proofs in connection
with the Strong Exponential Time Hypothesis (SETH) in complexity theory. More
precisely we prove strong size lower bounds for a restricted version of resolution we
call δ -regular resolution. Although not directly related to space, the results we show
here rely on some combinatorial characterisations and games analogous to the one
used to prove space lower bounds.
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Marc Vinyals, Susanna Figueiredo de Rezende, Navid Talebanfard, Tony Huynh,
Paul Wollan, Pavel Pudlák, Jan Krajíček, Neil Thapen, Olaf Beyersdorff, Rahul
Santhanam, Albert Atserias, Jacobo Torán, and Yuval Filmus.
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Notation

In this section we give the notation that shall be standard throughout this book.

Sets

We use the standard set-theoretic notations.

• |S| is the size of the set S
• [n] is the set of natural numbers {1, . . . ,n}
• /0 is the empty set
• A∪B = {x : x ∈ A or x ∈ B}
• A∩B = {x : x ∈ A and x ∈ B}
• A∪̇B = A∪B in the case A∩B = /0
• A\B = {x : x ∈ A and x �∈ B}
• A ⊆ B if every element of A is also an element of B
• (a,b) is an ordered pair of elements
• A×B = {(x,y) : x ∈ A and y ∈ B}
• (S

2

)
is the set of subsets of the set S of size 2

Arithmetic

As customary, N is the set of all natural numbers, R is the set of real numbers, F is a
generic field and Fp is a finite Galois field with p elements. Given a field F, char(F)
is the smallest integer a such that for every element x of F, x+ · · ·+ x︸ ︷︷ ︸

a

= 0.

If not stated otherwise e will be the base of natural logarithms, e = 2.718 . . .
We denote as ln(·) the natural logarithm and with log(·) the logarithm over base 2.
Given a real number x, �x	 is the largest integer smaller or equal to x. The binomial
coefficient

(m
n

)
is m!

n!(m−n)! . We use sometimes the inequality
(m

n

)
�
( em

n

)n.
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Asymptotic notations. Given two functions f ,g from N to N we say that f =O(g) if
there are some absolute constants c1,c2 such that for every n ∈N, f (n)� c1g(n)+c2.
We say that f = Ω (g) if g = O( f ) and f =Θ (g) if both f = Ω (g) and f = O(g).
We say that f = Õ(g) if there exists a k ∈ N such that f = O

(
g logk g

)
. We say that

f = o(g) if f (n)
g(n) → 0 as n → ∞. We say that f = ω(g) if g = o( f ). We say that f is

super-polynomial in n if f = nω(1).

Logic

Propositional formulas. A Boolean variable x and its negation ¬x are sometimes
denoted respectively as x1 and x0. A literal � is a Boolean variable or the negation
of a Boolean variable. A disjunction of literals

∨
i∈I �i is a clause. Its size |C| is the

number of distinct literals in C. If |C|� k we say that C is a k-clause. A conjunction
of clauses {Ci : i ∈ [m]} is a formula in Conjunctive Normal Form (CNF formula)
and it is denoted also as C1 ∧ ·· · ∧Cm. If all the clauses are k-clauses then we say
that the formula is a k-CNF formula. Given a CNF formula F , the set of Boolean
variables mentioned in F is vars(F). The number of clauses mentioned in the CNF
formula F is |F |.

We often consider families of formulas (Fn)n∈N where usually n = |vars(Fn)| or
n is polynomially related to |vars(Fn)|. With a slight abuse of notation a family of
formulas (Fn)n∈N is denoted simply as Fn.
Boolean assignments. Given a set of variables X , a Boolean assignment over X
is a map α : X → {0,1,�}, where X is a set of variables. The domain of α is
dom(α) = α−1({0,1}). We say that α is assigning a value to x if and only if
x ∈ dom(α). With λ we denote the unique Boolean assignment with empty domain.

Given a Boolean assignments α over X and α ′ over X ′, their union α ∪α ′ is the
following Boolean assignment over X ∪X ′

α ∪α ′(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α(x) if x ∈ dom(α)\dom(α ′)
α ′(x) if x ∈ dom(α ′)\dom(α)

α(x) if x ∈ dom(α)∩dom(α ′) and α(x) = α ′(x)
� otherwise .

(0.1)

Given a Boolean assignment α over X and Y ⊆ X , the restriction α�Y is the
Boolean assignment

α�Y (x) =

{
α(x) if x ∈ Y
� otherwise .

(0.2)

Given two Boolean assignments α and α ′, we say that α ⊆ α ′, if α ′�dom(α) = α .
Evaluation of CNF formulas. Given a CNF formula F and a Boolean assignment
α over vars(F), we can apply α to F obtaining a new CNF formula F�α in this way:
for each variable x ∈ dom(α) substitute x in F with the value α(x), otherwise leave
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x untouched. Then simplify the resulting formula with the usual rules: 0∨C ≡ C,
1∨C ≡ 1, 0∧C ≡ 0, 1∧C ≡ C. We say that α satisfies F if F�α = 1. We denote
this as α � F . Similarly, for a family A of Boolean assignments we write A � F if for
each α ∈ A, α � F .

Algebra

Given a field F and a set of variables X , the ring F[X ] is the ring of polynomials
in the variables X with coefficients in F. An ideal I in F[X ] is any subset of F[X ]
closed under addition, p,q ∈ I implies that p+q ∈ I, and closed under multiplication
with elements of F[X ], p ∈ I and q ∈ F[X ] implies that pq ∈ I. Given a set of
polynomials P, 〈P〉 is the ideal generated by P in F[X ]. Given two ideals I,J in F[X ],
I + J = {a+b : a ∈ I and b ∈ J}.
Evaluations of polynomials. Given a polynomial p in F[X ] and a Boolean assign-
ment α we define the restriction p�α , as follows: for each variable x ∈ dom(α)
substitute x in p with the value α(x), or otherwise leave the variable untouched. Then
simplify the result with the usual simplification rules including: 0 ·m ≡ 0, 1 ·m ≡ m
and m−m ≡ 0 where m is any term in p, that is any monomial with a coefficient
from F in front of it.

Graphs

A graph G is a pair (V,E) where V is a set and E ⊆ (V2). The elements of V are called
vertices of G and the elements of E are called edges of G. Given a vertex v ∈ G,
the neighbor of v in G is NG(v) = {w ∈V : {v,w} ∈ E}. The size of NG(v) is the
degree of v in G.

A graph G is a bipartite graph if there exists two disjoint sets L and U such that
V = L∪̇U and E ⊆ {{v,w} : v ∈ L and w ∈U}. The pair (L,U) is a bipartition of
the bipartite graph G.

A matching in G is a set M ⊆ E such that all the edges in M are pair-wise disjoint.
A matching covers S ⊆V if for each v ∈ S there exists e ∈ M such that v ∈ e.

A standard result about matchings in bipartite graphs is Hall’s theorem: given
any bipartite graph G with bipartition (L,U), the following are equivalent

1. G has a matching covering L;
2. for every subset S ⊆ L, |NG(S)|� |S|.

Bipartite expansion. Let r ∈ N and c ∈ R. A bipartite graph G with bipartition
(L,U) is a (r,c)-bipartite expander if and only if

∀A ⊆ L(G), |A|� r → |NG(A)|� c |A| . (0.3)



Chapter 1

Introduction

This chapter is a general introduction to some of the themes of propositional proof
complexity. We introduce on a high level proof systems such as resolution and
polynomial calculus, we recall some connections between proof complexity and SAT
algorithms, and we introduce on a high level the topic of space in propositional proof
systems. We conclude with a summary of the results shown in this book.

1.1 Propositional Proof Systems

Formally, we consider proofs and theorems as strings over some finite alphabet, say
strings in {0,1}∗. Then, following [CR79], we can define a proof system as follows.

Definition 1.1 (Proof System). A proof system for a language L ⊆ {0,1}∗ is a
polynomial-time onto function P : {0,1}∗ → L.

Each string T ∈ L is a theorem and if P(π) = T , π is a proof of T in P, or a P-
proof of T . Given a polynomial-time function P : {0,1}∗ → {0,1}∗ the fact that
P({0,1}∗)⊆L is the soundness property of P and the fact that P({0,1}∗)⊇L is the
completeness property of P.

The proof systems we consider are propositional, that is they are proof systems for
the language UNSAT of unsatisfiable propositional formulas over Boolean variables
that are in Conjunctive Normal Form (CNF).1 That is Boolean formulas that are a
conjunction (∧) of disjunctions (∨), of variables and negated variables.

The computational complexity of a proof system for a language L varies a lot
depending on the language L itself. It can vary from easy, say P, for a language
L in NP; to coNP for the language UNSAT; to PSPACE for the language of True
(fully) Quantified Boolean Formulas (TQBF); or it can be completely intractable, for
example when L is First-Order Logic (FO), due to the recursive undecidability of
the existence of proofs in FO.

1 Equivalently, propositional proof systems could be defined for the coNP complete language
TAUT of tautologically true propositional Boolean formulas.
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2 1 Introduction

In this book we focus on particular examples of propositional proof systems and it
will be helpful sometimes to compare their strength. This is done through the notion
of p-simulation [CR79].

Definition 1.2 (p-Simulation). Given two propositional proof systems P and Q we
say that P p-simulates Q if there exists a polynomial-time function t such that for each
π ∈ {0,1}∗, P(t(π)) = Q(π). Two systems are called p-equivalent if they p-simulate
each other. If Q p-simulates P and there exist some formulas requiring exponentially
long proofs in P but polynomially long proofs in Q we say that P is exponentially
weaker than Q.

The main open problem in propositional proof complexity is about the length of
proofs and, in particular, it concerns proving (or more likely disproving) the existence
of a propositional proof system where all proofs are polynomially bounded.

Theorem 1.1 ([CR79]). The following are equivalent:

1. NP= coNP; and
2. there exists a propositional proof system P that is p-bounded, i.e., such that there

exists a polynomial p and every F ∈ UNSAT has a P-proof of length at most
p(|F |), where |F | is the length of F. ��

Since it is usually conjectured that NP �= coNP, the main goal of propositional proof
complexity is actually to show that p-bounded propositional proof systems actually
do not exist. One approach to this problem is to show that particular proof systems
of increasing strength are not p-bounded. This approach is sometimes called Cook’s
program in proof complexity (although apparently Stephen Cook never proposed it
explicitly). Indeed, this approach is somewhat unusual but it has some appeal in the
following sense:

“Proving that NP �= coNP showing incrementally that examples of proof systems are not
polynomially bounded seems unlikely. Rarely a universal statement is proved by proving
all its instances. Nevertheless proving these lower bounds we may hope to uncover hidden
computational hardness assumptions and then try to reduce the conjecture to some more
approachable problem.” [Kra09]

Now, how do we show that a particular propositional proof system P is not p-
bounded? To do so it is sufficient to provide, even non-constructively, some family
of formulas (Fn)n∈N such that the minimal length of a proof of Fn in P grows super-
polynomially with respect to |Fn|. Usually such formulas are propositional encodings
of quite easy well-understood combinatorial principles, for example the pigeonhole
principle PHPm

n , see Sect. 5.1. We will see in detail some other examples of such
Boolean formulas in Part II of this book but for the moment let’s continue the general
overview of propositional proof systems.

As we already said, we will focus on two particular propositional proof systems.
Those are resolution, a logic one, and polynomial calculus, an algebraic one. But
before doing this we want to give an idea of the richness of the landscape of proof
systems studied in propositional proof complexity. There are the ones the reader
might expect, the logic-based ones that are the common ‘textbook’ proof systems (e.g.
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Frege systems), then there are, for example, some based on algebraic reasoning (e.g.,
Polynomial Calculus or Sum-of-Squares), geometric reasoning (e.g., Cutting Planes
or the Lovász-Schrijver calculus) or based on some graph theoretic constructions
(e.g., Hajoś Calculus [PU95]). We will overview briefly some of the propositional
proof systems based on logic inference rules, or algebraic or geometric inference
rules.

1.1.1 Frege Systems

Frege systems are the first propositional proof systems that everybody encounters
at some point in his/her school studies. A Frege proof consists of lines that are
propositional formulas built from propositional variables xi and Boolean connectives
¬ (NOT), ∧ (AND), ∨ (OR) or → (IMPLICATION). A Frege system then comprises
a finite set of axiom schemes and inference rules. For example, F ∨¬F is a possible
axiom scheme. A Frege proof of a Boolean formula L� from a set of formulas F is a
sequence of formulas (L1, . . . ,L�) where each formula is either in F, a substitution
instance of an axiom, or can be inferred from previous formulas by a valid inference
rule, for example modus ponens:

F F → G
G

. (1.1)

Frege systems are required to be sound and complete, that is each tautology has
to have a Frege proof (from F = /0) and no formula that is not a tautology should
have a Frege proof (from F = /0). Or, equivalently, each contradiction has to have a
Frege refutation, i.e., a proof of the trivially false formula ⊥, and no formula that is
not a contradiction should have a Frege refutation. The exact choice of the axiom
schemes, inference rules and basis of Boolean connectives does not matter too much
as long as the system remains sound and complete. Indeed, any two Frege systems
are p-equivalent [CR79, Rec75] and [Kra95, Theorem 4.4.13]. A concrete example
of a Frege system over the base of Boolean connectives {∨,¬} is the following set
of inference rules from [Sho67, p. 21]:

F ∨¬F
F

F ∨G
F ∨F

F
F ∨ (G∨H)

(F ∨G)∨H
F ∨G H ∨¬G

F ∨H
, (1.2)

where F , G, H are Boolean formulas with logical connectives in {∨,¬}. The second
rule listed in eq. (1.2) is called the weakening rule. The last of the rules listed in
eq. (1.2) is the cut rule.

There are several common restrictions that can be imposed on Frege proofs. Recall
that the logical depth of a Boolean formula is the maximum number of alternations
of logical connectives in the formation tree of the formula in any path in that tree.
For instance (¬(¬x∨ y))∨¬z is a formula of depth 3. Then fixing some depth d, the
Frege system where we allow only proofs with lines (formulas) of depth at most d is
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called a depth-d Frege. An important example of depth-d Frege system is depth-1
Frege, also called resolution [Bla37, Rob65]. Resolution refutations are formulas
of depth 1 over ∨ and ¬, that is each line is a clause. But now CNF formulas are
formulas of logical depth 2 so in resolution CNF formulas are just considered as a set
of clauses. This is a proof system we will see throughout this work and in particular
in Chap. 2. Formally speaking, the set of inference rules of resolutionis the one we
saw in eq. (1.2) but now F,G,H are clauses. Let’s focus for a moment on the cut rule.
In resolution it must have the following form:

C∨ x D∨¬x
C∨D

, (1.3)

where C,D denote clauses and x is a variable that we say is resolved. Moreover
it is easy to show that resolution and resolution without the weakening rule are
p-equivalent.

To understand the complexity of resolution proofs, various hardness measures
were defined and investigated. Historically, the first and most studied is the size
of resolution proofs, that is the number of clauses in them. The very first lower
bounds on the size of resolution proofs were proved by [Tse83, Hak85] and since
then the complexity of resolution proofs was investigated a lot, see the surveys
[Seg07, BP01, Pit11, Raz01, Pud08, Nor15]. First the interest in resolution was
driven by the fact that lower bounds for this system were a first step towards lower
bounds for higher-depth or unbounded-depth Frege systems. Nowadays the interest
in resolution lies mostly in its connections to algorithms for deciding the satisfiability
of CNF formulas, the so-called SAT-solvers, see Sect. 1.1.4.

Two general techniques that turned out to be very useful in proving lower bounds
for resolution are the feasible interpolation [Kra97] and the size-width inequality, see
eq. (2.10) and [BW01]. The feasible interpolation technique reduces the problem of
proving size lower bounds in a given proof system to the problem of proving size
lower bounds in some circuit class associated with the proof system. This technique
applies for instance also to some geometric systems, see Sect. 1.1.3. The size-width
inequality instead reduces the problem of proving size lower bounds in resolution to
the easier task of proving width lower bounds, that is lower bounds on how large must
be the largest clause in the proof. We will talk more in detail about the size-width
inequality and a similar inequality that holds in an algebraic proof system respectively
in Chap. 2 and Chap. 4.

So far we talked about resolution that is depth-1 Frege. Allowing more expressive
lines we encounter first the propositional proof system called resolution over k-DNFs
[Kra01], that is a Frege system with inference rules given again by eq. (1.2) but now
each line in the proof is allowed to be a k-DNF formula, that is a Boolean formula in
Disjunctive Normal Form (DNF).2 For constant k, resolution over k-DNFs is even
weaker than depth-2 Frege. It will become p-equivalent to it if, when refuting an
unsatisfiable CNF formula in n variables, we allow lines that are (logn)O(1)-DNFs.

2 A k-DNF is a disjunction of conjunctions of at most k variables or negated variables.
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Allowing higher-depth formulas as lines in Frege we get first the constant-depth
Frege systems. All of these are exponentially separated, that is depth-(d +1) Frege
is exponentially stronger than depth d Frege [Ajt94, PBI93, KPW95b]. Yet it is
open whether such separation exists when both systems are just considered to refute
unsatisfiable CNF formulas.

Then when we reach depth-O(logn) Frege we get that it is p-equivalent to un-
constrained Frege. The strongest proof system for which we know that there are
contradictions requiring exponentially long proofs is bounded-depth Frege, see
[Kra94, KPW95a, PBI93]. Such lower bounds rely on Switching Lemmas, see
[Hås87, Bea94]. We will not see such proofs directly but we will see an appli-
cation of a version of the Switching Lemma in Chap. 8 for a subsystem of resolution,
see Lemma 2.1. Recently Håstad showed a super-polynomial lower bound for depth-
o(logn/ log logn) Frege for some CNF formulas in n variables (pers. comm.), see
Sect. 7.4 for more details on the formula used.

Proving any super-polynomial lower bound on the size of (unconstrained) Frege
proofs is a major open problem in proof complexity. For example a class of formulas
that is conjectured to be hard for Frege (and indeed in any propositional proof system)
is the random k-CNF formulas, see Sect. 7.2.

Another major open problem in proof complexity is to prove exponential-size
lower bounds for AC0[p]-Frege [Pud08, Problem 10]. This is a Frege system where
each line has only formulas of bounded depth but such formulas together with the
usual Boolean connectives, say {∨,¬}, can also use a MODp connective. Semanti-
cally MODp(x1, . . . ,xm) = 1 if and only if ∑i xi ≡ 0 (mod p) but formally we add
to the inference rules in eq. (1.2) some new inference rules modeling the behaviour
of MODp connectives.

TC0-Frege is defined similarly, where the lines are formulas of bounded depth;
say over the logical connectives {∨,¬}, but they also use some threshold connectives
(and the inference rules define how those threshold connectives behave). This results
in a system that p-simulates AC0[p]-Frege and is p-simulated by (unconstrained)
Frege. Proving exponential lower bounds for TC0-Frege is also a big open problem,
and seems even harder than proving lower bounds for AC0[p]-Frege. More generally,
given a circuit class C, C-Frege is a restriction of Frege where lines are circuits from
the class C; for a formal definition see [Jeř05].

It turns out that the study of algebraic proof systems can be seen as a first step
towards size lower bounds for AC0[p]-Frege and some geometric proof systems are
special cases of TC0-Frege proofs.

1.1.2 Algebraic Proof Systems

The idea of using propositional proof systems to capture basic algebraic facts and
constructions dates back to [BIK+94] where a propositional proof system motivated
by Hilbert’s Nullstellensatz was introduced. Then [CEI96] introduced an even more
natural algebraic proof system, polynomial calculus, that directly simulated the
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process of generating an ideal from a given set of generators. This proof system is
the other proof system we will investigate in this book, in particular in Chap. 4. The
algebraic proof system introduced in [CEI96] for some technical (somewhat non-
relevant) reasons did not p-simulate resolution. It was then improved by [ABRW02]
to a system they call polynomial calculus with resolution which is a minimal extension
of both resolution and the system from [CEI96]. This technical difference relies on
two ways, one more efficient than the other,3 of encoding propositional Boolean
formulas into polynomials, see Sect. 4.1. We will ignore this small issue for the
moment and just call polynomial calculus what should more precisely be called
polynomial calculus with resolution.

After encoding a CNF formula F as an equisatisfiable set of polynomials PF (in
some ring of polynomials over some field F), we can show that F is unsatisfiable
just by showing that the polynomial 1 is in the ideal generated by PF . This is done
through the following two inference rules

p q
α p+βq

p
xp

, (1.4)

where p,q are polynomials, x is any variable and α,β ∈ F. That is we can perform
arbitrary linear combinations of already inferred polynomials and we can multiply an
inferred polynomial by a variable. These rules model the fact that ideals are closed
under the previous two operations. Alternatively, we can show that 1 ∈ 〈p1, . . . , pm〉
in a static way, that is just exhibiting polynomials q1, . . . ,qm such that

1 =
m

∑
i=1

piqi . (1.5)

This is the Nullstellensatz proof system [BIK+94] and it is p-simulated by polynomial
calculus (if we consider polynomials in the two systems having coefficients in the
same field F).

In polynomial calculus the polynomials are handled in their expanded form as
sums of monomials, and the size of a proof is measured as the total number of
monomials appearing in it. The first example of formulas requiring exponentially
long proofs in polynomial calculus was already given in [CEI96], and since then
many other size lower bounds were proved, see for instance in [Raz98, IPS99,
GL10b, MN15]. Indeed, [IPS99] showed that a generic way of proving size lower
bounds in polynomial calculus it to prove degree lower bounds. That is there is a
degree-size inequality analogous to the width-size inequality in resolution. A lot
of results on the complexity of resolution proofs are indeed qualitatively similar
to results on the complexity of polynomial calculus proofs. For instance a width
upper bound of w implies a resolution size upper bound of nO(w), for CNF formulas
in n variables. Similarly a degree upper bound of d implies a polynomial calculus

3 The difference between the two encodings is that the latter one has separate formal variables to
encode positive and negative literals over the same Boolean variable. Then, clauses with many literals
are encoded more efficiently regardless of the polarity of the literals, which allows polynomial
calculus with resolution to p-simulate resolution.
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size upper bound of nO(d) for formulas over n variables [CEI96]. Both the upper
bound in resolution and the one in polynomial calculus are tight [ALN14]. As for the
size-width inequality in resolution, the degree-size inequality is essentially optimal,
see respectively [BG01] and [GL10b]. Indeed the formulas used to show both results
are the same: some combinatorial principles encoding the fact that in any finite partial
ordering there must be a minimal element (ordering principles). Despite this analogy
between the results for resolution and polynomial calculus the latter ones are usually
more difficult and technically more involved, although sometimes they predate the
analogous, easier, ones for resolution, for instance in the case of the size-degree and
the size-width inequalities and for some of the space-related results we show in this
book.

The main motivation to study polynomial calculus is the big open problem in proof
complexity we mentioned before, that is proving exponential-size lower bounds for
AC0[p]-Frege. This is tightly connected to polynomial calculus and the Nullstellensatz
proof system. Indeed the first introduction of algebraic proof systems in [CEI96] was
already informally directed towards size lower bounds for AC0[p]-Frege. Formally,
the problem of proving size lower bounds in AC0[p]-Frege was reduced to the
problem of proving degree lower bounds in the Nullstellensatz proof system but for
quite complicated sets of polynomials where some extension axioms might be used
[BIK+97].

Secondarily another motivation to study polynomial calculus is that we can build
SAT algorithms based on it, see Sect. 1.1.4. For instance, an algorithm might encode
CNF formulas F as an equisatisfiable set of polynomials PF and then use the Gröbner-
basis algorithm to detect whether 1 ∈ 〈PF〉 and hence whether F is satisfiable or
not. This is an algorithm whose running time, if F is unsatisfiable, is at least the
shortest refutation of F in polynomial calculus. For the record this algorithm is not
competitive with state-of-the-art SAT algorithms based on resolution.

Other types of algebraic proof systems have been considered in the literature,
for example in [Pit96, GHP01, GH01, BIK+97, BGIP99, RT08, GP14]. A notable
example is the Sum-of-Squares proof system [Ste73]. This is a static proof system
based on a powerful modification of the Nullstellensatz proof system: a proof of the
fact that a set of polynomials {p1, . . . , pm} say with coefficient in R is unsatisfiable
is another set of polynomials {q1, . . . ,qm}∪{s1, . . . ,s�} such that

−1 =
m

∑
i=1

piqi +
�

∑
j=1

s2
i . (1.6)

Recent developments, see the survey [BS14], seem to indicate that SAT-solvers
based on sum-of-squares might be serious rivals to resolution-based SAT-solvers,
although it has to be mentioned that the most relevant size lower bound technique for
sum-of-squares is still based on resolution width [Gri01].
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1.1.3 Geometric Proof Systems

In this book we will not cover geometric proof systems in detail. Anyway it will be
natural to talk about them in connection with SAT-solvers in Sect. 1.1.4 and regarding
some recent results on their size and space complexity. So let’s briefly introduce
one of those systems: cutting planes [Gom63, Chv73]. This proof system captures
some geometric methods used for integer linear programming: the so-called Gomory-
Chvátal cuts to transform a polytope defined by a system of linear inequalities into its
integral hull. Informally, if a system of linear inequalities has no integral solution then
the inequalities define a polytope with empty integral hull and a sequence of Gomory-
Chvátal cuts can be taken as a witness of the fact that there are no integral solutions.
W. Cook in [CCT87] used this idea to define the cutting planes propositional proof
system. Boolean formulas in CNF form are translated into a set of linear inequalities
in a straightforward way preserving equisatisfiability. For example, the CNF formula
F = (x∨¬y∨ z)∧ (¬x∨ z) is translated into the following set of linear inequalities:

{x+(1− y)+ z � 1, (1− x)+ z � 1, 0 � x � 1, 0 � y � 1, 0 � z � 1} . (1.7)

The original formula is satisfied if and only if the associated set of inequalities has an
integral solution. Then a cutting planes refutation of an unsatisfiable CNF formula F
is a sequence of linear inequalities ∑i aixi � b with the ai ∈Z and b ∈R and there are
inference rules to take linear combinations of inequalities and to perform (a version
of) Gomory-Chvátal cuts, that is we have the following inference rule:

∑i aixi � b
∑i aixi � �b� . (1.8)

Notice that this inference rule is only sound if we just allow the xis to take integral
values. Cutting planes is a restricted version of TC0-Frege, it p-simulates resolution
and it is exponentially stronger than it. We know some exponential lower bounds on
size based on a generalization of the interpolation technique, see [HC99, Pud97], but
for instance we don’t know whether random 3-CNF formulas require (as we expect)
exponentially long refutations in cutting planes, see Sect. 7.2 for more details.

1.1.4 Connection with SAT-Solvers

The lower bounds shown in propositional proof complexity usually have an algo-
rithmic counterpart. For some proof systems, this connection to algorithms is what
drives the research about them nowadays. For example, resolution, proposed already
in [Rob65] for automated theorem proving, is mostly studied due to its importance
in applied contexts such as SAT-solvers, in particular due to a connection to the
DPLL algorithm and the CDCL solvers. The Davis-Putnam-Logemann-Loveland
(DPLL) [DP60, DLL62] algorithm is a backtracking method to search for assign-
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ments satisfying a CNF formula. It is a well-known result that the track of a run of the
DPLL algorithm on unsatisfiable CNF formulas is equivalent to tree-like resolution,
a subsystem of resolution where only proofs having a tree-like structure are allowed.

A strengthening of the DPLL algorithm was defined a a series of works, [BJS97,
SS99, MMZ+01], where the authors introduced the idea of Conflict-Driven Clause
Learning (CDCL) as a way for DPLL-based SAT-solvers to cut the search space and
avoid duplicated work. Informally, this is done by performing a conflict analysis
when the search for an assignment leads to a contradiction and then learning a clause
encoding a reason for that failure. By construction, resolution p-simulates CDCL
solvers viewed as proof systems and, under certain assumptions on the behavior of
the CDCL solver, the converse also holds [PD11, AFT11]. The crucial hypothesis
in both [PD11, AFT11] is that the CDCL solver never deletes a learned clause. We
stress that this is not a realistic hypothesis and, at the moment, it is not known whether
CDCL solvers, under a more realistic modeling of the memory usage, p-simulate
resolution.

Regarding algebraic proof systems, the original name for polynomial calculus in
[CEI96] was Gröbner proof system due to its tight connection with the Gröbner-basis
algorithm, and indeed the system was intended to be a potential candidate for efficient
new SAT-solvers. There are SAT-solvers based on the Gröbner-basis algorithm such
as PolyBoRi [BD09, BDG+09] but they are not competitive from the point of view
of performance with state-of-the-art CDCL solvers. Some, very limited, form of
algebraic reasoning is starting to be integrated into CDCL solvers but, at the moment,
this consists mostly of some form of Gaussian elimination. At the moment of writing,
it seems that research about SAT-solving algorithms is not headed towards extending
the CDCL paradigm with more algebraic techniques. It seems to be mainly headed in
another direction: trying to build algorithms extending the CDCL paradigm by some
geometric reasoning (pseudo-Boolean solvers), that is algorithms formalizable in
some fragment of the cutting planes proof system that is stronger than resolution. For
more details on the connection between proof complexity, in particular resolution
and polynomial calculus, and SAT-solvers we refer to [Nor15]. For more details on
pseudo-Boolean solvers we refer to [RM09, DGP04, DGLP04, DGH+05].

The running time and the memory consumption of CDCL solvers are related to
resolution size and resolution space. Lower bounds for the size and space complexity
measures for resolution will translate into lower bounds on the running time and
size of some auxiliary memory used by CDCL solvers. On the other hand, it is
not known whether a generic CDCL solver p-simulates resolution on unsatisfiable
CNF formulas and, from the space complexity point of view, it is perfectly possible
that if the space usage of CDCL solvers is bounded, then they run, for example, in
exponential time (or even worse) on instances easy for resolution. However, size and
space are not the only measures that are interesting with respect to applications and
the question of what constitutes a good hardness measure for practical SAT-solving
is essentially open and a very important one from the practical point of view, see
[BK14, ABLM08, JMNZ12].
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1.2 Space of Proofs

The problem of the space taken by propositional proofs was posed for the first
time by Armin Haken during the workshop “Complexity Lower Bounds” held at the
Fields Institute, Toronto in 1998. Before that, apparently, the only paper investigating
the space of proofs was [Koz77] but the author dealt only with equational theories
involving no propositional connectives. The formal definition of the space taken by
resolution proofs was given in [ET01] building on [KL94] and this definition was
generalized later to other proof systems in [ABRW02].

Intuitively, the space required by a refutation is the amount of information we
need to keep simultaneously in memory as we work through the proof and convince
ourselves that the original propositional formula is unsatisfiable. This model is
inspired by the definition of space complexity for Turing machines, where a machine
is given a read-only input tape from which it can download parts of the input to
the working memory as needed. In the literature this model is sometimes called
the blackboard model. The name comes from seeing a proof as given by someone
(a teacher) to some verifier (a class of students). The teacher want to show that a
particular CNF formula is contradictory and he does this by writing down clauses
and performing inferences on a given blackboard. Then the students verify his proof
and in this analogy they understand inferences based on the rules of some particular
proof system, for example Frege (or resolution or polynomial calculus).

As [ABRW02] point out, the very first question, when starting the investigation of
space, is how to measure the memory content/blackboard size at any given moment
in time for a specified propositional proof system. Recalling [Kra95], the most
customary measures for the size complexity of propositional proofs are the bit size
and the number of lines. Of the two the bit size is the more important and can be
defined analogously also for space complexity. Similarly to what is done for size,
usually we do not directly measure the bit size, but a logarithmically related measure
that, in the case of space, is the total number of literals in memory, the total space.4

Regarding the upper bounds, all contradictions can be refuted within polynomial
space for any “reasonable” space measure, see [ET01].

The line complexity for strong enough proof systems, such as Frege, is not an
adequate space measure. If the language of the proof system is strong enough to
handle unbounded fan-in ∧ gates, then just constant line space is sufficient as one
can always use a big-∧ of all the formulas derived in previous steps. Moreover
[ABRW02, Theorem 6.3] showed that any contradiction in n variables has a proof in
Frege with total space O(n). This fact somehow justifies the study of space for proof
systems where super-linear lower bounds on space may be achieved (although total
space in Frege is still a meaningful complexity measure).

4 In [ABRW02] this measure is called variable space but we prefer to call it total space following
[BN09, BN08, BN11, Nor09, Nor13, Urq11a]. The reason to do this is to distinguish this measure
from another one where different occurrences of the same variable are not counted, see [Urq11a].
We call this latter one variable space, see Sect. 3.4.
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Resolution, polynomial calculus and cutting planes are not closed under ∧. In
resolution the lines are just clauses and the line space, usually called clause space,
makes perfect sense. This complexity measure was actually proposed in [ET01].
The line space makes sense also for stronger proof systems, such as polynomial
calculus, where we consider the number of distinct monomials appearing in memory,
monomial space, or cutting planes, where the number of linear inequalities in memory
is considered, inequality space, see [GPT15]. The line space was also studied for
resolution over k-DNFs [EGM04, BN09].

Unlike what happens for size, for some space measures the actual inference rules
of the proof systems do not matter. That is the space lower bounds hold for some
semantic version of the proof systems. What matters in such cases is the type of lines
handled by the system, e.g., clauses or polynomials or generic Boolean formulas. This
phenomenon was first observed in [ABRW02] for the clause space, for monomial
space for a restricted class of formulas and for Frege in general, see [ABRW02,
Corollary 6.6].

We end this very introductory part by recalling that space complexity has been
studied also from the point of view of trade-offs, say between space and size. That is
results showing that some formulas may have short proofs and proofs using small
space but those two features cannot be achieved at the same time. In resolution trade-
offs between clause space and size have been shown for instance in [BN08, NH13,
BN11, Nor13, BNT13, BBI12]. In polynomial calculus trade-offs between monomial
space and size have been studied for instance in [BNT13, Nor13]. Recently a new
kind of trade-offs was also studied, namely super-critical trade-offs say between
size and width or width and clause space, see respectively [Raz16a] and [BN16].
That is there are formulas that have both short resolution proofs and also low-width
space proofs, but each proof using not too large width must have doubly exponential
(tree-like) resolution refutations. Similarly for clause space and width: there are
formulas that have both short resolution proofs and also low-width space proofs but
each proof using not too large width must have clause space greatly exceeding the
linear worst-case upper bound.

1.3 Summary of Results

From a very high-level point of view, the backbone of this book is the use of
combinatorial families of assignments (and games) to prove lower bounds. In proof
complexity game theoretic methods and combinatorial characterizations have a long
history. This started from the very first exponential-size lower bound for resolution
by [Hak85]. Then they have been widely used to characterize complexity measures,
see for example [Pud00, AD08, BK14, BGL13, BGL10]. Here we apply those ideas
to prove:

• Lower bounds for monomial space in polynomial calculus, see Chap. 4.
• Lower bounds for total space in resolution, see Chap. 3.
• Strong size lower bounds in (a subsystem of) resolution, see Chap. 8.
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In Part I we collect the general techniques and results, Part II contains the applications
of those techniques to notable families of CNF formulas and Part III is a postlude on
resolution size lower bounds.

Regarding space in polynomial calculus the main results, in short, are the follow-
ing:

• a new combinatorial framework to prove space lower bounds in polynomial
calculus, see Theorem 4.2;

• asymptotically optimal lower bounds on the space needed to refute random k-
CNF formulas (and the graph pigeonhole principle) in polynomial calculus, see
Theorem 7.1 (and Theorem 7.4). This result was conjectured to be true and posed
as an open problem in many works, see for instance [BS01, ABRW02, FLN+15].

Regarding total space in resolution the main result is a general technique to prove
total space lower bounds in resolution, see Theorem 3.6. Then, as corollaries, we
have the following:

• An asymptotically optimal total space lower bound in resolution for Tseitin for-
mulas over d-regular expander graphs, see Theorem 7.8. This result completely
answers an open problem from [ABRW02, Open question 2].

• An asymptotically optimal total space lower bound in resolution for random
k-CNF formulas, see Theorem 7.2. This result completely answers an open
problem from [ABRW02, BS01, FLM+13] among others.

• An optimal separation of resolution and semantic resolution from the point of
view of the total space measure. This result completely answers [ABRW02,
Open question 4] for resolution.

Regarding size and width in resolution we prove a strong width lower bound for
resolution, see Theorem 8.1, and a strong size lower bound for a generalization of
regular resolution, see Corollary 8.2.

All the results above are from my Ph.D. thesis [Bon15] and some earlier works
[BG13, BGT14, BT15, BG15, BBG+17, BT16a, BT16b, BGT16, Bon16]. Before
those works there was only one work [ABRW02] proving some total space lower
bounds in resolution. Regarding monomial space there were two works [ABRW02,
FLM+13] showing some monomial space lower bounds in polynomial calculus. All
those results are now shown in Chap. 5 and Sect. 4.5.1 as applications of the general
techniques we introduce here. More information on the history of the results shown in
this book is at the end of each chapter in the History section. Each chapter contains
also an Open Problems section on the open problems naturally arising from the
chapter.
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General Results and Techniques



Chapter 2

Resolution

In this chapter we recall some basic general facts about the proof complexity of
resolution [Bla37, Rob65]. This will be a common background for the results in
Chap. 3 and Chap. 8. First we describe the most common restrictions placed on
the type of resolution refutations, that is regular and tree-like resolution refutations
(Sect. 2.1), then we prove a non-trivial size upper bound (Sect. 2.2) and finally we
move to the complexity measures known as width and asymmetric width (Sect. 2.3).

A resolution derivation of a clause C from a CNF formula F is a sequence of
clauses π = (C1, . . . ,C�) where C� =C and each Ci is either a clause in F or there are
Cj,Ck with j,k < i such that Cj Ck

Ci
is a valid instance of the resolution inference

rule:
A∨ x B∨¬x

A∨B
, (2.1)

where A,B are clauses and x is a variable. If C =⊥ then π is a resolution refutation
of F . Recall that the size of a resolution refutation π = (C1, . . . ,C�) is S(π) = �.

2.1 Subsystems of Resolution

With resolution refutations can be associated branching programs, see [Kra95],
and (labeled) Directed Acyclic Graphs (DAGs). Formally we choose to associate a
resolution derivation with a DAG using the notion of witness function. This extra
formality might seem unnecessary now but it will be needed later in Sect. 2.3.

Definition 2.1 (Witness Function). Let F be an unsatisfiable CNF formula and let
π = (C1, . . . ,C�) be a resolution derivation of some clause C� from F . A function
σ : [�] → ([�]

2

)∪{�} is a witness of the fact that π is a valid resolution derivation
from F if and only if for each i ∈ [�]

1. σ(i) = { j,k} is such that j < i, k < i and Cj Ck
Ci

is a valid instance of the
resolution inference rule;

I. Bonacina, Space in Weak Propositional Proof Systems,
https://doi.org/10.1007/978-3-319-73453-8_2
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2. σ(i) = � is such that Ci is a clause in F .

Notice that given a resolution derivation π there are, in general, many possible
witnesses. Then, given a derivation π = (C1, . . . ,C�) and a witness σ we can define a
(labeled) DAG representing the structure of π according to σ . This is a graph with
vertices the set [�] and edges {(i, j) : i, j ∈ [�] and i ∈ σ( j)}. Then each vertex i in
the graph has label Ci.1 Then, if π has a witness function that turns it into a DAG
that happens to be a tree, we say that π is a tree-like derivation. If π has a witness
function that turns it into a DAG where in every path each variable is resolved at
most once, we say that π is a regular resolution derivation. Before telling more on
tree-like and regular resolution derivations let’s see an example.

Example 2.1 ([HY87]). Consider the unsatisfiable CNF formula

F = (¬x∨a∨b)∧ (x∨a∨b)∧ (¬b∨ z)∧ (¬a∨ c)∧ (x∨¬y)∧
∧(¬x∨¬w)∧ (¬c∨ x∨ y)∧ (¬c∨¬x∨w)∧ (x∨ y∨¬z)∧ (¬x∨w∨¬z) . (2.2)

A DAG representing a resolution refutation of F is in Fig. 2.1.
This example was given in [HY87]. There the authors proved that each minimal-

size resolution proof of this formula corresponds to a DAG where there is a path with
a variable resolved twice. That is minimal-size refutations of F are not regular.

We will see more about tree-like and regular resolution proofs in Chap. 8. For
the moment we just recall that tree-like resolution is exponentially weaker than
regular resolution, which in turn is exponential weaker than resolution, see [BG99,
Stå96, AJPU07, Urq11b]. That is there are CNF formulas F having polynomial-size
resolution refutations but every regular resolution refutation has exponential size (in
the size of the formula F). The same holds between regular and tree-like resolution.

2.2 Size

In this section we review some upper and lower bounds on resolution size.
Let’s then start with a trivial upper bound. For every unsatisfiable CNF formula F

in n variables there exists a tree-like resolution refutation π of F such that

S(π)� 2n+1 −1 . (2.3)

This inequality, for instance, can easily be proved by induction on the number of
variables of F or using the equivalence between tree-like resolution refutations and
binary decision trees, see Sect. 2.2. Interestingly eq. (2.3) is not the best upper bound
we can get for k-CNF formulas.

Theorem 2.1 ([BT16a]). For every unsatisfiable k-CNF formula F in n variables
there exists a tree-like resolution refutation π of F such that

1 Notice that the same label might be repeated several times in the proof DAG.
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⊥

x

¬x

x∨¬y x∨ y

x∨ y∨ zx∨ y∨¬z

¬c∨ x∨ y

c∨ z

¬x∨¬w¬x∨w

¬x∨w∨¬z¬x∨w∨ z

¬c∨¬x∨w

¬a∨ ca∨ z

¬b∨ za∨b

x∨a∨b¬x∨a∨b

¬a∨ c Clause from F

x∨ y Intermediate clause

Figure 2.1 An example of minimal-size resolution refutation of F

S(π)� 2(1−Ω(k−1))n . (2.4)

To prove this result, instead of tree-like resolution refutations it is convenient to
change the language a bit and talk of decision trees. Decision trees for an unsatisfiable
CNF formula F are in a bijective correspondence with tree-like resolution refutations
of F , see for instance [BGL13, Kra95].

Let F be an unsatisfiable CNF formula. A decision tree for F is a binary tree
where the inner nodes are labeled with variables from the variables of F and the
leaves are labeled with clauses from F . Each path in the decision tree corresponds to
a Boolean assignment where a variable x gets the value 0 or 1 according to whether
the path branches left or right at the node labeled with x. The condition on the tree
is that each clause on the leaves is falsified by the Boolean assignment given by
the path reaching the clause. The depth of a decision tree T is depth(T ). Following
[Bea94] we consider a particular type of decision trees: the canonical decision trees.

Definition 2.2 (Canonical Decision Trees). Given a CNF formula F =
∧

i Ci con-
sider fixed orderings � on the variables of F and � on the clauses of F . The canonical
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decision tree of F , T (F), is inductively defined as follows: look at the first clause
C of F according to the ordering � and let F =C∧F ′. Then construct a full deci-
sion tree on the variables of C respecting the order � of the variables, that is along
each directed path from the root to the leaves the sequence of variables encountered
xi1 , . . . ,xi� is such that xi1 � · · · � xi� . Each path from the root to a leaf defines a
Boolean assignment and there is exactly one path from the root to a leaf v that
correspond to a Boolean assignment that falsifies C. Label such a leaf v with the
clause C. For all the other leaves w, let αw be the Boolean assignment corresponding
to the path from the root to the leaf w and replace the leaf w with T (F ′�αw), see
Fig. 2.2.

w

T (F ′�αw )

αw

v

C

Figure 2.2 A canonical decision tree

Our upper bound on the size of tree-like resolution follows from the following
non-trivial result on the depth of canonical decision trees. This result is in the spirit
of the Switching Lemmas from [Hås87] although the statement is slightly different.

Lemma 2.1 (Håstad Switching Lemma [Bea94, Lemma 1]). Let F be a k-CNF
formula on n variables, d and � be integers with �� n/7 and let α be an assignment
chosen uniformly at random from the set of all Boolean assignments that have domain
of size exactly n− �. Then

Prα [depth(T (F�α))� d]�
(

7k�
n

)d

. �� (2.5)

Given this result then the proof of the upper bound on the size of tree-like resolu-
tion refutations is indeed not difficult. The proof we give is modeled on [BT16a] and
also inspired by [MRW05].

Proof (of Theorem 2.1). Let �= n/14k and let d = �/2. By the Switching Lemma
above, for a 1− 2−d fraction of partial assignments α with |dom(α)| = n− �, the
depth of T (F�α) is at most d. Then, by an averaging argument, there exists a subset
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S of the variables of F with |S| = n− � such for at least 1− 2−d of the partial
assignments α with domain S, the depth of the canonical decision tree T (F�α) is at
most d. Then we can construct a decision tree for F as follows: first we create a full
decision tree on variables in S; then for each leaf with the corresponding restriction
σ , we append T (F�σ ) to that leaf.

Then the number of leaves of this tree is upper bounded by

2d2n−�+2−d2n−�2� , (2.6)

since at most a 2−d fraction of the leaves of the full decision tree on S can have
maximal depth �, see Fig. 2.3.

Figure 2.3 Size upper bound via canonical decision trees

Since d = �/2 then eq. (2.6) is upper bounded by

2n− �
2+1 = 2

(
1−Ω(k−1)n . (2.7)

Hence we constructed a decision tree for F with size at most 2
(

1−Ω(k−1)
)

n. Since,
as already observed, decision trees correspond to tree-like resolution refutations we
have the desired upper bound. ��

Regarding resolution size lower bounds it has been known for a long time now that
there are unsatisfiable CNF formulas requiring exponential-size resolution refutations.
All the formulas we will see in Part II are examples of such formulas. We refer to
those chapters for some history on the proof complexity of such formulas. Here
we just recall that the very first super-polynomial resolution size lower bound was
obtained for Tseitin formulas [Tse83], see Sect. 7.4, and that nowadays we have many
examples of formulas that need exponential-size resolution refutations. In Chap. 8
we will continue the investigation of resolution size, in particular of results matching
the upper bound in eq. (2.4).

� 2−d2n−�

full decision tree on Sn− �

� d

�

· · · · · ·

T (σ(F))

· · ·

σ
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How do we prove size lower bounds then? There are some techniques tailored to
specific classes of formulas—and we will see one such technique in Sect. 8.2—but
here we want to focus on a very powerful and general technique to prove size (and
space) lower bounds: the width method.

2.3 Width and Asymmetric Width

We introduce now two very helpful auxiliary complexity measures: the width and the
asymmetric width. Given a sequence of clauses π = (C1, . . . ,C�), the width of π is

W(π) = max
i∈[�]

|Ci| . (2.8)

The interest in this complexity measure is, for instance, the fact that it is tightly
connected to size.

Theorem 2.2. Let F be a CNF formula in n variables such that there exists a resolu-
tion refutation π of F with W(π)� w, then

S(π)�
(

2en
w

)w

. (2.9)

Proof. This result is actually trivial since there are just at most ∑w
i=0
(2n

i

)
�
( 2en

w

)w

distinct clauses in n variables having at most w literals. ��
This trivial upper bound turns out to be tight: there are k-CNF formulas F in n
variables refutable by resolution in width w but each resolution refutation of F must
have size at least nΩ(w) [ALN14].

The upper bound in the previous theorem is interesting because it upper bounds
the running time of a simple algorithm that searches for resolution refutations. This
algorithm just consists of deriving all resolution consequences of width � w for
increasing values of w until ⊥ is derived [BS01].

The main interest in the width measure is actually due to the fact that width lower
bounds imply size lower bounds.

Theorem 2.3 ([BW01, Corollary 3.4 and Theorem 3.5]). Let F be an unsatisfiable
k-CNF formula and suppose that every resolution refutation of F has width � w.
Then for every resolution refutation π of F

log2 S(π) = Ω
(
(w− k)2

n

)
, (2.10)

and for every tree-like resolution refutation π ′ of F

log2 S(π ′)� w− k . �� (2.11)
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So, for instance, if for every resolution refutation π of a k-CNF formula F in n
variables we have that W(π) = ω(

√
n logn+ k), then it immediately follows that

every resolution refutation of F has super-polynomial (in n) size.
On the other hand, if a k-CNF formula F has resolution refutations of poly-

nomial size then, again by eq. (2.10), it must have a resolution refutation π such
that W(π) = O

(√
n logn+ k

)
. This doesn’t necessarily mean that π has small—

e.g., polynomial—size. Indeed, there are k-CNF formulas in n variables having
polynomial-size resolution proofs, and hence having resolution refutations of width
O
(√

n logn+ k
)
, but where this decrease in width comes at the expense of an expo-

nential increase in the size of the proof [Tha14].
We say that there is a trade-off in resolution between two complexity measures

if they cannot be optimized for the same resolution refutation. There is a vast
literature on trade-offs; the interested reader might look at the introductory parts of
[Nor15, Raz16a] or the chapter on resolution in [Juk12].

A relevant property of Theorem 2.3 is that the inequality in eq. (2.10) is “essen-
tially” tight: there are 3-CNF formulas Fn in n variables having resolution refutations
of polynomial size and with width O(

√
n) [BG01].

We now review another complexity measure, related to width, that we will need
in Chap. 3. This is the asymmetric width [Kul00, Kul04]. Its definition is a bit more
involved than that of width. Indeed to define it we need to be more precise about the
DAG structure we associate with resolution proofs, and in particular its definition
relies on the definition of the witness function of a refutation, see Definition 2.1.

Given a resolution refutation π = (C1, . . . ,C�) of some CNF formula F and a
witness function σ for π , the asymmetric width of Ci (with respect to π and σ ) is

awπ,σ (Ci) =

{
0 if σ(i) = �

min j∈σ(i)|Cj| otherwise .
(2.12)

In other words, to determine awπ,σ (Ci) one has to look at the parents of Ci in the
DAG associated with π by σ , take the minimum width of the parents and this value
is awπ,σ (Ci). Then, similarly to what we did for the width, we define

awσ (π) = max
Ci∈π

awπ,σ (Ci) . (2.13)

But, as already observed, a resolution refutation π can have many different witness
functions and we want the asymmetric width to be independent of the chosen witness
function. So we define the asymmetric width aW(π) as the minimum of awσ (π) over
all the possible functions σ witnessing the validity of π , that is

aW(π) = min
σ

awσ (π) . (2.14)

Although width and asymmetric width have quite different definitions they are tightly
connected complexity measures. Indeed, for every resolution refutation π it holds
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that aW(π) � W(π) and the next lemma shows that a sort of converse of this fact
holds too.

Lemma 2.2 ([Kul99, Lemma 8.5]). Let F be an unsatisfiable k-CNF formula and
suppose that every resolution refutation of F has width �w. Then for every resolution
refutation π of F

aW(π)+max{aW(π),k}� w . (2.15)

The proof of this result is a bit technical and it is postponed till Sect. 2.3.2.
An interesting feature of the asymmetric width is that most of the results that hold

for k-CNF formulas for the width also hold for the asymmetric width but without the
dependency on k. Here we report the analogue of Theorem 2.3. In Chap. 3 we will
see other examples concerning the space complexity of resolution.

Theorem 2.4 ([Kul04, Theorem 6.12]). Let F be an unsatisfiable k-CNF formula
and suppose that every resolution refutation of F has asymmetric width � w. Then
for every resolution refutation π of F

lnS(π)� w2

8n
, (2.16)

and for every tree-like resolution refutation π ′ of F

log2 S(π ′)� w . �� (2.17)

The proof of this result is actually virtually the same as that of Theorem 2.3.
What we said so far might have convinced the reader that the width (and the

asymmetric width) might be useful complexity measures to lower bound if we want
to prove resolution size lower bounds. We have not yet addressed the question of
how to prove width (or asymmetric width) lower bounds but this is what we do now.

There are essentially two general techniques to prove width lower bounds: one is
via a “medium complexity clause” argument and the other uses a characterization of
width lower bounds using families of Boolean assignments with certain combinatorial
properties.

Suppose that we are given some CNF formula F and we want to prove that for
every resolution refutation π of F we have that W(π)� w, for some parameter w. A
“medium complexity clause” argument to prove this will have the following structure.
To each clause C in π we associate a complexity measure μ(C)—which of course
will depend on the given formula F—such that for each clause C ∈ F , μ(C) is small,
μ(⊥) is large and μ is sub-additive, that is for each pair of clauses C, C′ and variable
x,

μ(C∨C′)� μ(C∨ x)+μ(C′ ∨¬x) . (2.18)

Now these properties imply that there exists in π a clause C of intermediate complex-
ity, i.e., such that μ(C) is not too small nor too large. Then, if we did things correctly,
this clause C will have at least w literals. We will use this type of argument to prove
a width lower bound in Sect. 8.3.



2.3 Width and Asymmetric Width 23

The other general way to prove width lower bounds is to use a characterization of
width (and asymmetric width) lower bounds via families of Boolean assignments.
Those characterizations are particularly helpful in proving space lower bounds, as
we will see in Chap. 3.

2.3.1 Combinatorial Characterizations

We construct families of Boolean assignments with certain combinatorial properties
that characterize width and asymmetric width lower bounds. We use standard nota-
tions in proof complexity for Boolean assignments, restrictions etc. The reader not
familiar with these notations is invited to check the Notations on p. xv.

First we consider families of Boolean assignments characterizing width lower
bounds. We call these families w-AD families from the initials of the authors intro-
ducing them: Atserias and Dalmau in [AD08].

Definition 2.3 (w-AD Families [AD08]2). Given an unsatisfiable CNF formula F
and w ∈ N, we say that a family of Boolean assignments F is a w-AD family of
Boolean assignments for F if the following properties hold:

1. F is non-empty;
2. for every α ∈ F and every clause C in F , C�α �= 0 (Consistency Property);
3. if α ∈ F and α ′ ⊆ α is such that |dom(α ′)| < w, then for every variable

x /∈ dom(α ′), there exists α ′′ ∈ F with α ′′ ⊇ α ′ such that x ∈ dom(α ′′) (Ex-

tension Property).

Then a w-AD family of Boolean assignments for F characterize width lower
bounds for F in the following sense.

Theorem 2.5 ([AD08, Theorem 2]). Let F be an unsatisfiable CNF formula and w
an integer. If for every resolution refutation π of F, W(π) > w then there exists a
w-AD family for F. In the reverse direction if there exists a (w+1)-AD family for F
then for every resolution refutation π of F, W(π)> w.

Proof. Suppose that for every resolution refutation π of F , W(π)> w. We then want
to construct a w-AD family of Boolean assignments F for F . A possible way to do
this is as follows. Consider the set C of all clauses that have a resolution derivation
from F of width at most w and take F to be the set of all Boolean assignments that
don’t falsify any clause in C or in F . More formally

F = {α : ∀C ∈ C∪F, C�α �= 0} . (2.19)

By construction F clearly has the consistency property of Definition 2.3. Moreover,
⊥ /∈ C hence the empty Boolean assignment λ is in F so F is non-empty. We just

2 In [AD08] it is required that a w-AD family is closed under restrictions. This is indeed not needed.
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have to show that if the extension property of Definition 2.3 does not hold then a
contradiction will follow.

Suppose then that we have α ∈ F and α ′ ⊆ α such that |dom(α ′)|< w. By con-
struction of F this implies that α ′ ∈ F. Moreover suppose that there is a variable
x /∈ dom(α ′) such that for every α ′′ ⊇ α ′ such that x ∈ dom(α ′′) it holds that α ′′ /∈ F.
So, in particular α ′

0 = α ′ ∪{x = 0} and α ′
1 = α ′ ∪{x = 1} are not in F. By construc-

tion then α ′
0 falsifies some clause C0 in C∪F and similarly α ′

1 falsifies some clause
C1 in C∪F . Since α ′ ∈ F then it cannot falsify C0 or C1. This means that those
clauses must be of the following form: C0 = C′

0 ∨ x with C′
0�α ′ = 0 and similarly

C1 =C′
1 ∨¬x and C′

1�α ′ = 0. Since |dom(α)|< w then |C′
0 ∨C′

1|< w, |C0|� w and
|C1|� w. Then using the resolution rule we can derive C′

0 ∨C′
1 from C0 and C1. From

the fact observed before on the size of those clauses and the fact that C0 and C1 are
in C∪F then we have that C′

0 ∨C′
1 ∈ C. But this is a contradiction since α ′ falsifies

this clause and it is in F.
Suppose now that there is a (w+1)-AD family F for F . We want to show that

there is no resolution refutation π of F such that W(π)� w. For sake of contradiction
let π = (C1, . . . ,C�) be a resolution refutation of F such that W(π) � w. Since F

is non-empty there is some Boolean assignment in it falsifying C� = ⊥. We then
show that for each i > 1 there exists a Boolean assignment in F falsifying some
clause Cj ∈ π with j < i. This means that there exists some Boolean assignment in
F falsifying C1 but this is impossible since C1 ∈ F and no Boolean assignment in F

can falsify clauses in F .
By induction suppose that we have a Boolean assignment α ∈ F that falsifies

Ci ∈ π . We then want to find a (possibly) new Boolean assignment in F that falsifies
some Cj ∈ π with j < i. By the consistency property of F, Ci /∈ F so it is the resolvant
of two previous clauses Cj and Ck in π . That is we have that j < i, k < i, Cj =C∨ x,
Ck =D∨¬x and Ci =C∨D for some clauses C, D and some variable x. If x∈ dom(α)
then we are done, since α will falsify either Cj or Ck. Otherwise, by the assumption
on the width of π , |C∨D|� w. Consider α ′ ⊆ α just assigning the variables in C∨D.
By assumption α ′ falsifies C∨D and can be extended to some Boolean assignment
α ′ ∈ F that assigns the variable x. This Boolean assignment α ′ then will either falsify
Cj or Ck. ��

Similarly we have families of Boolean assignments characterizing asymmetric
width lower bounds. We call these w-BK families from the initials of the authors
introducing them: Beyersdorff and Kullmann in [BK14].

Definition 2.4 (w-BK Families [BK14]). Given an unsatisfiable CNF formula F and
w ∈ N, we say that a family of Boolean assignments F is a w-BK family of Boolean
assignments for F if the following properties hold:

1. F is non-empty;
2. for every α ∈ F and every clause C in F , C�α �= 0 (Consistency Property);
3. if α ∈ F and α ′ ⊆ α is such that |dom(α ′)| < w, then for every variable

x /∈ dom(α) there exist α ′′
0 ,α

′′
1 ∈F with α ′ ⊆α ′

0 and α ′ ⊆α ′
1 such that α ′

0(x)= 0
and α ′

1(x) = 1 (Extension Property).
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Then a w-BK family of Boolean assignments for F characterize asymmetric width
lower bounds for F in the following sense.

Theorem 2.6 ([BK14, Theorem 22]). Let F be an unsatisfiable CNF formula and
w an integer. The following two properties are equivalent:

1. for every resolution refutation π of F, aW(π)> w;
2. there exists a w-BK family for F.

For completeness we give a proof of this result although this proof can be seen as a
modification of the proof of Theorem 2.5.

Proof. Suppose that for every resolution refutation π of F , aW(π)> w and let C be
the set of clauses derivable from F with a resolution derivation of asymmetric width
at most w. Let F be the family of all the Boolean assignments of maximal domain
that do not falsify any clause in C. Since F ⊆ C and ⊥ �∈ C by hypothesis, then F

is consistent and non-empty. We have just to show the extension property of F: let
α ∈ F, β ⊆ α such that |dom(β )|< w and x �∈ dom(α). For ease of notation, given
b ∈ {0,1} let

xb =

{
x if b = 0 ,

¬x if b = 1 .
(2.20)

By the maximality of α we have that for each b ∈ {0,1} there exists a clause Cb
in C such that αb = α ∪{x = b} falsifies Cb. Since α ∈ F then x ∈ var(Cb) and it
must be that Cb = C′

b ∨ xb where C′
b is a clause such that var(C′

b) ⊆ dom(α) and
C′

b�α = 0. Suppose, for sake of contradiction, that there exists b ∈ {0,1} such that
there is no β ′ ∈ F such that β ′ ⊇ β and β ′(x) = b. In particular βb = β ∪{x = b} is
not in F. Then, by construction, there exists a clause D ∈ C such that D�βb

= 0. Since
|dom(βb)| = |dom(β )|+ 1 � w then |D| � w. Moreover, since β ⊆ α and α ∈ F

does not falsify any clause in C, then it must be that D = D′ ∨ xb and D′ is a clause
such that D′�α = D′�β = 0. But now

D C1−b

D′ ∨C′
1−b

(2.21)

is a valid instance of the resolution rule. Hence, let πD be a resolution derivation of
D of minimum asymmetric width and similarly let πD1−b be a resolution derivation
of C1−b of minimum asymmetric width. Then π = πD ◦ πC1−b ◦ (D′ ∨C′

1−b), the
concatenation of πD, πC1−b and (D′ ∨C′

1−b), is a resolution derivation of D′ ∨C′
1−b

from F and by definition of asymmetric width,

aW(π)� max{aW(πD),aW(πC′
1−b

),aW(D′ ∨C′
1−b)}� w . (2.22)

Hence D′ ∨C′
1−b ∈ C. On the other hand D′ ∨C′

1−b�α = 0 contradicting the fact that
α ∈ F.

Suppose now that there is a w-BK family F and, for sake of contradiction, suppose
that there is a resolution refutation π = (C1, . . . ,C�) of F such that aW(π)� w. We
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proceed as in the proof of Theorem 2.5. Since F is non-empty, there is some Boolean
assignment in it falsifying C� =⊥. We then show that for each i > 1 there exists a
Boolean assignment in F falsifying some clause Cj ∈ π with j < i. This means that
there exists some Boolean assignment in F falsifying C1 but this is impossible since
C1 ∈ F and no Boolean assignment in F can falsify clauses in F .

By induction suppose that we have a Boolean assignment α ∈ F that falsifies
Ci ∈ π . We then want to find a (possibly) new Boolean assignment in F that falsifies
some Cj ∈ π with j < i. By the consistency property of F, Ci /∈ F so it is the resolvent
of two previous clauses Cj and Ck in π . Suppose Cj and Ck are resolved on some
variable x. If x ∈ dom(α) then we are done, since α will falsify either Cj or Ck.
Otherwise, by the assumption on the asymmetric width of π , at least one of Cj and
Ck has width at most w and x /∈ dom(α). W.l.o.g. suppose that |Cj|� w and consider
α ′ ⊆ α just assigning the variables in Cj. Then |dom(α ′)|< w and by the extension
property of F there are two extensions α ′

0 and α ′
1 of α ′ in F, one setting x = 0 and

the other setting x = 1 (possibly among other variables). Either α ′
0 or α ′

1 will falsify
Cj. ��

2.3.2 The “Equivalence” of Width and Asymmetric Width

We conclude this chapter with a self-contained proof of Lemma 2.2, restated below
for the convenience of the reader. The proof we give is based on [BK14].

Restated Lemma 2.2 ([Kul99, Lemma 8.5]) Let F be an unsatisfiable k-CNF for-
mula and suppose that every resolution refutation of F has width � w. Then for every
resolution refutation π of F

aW(π)+max{aW(π),k}� w . (2.15)

Proof (of Lemma 2.2). Given a set of clauses A, an A-input resolution derivation
of a clause C is a resolution derivation of C from A such that each application of
the inference rule has at least one premise from A. The main property of A-input
resolution derivations is the following: if each clause in A has at most k′ literals
and there exists an A-input derivation of a clause C then there exists a resolution
derivation π of C from A such that

W(π)� |C|+ k′ . (2.23)

Notice that to prove eq. (2.23), it is sufficient to consider A-input refutations, that
is A-input derivations of the empty clause ⊥. Indeed, suppose we have an A-input
derivation π of a clause C, and let α be the Boolean assignment of minimal domain
mapping C to 0. Clearly |dom(α)|� |C| and π�α is an A�α -input refutation, hence,
if the property we want to prove holds for input refutations, then there exists a
resolution refutation π ′ of A�α such that W(π ′)� k′. Then, by weakening the clauses
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in π ′ by literals in C and the fact that α is removing at most |C| literals from each
clause, we get a resolution derivation π ′′ of C from A such that W(π ′′)� k′+ |C|.

So let’s prove eq. (2.23) in the case when C = ⊥ and there exists an A-input
resolution refutation. Let A be the set of all k′-clauses A that have an A-input
resolution refutation but for every resolution refutation π of A it holds that W(π)> k′.
For sake of contradiction suppose that A is non-empty, so there will be some Ā ∈A

with a minimum number of variables. Since Ā∈A then it must be that Ā is non-trivial,
i. e., ⊥ cannot appear in Ā. By hypothesis then we have an Ā-input refutation π and
let � be the last literal resolved in π . Since π is an Ā-input refutation it must be
that either � ∈ Ā or ¬� ∈ Ā. Without loss of generality suppose that ¬� ∈ Ā. Now
consider π��=0. This is an Ā��=0-input resolution refutation and Ā��=0 has strictly
fewer variables than Ā; hence, by the minimality of Ā, it cannot be in A. So there
exists some π ′ that is a refutation of Ā��=0 with W(π ′)� k′. But now

π ′′ = Ā◦π ′ , (2.24)

the concatenation of the clauses in Ā and π ′, is a resolution refutation of Ā. Then
clearly W(π ′′) � k′, contradiction the fact that Ā ∈ A. Notice that π ′′ is not, in
general, a valid Ā-input resolution refutation. Yet it is a valid resolution refutation
of Ā, because ¬� ∈ Ā and hence each clause in Ā��=0 can be seen as the result of an
inference step between some clause in Ā and ¬�.

Suppose now we are given a resolution refutation π of the k-CNF formula F and
let r = aW(π). Consider the set of clauses S defined as the closure of F under input
derivations, that is⎧⎪⎨⎪⎩

S0 = F ,

Si+1 = Si ∪{C clause : |C|� r and C has an Si-input resolution derivation} ,
S =

⋃
i Si .

(2.25)
Notice that each clause in S has width at most max{r,k} and hence S is just a finite
union as Si+1 can be strictly bigger than Si at most O

(
nmax{r,k}) many times, since

this is the number of clauses in n variables of width at most max{r,k}. Now we claim
to have the following two properties:

1. ⊥ has an S-input resolution derivation;
2. if C has an S-input resolution derivation then there exists a resolution derivation

π ′ of C from F such that

W(π ′)� r+max{r,k} . (2.26)

From the two previous properties we immediately get eq. (2.15).
To prove item 1, we just show that π is an S-input resolution refutation. For sake

of contradiction, let C be the first clause in π inferred from previous C′,C′′ in π with
both C′,C′′ �∈ S. Since aW(π) = r without loss of generality we have that |C′| � r,
hence it must be that for each i, C′ does not have an Si-input resolution derivation,
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otherwise C′ ∈ Si+1 but we are supposing that C′ �∈ S. Hence, C′ doesn’t have an
S-input resolution derivation either, contradicting the minimality of C in π .

We prove eq. (2.26) in item 2 by induction on Si. For S0 eq. (2.26) is clearly true.
For the inductive step let C be a clause in Si+1 \Si and let Si = {C1, . . . ,Cm} and by
assumption C has an Si-input resolution derivation. By what we observed before in
eq. (2.23) there exists some π̃ that is a resolution derivation of C from Si such that

W(π̃)� |C|+max
i∈[m]

|Ci|� r+max{r,k} . (2.27)

Finally, by the induction hypothesis, for each i ∈ [m], Ci has a resolution derivation
πi from F of width at most r+max{r,k}. Hence

π ′ = π1 ◦ · · · ◦πm ◦ π̃ (2.28)

is a resolution derivation of C from F and

W(π ′) = max{W(π1), . . . ,W(πm),W(π̃)}� r+max{r,k} . �� (2.29)

2.4 Open Problems

There are no real open questions arising from this introductory chapter, except maybe
one concerning the tightness of the inequality between width and asymmetric width
in Lemma 2.2. A possible way to strengthen it, or to at least give a completely
different proof, could be to use the characterizations of width and asymmetric width
in terms of w-AD and w-BK families.

History

Theorem 2.1 might be folklore but anyway a proof, a variation of the one we show,
was given in [BT16a]. For more information on and history of the asymmetric width
we refer to [BK14].



Chapter 3

Space in Resolution

In this chapter we investigate the space complexity of resolution in particular from the
point of view of the total space measure, see Sect. 3.3. We briefly review results about
the clause space (Sect. 3.2) and the variable space measures (Sect. 3.4). We prove a
general inequality between the total space measure and width, Theorem 3.6. Then,
when talking about space it is natural to introduce a semantic version of resolution,
see Sect. 3.1. We show the separation of resolution and semantic resolution and also
a technique to prove total space lower bounds in semantic resolution, Theorem 3.7,
and a bounded version of it, Theorem 3.8.

To formally define the space complexity of resolution it is convenient to change
slightly the model of resolution derivations. In this new model, formalized in [ET01,
ABRW02], a resolution derivation is a sequence of sets of clauses—called memory
configurations—and an inference step is allowed to happen only between consecutive
sets of clauses. To avoid confusion we call this new model space-aware resolution
derivations.

More formally, a space-aware resolution refutation of a CNF formula F is a
sequence π = (M0, . . . ,M�) of sets of clauses, where M0 is the empty set, M�

contains the empty clause ⊥, and each Mi+1 is derived from Mi in one of the
following three ways:

• Mi+1 =Mi ∪{C}, where C is a clause from F (Axiom Download);
• Mi+1 ⊆Mi (Erasure);
• Mi+1 =Mi ∪{C} where C follows from some clauses in Mi by the resolution

rule (Inference).

The size of a space-aware resolution derivation π = (M0, . . . ,M�) is just
∑i∈[�] |Mi|. It is then immediate to see that resolution and space-aware resolution are
p-equivalent. Indeed given any CNF formula F and a resolution refutation of F of
size s it is immediate to construct a space-aware resolution refutation of F of size
O
(
s2
)
.

Given a space-aware resolution refutation π = (M0, . . . ,M�) we have three nat-
ural ways of measuring the space of π according to different ways of assigning to
each Mi how spacious it is. Indeed the following definitions will be sound for any
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sequence π = (M0, . . . ,M�) of sets of clauses, regardless of whether it is a valid
space-aware resolution refutation or not.

The clause space of π = (M0, . . . ,M�) is

CSp(π) = max
i∈[�]

|{C ∈Mi : C �=⊥}| . (3.1)

The space of each Mi is accounted only with respect to how many non-trivial clauses
it has, regardless of the number of literals in each of those clauses, hence the name
clause space.

The total space of π = (M0, . . . ,M�) is

TSp(π) = max
i∈[�] ∑

C∈Mi

|C| . (3.2)

Now the space of each Mi is measured in terms of the total number of instances
of variables occurring in it, hence the name total space. If we don’t want to double
count variables appearing multiple times in Mi we have the notion of variable space:

VSp(π) = max
i∈[�]

∣∣∣∣∣ ⋃
C∈Mi

vars(C)

∣∣∣∣∣ . (3.3)

Clearly for every π = (M0, . . . ,M�) we have that

CSp(π)� TSp(π) , (3.4)
VSp(π)� TSp(π) . (3.5)

We will further investigate the clause space in Sect. 3.2, the total space in Sect. 3.3
and (briefly) the variable space in Sect. 3.4. For some of the space results we are going
to see the actual inference rule of resolution is not relevant and hence we introduce,
following [ABRW02], the notion of semantic space-aware resolution derivations.

3.1 Semantic Resolution

A semantic space-aware resolution refutation of a CNF formula F is a sequence
π = (M0, . . . ,M�) of sets of clauses, where M0 is the empty set, M� contains the
empty clause ⊥, and each Mi+1 is a subset of Mi ∪C, where either

• C is a clause from F (Axiom Download); or
• C is implied by Mi, that is for each Boolean assignment α , if α �Mi then α �C

(Semantic Inference).

Similarly to space-aware resolution refutations, also semantic space-aware resolu-
tion refutations can be analyzed from the point of view of the clause space, variable
space and total space complexity.
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We will also see a bounded version of semantic space-aware resolution refutations,
that is d-semantic space-aware resolution refutations.

A d-semantic space-aware resolution refutation of a CNF formula F is a sequence
π = (M0, . . . ,M�) of sets of clauses, where M0 is the empty set, M� contains the
empty clause ⊥, and each Mi+1 is a subset of Mi ∪C, where either

• C is a clause from F (Axiom Download); or
• C is implied by a set of at most d clauses in Mi, that is there exists S ⊆ Mi

with |S| � d such that for each Boolean assignment α , if α � S then α � C
(d-Semantic Inference).

Similarly to what we have seen before, we can easily adapt the space measures
definitions to d-semantic resolution.

For each of these complexity measures we show some inequalities between the
space complexity of space-aware and semantic space-aware resolution refutations
and we also show some unconditional lower bounds. The unconditional lower bounds
will hold for semiwide formulas. These are, very informally, formulas with some
clauses with many literals while the remaining clauses might have few literals but
they are “highly” satisfiable. Formally the definition is the following.

Definition 3.1 (Semiwide Formulas [ABRW02]). Given a CNF formula F ′ and a
Boolean assignment α , we say that α is F ′-consistent if α can be extended to some
α ′ that satisfies F ′. A CNF formula F is r-semiwide if F = F ′ ∧W , where F ′ is a
satisfiable CNF formula, and for each F ′-consistent Boolean assignment α and each
clause C from W , if |dom(α)|< r then α can be extended to a F ′-consistent Boolean
assignment which satisfies C.

Some examples of n-semiwide formulas are the complete tree formulas, CTn, see
Sect. 4.1.1, and the pigeonhole principles PHPm

n (and some of its variations), see
Sect. 5.1.

3.2 Clause Space

Regarding the clause space we just prove two inequalities, an upper bound and a
generic way to prove lower bounds. The reader interested in trade-offs between clause
space and size can look at [BN08, NH13, BN11, Nor13, BNT13, BBI12, BN16].

Theorem 3.1 ([ET01, Theorem 2.1]). For every unsatisfiable CNF formula F in n
variables there exists π a space-aware refutation of F such that

CSp(π)� n+1 . (3.6)

Proof. This result can be proven by induction on n. If n = 1, the formula F in the
variable {x} contain as a sub-formula x∧¬x. Then

π = ( /0,{x} ,{x, ¬x} ,{x, ¬x, ⊥}) , (3.7)
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is a space-aware refutation of F of clause space 2. For the inductive case, given a
variable x in F consider F�x=0 and F�x=1. By the inductive hypothesis there exists a
space-aware resolution refutation π ′

x of F�x=0 with CSp(π ′
x)� n and a space-aware

resolution refutation π ′¬x of F�x=1 with CSp(π ′¬x) � n. If needed we can add to
clauses in π ′

x the literal x to obtain a space-aware derivation πx = (M0, . . .M�) of x
from F in clause space at most n. Similarly for ¬x: we get a space-aware resolution
derivation π¬x = (M�+1, . . . ,Mt) of ¬x from F with clause space at most n. Then

π = (M0, . . . ,M�, {x} , {x}∪M�+1, . . . ,{x}∪Mt ,{x, ¬x} ,{x,¬x, ⊥}) (3.8)

is a space-aware resolution refutation of F of clause space at most n+1. ��
Regarding the lower bounds we have some generic inequalities between clause

space and (asymmetric) width. These rely on the following simple lemma.

Lemma 3.1 (Locality Lemma for Resolution). Given a set of clauses A and a
Boolean assignment α such that α � A, there exists β ⊆ α such that |dom(β )|� |A|
and β � A.

Proof. For each clause C ∈ A there is at least one literal �C in C such that α(�C) = 1.
Take one such literal �C for each clause; clearly |{�C : C ∈ A}| � |A| and hence to
satisfy A it is sufficient to restrict α to the set of variables appearing in the set of
literals {�C : C ∈ A}. ��
Theorem 3.2 ([AD08, BK14]). Let F be an unsatisfiable k-CNF formula and sup-
pose that every resolution refutation of F requires width > w and asymmetric width
> w′. Then for every resolution refutation π of F

CSp(π)> w− k , (3.9)
CSp(π)> w′ . (3.10)

Proof. Let’s start with the second inequality. By Theorem 2.6, there exists a w′-BK
family F for F . Suppose for sake of contradiction that there is a space-aware resolu-
tion refutation π of F such that CSp(π)� w′. Let π = (M0, . . . ,M�). We show, by
induction on i, that for every Mi there exists some αi ∈ F such that αi �Mi, that is
for each clause C ∈Mi, C�αi = 1. At stage i = � we will get a contradiction since
⊥ ∈ M�. The base case i = 0 is trivial: M0 = /0 and F is non-empty so take any
Boolean assignment in F as α0. For the inductive step if Mi+1 is obtained from Mi
by an erasure or an inference just set αi+1 = αi. If Mi+1 =Mi ∪{C} with C ∈ F
we have two possibilities: either αi ∈ F assigns all variables in C or there is some
variable x in C but not in dom(αi). In the first case, by the consistency property of
F, C�αi = 1 and hence we can just take αi+1 = αi. In the second case we must have
that |Mi| < w′. By Lemma 3.1 with parameters A = Mi and α = αi, there exists
some β ⊆ αi such that |dom(β )|� |Mi|< w′ and β �Mi. Then, by the extension
property of F there are two Boolean assignments β0, β1 ∈ F extending β and setting
x respectively to 0 and to 1. If the literal x is in C take αi+1 = β1; if the literal ¬x is
in C take αi+1 = β0. It is straightforward to check that in both cases αi+1 �Mi+1.
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For the first inequality the argument is analogous. By Theorem 2.5, there exists
a w-AD family F for F . As before, suppose for sake of contradiction that there
is a space-aware resolution refutation π of F such that CSp(π) � w− k. Let π =
(M0, . . . ,M�). We show, by induction on i, that for every Mi there exists some αi ∈F

such that αi �Mi, that is for each clause C ∈Mi, C�αi = 1. The only difference with
the previous argument is how to deal with the case when Mi+1 =Mi ∪{C} with
C ∈ F . Let V be the set of variables in C not in dom(αi). By assumption |V |� k and,
as before, there exists β ⊆ αi such that |dom(β )|� |Mi|� w− k and β �Mi. Then,
by the extension property of F, we can extend β |V |-times to get a β ′ ∈ F that sets
all the variables in C. Then by the consistency property of F, C�β ′ = 1 and as before
we can set αi+1 = β ′. It is straightforward to check that αi+1 �Mi+1. ��

3.2.1 Semantic Clause Space

Semantic resolution refutations are not really more efficient than usual resolution
refutations from the point of view of the clause space, as the next theorem shows.

Theorem 3.3 ([ABRW02]). Let F be an unsatisfiable CNF formula in n variables
and suppose that every resolution refutation of F requires clause space � c. Then
for every semantic space-aware resolution refutation π of F

CSp(π)� c
2
. �� (3.11)

Regarding the lower bounds we recall that Theorem 3.2 trivially generalizes to
semantic clause space refutations and a similar proof can actually show lower bounds
on the clause space of semantic resolution refutations of semiwide formulas.

Theorem 3.4 ([AD08, BK14]). Let F be an unsatisfiable k-CNF formula and sup-
pose that every resolution refutation of F requires width � w and asymmetric width
� w′. Then for every semantic space-aware resolution refutation π of F

CSp(π)> w− k , (3.12)
CSp(π)> w′ . (3.13)

Proof. The proof is exactly the same as that of Theorem 3.2 since in that proof we
never used the actual inference rule of resolution but only its soundness. ��

Regarding the lower bounds for semantic resolution we have the following result.

Theorem 3.5 ([ABRW02]). Let F be an unsatisfiable r-semiwide CNF formula.
Then for every semantic space-aware resolution refutation π of F

CSp(π)� r . �� (3.14)
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3.3 Total Space

From the upper bound on clause space we immediately have the following upper
bound on total space.

Corollary 3.1. For every unsatisfiable CNF formula F in n variables there exists π
a space-aware refutation of F such that

TSp(π)� n2 +n . (3.15)

Proof. It follows immediately from the definition of total space, the fact that each
clause can contain at most n literals and Theorem 3.10. ��

Regarding total space lower bounds we have a result similar to the clause space-
width inequality, see Theorem 3.2. The proof of the total space-width inequality is
a bit more tricky and there are some good reasons for it to be more involved. We
postpone such discussions for a while; let’s see the result and its proof first.

Theorem 3.6 ([Bon16]). Let F be an unsatisfiable k-CNF formula and suppose that
every resolution refutation of F requires width � w and asymmetric width � w′. Then
for every resolution refutation π of F

TSp(π)� �(w− k−4)/4	2 , (3.16)

TSp(π)� �(w′ −2)/2	2 . (3.17)

Proof. Thanks to Lemma 2.2 it is enough to just prove the second inequality. Indeed
if every resolution refutation of F requires width � w then for every resolution
refutation π of F ,

2aW(π)+ k � aW(π)+max{aW(π),k}� w , (3.18)

hence aW(π) � 1
2 (w− k) and taking w′ = 1

2 (w− k) we immediately get the first
inequality from the second.

By Theorem 2.6 there exists a non-empty (w′ −1)-BK family F for F . We show
then that for every resolution refutation π = (M1, . . . ,M�) there exists an index i
such that Mi contains at least �(w′ −2)/2	 clauses each with at least �(w′ −2)/2	
literals. This will immediately imply the second inequality of the theorem. Consider
the set

S = {C clause : ∃α ∈ F C�α = 0} . (3.19)

Since F is non-empty, then ⊥ ∈ S and, by the consistency property of F, no clause
from F is in S. Hence, the set

A = {i ∈ [�] : ∃C ∈Mi ∩S |C|< �(w′ −2)/2	} (3.20)

is non-empty. Let t = minA and let C ∈ Mt ∩ S be a clause of width strictly less
than �(w′ − 2)/2	. Let α ∈ F be a Boolean assignment that falsifies C and let αC
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be the Boolean assignment contained in α falsifying C and with domain assigning
only the variables in C. Our goal is to show that there is some i < t such that
|Mi ∩S| � �(w′ −2)/2	. Since for every i < t every clause in Mi ∩S has width at
least �(w′ −2)/2	, this will give the desired result.

Suppose then, for sake of contradiction, that for each i < t,

|Mi ∩S|< �(w′ −2)/2	 . (3.21)

We inductively find Boolean assignments α0, . . . ,αt in F such that for each i � t,
αC ⊆ αi and αi �Mi ∩ S. This immediately gives a contradiction when we reach
i = t, since αC falsifies the clause C ∈Mt ∩S and αt ⊇ αC.

The base case i = 0 is trivial: M0 = /0, so we can put α0 = αC. For the inductive
step from Mi to Mi+1 we might have an axiom download, an erasure or an inference.
In the cases of an erasure or axiom download it holds that Mi+1 ∩S ⊆Mi ∩S, since
clauses from F are not in S. So in those cases we can just set αi+1 = αi.

In the case of an inference step, suppose that Mi+1 =Mi ∪{D∨E} where D∨E
is the result of the resolution rule applied on the clauses D∨ x and E ∨¬x in Mi
resolved on the variable x. If D∨E /∈ S we have nothing to do, just set αi+1 = αi.
Otherwise suppose D∨E ∈ S. With an argument totally analogous to Lemma 3.1 it
is immediate to see that there exists a Boolean assignment β such that αC ⊆ β ⊆ αi,
β �Mi ∩S and

|dom(β )|� |dom(αC)|+ |Mi ∩S|< �(w′ −2)/2	+�(w′ −2)/2	= w′ −2 . (3.22)

Observe that for every Boolean assignment γ ∈ F such that β ⊆ γ and every clause
C′ ∈Mi such that var(C′) ⊆ dom(γ), it holds that C′�γ = 1.This is due to the fact
that since var(C′) ⊆ dom(γ) then γ sets C′ either to 0 or to 1. It cannot set it to 0
because otherwise C′ ∈Mi ∩S and then C′�β = 1; which is not possible since β ⊆ γ .

If there exists some variable y in D∨E not in dom(αi) then, by the extension
property of F, we can extend β to β0, β1 ∈ F both extending β and respectively
setting y to 0 and 1. If the literal y is in D∨E we set αi+1 = β1; if the literal ¬y is in
D∨E we set αi+1 = β0. It is straightforward to check that αi+1 �Mi+1 ∩S.

Suppose then that var(D∨E) ⊆ dom(αi). If x ∈ dom(αi) then by what we ob-
served before we must have that D∨ x�αi = 1 and E ∨¬x�αi = 1, hence, by the
soundness of resolution D∨E�αi = 1. In this case we can just set αi+1 = αi.

If x /∈ dom(αi) then, by the extension property of F, we can extend β to β0 ∈ F

such that β0(x) = 0. If var(D∨ x)⊆ dom(β0) then, by what we observed before, it
must be that D∨ x�β0 = 1. Since β0(x) = 0 then D�β0 = 1 and hence we can just set
αi+1 = β0. If var(D∨ x) �⊆ dom(β0) then there exists some variable z in D∨ x not in
dom(β0). Let β ′

0 = β ∪{x = 0}. We have that |dom(β ′
0)| = |dom(β )|+ 1 < w′ − 1

hence we can extend β ′
0 to some γ0, γ1 ∈ F such that γ0 sets z to 0 and γ1 sets z to 1.

If the literal z is in D we set αi+1 = γ1; if the literal ¬z is in D we set αi+1 = γ0. ��
We want to stress the fact that this proof is intrinsically different from the proof

of Theorem 3.2. In particular in both proofs we have an axiom download case and
an inference case. In this proof the easy case is the axiom download, while in the
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proof of Theorem 3.2 the easy case is the inference. If we, intuitively, believe that
total space and semantic total space in resolution are separated then the fact that the
inference case in the above proof is the ‘hard’ case is to be expected. Otherwise
(informally) the proof would have been valid for semantic total space too, while we
expect this not to be the case. Indeed the question of equivalence between resolution
and semantic resolution from the point of view of the total space was asked already
in [ABRW02, Open Question 4].

There are unsatisfiable 3-CNF formulas, for instance random 3-CNF formulas
Fn in n variables with a linear number of clauses (see Sect. 7.2) such that for each
resolution refutation π of F ,

W(π) = Ω (n) , (3.23)

and hence by the previous theorem requiring Ω
(
n2
)

total space to be refuted by
resolution. On the other hand, the trivial semantic resolution refutation π ′ of F is
such that

TSp(π ′)� 3 |F |= Ω (n) . (3.24)

3.3.1 Semantic Total Space

Regarding the semantic total space we show two results; the first one tells us a way
to prove good total space lower bounds for semantic resolution refutations and the
second will be a generalization of Theorem 3.6 to a bounded version of semantic
resolution.

Theorem 3.7 ([BGT16]). Let F be an unsatisfiable r-semiwide CNF formula. Then,
for every semantic space-aware resolution refutation π = (M0, . . . ,M�) of F

TSp(π)� �r/2	2 . (3.25)

More precisely, there exists an Mi that contains at least �r/2	 clauses each having
at least �r/2	 literals.

Proof. Let F = F ′ ∧W as in Definition 3.1 and let π = (M0, . . . ,M�) be a semantic
space-aware resolution refutation of F . Let M∗

i be the set of clauses C ∈Mi such
that F ′ �� C, that is such that there exists a Boolean assignment satisfying F ′ and
falsifying C. Take the first t such that there exists a clause C ∈M∗

t of width strictly
less than �r/2	. Fix such a clause C and let α be the Boolean assignment falsifying
C with domain var(C). Then α is F ′-consistent and |dom(α)|= |C|< �r/2	.

As in Theorem 3.6, it is then enough to show that |M∗
i |� �r/2	 for some i < t,

since for every i < t every clause in M∗
i has width at least �r/2	. For sake of

contradiction suppose that |M∗
i |< �r/2	 for all i < t. By induction we show that for

each i = 1, . . . , t there exists some F ′-consistent αi ⊇ α such that αi �M∗
i . For i = t

this is the contradiction sought.
The base case i = 0 is trivial, just set α0 = α . For the inductive step we distinguish

between two possibilities: that is whether Mi+1 is obtained from Mi by performing
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a semantic inference or an axiom download. For the semantic inference case, that is
Mi �Mi+1, we let αi+1 be any extension of αi that satisfies F ′. Then from the fact
that αi+1 �M∗

i ∧F ′ it follows that αi+1 �Mi and hence αi+1 �Mi+1. For the axiom
download case, suppose that Mi+1 =Mi ∪{D} with D a clause from W . With an
argument analogous to the one proving Lemma 3.1, we may assume without loss of
generality that

|dom(αi)|� |dom(α)|+ |M∗
i |< r . (3.26)

Hence by the r-semiwideness of F there is a F ′-consistent αi+1 ⊇ αi such that
αi+1 � D. Then clearly αi+1 �Mi+1. ��

We said that the total space-width inequality cannot hold for semantic resolution.
This is correct but this inequality can be generalized easily to d-semantic resolution
as follows.

Theorem 3.8 ([Bon15, BGT16]). Let F be an unsatisfiable k-CNF formula and
suppose that for every resolution refutation π of F, W(π) � w and aW(π) � w′.
Then for every d-semantic resolution refutation π of F

TSp(π)� �(w− k−2d)/4	2 , (3.27)
TSp(π)� �(w′ −d)/2	2 . (3.28)

Proof. The proof is the same as for Theorem 3.6, except that we have to argue dif-
ferently for the inference step. By Theorem 2.6 there exists a non-empty (w′ −1)-BK
family F for F . We show then that for every resolution refutation π = (M1, . . . ,M�)
there exists an index i such that Mi contains at least �(w′ −d)/2	 clauses each with
at least �(w′ −d)/2	 literals. This will immediately imply the theorem.

The argument goes as in the proof of Theorem 3.6: we just have to reason
differently for the d-semantic inference. We follow the notations from the proof
of Theorem 3.6 and we show here just how to adapt that argument. Suppose that in
the inductive step we have a d-semantic inference: Mi+1 ⊆Mi ∪{E} where E is
implied by clauses D1, . . . ,Dd ∈Mi. We may assume that we have some αi ∈ F such
that αi �Mi ∩S and let β ⊆ αi be of minimal size such that β �Mi ∩S and β ⊇ αC.
Since |dom(αC)|< �(w′ −d)/2	 and |Mi ∩S|< �(w′ −d)/2	, then

|dom(β )|� |dom(αC)|+ |Mi ∩S|< w′ −d . (3.29)

Either D1 is satisfied by αi or it is not. If it is, let γ1 = αi. If not, then D1 cannot be
in S, since αi satisfies all members of Mi ∩S. It follows that D1 is not falsified by
αi either, otherwise D1 would be in S. Then, by the inductive hypothesis, D1 will be
satisfied by αi. So D1 thus must contain some literal not set by αi. In this case let
γ1 ∈ F be an extension of β which satisfies this literal.

We have found γ1 ∈ F which satisfies D1 with β ⊆ γ1. We then take a minimal
partial assignment γ ′1 contained in γ1 such that γ ′1 � D1 and γ ′ ⊇ β . We have that
|dom(γ ′1)|� |dom(β )|+1 < w′ −d +1, so we can repeat the previous reasoning on
γ ′1 and D2 instead of β and D1, and again up to Dd . In this way we build a sequence
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of extensions γ1 ⊆ γ2 ⊆ ·· · ⊆ γd in F, finishing with γd , which satisfies each of
D1, . . . ,Dd and thus also satisfies the inferred clause E. We then take αi+1 = γd . ��

3.4 Space and Depth

It turns out that total space in resolution (and other reasonable proof systems) is
polynomially equivalent to the depth of proofs [Raz16b]. The depth of a resolution
refutation DAG π is just the longest path from ⊥ to some input clause. Let us denote
the depth of π by D(π). This complexity measure has a characterization as families
of assignments similar to the ones we saw for the width and the asymmetric width,
see [Urq11a].

For the rest of this section consider a fixed unsatisfiable CNF formula Fn in n
variables such that every resolution refutation of it requires depth � D. Using the
previous characterization of depth, [Urq11a, Theorem 6.1] shows that there exists a
resolution refutation π of Fn such that

VSp(π)� D . (3.30)

Now, [Urq11a, Problem 7.2] already asked in an informal way “how much” this
inequality is not tight. Recently [Raz16b] showed that there is a quadratic gap
between the two complexity measures. However it still might be possible that the
two measures are polynomially related [Raz16b]. This is related to an open question
about the relation between clause space and total space, see Question 3.5.

Regarding total space, as [Raz16b] observes, a simple modification of the argu-
ment for the clause space upper bound (Theorem 3.10) gives the following upper
bound on clause space and total space in resolution.

Theorem 3.9 ([Raz16b]). For every unsatisfiable CNF formula F in n variables such
that every resolution refutation of it requires depth � D, there exists π a space-aware
refutation of F such that

CSp(π)� D+1 , (3.31)
TSp(π)� D(D+1) . �� (3.32)

Now, clearly the width needed to refute a CNF formula F is always smaller than the
depth needed to refute F . Then immediately from Theorem 3.6 and its applications,
we have that eq. (3.31) is asymptotically tight. Moreover it is tight for many CNF
formulas, e.g., random k-CNF formulas (see Sect. 7.2) and more generally for CNF
formulas that have asymptotically optimal width lower bounds. Interestingly the
depth also lower bounds the total space in resolution.

Theorem 3.10 ([Raz16b]). For every unsatisfiable CNF formula F in n variables
such that every resolution refutation of it requires depth � D, for every space-aware
refutation π of F

TSp(π)� Ω̃(
√

D) . �� (3.33)



3.5 Open Problems 39

3.5 Open Problems

Question 3.1. Are there any non-trivial total space lower bounds for stronger proof
systems such as bounded-depth Frege, polynomial calculus or cutting planes?

We recall that for unrestricted Frege systems there is a linear upper bound (in the
size of the CNF formula being refuted) on total space, see [ABRW02]. Regarding
cutting planes some preliminary results on space are shown in [GPT15].

Question 3.2. Is there a family of k-CNF formulas in n variables and nO(1) clauses
that have resolution refutations of size nO(1) but still such that for each resolution
refutation π , TSp(π) = Ω

(
n2
)

or at least TSp(π) = ω(n)?

In [BW01] the authors showed that if a k-CNF formula in n variables has a
resolution refutation of size S then it also has a refutation in which every clause
has width at most O(

√
n logS). In [BG01] it is shown that this result is almost

optimal. That is, there are formulas in n variables, with polynomial-size resolution
refutations but needing width Ω (

√
n) to be refuted. Those formulas are the ordering

principles and this width upper bound cannot be used together with Theorem 3.6 to
prove an ω(n) total space lower bound. However, it is possible that for some minor
modification of those formulas we still have polynomial-size resolution refutations
but now we can prove a width lower bound that is ω(

√
n). This is enough, together

with Theorem 3.6, to answer the previous question. However the total space-width
inequality will never show a total space lower bound of the form Ω

(
n2
)

for such
formulas.

Question 3.3. Is eq. (3.33) tight? That is, is there a resolution formula Fn in n variables
such that every resolution refutation of it requires depth D and there is a resolution
refutation π of Fn such that TSp(π) = Θ̃(

√
D)?

This very same question was asked already in [Raz16b] and indeed it seems not clear
at all what should be the answer to it.

Question 3.4. Let Fn be an unsatisfiable CNF formula in n variables and let V be the
minimal variable space required to refute it. Is there a resolution refutation π of Fn
and a constant c such that

D(π)� (V · logn)c ? (3.34)

This exact same question was asked in [Raz16b] and in a more informal way in
[Urq11a].

Question 3.5. Let Fn be an unsatisfiable CNF formula in n variables and let V be the
minimal variable space required to refute it. Is there a resolution refutation π of Fn
and a constant c such that

CSp(π)� (V · logn)c ? (3.35)
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If we exchange the roles of clause space and variable space in the previous question
then we know that it is false. Indeed [BNT13] showed that there are unsatisfiable 3-
CNF formulas in n variables that can be refuted in clause space 2 but every resolution
refutation of them requires variable space at least Ω (n/ logn). Now, as observed in
[Raz16b], eq. (3.35) is clearly implied by eq. (3.34) but of course eq. (3.35) might
actually be easier to prove.

History

The total space-width inequality in this form (Theorem 3.6) was proved in [Bon15,
Bon16] although the proof idea essentially dates back to [BGT14]. The main differ-
ence between the two approaches is that in [BGT14] we were using a different family
of assignments, the r-BGT families, somehow inspired by the (r, I)-BG families
(Definition 4.5) we will see in the next chapter. The r-BGT families and the r-BK
families although independently introduced shared a lot of properties and this allowed
us to adapt the total space lower bounds proved in [BGT14] to the r-BK families.

Theorem 3.7, the total space lower bounds for semiwide formulas in semantic
resolution, was proved in [BGT14] as a straightforward generalization of the total
space lower bounds by [ABRW02] for two particular n-semiwide formulas: PHPn+1

n
and CTn, the only total space lower bound known before [BGT14].



Chapter 4

Space in Polynomial Calculus

In this chapter we consider in detail the propositional proof system polynomial
calculus , briefly introduced in Sect. 1.1.2. We introduce some complexity measures—
size, degree, monomial space and total space—and we show some techniques useful
to prove lower bounds on those.

The main result of this chapter is a theorem reducing the problem of proving
monomial space lower bounds in polynomial calculus to the, supposedly, easier
task of constructing some family of Boolean assignments with certain combinatorial
properties (Theorem 4.2). Such families essentially play the same role as the w-AD
families or w-BK families we saw in Sect. 2.3.1.

Recall that given a field F, a set of variables V and a set of polynomials P in the
ring F[V ], the polynomial calculus is a way to certify that P does not have common
zeros in F. This is done by showing that 〈P〉, the ideal generated by P, is the whole
ring F[V ], or in other words that 1 ∈ 〈P〉.

A polynomial calculus refutation of P over F[V ] is a sequence of polynomials
π = (p1, . . . , p�) such that p� = 1 and for each pi ∈ π either pi ∈ P or it is obtained
by applying one of the following inference rules with premises in {p1, . . . , pi−1}:

p q
α p+βq

α,β ∈ F ,
p

xp
x ∈V . (4.1)

Given a polynomial calculus refutation π , its size S(π) is the number of monomials
(counted with repetitions) appearing in π .

Clearly if there is a polynomial calculus refutation of a set of polynomials P
then 1 ∈ 〈P〉 and hence P cannot have common zeros. The converse is in general
not true. For instance consider the field of the real numbers R and x2 +1 ∈ R[x]. It
is well known that this polynomial does not have zeros in R and at the same time
1 /∈ 〈x2 +1〉.

I. Bonacina, Space in Weak Propositional Proof Systems,
https://doi.org/10.1007/978-3-319-73453-8_4
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4.1 From CNF Formulas to Polynomials

We mostly consider particular sets of polynomials P encoding CNF formulas, and
for those P it will hold that P has a polynomial calculus refutation over F if and only
if P has no common zeros. And this will hold regardless of the ground field F.

Given a CNF formula F over a set of Boolean variables X and a field F we want
to construct a set of variables V and a set of polynomials P in F[V ] such that F is
unsatisfiable if and only if P has no common zeros in F.

Let’s try first to take V = X . Since the variables in X can only have values in
{0,1} it is natural to require P to have zeros inside {0,1}X . That is P will contain
the set of polynomials

{
x2 − x : x ∈ X

}
. These polynomials are usually called the

Boolean axioms in F[X ].
Then any polynomial calculus refutation ends with the constant polynomial 1,

so it is somehow natural to think about it as the “trivially false” polynomial. Then
the constant polynomial 0 will be the “trivially true” polynomial. So the meaning
of 0,1 in this polynomial setting is the opposite of their meaning in the context of
propositional Boolean formulas. With this in mind it is then natural to encode clauses
C =

∨
x∈I x∨∨y∈J ¬y, with I,J ⊆ X as

p′C = ∏
x∈I

(1− x) ·∏
y∈J

y . (4.2)

With this choice, for every Boolean assignment α of the variables X , C�α = 1, that
is α sets C to true, if and only if p′C�α = p′C(α) = 0, that is α sets p′C to true.

It is then natural to encode a CNF formula F as the set of polynomials

P′
F =

{
p′C : C ∈ F

}∪{x2 − x : x ∈ X
}
. (4.3)

Then F is unsatisfiable if and only if PF has no common zeros in F.
There is only one issue with this approach: each of the polynomials in p′C has to be

written as a sum of monomials and by eq. (4.2) this sum may contain exponentially
many polynomials. Indeed, if F is a k-CNF formula then each p′C associated with
the clauses of F contains at most 2k monomials. If F has n variables and it has
some clause with ω(logn) positive literals then P′

F has super-polynomially many
monomials. We need a more efficient encoding.

Take V = X ∪X , where X = {x̄ : x ∈ X} where the x̄ are new formal variables.1

The semantic meaning of x̄ is 1−x. Now we can redo most of the work we did before.
The set of Boolean axioms in F[X ∪X ] is B =

{
x2 − x, x̄2 − x̄, x+ x̄−1 : x ∈ X

}
.

The encoding of eq. (4.2) becomes

mC = ∏
x∈I

x̄ ·∏
y∈J

y , (4.4)

which now is a monomial. The CNF formula F is encoded as the set of polynomials

1 This convenient way of translating CNF formulas into polynomials was introduced in [ABRW02].
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PF = {mC : C ∈ F}∪B , (4.5)

where B is the set of Boolean axioms for F[X ∪X ].
Most of the results we prove will hold for more general sets of polynomials of

the form P∪B in F[X ∪X ] with no common zeros, that is we will not assume that P
consists of monomials as we do for PF .

Definition 4.1 (Boolean-Constrained). Given a set of variables V and a field F, we
call a set of polynomials P in F[V ] Boolean-constrained if P contains the Boolean
polynomials

{
x2 − x : x ∈V

}
.

Going back to the relation between a CNF formula F and the corresponding set
of polynomials PF in F[X ∪X ], we have that F is unsatisfiable if and only if PF
has no common zeros in F. With a slight abuse of notation sometimes we say that
π is a polynomial calculus refutation of F over F to mean that π is a polynomial
calculus refutation of PF in F[X ∪X ].2 Now not only does a CNF formula F have a
polynomial calculus refutation over F if and only if F is unsatisfiable, but we have
the following stronger result.

Proposition 4.1. Let F be a field, then the polynomial calculus over F p-simulates
resolution, when CNF formulas F are encoded as polynomials using the encoding
PF in eq. (4.4).

Proof. Polynomial calculus is a propositional proof system: its soundness follows
from the fact that if P derives a polynomial q in polynomial calculus then q ∈ 〈P〉 and
obviously q vanishes on the variety V (P), that is the set of zeroes of P. The complete-
ness of polynomial calculus follows since polynomial calculus simulates resolution.3

Indeed it is easy to see how to simulate efficiently any instance of the resolution rule
by some applications of the polynomial calculus rules, see Fig. 4.1. ��

mC · x̄
...

mCmD · x̄

mD · x
...

mCmD · x
mCmD · x̄+mCmD · x

x+ x̄−1
...

mCmDx+mCmDx̄−mCmD
mCmD

Figure 4.1 Simulation of the rule C∨x, D∨¬x
C∨D in polynomial calculus

Before starting to investigate the proof complexity of polynomial calculus we
describe a family of CNF formulas that we use later as a prototypical example.

2 We will not consider results for the less efficient encoding P′
F although it has been studied in the

proof complexity literature, see for instance [FLN+15].
3 The completeness of polynomial calculus can be proved also as a corollary of Hilbert’s Nullstel-
lensatz [CLO97] or by the Gröbner basis algorithm [CEI96]. We do not require F to be algebraically
closed due to the fact that we only consider sets of polynomials that are Boolean constrained.
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4.1.1 Complete Tree Formulas CTn

Let n be a natural number. The complete tree formula CTn is the unsatisfiable CNF
formula whose clauses are all the 2n possible clauses with n distinct literals in the
variables X = {x1, . . . ,xn}. For instance CT2 is the following CNF formula:

CT2 = (x1 ∨ x2)∧ (¬x1 ∨ x2)∧ (x1 ∨¬x2)∧ (¬x1 ∨¬x2) (4.6)

and its encoding as an unsatisfiable family of polynomials in F[X ∪X ] is

PCT2
= {x1x2, x̄1x2, x1x̄2, x̄1x̄2, x2

1 − x1, x2
2 − x2, x1 + x̄1 −1, x2 + x̄2 −1} . (4.7)

Every (tree-like) resolution refutation π of CTn has size 2n+1 −1 = 2|CTn|−1.
Moreover CTn is n-semiwide, see Definition 3.1, and hence, for instance, every
semantic resolution refutation π of it has clause space Ω (n), see Sect. 3.2.1, and
total space Ω

(
n2
)
, see Sect. 3.3.1.

We use this CNF formula as a toy (but non-trivial) example for the complexity
lower bounds and techniques we introduce in this chapter. More involved examples
will be given in Part II.

4.2 Size and Degree

Given a field F and a set of variables V , consider an unsatisfiable set of polynomials
P in F[V ]. Given a polynomial calculus refutation π = (p1, . . . , p�) over F of P, recall
that its size S(π) is the number of monomials (counted with repetitions) appearing in
p1, . . . , p�. The degree deg(π) is the maximum degree of a polynomial in π .

Given a CNF formula F in n variables, we saw in Sect. 2.2 that a width upper
bound of w on the refutations of F implies a resolution size upper bound of nO(w), see
Theorem 2.2. Similarly, given the polynomial encoding PF of F , a degree upper bound
of d on the polynomial calculus refutations of PF implies a polynomial calculus size
upper bound of nO(d), see [CEI96]. Both the upper bound in resolution and the one
in polynomial calculus are tight, as shown by [ALN14].

In resolution we saw a size-width inequality, see Theorem 2.3. There is an analo-
gous inequality between degree and size in polynomial calculus. Both results can be
used to prove size lower bounds in the corresponding proof systems proving width
or degree lower bounds.

Theorem 4.1 ([IPS99, Theorem 6.2]4). Let F be a field, V a set of n variables and
P an unsatisfiable Boolean-constrained set of polynomials in F[V ]. Suppose that all
the polynomials in P have degree at most k and for every polynomial calculus refuta-
tion π of P over F[V ], deg(π)� d. Then for every polynomial calculus refutation π

4 As observed in [MN15], the proof of this result holds also when V = X ∪ X and P ⊇
{x+ x̄−1 : x ∈ X}.



4.3 Space 45

of P over F[V ]

log2 S(π) = Ω
(
(d − k)2

n

)
. �� (4.8)

As for the width-size inequality for resolution, see eq. (2.10), this degree-size
inequality is essentially optimal too [GL10b].

Proving degree lower bounds is usually more difficult than proving width lower
bounds and, interestingly, much of this difficulty depends on the characteristic5

char(F) of the ground field F. If char(F) �= 2 then a Fourier-like transformation can
be used to reduce degree lower bounds to width lower bounds [BI10]. A more general
technique to prove degree lower bounds, working also if char(F) = 2, was introduced
in [AR01] and generalized in [GL10a, MN15].

In this book we do not prove any polynomial calculus size or degree lower bounds;
instead we focus on the space complexity of polynomial calculus and in particular
on monomial space.

4.3 Space

In Chap. 3 we defined space-aware resolution derivations. For polynomial calculus
we proceed in a similar way following [ET01, ABRW02]. Formally, given a field
F, a set of variables V and an unsatisfiable set of polynomials P in F[V ], a space-
aware polynomial calculus refutation of P over F is a sequence π = (M0, . . . ,M�)
of sets of polynomials in F[V ], where M0 is the empty set, M� contains the constant
polynomial 1, and each Mi+1 is derived from Mi in one of the following three ways:

• Mi+1 =Mi ∪{p}, where p is a polynomial from F (Axiom Download);
• Mi+1 ⊆Mi (Erasure);
• Mi+1 =Mi ∪{p} where p follows from some polynomials in Mi by the poly-

nomial calculus inference rules, see eq. (4.1) (Inference).

As for space-aware resolution, we call the Mis memory configurations. It is
immediate to see that, as for resolution, polynomial calculus and its space-aware
version are p-equivalent.

Given a set of polynomials S, its monomial space MSp(S) is the number of
distinct monomials occurring in S.6 Given a sequence of sets π = (M0, . . . ,M�), the
monomial space of π is

MSp(π) = max
i∈[�]

MSp(Mi) . (4.9)

5 Recall that the characteristic of a field F is the minimum positive number of times we need to add
1 (the multiplicative identity of F) to get 0 (the additive identity of F). If no number of 1s can sum
up to 0 then F has characteristic 0. The characteristic of a field is always 0 or a prime number.
6 A monomial is product of variables in X ∪X .
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Let F be a field and X a set of variables. A crucial feature of polynomial calculus
refutations of a set of Boolean-constrained polynomials P in F[X ∪X ] such that
P ⊇ {x+ x̄−1 : x ∈ X} is that sets of polynomials with large monomial space can
be transformed into equivalent sets of polynomials with much smaller monomial
space. For instance the set of polynomials {x1, . . . ,xm} can be transformed into
the equisatisfiable single polynomial 1−∏i∈[m] x̄i just using intermediate memory
configurations with m+O(1) monomials. This observation—at the core of the fol-
lowing monomial space upper bound—suggests somehow that getting unconditional
monomial space lower bounds is a much less trivial task than, for instance, getting
unconditional clause space lower bounds in resolution. An easier task is to prove
trade-offs, say between monomial space and size (or degree, for instance) and indeed
in the literature there are many such results, see for example the survey [Nor15, Sect.
4.4].

Proposition 4.2 ([ABRW02, Theorem 4.2]). Let F be a field and X = {x1, . . . ,xn}
be a set of variables. There exists a space-aware polynomial calculus refutation π of
CTn over F[X ∪X ] such that

MSp(π)� 2
3

n+6 . (4.10)

Hence for any unsatisfiable CNF formula Fn with variables in a set X of size n and
every field F, there exists a space-aware polynomial calculus refutation π of Fn over
F[X ∪X ] such that

MSp(π)� 2
3

n+8 . (4.11)

Proof (sketch). The first part of this statement is from [ABRW02]. For the sec-
ond part it is enough to show that given a polynomial calculus refutation π of
CTn such that MSp(π) = s there is a polynomial calculus refutation π ′ of F with
MSp(π ′)� s+2. This is due to the following fact. Every time there is an axiom
download in π of a high-degree monomial m ∈ PCTn , there exists a monomial m′ ∈ PF
such that m = m′ ·m′′, where PCTn and PF are the polynomial encodings of CTn and
F in F[X ∪X ] according to eq. (4.4). Then, using the polynomial calculus inference
rules we can obtain m from m′ by repeatedly multiplying by the variables in m′′ one
by one, and erasing the intermediate monomials. ��

Analogously to the total space in resolution, we have the notion of total space
TSp(S) of a set of polynomials S. It is the total number of occurrences of variables in
S. The total space TSp(π) of a sequence of sets of polynomials π = (M0, . . . ,M�) is

TSp(π) = max
i∈[�]

TSp(Mi) . (4.12)

Thanks to Proposition 4.2 we immediately have an upper bound on total space in
polynomial calculus.
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Proposition 4.3. For any unsatisfiable CNF formula Fn with variables in X of size n
and every field F, there exists a space-aware polynomial calculus refutation π of the
polynomial encoding of Fn over F[X ∪X ] such that

TSp(π)� 2
3

n2 +8n . (4.13)

We will not cover total space lower bounds in polynomial calculus since at the
moment of writing this book there are just two unconditional results known: a total
space lower bound in polynomial calculus for CTn and one for the pigeonhole
principle PHPm

n . Both results are proven in [ABRW02, Theorem 5.1]. The one for
PHPm

n is mentioned in more detail in Sect. 5.1. Here we recall the one for CTn.

Proposition 4.4 ([ABRW02, Theorem 5.1]). Let F be a field and X = {x1, . . . ,xn}
a set of variables. Every polynomial calculus refutation7 π of CTn is such that

TSp(π)� 3
64

n2 . �� (4.14)

As for the monomial space, there are some trade-offs known in the literature, see
for example [BNT13].

4.4 Semantic Polynomial Calculus

In Sect. 3.1 we introduced the notion of semantic resolution refutations. Here we
introduce an analogous concept for polynomial calculus: I-semantic polynomial
calculus refutations, where I is an ideal.

Let X be a set of variables, F a field and S a set of polynomials in F[V ]. Recall
that by 〈S〉 we denote the ideal generated by S in F[V ] and given two ideals in F[V ],
I and J, their sum is I+ J = {a+b : a ∈ I and b ∈ J}. Using these concepts we can
easily extend space-aware polynomial calculus refutations to what we call I-semantic
(space-aware) polynomial calculus refutations.8

Definition 4.2 (I-Semantic Refutation). Given a field F, a set of variables V , an un-
satisfiable set of polynomials P and an ideal I in F[V ]. An I-semantic polynomial cal-
culus refutation of P over F[V ] is a sequence of sets of polynomials π =(M0, . . . ,M�)
such that M0 = /0, 1 ∈M� and for all i � �,

Mi ⊆ 〈Mi−1〉+ I + 〈p〉 , (4.15)

for some p ∈ P.9

7 Eq. 4.14 actually holds for I-semantic polynomial calculus refutations π where I is the ideal
generated by the Boolean axioms in F[X ∪X ], see Sect. 4.4
8 This generalizes semantical polynomial calculus refutations from [ABRW02]: in our notation
they are 0-semantic polynomial calculus refutations.
9 We use the convention that 〈 /0〉= 0.
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Intuitively this definition says that polynomials from I are always available in any
step of the proof, so there is no need to store them in any Mi. That is we give away
“for free” polynomials in I. Moreover in a single step one can reach “semantically”
any polynomial in the ideal generated by the sum of the ideals in eq. (4.15) without
storing the (possibly) complicated polynomials needed to obtain it. For instance
given an unsatisfiable Boolean-constrained set of polynomials P = {p1, . . . , p�}, then

( /0, {p1} , {p1, p2} , . . . , {p1, . . . , p�−1} , {1}) (4.16)

is a perfectly valid 0-semantic polynomial calculus refutation of P. If P is not
Boolean-constrained but just unsatisfiable the previous may or may not be a valid
0-semantic polynomial calculus refutation depending on the field F.

When considering Boolean assignments in the context of I-semantic polynomial
calculus refutations it is convenient to consider Boolean assignments respecting the
ideal I.

Definition 4.3 (�I). Let F be a field and V be a set of variables. Given a family H of
Boolean assignments over X , an ideal I and a set of polynomials S in F[V ], we write
H �I S if for every Boolean assignment α ∈ H, and every polynomial p ∈ S, p�α ∈ I.
If H �I I we say that H is I-consistent.

4.5 Monomial Space Lower Bounds

Before introducing all the machinery to prove monomial space lower bounds, let’s
spend a few words on why some simpler naïve approach has no hope to work. A
naïve approach could consist, for example, of trying to mimic the approach followed
for the proof of Theorem 3.2. In this context, it will ultimately rely on the following
property: given any polynomial p, if there is a Boolean assignment α that satisfies
p, that is such that p�α = 0, then there exists some Boolean assignment α ′ still
satisfying p and such that |dom(α ′)|� MSp(p). Unfortunately this property is false:
for instance p = 1−∏r

i=1 xi has just two monomials but any α zeroing it must have
|dom(α)|� r. This phenomenon does not occour if we consider families of Boolean
assignments, consisting of many Boolean assignments with a combinatorial structure
we call flippable products. Then the proof of the monomial space lower bound we
show, Theorem 4.2, and Theorem 3.2 have a similar structure, but instead of using
Boolean assignments and the r-AD families we use flippable products and sets of
such flippable products we call (r, I)-BG families.

Preliminary to the notion of (r, I)-BG families is the notion of product-families.
We follow somewhat standard notations for Boolean assignments; anyway the reader
might want to check their definitions in the Notation section on p. xv.

Definition 4.4 (Product-Families). Let V be a set of variables and let H1, . . . ,Ht
be non-empty pairwise domain-disjoint10 sets of Boolean assignments over V . The

10 That is such that for each i �= j, each α ∈ Hi and α ′ ∈ Hj , dom(α)∩dom(α ′) = /0.
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product-family H = H1 ⊗·· ·⊗Ht is the following set of Boolean assignments over
V :

H = H1 ⊗·· ·⊗Ht = {α1 ∪·· ·∪αt : αi ∈ Hi} , (4.17)

or if t = 0 then H is a set containing just the empty Boolean assignment λ , that
is H = {λ}. Moreover, we say that H is flippable if for every i ∈ [t], α ∈ Hi and
x ∈ dom(α) there exists α ′ ∈ Hi such that α ′(x) = 0.

We call the His factors of H and the rank of H, ‖H‖, is the number of factors of H
different from {λ}. We call a product-family whose factors are flippable a flippable
product-family or simply a flippable product.

Notice that the same set of Boolean assignments can correspond to many product-
families: in particular each family of Boolean assignments can be seen as a product
of just one single factor. When we talk about a flippable product H we mean always
that there is a particular fixed representation H as a product: say H = H1 ⊗·· ·⊗Ht .
We do not count the {λ} factors in the rank since they do not carry any additional
information: the set of Boolean assignments corresponding to H ⊗{λ} always
coincides with H. Given two product-families H and H ′ we write H ′ � H if and only
if each factor of H ′ different from {λ} is also a factor of H. In particular {λ} � H
for any product-family H.

Definition 4.5 ((r, I)-BG Families [BG15, Definition 3.4]11). Let V be a set of vari-
ables, F a field, r an integer, P a set of polynomials and I an ideal in F[V ]. A family
of flippable products F is an (r, I)-BG family for P if and only if for every H ∈ F the
following conditions hold:

1. H is I-consistent, that is for every p ∈ I and every α ∈ H, p�α ∈ I (Consistency);
2. for each H ′ � H, H ′ ∈ F (Restriction);
3. if ‖H‖< r, then for each p ∈ P there exists a flippable product H ′ ∈ F such that

a. H ′ � H, and
b. H ′ �I p, that is for every α ∈ H ′, p�α ∈ I (Extension).

This definition shares some similarities with the w-AD and w-BK families we
saw in Sect. 2.3.1 but, unlike those, the notion of (r, I)-BG family doesn’t seem to
characterize any complexity measure in polynomial calculus, e.g., the degree.

The main property of (r, I)-BG families is that they can be used to prove I-semantic
polynomial calculus monomial space lower bounds.

Theorem 4.2 ([BG15, Theorem 3.5]). Let V be a set of variables, F a field, r � 1
an integer, P an unsatisfiable set of polynomials and I a proper ideal in F[V ]. Suppose
that there exists a non-empty (r, I)-BG family F for P. Then for every I-semantic
polynomial calculus refutation π of P,

MSp(π)� �r/4	 . (4.18)
11 We follow the convention seen already in Sect. 2.3.1. That is we call families of Boolean
assignments with particular combinatorial properties by the names of the authors that introduced
them. In this case BG stands for Bonacina and Galesi in [BG13].
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In this theorem we did not make any assumption on the structure of the set of
initial polynomials P. If we have some additional assumptions on P it is possible to
have an analogous result requiring the existence of a non-empty (r, I)-BG family just
for a subset of P. In particular, this might be useful when we have some monomials
of high degree in P.

Theorem 4.3. Let V be a set of variables, F a field, r � 1 an integer, P an unsatisfi-
able set of polynomials and I a proper ideal in F[V ]. Let P = P1 ∪P2 and suppose
that the following conditions hold:

1. there exists a non-empty (r, I)-BG family F for P1;
2. for every H ∈ F s.t. ‖H‖ < r and every p ∈ P2 either H �I p or there exists

H ′ = H ⊗Hp ∈ F, with ‖Hp‖= 1, and there exists α ∈ Hp, p�α ∈ I.

Then for every I-semantic polynomial calculus refutation π of P

MSp(π)� �r/4	 . (4.19)

The proofs of the previous two results are a bit technical and will be given in
Sect. 4.5.2. It is better, before proving them, to familiarize ourselves a bit with the
notion of (r, I)-BG families. First we prove that these families can be used also to
prove total space lower bounds in resolution.12 Secondly, we see how to apply the
results to our “toy” example CTn. More involved applications are shown in Chap. 5
and Chap. 7.

Proposition 4.5 ([BBG+17]). Let F be an unsatisfiable CNF formula in the vari-
ables X and let I be either the ideal 0 or the ideal generated by {x2 − x : x ∈ X}
in F[X ∪X ]. Suppose there exists a non-empty (r, I)-BG family for the polynomial
encoding of F in F[X ∪X ], see eq. (4.5). Then for each resolution refutation π of F

TSp(π)� �r/2−1	2 . (4.20)

Proof. To prove this theorem it is enough to show that given F a non-empty (r, I)-BG
family for PF we can construct an (r−1)-BK family of Boolean assignments L for
F and then use Theorem 2.6 and Theorem 3.6.

Let L be the set of all the Boolean assignments α over X that appear in some
flippable product H of F of rank at most r−1, that is

L= {α : ∃H ∈ F ∃α ′ ∈ H α ⊆ α ′ and ‖H‖� r−1} .13 (4.21)

This family L is non-empty (since for example the empty Boolean assignment λ ∈L)
and, we claim, it is an (r−1)-BK family for F . That is we have to show it satisfies
the consistency and extension properties of Definition 2.4. We use the notations from

12 Thanks to Theorem 3.6 we know that total space lower bounds will follow from width lower
bounds but that proof is somehow a bit abstract. The (r, I)-BG families are a more concrete witness
of the fact that the total space is large.
13 The reason we require α ⊆ α ′ and not just α ∈ H is that the Boolean assignments in H are over a
larger set of variables X ∪X and not just X .
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Sect. 4.1; in particular given a clause C, mC is its translation into a monomial in
F[X ∪X ] and PF is the translation of F as a set of polynomials in F[X ∪X ].

For the consistency property of L assume, for sake of contradiction, that there
exists α ∈ L such that α falsifies some clause C in F . That is C�α = 0 and hence
mC�α = 1. By definition of L, there exists H ∈ F and α ′ ∈ H such that α ⊆ α ′ and
‖H‖� r−1. By the extension property of F, then there exists an H ′ � H such that
H ′ �I mC. In particular there exists some Boolean assignment α ′′ ⊇ α ′ ⊇ α such that
mC�α ′′ ∈ I. Hence 1 ∈ I, which contradicts the fact that I is a proper ideal.

For the extension property of L, consider α ∈ L, β ⊆ α with |dom(β )|< r−1
and x a variable from F not in dom(α). Since β ⊆ α and α ∈ L there must exist
some H ∈ L and a β ′ ∈ H such that β ⊆ β ′ and ‖H‖ � |dom(β )| < r− 1. By the
extension property of F, there exists some flippable product H ′ ∈ F such that H ′ � H
and H ′ �I x+ x̄−1. Since x+ x̄−1 /∈ I we must have that every Boolean assignment
in H ′ sets x+ x̄−1 to 0, that is assigns x. Then, by definition of flippable product, all
the factors of H ′ are domain-disjoint so there will be only one factor assigning x. By
taking restrictions in F, we can then suppose that ‖H ′‖= ‖H‖+1 � r−1. All the
Boolean assignments γ ∈ H ′ extend β and all of them assign x. So it is enough to
show that there is a γ0 ∈ H ′ setting x = 0 and another setting x = 1. By construction
both γ0 and γ1 belong to L, when restricted to X . If γ1 ∈ H ′ sets x = 1 then by the
flippability condition on H ′ there exists γ0 ∈ H ′ setting x = 0. Suppose then there is
γ0 ∈ H ′ that sets x = 0, then since H ′ �I x+ x̄−1, it sets x̄ = 1. By the flippability
condition on H ′ then there exists γ1 ∈ H ′ that sets x̄ = 0 and it also sets x+ x̄−1 to
0, so γ1 sets x = 1. ��

4.5.1 CTn Requires Large Monomial Space

As a first example application of Theorem 4.2 and Theorem 4.3, we show how to
prove a monomial space lower bound for CTn.

Theorem 4.4 ([ABRW02, Corollary 4.19]). Let F be a field, X = {x1, . . . ,xn} and
B the set of Boolean axioms in F[X ∪X ]. Every 〈B〉-semantic polynomial calculus
refutation π of CTn over F[X ∪X ] is such that

MSp(π)� �n/4	 . (4.22)

Proof. Use Theorem 4.3 with P1 = B and P2 the degree n monomials in the polyno-
mial encoding of CTn in F[X ∪X ]. The set P1 is the set for which we have to build an
(n,〈B〉)-BG family F. For each i ∈ [n], let αi and α ′

i be the following two Boolean
assignments of domain {xi, x̄i}:

αi(xi) = 1 , αi(x̄i) = 0 , (4.23)
α ′

i (xi) = 0 , α ′
i (x̄i) = 1 . (4.24)
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Let Hi = {αi,α ′
i}. By construction Hi is clearly flippable and 〈B〉-consistent. Let

F be the family of all flippable products H =
⊗

i∈A Hi for some set A ⊆ [n]. It is
immediate to check that F is an (n,〈B〉)-BG family. Regarding the second hypothesis
of Theorem 4.3, let H ∈ F with ‖H‖ < n and m ∈ P2. We have that in m there is a
variable, say xi, not assigned by any Boolean assignment in H; then clearly there is a
Boolean assignment in H ⊗Hi satisfying m. It will be αi if x̄i appears in m or α ′

i if xi
appears in m. ��

4.5.2 Proofs of Theorem 4.2 and Theorem 4.3

Let’s prove then Theorem 4.2 and Theorem 4.3. We need to introduce a new notion:
the concept of 2-merge. On a very high level a 2-merge on a product-family H is
a new product-family Z whose factors are obtained by ‘merging’ disjoint pairs of
factors from H.

Definition 4.6 (2-Merge). Let H = H1 ⊗ ·· ·⊗Ht be a product-family. A 2-merge
on H is a product-family Z = ZJ1 ⊗·· ·⊗ZJr , where J1, . . . ,Jr are pairwise disjoint
subsets of [t] of size 1 or 2 such that for each Ji = { j,k}

ZJi = (A⊗Hk)∪ (Hj ⊗B) , (4.25)

where A ⊆ Hj and B ⊆ Hk are non-empty. (If j = k then ZJi = Hj.)

Notice that, in the previous definition, if H is a flippable product then Z is also
a flippable product. Moreover, given any ideal I, if H is I-consistent then Z is
I-consistent.

To clarify the notion of 2-merge, let’s see an example that will be useful both in
the proof of Theorem 4.3 and in the proof of Lemma 4.1.

Example 4.1. Let m be a monomial and H = H1 ⊗H2 be a flippable product such
that vars(m)∩dom(Hi) �= /0 for i = 1,2. Let Om,i = {α ∈ Hi : m�α = 0}. Since H
is flippable then Om,i is non-empty and then

Z = Z{1,2} = (Om,1 ⊗H2)∪ (H1 ⊗Om,2) (4.26)

is a 2-merge on H. Moreover Z is a product-family since it has only one factor:
Z{1,2}.

As in [ABRW02] a key property in the proof of Theorem 4.2 is a “Locality
Lemma”.14 Informally, this lemma asserts that if a set S of polynomials is satisfiable
by a 2-merge on a product-family H, then it is possible to build a new 2-merge Z′
on a new product-family H ′ such that Z′ still satisfies S and H ′ � H has rank upper
bounded by the number of distinct monomials in S.

14 Lemma 4.1 is a generalization of analoguos results in [ABRW02, FLN+15, BG13]. The way we
present it is based on [BG15].
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Lemma 4.1 (Locality Lemma). Let F be a field, V a set of variables, I an ideal
and S a set of polynomials in F[V ]. Given a non-empty flippable product H and a
2-merge Z on H such that Z �I S. Then there exist a non-empty flippable product
H ′ � H and a non-empty 2-merge Z′ on H ′ such that Z′ �I S and ‖H ′‖� 4 ·MSp(S).

The proof of this lemma is a bit technical so let’s see first how to use it to prove
Theorem 4.2 and Theorem 4.3, restated below for convenience.

Restated Theorem 4.2 ([BG15, Theorem 3.5]) Let V be a set of variables, F a
field, r � 1 an integer, P an unsatisfiable set of polynomials and I a proper ideal in
F[V ]. Suppose that there exists a non-empty (r, I)-BG family F for P. Then for every
I-semantic polynomial calculus refutation π of P,

MSp(π)� �r/4	 . (4.18)

Proof. Let π = (M0, . . . ,M�) be an I-semantic polynomial calculus refutation of P
and assume, for sake of contradiction, that MSp(π)< �r/4	. Moreover suppose that

for every i = 0, . . . , �, there exists a non-empty flippable product Hi ∈F and a non-empty
2-merge Zi on Hi such that Zi �I Mi.

This claim immediately implies a contradiction: when i = � it means that there
exists some Boolean assignment α ∈ Z� such that for every polynomial p ∈ M�,
p�α ∈ I. However 1 ∈M�, hence 1 ∈ I, which is impossible since I is a proper ideal
in F[V ].

We prove the previous claim by induction on i = 0, . . . , �. For the base case
i = 0, set H0 = {λ} ∈ F and Z0 = H0. Then, trivially M0 = /0, so Z0 �I M0. For
the inductive step, let Mi+1 ⊆ 〈Mi〉+ I + 〈p〉 with p ∈ P. By Lemma 4.1, used
with parameters H = Hi, Z = Zi and S = Mi, we get a non-empty H ′ � Hi and a
non-empty 2-merge Z′ on H ′ such that Z′ �I Mi and ‖H ′‖� 4MSp(Mi). Then, by
the restriction property of F, H ′ ∈ F. Moreover, we assumed that MSp(Mi)< �r/4	,
so ‖H ′‖� r−4 < r and, by the extension property of F applied to H ′ and p, there
exists Hi+1 ∈ F such that Hi+1 � H ′ and Hi+1 �I p. Let Hi+1 = H ′ ⊗Hp where Hp is
the flippable product collecting all the factors of Hi+1 not in H ′. Set Zi+1 = Z′ ⊗Hp.
It is a 2-merge on Hi+1 due to the fact that Z′ is a 2-merge on H ′ and by the definition
of Hp. Finally, Hi+1 �I I + 〈p〉 and so Zi+1 �I I + 〈p〉. Moreover, Zi+1 �I Mi. So
Zi+1 �I 〈Mi〉+ I + 〈p〉 and hence Zi+1 �I Mi+1. ��

In the previous proof we did not exploit fully the fact that in the inductive hypoth-
esis ‖H ′‖ � r−4. It is easy to adapt the previous proof to use this more carefully
and indeed prove Theorem 4.3.

Restated Theorem 4.3 Let V be a set of variables, F a field, r � 1 an integer, P an
unsatisfiable set of polynomials and I a proper ideal in F[V ]. Let P = P1 ∪P2 and
suppose that the following conditions hold:

1. there exists a non-empty (r, I)-BG family F for P1;
2. for every H ∈ F s.t. ‖H‖ < r and every p ∈ P2 either H �I p or there exists

H ′ = H ⊗Hp ∈ F, with ‖Hp‖= 1, and there exists α ∈ Hp, p�α ∈ I.
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Then for every I-semantic polynomial calculus refutation π of P

MSp(π)� �r/4	 . (4.19)

Proof. The proof of Theorem 4.2 can be adapted here with minor (but non-trivial)
modifications. Hence we use the same notations and, for sake of contradiction, we
assume that MSp(π)< �r/4	.

The only difference with the proof of Theorem 4.2 is in the inductive step when
Mi+1 ⊆ 〈Mi〉+ I + 〈p〉 with p ∈ P2. By Lemma 4.1, used with parameters H = Hi,
Z = Zi and S =Mi, we have a non-empty H ′ ∈ F and a non-empty 2-merge Z′ of H ′
such that Z′ �I Mi and

‖H ′‖� 4MSp(Mi)� 4(r/4−1)� r−4 . (4.27)

Then, by hypothesis (2) of the theorem, either H ′ �I p or there is a flippable product
Hp such that H ′ ⊗Hp ∈ F and Op =

{
α ∈ Hp : p�α ∈ I

}
is non-empty. In the first

case just set Hi+1 = H ′ and Zi+1 = Z′. In the second case ‖H ′ ⊗Hp‖= ‖H ′‖+1 < r
so, again by hypothesis (2) of the theorem, either H ′ ⊗Hp �I p or there exists a
flippable product H ′

p such that H ′ ⊗Hp ⊗H ′
p ∈ F and O′

p =
{

α ∈ H ′
p : p�α ∈ I

}
is non-empty. Let Zp = (Op ⊗H ′

p)∪ (Hp ⊗O′
p). Then let Hi+1 = H ′ ⊗Hp ⊗H ′

p and
Zi+1 = Z′ ⊗Zp. These by construction satisfy the inductive hypothesis. ��

We can now turn to proving Lemma 4.1, but first we need a generalization of the
concept of matchings in bipartite graphs. For the moment we focus on V-matchings;
a further generalization will be given in Sect. 6.1.

Definition 4.7 (V-Matchings). Let GV be a bipartite graph with three vertices shaped
like a “V”. More precisely it has vertices {v0,v1,v2} and two edges: {v0,v1} and
{v1,v2}. Its bipartition is L(GV) = {v1} and U(GV) = {v0,v2}.

Given a bipartite graph G with bipartition (L,U), a V-matching in G is a subgraph
G′ of G such that each connected component of G′ is isomorphic to GV by an
isomorphism that maps L(GV) into L and U(GV) into U .15

The following is an easy corollary of Hall’s theorem for matchings stated for
reference in the Notation on p. xv.

Lemma 4.2 ([ABRW02]). Let G be a bipartite graph with bipartition (L,U). The
following are equivalent:

1. for each subset A of L, |N(A)|� 2 |A|,
2. there exists a V-matching in G covering L.

Proof. Clearly (2) implies (1). For the other implication, let G′ be the auxiliary graph
with bipartition (L′,U) where each vertex v ∈ L is “split” into two vertices v0,v1 ∈ L′

15 This definition is essentially the same definition of V-matching in Sect. 6.1. The difference is that
a V-matching in Sect. 6.1 could include singleton vertices from U . Hence, from the point of view of
the vertices covered in L, the two notions are perfectly equivalent.
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and (vb,w) is an edge in G′ if and only if (v,w) is an edge in G. Now, G′ is such
that for each subset A of L′, |NG′(A)|� |A|. Hence, by Hall’s theorem, there exists a
matching M covering L′. Then, merging the duplicated vertexes in L′, from M we get
a V-matching that covers L. ��

We now use this simple combinatorial fact to prove Lemma 4.1. A visual hint for
the notations used in this proof can be found in Fig. 4.2.

U

L

all the Jis in Z (|Ji|� 2)

distinct monomials in S

M (maximal)

m

NG(M) (|NG(M)|� 2|M|)
Lm
= {�m,

�
′
m
}

Km
= {km,

k′m}

· · · · · · F

Figure 4.2 A locality lemma

Proof (of Lemma 4.1). Let H = H1 ⊗·· ·⊗Ht and Z = ZJ1 ⊗·· ·⊗ZJr . Let G be the
bipartite graph with bipartition (L,U) where L, the lower part of G, is indexed by
the set of all distinct monomials in S, and U , the upper part of G, is indexed by the
set {J1, . . . ,Jr}. There is an edge (m,Ji) in G if and only if a variable of m appears
in dom(ZJi). For a set M ⊆ L let N(M) be the set of neighbors of M in G and let HM
and ZM be the following two flippable products:

ZM =
⊗

Ji∈N(M)

ZJi , HM =
⊗

Ji∈N(M)

⊗
j∈Ji

Hj . (4.28)

Let M be a set of maximal size in L such that |N(M)|� 2 |M|. Let Mc = L\M. By
maximality of M, for each A ⊆ Mc, |N(A)\N(M)| � 2 |A|. Hence, by Lemma 4.2,
there is a V-matching F covering Mc and F is in the subgraph of G induced by
Mc ∪ (U \N(M)).

Let’s start constructing H ′. For each monomial m ∈ Mc, consider the upper part
of the connected component Fm of F covering m and let U(Fm) = {Lm,Km} be this
upper part, where Lm,Km ∈ {J1, . . . ,Jr}. By definition of G, there is a variable x in
both m and dom(ZLm). Let Lm = {�m, �

′
m} where �m is such that x is in dom(H�m).

Analogously define Km = {km,k′m}. Define the product-family H ′ as

H ′ = HM ⊗
⊗

m∈Mc

H�m ⊗Hkm . (4.29)

Clearly H ′ � H and hence it is a flippable product. The rank of H ′ is
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‖H ′‖= ‖HM‖+2 |Mc|
(�)

� 4 |M|+2 |Mc|� 4 |L|= 4MSp(S) , (4.30)

where (�) follows from the fact that |N(M)|� 2 |M|, and for all i, |Ji|� 2.
The construction of Z′ goes as follows. Given m ∈ Mc let

Om,i = {α ∈ Hi : m�α = 0} . (4.31)

Observe that if a variable x of m is in dom(Hi) then Om,i is non-empty since Hi is
flippable and hence there is always a Boolean assignment in Hi setting x to 0 and
hence satisfying m, that is setting m to 0. As in Example 4.1, let

Z{�m,km} = (Om,�m ⊗Hkm)∪ (H�m ⊗Om,km) . (4.32)

Then let Z′ be
Z′ = ZM ⊗

⊗
m∈Mc

Z{�m,km} . (4.33)

It is straightforward to see that Z′ is a 2-merge on H ′. We just have to show that
Z′ �I S. Since Z �I S, it is enough to show that for every Boolean assignment α ∈ Z′
there is a Boolean assignment β ∈ Z such that for every monomial m in S, m�α =m�β .
By the definition of Z′ it is enough to show that for each α ∈ Z{�m,km} there exists
β ∈ ZLm ⊗ZKm such that for each monomial m in S, m�α = m�β . Now, the fact that
Z is a 2-merge means that ZLm ⊇ H�m ⊗A�′m for some non-empty A�′m ⊆ H�′m and
similarly ZKm ⊇ Hkm ⊗Ak′m for some non-empty Ak′m ⊆ Hk′m . Hence it is enough to
take

β = α ∪
⋃

m∈Mc

α�′m ∪αk′m , (4.34)

where α�′m ∈ A�′m and αk′m ∈ Ak′m . Then β is well defined since all the Hi are domain-
disjoint, and it belongs to Z by construction. Now, given any monomial m in S, if
m ∈ Mc then m�α = 0 and hence clearly m�β = 0. If m ∈ M then by construction
m does not contain variables from any of the sets dom(ZLm′ ) and dom(ZKm′ ) with
m′ ∈ Mc, hence, the Boolean assignment

⋃
m∈Mc α�′m ∪αk′m does not set variables in

m. Then in both these cases m�α = m�β . ��

4.6 Open Problems

Question 4.1. Let P be an unsatisfiable set of polynomials of degree at most d and
let D be the minimum degree needed to refute P in polynomial calculus. Is it true
that for every (semantic) polynomial calculus refutation π of P,

MSp(π) = Ω(D−d) ? (4.35)

This question was asked for polynomial calculus (and more general proof systems)
already in [ABRW02, Open question no. 4].
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Regarding total space in polynomial calculus, all the questions in [ABRW02] are
still open, in particular the following.

Question 4.2. Is there any family of CNF formulas Fn in n variables and with nO(1)

clauses such that for every PCR refutation π of Fn

TSp(π) = ω(n) ? (4.36)

The reason to ask for Fn to have nO(1) clauses is that otherwise CTn answers
eq. (4.36). But this is somehow an unsatisfactory answer since CTn has exponentially
many clauses in n.

Question 4.3. Do (r, I)-BG families, see Definition 4.5, characterize any interesting
complexity measure in polynomial calculus? Can they used be to prove degree (and
hence size) lower bounds in polynomial calculus?

The reason behind this question is that (r, I)-BG families have some similarities
with the w-AD and w-BK families, see Sect. 2.3.1, which characterize respectively
width and asymmetric width in resolution. Hence it seems plausible for the (r, I)-BG
families to characterize something interesting in polynomial calculus. Moreover, if
the (r, I)-BG families could provide degree lower bounds this would give a, possibly
easier, way to prove such lower bounds alternative to the techniques in [BI10, AR01,
MN15].

History

The main technical difficulty of this chapter is Lemma 4.1, the Locality Lemma. This
is a generalization of [ABRW02, Lemma 4.14] and an analoguous result in [FLN+15].
The way we present it is based on [BG15] although a preliminary equivalent version
was already proved in [BG13].

The main definition of this chapter, the (r, I)-BG families (Definition 4.5), was
introduced in [BG13] and simplified to this version in [BG15]. Theorem 4.3 is a
generalization of [BG15, Theorem 3.6].
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Applications



Chapter 5

Pigeonhole Principles

The pigeonhole principle asserts that there is no multi-valued total injective mapping
from a set with m elements into a set with n elements, if m > n. The elements of the
set of size m are traditionally called pigeons and the elements of the set of size n are
called holes and so the pigeonhole principle can be stated more pictorially saying
that

if m > n pigeons fly to n holes then (at least) two of them must go to the same hole.

Interestingly, the proof complexity of the pigeonhole principle essentially depends
on the number of pigeons m (as a function of the number of holes n) and on some
details of its encodings as an unsatisfiable CNF formula or as an unsatisfiable set
of polynomials. The encodings of the pigeonhole principle as an unsatisfiable CNF
formula that we consider are the following:

• the “standard” pigeonhole principles, PHPm
n , fPHPm

n , oPHPm
n , see Sect. 5.1;

• the “bit” pigeonhole principle, bitPHPm
n , see Sect. 5.2;

• the “XOR” pigeonhole principle, xorPHPm
n , see Sect. 5.3.

The graph pigeonhole principle, G-PHP, is instead considered much later in
Sect. 7.3 since the monomial space lower bound for it relies on results from Chap. 6.

For each of the encodings above we review some of their properties with a
focus on their space complexity in resolution and polynomial calculus. Indeed most
of the space lower bounds from this section were already known in the literature
[ABRW02, FLM+13] but here we give short, self-contained proofs of those results
as easy applications of the general theorems we saw in Part I.

5.1 The (Standard) Pigeonhole Principles

Let m,n ∈ N be two integers such that m > n and consider the set of mn variables
X = {xi j : i ∈ [m], j ∈ [n]}. The intended meaning of xi j is the truth value of “the i-th
pigeon goes into the j-th hole”. The standard encoding of the pigeonhole principle,

I. Bonacina, Space in Weak Propositional Proof Systems,
https://doi.org/10.1007/978-3-319-73453-8_5
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PHPm
n , asserts that there is an injective multi-valued mapping from [m] to [n]. It is

the conjunction of the following clauses:

1. ¬xi j ∨¬xi′ j for all i �= i′ ∈ [m] and for all j ∈ [n] (Injectivity Axioms);
2. xi1 ∨ xi2 ∨·· ·∨ xin for all i ∈ [m] (Totality Axioms).

Clearly PHPm
n is unsatisfiable whenever m > n and its proof complexity has been

investigated in depth since Haken used it to prove the first (sub-)exponential lower
bounds on size for resolution [Hak85]: every resolution refutation π of PHPn+1

n is
such that

S(π)� 2Ω(n) . (5.1)

Notice that this is not truly exponential in the number of variables of PHPn+1
n

since this formulas has Θ(n2) variables. Regarding the relation between m and n,
intuitively the larger m is with respect to n the ‘more contradictory’ PHPm

n is, and
interestingly its proof complexity indeed depends on the number of pigeons m with
some qualitative changes occurring when

m = n+1,2n,n2,∞ . (5.2)

For example in [Raz04, Raz03] it is proved that for every resolution refutation π of
PHPn2

n
S(π)� 2Ω(n/ logn) . (5.3)

In general for every m > n it holds that PHPm
n needs resolution refutations of size at

least 2Ω( 3√n) [Raz03].
Regarding the upper bounds, PHPn+1

n has resolution refutations of size O
(
n32n

)
[BP97, Lemma 1]. More generally, PHPm

n has polynomial-size refutations in proof
systems such as cutting planes, see [CCT87, GPT15], and Frege systems, see [Bus87].
On the other hand, constant-depth Frege proofs of the pigeonhole principle require
exponential size, see [Ajt94, BIK+92, KPW95a, PBI93]. We refer to [Raz01] for a
survey on the proof complexity of the pigeonhole principle.

We consider PHPm
n in polynomial calculus and for the convenience of the reader

we recall its encoding as a set of polynomials PPHPm
n

in the ring F[X ∪X ]:

PPHPm
n
=
{

xi jxi′ j : i �= i′ ∈ [m] and j ∈ [n]
}

∪
{

∏
j∈[n]

x̄i j : i ∈ [m]

}
∪{x2

i j − xi j, xi j + x̄i j −1 : i ∈ [m] and j ∈ [n]
}
. (5.4)

Notice that PPHPm
n

contains polynomials of degree n. This make degree lower bounds
trivial, hence sometimes in polynomial calculus an alternative encoding of PHPm

n
is used. This is an encoding of PHPm

n as a set of small-degree polynomials where
the polynomials

{
∏ j∈[n] x̄i j

}
i∈[m]

in PPHPm
n

are substituted by
{

∑ j xi j −1
}

i∈[n]
. To

avoid confusion we call this version of the pigeonhole principle where large degree
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initial polynomials are substituted by linear polynomials linPHPm
n . Considering

linPHPm
n instead of PHPm

n makes sense when proving degree lower bounds but it
trivially implies monomial space lower bounds, as already some of the polynomials
in linPHPm

n requires a large, i.e., linear, number of monomials. For every m > n,
linPHPm

n require polynomial calculus refutations of degree Ω (n), see [Raz98], and
hence polynomial calculus refutations of size 2Ω(n), due to eq. (4.8).

Regarding the space complexity of the pigeonhole principle, we have that it does
not depend on the number of pigeons. Every resolution refutation of PHPm

n requires
clause space at least n [ET01, ABRW02]. Moreover, since PHPm

n is an n-semiwide
formula, see Definition 3.1, by Theorem 3.7 then every semantic resolution refutation
of PHPm

n requires total space at least �n/2	2. This result was proved in [ABRW02,
Corollary 5.7] and indeed the proof of Theorem 3.7 can be seen as a generalization of
this result. It also holds that every semantic polynomial calculus refutation of PHPm

n
requires total space at least Ω

(
n2
)

[ABRW02, Corollary 5.7].
The monomial space lower bound we prove holds for the so called onto version of

the pigeonhole principle, oPHPm
n , that is the conjunction of PHPm

n with the following
clauses:

x1 j ∨ x2 j ∨·· ·∨ xm j , (5.5)

for all j ∈ [n] (Onto Axioms). We recall that the encoding of oPHPm
n as a set of

polynomials tr(oPHPm
n ) in the ring F[X ∪X ] is the following

PoPHPm
n
= PPHPm

n
∪
{

∏
i∈[m]

x̄i j

}
j∈[n]

. (5.6)

Clearly oPHPm
n is weaker than PHPm

n , in the sense that it is even “more false”
than PHPm

n . Indeed any refutation of PPHPm
n

is also a refutation of PPHPm
n

, so we can
just focus on proving lower bounds on the complexity of oPHPm

n .

Theorem 5.1 ([ABRW02]). Let F be a field, m > n two integers and let X ={
xi j : i ∈ [m] and j ∈ [n]

}
. Let P1 be the set of polynomials in F[X ∪X ] encoding

the injectivity axioms of oPHPm
n and the Boolean axioms, that is

P1 =
{

xi jxi′ j, x2
i j − xi j, xi j + x̄i j −1 : i �= i′ and xi j,xi′ j ∈ X

}
. (5.7)

Let I = 〈P1〉 be the ideal in F[X ∪X ] generated by P1. Then for every I-semantic
polynomial calculus refutation π of oPHPm

n , it holds that

MSp(π)� �n/4	 . (5.8)

Proof. We apply Theorem 4.3. Let P be the polynomial encoding of oPHPm
n , then

P = P1 ∪P2 where P1 is described above and

P2 =

{
∏
j∈[n]

x̄i j : i ∈ [m]

}
∪
{

∏
i∈[m]

x̄i j : j ∈ [n]

}
. (5.9)
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We want to construct a non-empty (n, I)-BG family F for P1 satisfying the hy-
potheses of Theorem 4.3.

Given i ∈ [m] and j ∈ [n], let (i  → j) be the Boolean assignment with domain
{xi′ j, x̄i′ j : i′ ∈ [m]} defined as follows

(i  → j)(xi′ j) =

{
1 if i′ = i ,
0 if i′ �= i ,

(5.10)

(i  → j)(x̄i′ j) =

{
0 if i′ = i ,
1 if i′ �= i .

(5.11)

Let Hj = {(i  → j) : i ∈ [m]}. Clearly Hj is flippable. Let F be the following family
of flippable products: H ∈ F if and only if there exists a set of holes A ⊆ [n] such that

H =
⊗
i∈A

Hi . (5.12)

It is immediate to check that F is a (r, I)-BG family for P1. The only non-trivial
property is the consistency property for the injectivity axioms but it is easy to see
that each H ∈ F either sets polynomials xi jxi′ j to 0 or maps them to themselves. Let’s
see that P2 satisfies the hypotheses of Theorem 4.3. Let H ∈ F with ‖H‖ < n and
let p ∈ P2. Say that p = ∏i∈[m] x̄i j. Since ‖H‖< n there exists a variable xi j not set
by assignments in H. Consider then H ⊗Hj. It belongs to F by construction and
clearly there is an assignment α ∈ Hj such that p�α = 0 ∈ I. The case p = ∏ j∈[n] x̄i j
is analogous. ��

Another standard even weaker pigeonhole principle is the functional one, fPHPm
n ,

which is the conjunction of the PHPm
n formula with the following clauses

¬xi j ∨¬xi j′ , (5.13)

where i ∈ [m] and j, j′ ∈ [n] are distinct (Functionality Axioms). As observed in
[FLM+13] the approach shown in Theorem 5.1 cannot give super-constant monomial
space lower bounds for fPHPm

n .
Regarding the total space in polynomial calculus we have the following lower

bound.

Proposition 5.1 ([ABRW02, Theorem 5.1]). Let F be a field, X = {x1, . . . ,xn} a
set of variables and I the ideal generated by the Boolean axioms in F[X ∪X ]. Every
I-semantic polynomial calculus refutation π of PHPm

n is such that

TSp(π)� 3
64

n2 . �� (5.14)



5.2 The Bit-Pigeonhole Principle 65

5.2 The Bit-Pigeonhole Principle

Let n = 2k for k ∈ N. The bit pigeonhole principle on n holes, bitPHPn, is an
unsatisfiable CNF formula over the variables X = {xi j : i ∈ [n+1], j ∈ [k]}. It asserts
that for all distinct i, i′ ∈ [n+1], the length-k binary strings xi1 . . .xik and xi′1 . . .xi′k
are distinct. We think of each element of [n+1] as a pigeon and of the string xi1 . . .xik
as the address, in binary, of the hole in [n] that pigeon i is flying to. Understood in
this way, bitPHPn asserts that there is an injective mapping of n+1 pigeons into n
holes. Formally the principle consists of the clauses Bi,i′

h

Bi,i′
h =

k∨
j=1

(xi j �≡ h j)∨ (xi′ j �≡ h j) , (5.15)

for each i, i′ ∈ [n+1] with i < i′ and each h ∈ [n] such that its binary expansion is
h1 . . .hk ∈ {0,1}k. The expression xi j �≡ h j is a shortcut for ¬xi j if h j = 1 and for xi j
if h j = 0.

Then bitPHPn is a formula over O(n logn) variables consisting of O
(
n3
)

clauses
each of width O(logn). Two motivations to study, and sometimes prefer, bitPHPn
rather than PHPn+1

n are that its encoding is more efficient from the point of view of
the number of variables used and that the width of its clauses is O(logn) instead of n.

Some of the properties of the usual PHPn+1
n carry over for bitPHPn; for example it

is easy to show a width lower bound for bitPHPn by constructing a Ω (n) -AD family
of assignments (see Definition 2.3). Usually it is the case that bitPHPn is harder than
PHPn+1

n . For instance PHPn+1
n has polynomial-size cutting planes refutations, while

bitPHPn is hard for cutting planes: recently [HP17] proved that every cutting planes
refutation of bitPHPn requires size at least 2Ω(n1/8).

Theorem 5.2 ([FLN+15]). Let F be a field, n = 2k an integer and let X be the set
of variables

{
xi j : i ∈ [n+1] and j ∈ [k]

}
. Let I be the ideal in F[X ∪X ] generated

by the Boolean axioms,
{

x2
i j − xi j, xi j + x̄i j −1 : i �= i′ and xi j,xi′ j ∈ X

}
. Then for

every I-semantic polynomial calculus refutation π of bitPHPn it holds that

MSp(π)� �n/8	 . (5.16)

Proof. We use Theorem 4.2 and hence we just need to construct an (n/2, I)-BG
family F for bitPHPn.

Given a hole h with binary representation (h1, . . . ,hk)2, let h̄ be the hole with
complementary binary representation (1−h1, . . . ,1−hk)2. Notice that if h ∈ [n/2]
then h and h̄ are distinct. Given a set of holes A, let A = {h̄ : h ∈ A}.

The notation
[
i  → h, i′  → h̄

]
where i, i′ ∈ [n+1] and h∈ [n] is short for the Boolean

assignment with domain {xi j, x̄i j,xi′ j, x̄i′ j : j ∈ [k]} where for each j ∈ [k]
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i  → h, i′  → h̄

]
(xi j) = h j , (5.17)[

i  → h, i′  → h̄
]
(x̄i j) = 1−h j , (5.18)[

i  → h, i′  → h̄
]
(xi′ j) = 1−h j , (5.19)[

i  → h, i′  → h̄
]
(x̄i′ j) = h j . (5.20)

Given h ∈ [n/2] and an injective mapping σ : {h, h̄}→ [n+1], let Hσ
h be the set of

Boolean assignments of domain
{

xσ(h) j,xσ(h̄) j, x̄σ(h) j, x̄σ(h̄) j : j ∈ [k]
}

:

Hσ
h =

{[
σ(h)  → h,σ(h̄)  → h̄

]
,
[
σ(h)  → h̄,σ(h̄)  → h

]}
. (5.21)

By construction all the Boolean assignments in Hσ
h have the same domain, and Hσ

h is
flippable and I-consistent. Consider then the family F of flippable products: H ∈ F if
and only if there exists a set of holes A ⊆ [n/2] and there exists an injective mapping
σ : A∪A → [n+1] such that

H =
⊗
h∈A

Hσ
h . (5.22)

We prove that F is an (n/2, I)-BG family for bitPHPn. The consistency and restric-
tion property are obvious so we focus on the extension properties.

Let H =
⊗

h∈A Hσ
h ∈ F such that ‖H‖ < n/2 and consider p the polynomial

encoding of Bh
i,i′ in F[X ∪X ]. If both i, i′ ∈ σ(A∪ Ā) then, by construction, H �I p and

we have nothing to do. Otherwise, without loss of generality, assume i′ �∈ σ(A∪ Ā).
Since we have that ‖H‖ = |A| < n/2, there is some hole h′ ∈ [n/2] \ A and an
injective σ ′ such that σ ′ = σ ∪{h′  → i′}∪{h̄′  → i′′} with i′′ outside σ(A∪ Ā)∪{i′}.
If i �∈ σ(A∪ Ā) take i′′ = i. Let H ′ = H⊗Hσ ′

h′ =
⊗

h∈A′ Hσ ′
h ∈ F, where A′ = A∪{h′}.

The family H ′ is clearly I-consistent and flippable and moreover H ′ �I p, as each
assignment in H ′ sets i and i′ to go into two distinct holes. More precisely, if i ∈
σ(A ∪ A) then i goes somewhere inside A ∪ A and i′ goes either in h′ or h̄′. If
i ∈ σ(A∪A) take any i′′ /∈ σ(A∪A) and repeat the previous construction. Since
i goes in h̄′ and i′ goes in h′ or vice-versa we have in this case too that the extension
H ′ �I p. ��
Theorem 5.3 ([BGT14]). Let π be a resolution refutation of bitPHPn, then

TSp(π) = Ω
(
n2) . (5.23)

Proof. It is immediate to see that the (n/2, I)-BG family for bitPHPn in the proof
of Theorem 5.2 is also a (n/2,0)-BG family for bitPHPn. Hence Proposition 4.5
immediately gives the resolution total space lower bound. ��

Alternatively, this total space lower bound can also be proved by proving a resolu-
tion width lower bound for the refutations of bitPHPn, for instance by constructing a
Ω (n) -AD family for bitPHPn and then using Theorem 3.6.

Since bitPHPn has only O(n logn) variables, then the previous result is a total
space lower bound in resolution that is super-linear in the number of variables. This
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result was indeed the very first super-linear total space lower bound for a formula
with just polynomially many clauses.

5.3 The XOR Pigeonhole Principle

Let m,n ∈ N be two integers such that m > n and consider the set of variables
X = {xi, j : i ∈ [m], j ∈ [n]∪{0}}. A pigeon i ∈ [m] is considered assigned to a
hole j ∈ [n] when xi, j−1 �≡ xi, j is true. The XOR-Pigeonhole Principle, xorPHPm

n ,
expresses the following weaker form of the pigeonhole principle: if each pigeon is
assigned to an odd number of holes, then there exists a hole with at least two pigeons.
The formula xorPHPm

n is an unsatisfiable 4-CNF formula encoding the negation of
this combinatorial principle. It is the conjunction of the following CNF formulas:

1. for each i ∈ [m], xi,0 �≡ xi,n, that is

(xi,0 ∨ xi,n)∧ (¬xi,0 ∨¬xi,n); (5.24)

2. for all distinct i, i′ ∈ [m] and all j ∈ [n]∪{0},

(xi, j−1 ≡ xi, j)∨ (xi′, j−1 ≡ xi′, j) , (5.25)

that is

(xi, j−1 ∨¬xi, j ∨ xi′, j−1 ∨¬xi′, j)∧ (¬xi, j−1 ∨ xi, j ∨¬xi′, j−1 ∨ xi′, j)

∧(xi, j−1 ∨¬xi, j ∨¬xi′, j−1 ∨ xi′, j)∧ (¬xi, j−1 ∨ xi, j ∨ xi′, j−1 ∨¬xi′, j) . (5.26)

Theorem 5.4 ([FLN+15]). Let F be a field, m > n two integers and let X be the
set of variables

{
xi j : i ∈ [m] and j ∈ [n]

}
. Let I be the ideal in F[X ∪X ] generated

by the Boolean axioms,
{

x2
i j − xi j, xi j + x̄i j −1 : i �= i′ and xi j,xi′ j ∈ X

}
. Then for

every I-semantic polynomial calculus refutation π of xorPHPm
n it holds that

MSp(π)� �(n−1)/4	 . (5.27)

Proof. We use Theorem 4.2. Hence we just have to construct an ((n− 1), I)-BG
family for xorPHPm

n . Given i ∈ [m] and j ∈ [n], let (i  → j) and (i  → j)∗ be the
following two Boolean assignments of domain {xi j′ , x̄i j′ : j′ ∈ [n]∪{0}}: for each
j′ ∈ [n]∪{0}
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(i  → j)(xi j′) =

{
1 if j′ < j ,
0 if j′ � j ,

(5.28)

(i  → j)(x̄i j′) =

{
0 if j′ < j ,
1 if j′ � j ,

(5.29)

(i  → j)∗(xi j′) =

{
0 if j′ < j ,
1 if j′ � j ,

(5.30)

(i  → j)∗(x̄i j′) =

{
1 if j′ < j ,
0 if j′ � j .

(5.31)

Then for each i, j let
Hi  → j = {(i  → j),(i  → j)∗} . (5.32)

By construction Hi → j is flippable and I-consistent. Define F such that H ∈ F if and
only if there exists a set A ⊆ [m] of size at most n−1 and there exists an injective
mapping μ : A −→ [n] such that

H =
⊗
i∈A

Hi →μ(i) . (5.33)

We prove that F is an ((n−1), I)-BG family for xorPHPm
n . The fact that F is non-

empty, each H ∈ F is I-consistent and the restriction property are very easy to check
so we focus on proving the extension property of F.

Let H =
⊗

i∈A Hi  →μ(i) ∈ F with ‖H‖ < n− 1 and p the polynomial encoding
of an initial clause C from xorPHPm

n . Let us suppose first that C is a clause from
some (xi, j−1 ≡ xi, j)∨ (xi′, j−1 ≡ xi′, j). If both i and i′ are in A, then, by construction,
H �I p and we have no extension to perform. If i �∈ A, then, as μ is an injective
assignment of at most n− 2 pigeons, we can find a hole h different from j which
is not in μ(A). Then let μ ′ = μ ∪{i  → h} and H ′ =

⊗
�∈A∪{i} H� →μ ′(�) = H ⊗Hi →h.

By construction Hi  →h �I p, hence H ′ �I p. Similarly if C = (xi,0 �≡ xi,n) we proceed
as before extending μ to assign the pigeon i somewhere (if needed). ��
Theorem 5.5. Let π be a resolution refutation of xorPHPm

n , then

TSp(π) = Ω
(
n2) . (5.34)

Proof. It is immediate to see that the (n/2, I)-BG family for xorPHPn in the proof
of Theorem 5.4 is also an (n/2,0)-BG family for xorPHPn. Hence Proposition 4.5
immediately gives the resolution total space lower bound. ��

Alternatively, this total space lower bound can also be proved by proving a
resolution width lower bound for the refutations of bitPHPn, for instance constructing
an Ω (n) -AD family for bitPHPn and then using Theorem 3.6.

Notice that unlike the analogous theorem for bitPHPn, this total space lower
bound for xorPHPn is just linear in the number of variables and not super-linear as it
is for bitPHPn.
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5.4 Open Problems

Question 5.1. Is it true that for every semantic polynomial calculus refutation π of
fPHPm

n , it holds that
MSp(π) = Ω (n) ? (5.35)

In [FLM+13] it is observed that the technique of (r, I)-BG families will not prove
super-linear monomial space lower bounds. More generally we have the following
related open question.

Question 5.2. Is it true that if F is r-semiwide then for every polynomial calculus
refutation π of F

MSp(π) = Ω (r) ? (5.36)

Then as particular cases of this question we have the previous question about
monomial space lower bounds for the functional pigeonhole principle and an analo-
gous question for Graph Tautologies, see [ABRW02, Definition 3.12].

History

More direct, essentially equivalent, proofs of the monomial lower bounds for
bitPHPn and xorPHPn can be found in [FLM+13]. A more direct proof of the
total space lower bound for bitPHPn can be found in [BGT16].



Chapter 6

Interlude: Cover Games

Let’s put aside proof complexity for a moment and, in this chapter, we will focus on
some properties of bipartite graphs. We start by generalizing the concept of matchings
in bipartite graphs to what we call C-matchings. Intuitively a C-matching in a bipartite
graph G with bipartition (L(G),U(G)) is a collection of vertex-disjoint subgraphs of
G isomorphic to some graph from the collection of graphs C. Our main interest is in
two particular cases of C-matchings: the V-matchings and the VW-matchings. We
already saw a version of the V-matchings in Sect. 4.5.2, and the VW-matchings are
just particular C-matchings in which each connected component looks like a ‘V’, a
‘W’ or a singleton from U(G), see Sect. 6.1 for the formal definitions.

First we prove a version of Hall’s theorem that holds for VW-matchings, see
Theorem 6.1. Then, in Sect. 6.1, we define some general two-player games, the
Cover Games, that generalize a matching game played on bipartite graphs [BG03].
Both the Cover Games and the matching game are played between two players,
Choose and Cover. Informally, given a bipartite graph G, a winning strategy for
Cover in the matching game guarantees that there is a family of matchings F such
that each matching in F can be enlarged to cover new vertexes in G (chosen by
Choose) or shrunk while remaining in F and the family F has large matchings in
it. The Cover Game is this exact game but instead of using matching we use C-
matchings. We then show some necessary conditions for the existence of winning
strategies for Cover in the Cover Game over V-matchings and VW-matchings, see
resp. Theorem 6.2 and Theorem 6.3. Finally we show that there exists a winning
strategy for Cover if the Cover Game is played on random bipartite graphs (using
V-matchings or VW-matchings), see Theorem 6.5.

6.1 C-Matchings

A C-matching is a generalization of the usual notion of matchings in bipartite graphs
and the V-matchings we saw in Sect. 4.5.2.

I. Bonacina, Space in Weak Propositional Proof Systems,
https://doi.org/10.1007/978-3-319-73453-8_6

71© Springer International Publishing AG, part of Springer Nature 2017
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Definition 6.1 (C-Matchings). Let C be a collection of bipartite graphs Gi with
bipartition (L(Gi),U(Gi)) and G be a bipartite graph with bipartition (L(G),U(G)).
A C-matching in G is a subgraph G′ of G such that each connected component of G′
is isomorphic to some graph G j in C by an isomorphism that maps L(G j) into L(G)
and U(G j) into U(G).

In what follows we are interested in C-matchings for particular collections of
graphs {G•,GV} and {G•,GV,GW}. For simplicity we call the {G•,GV}-matchings
simply V-matchings and the {G•,GV,GW}-matchings simply VW-matchings. The
bipartite graphs G•, GV and GW are defined as follows:

(a) G• consists of a single vertex v and no edges. The vertex v belong to U(G•).
(b) GV has three vertices {v0,v1,v2} and two edges: {v0,v1} and {v1,v2}. Its bipar-

tition is L(GV) = {v1} and U(GV) = {v0,v2}. It has the shape of a V .
(c) GW has five vertices {v0,v1,v2,v3,v4} and four edges: {v0,v1}, {v1,v2}, {v2,v3}

and {v3,v4}. Its bipartition is L(GW) = {v1,v3} and U(GW) = {v0,v2,v4}. It
has the shape of a W .

Our main interest in V-matchings and VW-matchings is that they are among the
simplest trees, and in some graphs associated with CNF formulas we can use such
trees to build (r, I)-BG families of assignments, see Sect. 7.1, and ultimately space
lower bounds in polynomial calculus.

6.2 Some Hall’s Theorems

For V-matchings and VW-matchings we can prove versions of the usual Hall’s
theorem for matchings (see for reference the Notations section on page xv). That
is we are looking for results relating the qualitative property of the existence of
V-matchings and VW-matchings in bipartite graphs to the expansion properties of
the graph.

In Sect. 4.5.2 we already saw one such result for V-matchings: the following
result, which is an immediate consequence of Hall’s theorem.

Restated Lemma 4.2 ([ABRW02]) Let G be a bipartite graph with bipartition
(L,U). The following are equivalent:

1. for each subset A of L, |N(A)|� 2 |A|,
2. there exists a V-matching in G covering L.

Here we want to prove an analogue of Hall’s theorem and Lemma 4.2 for VW-
matchings, but, before doing that, let’s see why we can’t get an exact analogue of
such results. For convenience we recall here the notion of bipartite expansion, which
is also in the Notations section.

Definition 6.2 (Bipartite Expansion). Let r ∈ N and c ∈ R. A bipartite graph G
with bipartition (L,U) is an (r,c)-bipartite expander if and only if
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∀A ⊆ L(G), |A|� r → |NG(A)|� c |A| . (6.1)

Proposition 6.1. Let G be a bipartite graph and let |L(G)| = n. If there exists a
VW-matching in G covering L(G) then G is an (n, 3

2 )-bipartite expander.

Proof. If G has as subgraph a VW-matching covering L(G) then clearly G is an
(n, 3

2 )-bipartite expander since each subset of a VW-matching expands in G by a
ratio of at least 3

2 .

Unfortunately, the converse of Proposition 6.1 does not hold, as the following
example shows.

Example 6.1. An easy counterexample to the converse of Proposition 6.1 is the
following graph Dn, see Fig. 6.1 for D4.

(0,0) (2,0)

(1,1) (2,1)

(4,0)

(3,1) (4,1)

(6,0)

(5,1) (6,1)

(8,0)

(7,1) (8,1)

Figure 6.1 D4

The graph Dn has vertex-set

([2n]×{1})∪ ({0,2,4, . . . ,2n}×{0}) , (6.2)

with L(G) = {0,2,4, . . . ,2n}×{0} and U(G) = [2n]×{1}. Its edges are all the

{(0,0),(2i,1)},{(2i,0),(2i,1)},{(2i,0),(2i−1,1)} , (6.3)

for 1 � i � n. We have that Dn is an (n+1,δn)-bipartite expander where δn → 2 as
n → ∞. But on the other hand there is no VW-matching in Dn covering L(Dn).

We want to show some kind of converse of Proposition 6.1 and the example we
just saw tells us we have to proceed a bit carefully.

6.2.1 A Hall’s Theorem for VW-Matchings

The following theorem behaves like a sort of converse of Proposition 6.1. The way
we present it is somehow tailored to the applications we are interested in, that is
bipartite graphs G such that each v ∈ L(G) has degree at most 3.
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Theorem 6.1 ([BBG+17, Lemma 1.2]1). Let G be a bipartite graph. Suppose that
the following properties hold:

1. for each v ∈ L(G), deg(v)� 3 and no pair of degree 3 vertices in L(G) have the
same set of neighbors,

2. |N(L(G))|� c |L(G)|, with c > 1.8 and
3. each proper subset of L(G) can be covered by a VW-matching,

then L(G) can be covered by a VW-matching.

Proof. For sake of contradiction, let G be a bipartite graph witnessing the fact that
the theorem is not true and for brevity let L = L(G) and U = U(G). Without loss
of generality we can suppose that U = NG(L). By hypothesis, every proper subset
of L can be covered by a VW-matching but the whole L cannot. This means that
the graphs in Fig. 6.2 cannot be mapped into G by a mapping respecting the edge
adjacencies, the degree of the vertexes and mapping the lower part of such graphs
into L and the upper part into U .

(a) (b) (c) (d) (e)

node of arbitrary degree
node of degree fixed by the figure

Figure 6.2 List of forbidden subgraphs for G

We say that two vertices v,v′ in U are close if there exists a vertex w ∈ L such
that v,v′ ∈ N(w). We now weight each vertex in U by its degree and we redistribute
the weight in the following way: each vertex in U of degree 1 gets weight 1

3 from
its close vertices. Let v be a vertex in U and let w(v) be its weight at the end of the
previous process. Then, since we are just redistributing the weight,

∑
v∈U

deg(v) = ∑
v∈U

w(v) . (6.4)

If v ∈U is such that deg(v) = 1 then

w(v) =

{
1+1/3 if v has only one close vertex ,

1+2/3 otherwise .
(6.5)

1 The original proof from [BBG+17] used the assumption of c > 1.96. Susanna Figueiredo de
Rezende (pers. comm.) later simplified the argument and gave a better bound (c > 1.8). With her
kind permission we give here her simplified proof. For more details about this result see the History
section at the end of this chapter.
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In fact, since the graphs in Fig. 6.2.(a) and (b) are not subgraphs of G, we have that
two vertices of degree 1 in U cannot be close.

If v ∈U is such that deg(v) = 2 then

w(v)� 2−1/3 . (6.6)

Indeed, since the graphs in Fig. 6.2. (c), (d) and (e) are not subgraphs of G, a vertex
of degree 2 in U can be close to at most one vertex of degree 1 in U .

If v ∈U is such that deg(v) = d � 3 then w(v)� 2, since it can be close to at most
d vertices of degree 1 as the graph in Fig. 6.2.(b) is not a subgraph of G, and hence
w(v)� d − d

3 = 2
3 d � 2.

Let L = L2 ∪L3, where Li are the vertices of degree i in L, and U ′ be the set of
degree 1 vertices of U that have only one close vertex. This means that each u ∈U ′
is a neighbor of some vertex in L2 and since no pair of vertices of degree 1 can be in
the same neighborhood, then |U ′|� |L2|. Therefore we have the following chain of
inequalities:

3
c
|N(L)|� 3 |L|= 3 |L3|+2 |L2|+ |L2|= ∑

v∈U
deg(v)+ |L2|= (6.7)

= ∑
v∈U

w(v)+ |L2|� 5
3
|U |− 1

3

∣∣U ′∣∣+ |L2|� 5
3
|U |= (6.8)

=
5
3
|N(L)| . (6.9)

It follows that c � 9/5, which contradicts the hypothesis on c. ��

6.3 Cover Games

We now introduce some combinatorial games on bipartite graphs. These can be seen
as a generalization of matching games on bipartite graphs [BG03].

Let G be a bipartite graph. Given a subgraph F of G and a subset A of vertices of
G, we recall that F covers A if A is contained in the vertex-set of F .

Definition 6.3 (Cover Games). Let G be a bipartite graph, μ an integer and C a
collection of bipartite graphs. The Cover Game CovGameC(G,μ) is a game on the
bipartite graph G between two players called Choose (he) and Cover (she). At each
step i of the game the players maintain a C-matching Fi in G. They start with the
empty C-matching and at step i+1 Choose can either

1. remove a connected component from Fi, or
2. if the number of connected components of Fi is strictly less than μ , pick a vertex

(either in L(G) or U(G)) and challenge Cover to find a C-matching Fi+1 in G
such that

a. each connected component of Fi is also a connected component of Fi+1;



76 6 Interlude: Cover Games

b. Fi+1 covers the vertex picked by Choose.

Cover loses the game CovGameC(G,μ) if at some point she cannot answer a chal-
lenge by Choose. If the game can go on indefinitely without Cover losing we say that
she wins.

We are interested in winning conditions for the player Cover for the cover games
where V-matchings and VW-matchings are used, that is CovGameV(G,μ) and
CovGameVW(G,μ). The reason for our interest is the fact that for suitable graphs G
associated with sets of monomials a winning strategy for the player Cover for the
cover game CovGameC(G,μ) implies the existence of a (μ, I)-BG family for some
ideal I (under some assumptions on C) and hence ultimately some monomial space
lower bound, see Sect. 7.1.

The ultimate goal of this chapter is to prove that if G is a random bipartite graph
then Cover has a winning strategy for CovGameV(G,μ) and CovGameVW(G,μ)
for μ linear in the number of vertices of G. This will be proven in Sect. 6.4 as a
consequence of the following two theorems showing the existence of a winning
strategy for Cover when G is a bipartite expander (and it fulfills some more technical
hypotheses).

Theorem 6.2. Let G be a bipartite graph with bipartition (L(G),U(G)), r a positive
integer and c > 2 a real number. Suppose that the following two properties hold:

1. G is an (r,c)-bipartite expander;
2. the maximum degree of a vertex in U(G) is at most μ .

Then Cover wins CovGameV(G,μ) with μ = r(c−2)
2d2 where d is the maximum degree

of a vertex in L(G).

For some applications the assumption that c > 2 in the previous theorem is not
enough. Luckily an analogous theorem holds for slightly lower c, and this is enough
for our applications.

Theorem 6.3. Let G be a bipartite graph with bipartition (L(G),U(G)), r, D be
positive integers, and c > 1.9 be a real number. For every integer d � D let Sd be the
set of vertices of U(G) with degree bigger than d. Suppose that

1. each vertex in L(G) has degree at most 3;
2. G is an (r,c)-bipartite expander;
3. for every Dmax � d � D,

r(2− c)� 72d(|Sd |+d) , (6.10)

where Dmax is the maximum degree of a vertex in U(G).

Then Cover wins CovGameVW(G,μ) with μ = r(2−c)
72D .

The proofs of Theorem 6.2 and Theorem 6.3 are quite long and a bit technical.
We prefer to focus first on their applications to random bipartite graphs (in the next
section) and leave to Sect. 6.5 their full proofs.
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6.4 Random Bipartite Graphs

A bipartite graph is an (n,d,Δ)-random bipartite graph if it is chosen according to
the uniform distribution on the set of bipartite graphs G such that U(G) = n and
L(G) = Δn and the degree of any vertex in L(G) is d.

In this section we prove that with high probability Cover has winning strategies for
Cover Games over random bipartite graphs. To prove this fact we need to check that
with high probability random bipartite graphs fulfill all the hypotheses of Theorem 6.2
and Theorem 6.3. This is the content of the following theorem and the next two
lemmas.

Theorem 6.4 ([BG03, Lemma 5.1]). For any d � 3, Δ � 1 and any real constant
c ∈ (1,d−1), there is a constant γ = γd,c,Δ such that, for large n, if G is an (n,d,Δ)-
random bipartite graph then, with high probability, G is a (γn,c)-bipartite expander.
��

The proof of the previous theorem is standard and can be found (in slightly
different forms), for instance in [HLW06, CS88, BP96, BW01, BG03].

Lemma 6.1. Let G be an (n,d,Δ)-random bipartite graph with Δ and d positive
constants. Then, with high probability, there is no vertex in U(G) of degree bigger
than logn.

Proof. The expected number of vertices in U(G) of degree at least logn is at most

n
(

Δn
logn

)((n−1
d−1

)(n
d

) )logn

� n
(

eΔn
logn

)logn(d
n

)logn

= o(1) . (6.11)

Hence, with high probability, there are no such vertices. ��

Lemma 6.2. Let Δ be a constant and G be an (n,3,Δ)-random bipartite graph. For
every integer d, let Sd = {v ∈U(G) : degG(v)� d}. Then for every real constant
δ > 0, with high probability for sufficiently large n there exists a constant D such
that for every logn � d � D,

d(|Sd |+d)� δn. (6.12)

Proof. We claim that for every logn � d � 12eΔ , with high probability

|Sd |� en
2d . (6.13)

Before proving eq. (6.13), we show how to conclude the desired bound on Sd . Fix a
positive constant δ and let logn�D� 12eΔ be big enough that eD

2D � δ/2. Moreover,
for sufficiently large n, we have also that log2 n� δn/2. For d such that logn� d �D
we have the following chain of inequalities:
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d(|Sd |+d)
eq. (6.13)

� end
2d +d2 � eDn

2D + log2 n � δn
2

+
δn
2

= δn . (6.14)

It remains to show just equation (6.13). Consider logn � d � 12eΔ . The probability
that there are at least en

2d vertexes in U(G) of degree at least d is at most

Pr
[
|Sd |� en

2d

]
�
(

n
en
2d

)[(
Δn
d

)(
3
n

)d
] en

2d

. (6.15)

�
[

2d
(

eΔn
d

)d(3
n

)d
] en

2d

(6.16)

�
(

6eΔ
d

) edn
2d

(6.17)

�
(

1
2

) edn
2d

(6.18)

= o(1) , (6.19)

where eq. (6.19) holds since logn � d � 12eΔ , and we used the standard estimation(n
m

)
�
( en

m

)m. ��
Given the previous lemmas and Theorem 6.2 and Theorem 6.3, then the proof

of the existence of a winning strategy for Cover for the Cover Game on bipartite
random graphs is quite straightforward.

Theorem 6.5. Let d � 3, Δ � 1 and G be an (n,d,Δ)-random bipartite graph. Then,
for large n, with high probability there exists a constant γ such that Cover has
a winning strategy for CovGameVW(G,γn). Moreover, if d � 4 then Cover has a
winning strategy for CovGameV(G,γn).

Proof. Consider separately the case of d � 4 and d = 3. In the first case pick any
constant c ∈ (2,3), e.g., c = 2.5. Then, by Theorem 6.4, with high probability for
large n there exists a constant γ = γd,c,Δ such that G is a (γn,c)-bipartite expander.
Moreover, by Lemma 6.1, no vertex in U(G) has degree bigger than logn and
henceforth, for large n, no vertex in U(G) has degree bigger than γn. Hence, for large
n, with high probability, G satisfies the hypotheses of Theorem 6.2, hence Cover has
a winning strategy for CovGameV(G,γn).

In the case of d = 3 pick c ∈ (1.9,2), e.g., c = 1.95. Then, by Theorem 6.4, with
high probability for large n there exists a constant γ ′ = γ ′c,Δ such that G is a (γ ′n,c)-
bipartite expander. Moreover, with high probability, by Lemma 6.1, the maximum
degree of a vertex in U(G) is logn and, by Lemma 6.2, for large enough n there
exists a constant D such that for every logn � d � D,

72d(|Sd |+d)� (2− c)γ ′n , (6.20)
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where Sd = {v ∈U(G) : degG(v)� d}. Hence, for large n, with high probability G
satisfies the hypotheses of Theorem 6.3, and then Cover has a winning strategy for
CovGameVW(G,γn) with γ = (2−c)γ ′

72D . ��

6.5 Winning Strategies for Cover Games

This last part of the chapter is more technical and is dedicated to proving Theorem 6.2
and Theorem 6.3. The structure of both proofs is very similar but there are some
technical differences. We start with the proof of Theorem 6.2 since it is simpler.

6.5.1 A Winning Strategy for the Game on V-Matchings

To simplify the exposition in this subsection we consider a fixed bipartite graph G,
an integer r � 1 and a real number c > 2 such that G is an (r,c)-bipartite expander.

For brevity let L = L(G), U =U(G) and d be the maximum degree of a vertex in
L. Given A ⊆ L and B ⊆U , we let GA,B be the subgraph of G induced by (L∪U)\
(A∪B).

Definition 6.4 (V-Matching Property). Given two sets A ⊆ L and B ⊆ U , we say
that the pair (A,B) has the V-matching property if for every C ⊆ L\A with |C|� r,
there exists a V-matching F in GA,B covering C.

Lemma 6.3. Let A ⊆ L and B ⊆ U be such that the pair (A,B) does not have the
V-matching property. Then there exists a set C ⊆ L\A with (c−2) |C|< |B|, such
that no V-matching in GA,B covers C.

Proof. Take C ⊆ L \A of minimal size such that no V-matching in GA,B covers C.
We have that |C|� r. By the minimality of C, Lemma 4.2 implies that∣∣∣NGA,B(C)

∣∣∣< 2 |C| . (6.21)

By hypothesis, G is an (r,c)-bipartite expander. Hence c |C|� |NG(C)|. Therefore,

c |C|� |NG(C)|�
∣∣∣NGA,B(C)

∣∣∣+ |B|< 2 |C|+ |B| . (6.22)

Hence (c−2) |C|< |B|. ��
Lemma 6.4. The pair ( /0, /0) has the V-matching property.

Proof. By contradiction suppose that ( /0, /0) does not have the V-matching property.
Then, by Lemma 6.3, there exists a set C ⊆ L \A that has no V-matching in GA,B
covering C and C has negative size, which is clearly not possible. ��
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Lemma 6.5 (Component Removal). Let A ⊆ L and B ⊆ U be such that the pair
(A,B) has the V-matching property and

(c−2)r � |B| . (6.23)

Then for each V-matching F contained in the subgraph of G induced by A∪B, we
have that (A\L(F),B\U(F)) has the V-matching property.

A visual hint for the notations used in this proof can be found in Fig. 6.3.

U

L
A′

A C′′

B′

B

· · · F

Figure 6.3 Component removal for V-matchings

Proof. Let A′ = A\L(F) and B′ = B\U(F) and suppose, for a contradiction, that
(A′,B′) does not have the V-matching property. By Lemma 6.3, it is sufficient to
prove that for each set C ⊆ L \A′ with (c− 2) |C| < |B′|, there is a V-matching
in GA′,B′ covering C. Let C′ = C∩L(F) and C′′ = C \C′. By construction, F is a
V-matching such that L(F)⊆ A, U(F)⊆ B and F covers C′. Moreover, we have that

∣∣C′′∣∣� |C|< 1
(c−2)

∣∣B′∣∣< 1
(c−2)

|B|
eq. (6.23)

� r . (6.24)

Hence there exists a V-matching F ′′ of C′′ in GA,B, and since F and F ′′ are vertex-
disjoint, then F ∪F ′′ is a V-matching in GA′,B′ . By construction F ∪F ′′ covers C.
��
Lemma 6.6 (Covering a Vertex in L). Let A ⊆ L and B ⊆U be such that the pair
(A,B) has the V-matching property. If

2(c−2)r � d2(|B|+2) , (6.25)

then for each vertex v in L\A, there exists a V-matching F in GA,B covering v and
such that (A∪L(F),B∪U(F)) has the V-matching property.

A visual hint for the notations used in this proof can be found in Fig. 6.4.

Proof. Fix v ∈ L\A and let S be the set of all V-matchings F in GA,B covering v and
such that F has a single connected component, that is F is isomorphic to the graph
GV from item (b) on p. 72.
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Figure 6.4 Covering a vertex in L via V-matchings

Since r � 1 and (A,B) has the V-matching property, then S is non-empty. For
every F ∈ S, let (AF ,BF) be the pair (A∪L(F),B∪U(F)), and suppose, for sake of
contradiction, that for every F ∈ S, the pair (AF ,BF) does not have the V-matching
property. By Lemma 6.3, for every F ∈ S there exists a set CF ⊆ L\AF with |CF |<

1
(c−2) |BF | and such that there is no V-matching of CF in GAF ,BF .

Let C =
⋃

F∈S CF . Then we have the following chain of inequalities

|C|� ∑
F∈S

|CF | (6.26)

<
1

(c−2) ∑
F∈S

|BF | (6.27)

� 1
(c−2)

|S|(|B|+2) (6.28)

� d2

2(c−2)
(|B|+2)

eq. (6.25)
� r , (6.29)

since |S|� (d
2

)
� d2

2 and |BF |= |B|+2. Hence |C∪{v}|� r. Furthermore, C∪{v}⊆
L\A, so by the fact that (A,B) has the V-matching property, there exists a V-matching
F ′ covering C∪{v} in GA,B.

Then there must be some F ∈ S such that F is a connected component of F ′
covering v. Let F ′′ be F ′ with the component F removed. Then F ′′ is a V-matching
in GAF ,BF and F ′′ covers CF , contradicting the choice of CF . ��
Lemma 6.7 (Covering a Vertex in U). Let A ⊆ L and B ⊆U be such that the pair
(A,B) has the V-matching property and let v be a vertex in U \B with degree e. If

2(c−2)r � d2(|B|+2e) , (6.30)

then there exists a V-matching F in GA,B covering v and such that (A∪L(F),B∪
U(F)) has the V-matching property.

A visual hint for the notations used in this proof can be found in Fig. 6.5.

Proof. Fix v ∈ U \B and let D be NG(v) \A. If |D| = 0, then NG(v) ⊆ A, and so
we can cover v by taking F to be the V-matching consisting only of the vertex v.
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U
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� e

· · · F

D = NG(v)\A

Figure 6.5 Covering a vertex in U via V-matchings

Since v ∈U , and the graphs G• from item (a) on p. 72 are allowed in a V-matching,
then this is a valid V-matching covering v and clearly (A∪L(F),B∪U(F)) has the
V-matching property.

If |D| > 0, by hypothesis |D| � e and hence, by the cardinality condition on B,
see eq. (6.30), we can apply Lemma 6.6 |D| times to obtain a V-matching F in GA,B
covering D and such that (A∪L(F),B∪U(F)) has the V-matching property.

Now, since NG(v)⊆ A∪L(F), it follows that (A∪L(F),B∪U(F)∪{v}) has the
V-matching property. Either v is covered by F , or it is possible to add {v} as a new
connected component to F while still maintaining the property of being a V-matching
in GA,B. ��

We now have all the preliminary lemmas needed to prove Theorem 6.2 (restated
below for the convenience of the reader).

Restated Theorem 6.2 Let G be a bipartite graph with bipartition (L(G),U(G)), r
a positive integer and c > 2 a real number. Suppose that the following two properties
hold:

1. G is an (r,c)-bipartite expander;
2. the maximum degree of a vertex in U(G) is at most μ .

Then Cover wins CovGameV(G,μ) with μ = r(c−2)
2d2 where d is the maximum degree

of a vertex in L(G).

Proof. Let L be the set of all V-matchings F in G such that (L(F),U(F)) has the
V-matching property, and |U(F)|� r(c−2).

We claim that Cover can use the V-matchings in L to win CovGameV(G,μ). By
Lemma 6.4 the empty V-matching is in L and hence L is non-empty. Moreover, L is
closed under removing connected components by Lemma 6.5. Suppose now that at
step i+1 of the game Choose picks a vertex v in GL(Fi),U(Fi) and that Fi has strictly

fewer than μ = r(c−2)
2d2 connected components. Then, (L(Fi),U(Fi)) satisfies both the

cardinality constraints of Lemma 6.6 and Lemma 6.7. Let dU be the max degree of a
vertex in U(G):
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d2(U(Fi)+2dU )� d2(2μ +2dU ) (6.31)

� d2(4μ) (6.32)
= 2(c−2)r . (6.33)

Here eq. (6.31) follows from the fact that |U(Fi)|� 2μ , and eq. (6.32) follows by the
hypothesis that dU � μ . The last equality is just the hypothesis on μ .

If v is already covered by Fi we take Fi+1 = Fi. Otherwise, by Lemma 6.6 and
Lemma 6.7 applied to (L(Fi),U(Fi)), there exists a V-matching Fi+1 extending Fi
by a new connected component covering v such that (L(Fi+1),U(Fi+1)) has the V-
matching property. From the previous chain of inequalities, it follows easily that the
pair (L(Fi+1),U(Fi+1)) satisfies the cardinality condition |U(Fi+1)|� r(c−2). ��

6.5.2 A Winning Strategy for the Game on VW-Matchings

The proof of this theorem is analogous to the one of Theorem 6.2, but there are some
non-trivial small changes in some crucial lemmas we need.

To simplify the exposition in this subsection we consider a fixed bipartite graph
G, an integer r and a real number c > 1.9 such that G is an (r,c)-bipartite expander.
For brevity let L = L(G), U =U(G) and let each vertex in L have degree at most 3.
As in the previous section, given A ⊆ L and B ⊆U , we let GA,B be the subgraph of G
induced by (L\A)∪ (U \B).

Definition 6.5 (VW-Matching Property). Given two sets A ⊆ L and B ⊆U , we say
that the pair (A,B) has the VW-matching property if for every C ⊆ L\A with |C|� r,
there exists a VW-matching F in GA,B covering C.

Lemma 6.8. Let A ⊆ L and B ⊆ U be such that the pair (A,B) does not have the
VW-matching property. Then there exists a set C ⊆ L\A with (2− c) |C|< |B|, such
that no VW-matching in GA,B covers C.

Proof. Take C ⊆ L\A of minimal size such that no VW-matching in GA,B covers C.
We have that |C|� r.

By the minimality of C, every proper subset of C can be covered by a VW-
matching and moreover no pair of degree 3 vertices in L(G) have the same set of
neighbors, in fact if A ⊆ L(G) has size 2 then |N(G)| � 1.9 · 2 = 3.8 > 3. Then
Theorem 6.1 implies that ∣∣∣NGA,B(C)

∣∣∣< (2c−2) |C| . (6.34)

On the other hand, by assumption, G is an (r,c)-bipartite expander, hence

c |C|� NG(C) . (6.35)

Therefore we have the following chain of inequalities:
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c |C|� NG(C)�
∣∣∣NGA,B(C)

∣∣∣+ |B|< (2c−2) |C|+ |B| . (6.36)

Hence (2− c) |C|< |B|. ��
The previous is the only place where we directly use Theorem 6.1, the version

of Hall’s theorem for VW-matchings. However, similarly to Sect. 6.5.1, Lemma 6.8
itself plays a crucial role in proving the following lemmas.

Lemma 6.9. The pair ( /0, /0) has the VW-matching property.

Proof. For sake of contradiction suppose that ( /0, /0) does not have the VW-matching
property. Then, by Lemma 6.8, there exists a set C ⊆ L\A that has no VW-matching
in GA,B covering C and C has negative size, which is clearly not possible. ��

Lemma 6.10 (Component Removal). Let A ⊆ L and B ⊆U be such that the pair
(A,B) has the VW-matching property and

r(2− c)� |B| . (6.37)

Then for each VW-matching F contained in the subgraph of G induced by A∪B,
(A\L(F),B\U(F)) has the VW-matching property.

A visual hint for the notations used in this proof can be found in Fig. 6.6.

U

L
A′

A C′′

B′

B

· · · F

Figure 6.6 Component removal for VW-matchings

Proof. Let A′ = A\L(F) and B′ = B\U(F) and suppose, for sake of contradiction,
that (A′,B′) does not have the VW-matching property. By Lemma 6.8, it is sufficient
to prove that for each set C ⊆ L \A′ with |C| < 1

2−c |B′|, there is a VW-matching
in GA′,B′ covering C. Let C′ = C∩L(F) and C′′ = C \C′. By construction, F is a
VW-matching such that L(F)⊆ A, U(F)⊆ B and F covers C′. Moreover, we have
that ∣∣C′′∣∣� |C|< 1

2− c

∣∣B′∣∣< 1
2− c

|B|
eq. (6.37)

� r . (6.38)

Hence there exists a VW-matching F ′′ of C′′ in GA,B, and so F∪F ′′ is a VW-matching
covering C in GA′,B′ . ��
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Lemma 6.11 (Covering a Vertex in L). Let A ⊆ L and B ⊆U be such that the pair
(A,B) has the VW-matching property and let d be the maximum degree of a vertex
in U \B. If

r(2− c)� 12d(|B|+3) , (6.39)

then for each vertex v in L \A, there is a VW-matching F in GA,B covering v and
such that (A∪L(F),B∪U(F)) has the VW-matching property.

A visual hint for the notations used in this proof can be found in Fig. 6.7.
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Figure 6.7 Covering a vertex in L via VW-matchings

Proof. Fix v ∈ L\A and let S be the set of all VW-matchings F in GA,B covering v
and such that F is connected.

Since r � 1 and (A,B) has the VW-matching property, we have that S is non-empty.
For every F ∈ S, let (AF ,BF) be the pair (A∪L(F),B∪U(F)), and suppose for a
contradiction that for every F ∈ S, (AF ,BF) does not have the VW-matching property.
By Lemma 6.8 then for every F ∈ S there is a set CF ⊆ L\AF with |CF |< 1

2−c |BF |
and such that there is no VW-matching of CF in GAF ,BF . Let C =

⋃
F∈S CF . Then

|C|� ∑
F∈S

|CF |< 1
2− c ∑

F∈S
|BF |� 1

2− c
|S|(|B|+3)� 1

2− c
12d(|B|+3)� r .

(6.40)
Since there are at most three V-matchings covering v and at most 3 · 2 · (d − 1) · 2
W-matchings covering v, we have that |S|� 3+3 ·2 · (d−1) ·2 � 12d and moreover
|BF |� |B|+3. Hence, by eq. (6.39), we have that |C∪{v}|� r. Furthermore, C∪
{v} ⊆ L \A, so by the fact that (A,B) has the VW-matching property, there is a
VW-matching F ′ covering C∪{v} in GA,B.

Then there must be some F ∈ S such that F is a connected component of F ′. Let
F ′′ be F ′ with the component F removed. Then F ′′ is a VW-matching in GAF ,BF and
F ′′ covers CF , contradicting the choice of CF . ��

Lemma 6.12 (Covering a Vertex in U). Let A ⊆ L and B ⊆U be such that the pair
(A,B) has the VW-matching property and let d be the maximum degree of a vertex
in U \B. If

r(2− c)� 12d(|B|+3d) , (6.41)
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then for each vertex v in U \B, there is a VW-matching F in GA,B covering v and
such that (A∪L(F),B∪U(F)) has the VW-matching property.

A visual hint for the notations used in this proof can be found in Fig. 6.8.
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· · · F

D = NG(v)\A

Figure 6.8 Covering a vertex in U via VW-matchings

Proof. Fix v ∈U \B and let D be NG(v)\A. If |D|= 0, then NG(v)⊆ A, and so we
can cover v by taking F to be the VW-matching consisting only of the vertex v. We
have that v ∈U , and G• as defined in item (a) on p. 72 is allowed in a VW-matching.
Then this is a valid VW-matching covering v and clearly (A∪L(F),B∪U(F)) has
the VW-matching property.

If |D| > 0, since by hypothesis |D| � d and by eq. (6.41), we can then apply
Lemma 6.11 |D| times to obtain a VW-matching F in GA,B covering D and such that
(A∪L(F),B∪U(F)) has the VW-matching property.

Now, since NG(v)⊆ A∪L(F), it follows that (A∪L(F),B∪U(F)∪{v}) has the
VW-matching property. Either v is covered by F , or it is possible to add {v} as
a new connected component to F while still maintaining the property of being a
VW-matching in GA,B. ��

We now have all the preliminary lemmas needed to prove Theorem 6.3 (restated
below for the convenience of the reader).

Restated Theorem 6.3 Let G be a bipartite graph with bipartition (L(G),U(G)), r,
D be positive integers, and c > 1.9 be a real number. For every integer d � D let Sd
be the set of vertices of U(G) with degree bigger than d. Suppose that

1. each vertex in L(G) has degree at most 3;
2. G is an (r,c)-bipartite expander;
3. for every Dmax � d � D,

r(2− c)� 72d(|Sd |+d) , (6.10)

where Dmax is the maximum degree of a vertex in U(G).

Then Cover wins CovGameVW(G,μ) with μ = r(2−c)
72D .
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Proof. By the hypothesis on |Sd |, for each Dmax � d � D we can repeatedly apply
Lemma 6.12 starting from ( /0, /0) to cover vertices in U(G) of degree larger than D.
Indeed, by starting by covering vertices of U(G) of maximum degree and proceeding
in decreasing order until we have covered the vertices of degree D, we can build a
VW-matching F covering SD such that (L(F),U(F)) has the VW-matching property.
Moreover, by the choice of SD, GL(F),U(F) (the subgraph induced by (L∪U)\(L(F)∪
U(F))) has degree at most D. We say that a VW-matching F ′ is compatible with F
if each connected component of F ′ is either a connected component of F or disjoint
from all connected components of F .

Let L be the set of all VW-matchings F ′ in G compatible with F such that
(L(F)∪L(F ′),U(F)∪U(F ′)) has the VW-matching property, and moreover such
that |U(F)∪U(F ′)|� r(2−c)

2 . We show now that Cover can use the VW-matchings
in L to win the game CovGameVW(G,μ).

By Lemma 6.9, the empty VW-matching is in L, so this family is non-empty.
Moreover, L is closed under removing connected components by Lemma 6.10.
Suppose now that at step i+ 1 of the game Choose picks a vertex v in GL(F),U(F)

and that Fi has strictly fewer than μ = r(2−c)
72D connected components. Then, (L(F)∪

L(Fi),U(F)∪U(Fi)) satisfies the hypotheses of Lemma 6.11 and Lemma 6.12:

12D(|U(F)∪U(Fi)|+3D)� 12D(|U(F)|+3D)+12D |U(Fi)| (6.42)
� 12D(3 |SD|+3D)+36Dμ (6.43)

� r(2− c)
2

+36Dμ (6.44)

=
r(2− c)

2
+36D

r(2− c)
72D

(6.45)

= r(2− c) , (6.46)

where the inequality (6.43) follows from the fact that |U(Fi)| � 3μ and |U(F)| �
3|SD|, where SD is the set of vertices in U of degree bigger than D. The inequality
(6.44) follows by the hypothesis on the size of SD.

Hence, if v is covered by Fi we take Fi+1 = Fi. If v is covered by F we take
Fi+1 = Fi ∪Fv, where Fv is the connected component of F covering v. Otherwise, by
Lemma 6.11 and Lemma 6.12 applied to (L(F)∪L(Fi),U(F)∪U(Fi)), there exists a
VW-matching Fi+1 extending Fi ∪F by a new connected component covering v such
that (L(Fi+1),U(Fi+1)) has the VW-matching property. From the previous chain of
inequalities, it follows easily that the pair (L(Fi+1),U(Fi+1)) satisfies the cardinality
condition |U(F)∪U(Fi+1)|= |U(Fi+1)|� r(2−c)

2 . ��

History

The proof of Theorem 6.3 is based on [BBG+17], the one of Theorem 6.2 is based
on [BG13, BGT14]. The proofs of the winning strategies are modeled on analogous
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results in [BGT14, BBG+17] but they are also similar to constructions that can be
found in the literature for matchings, for example in [BG03, Ats04]. In particular the
definitions of the V-matching property and the VW-matching property (Definition 6.4
and Definition 6.5) are inspired by a similar definition for usual matchings from
[Ats04]. Regarding Theorem 6.1, we have that originally it was proven for c > 1.96
in [BBG+17], then Susanna Figueiredo de Rezende simplified the argument to show
that it holds for c > 1.8 (pers.comm.). Recently [Rob16] showed that Theorem 6.1
holds for c � 5/3. This is indeed the best possible constraint on c we can get in that
theorem. Indeed [BBG+17] showed that Theorem 6.1 becomes false for c < 5/3.
Anyway, we are not really interested in optimizing the constant c in Theorem 6.1
since, in the applications we show, it will be absorbed in some asymptotic notation.



Chapter 7

Some Graph-Based Formulas

We now show some further applications of the general theorems to prove space
lower bounds from Chap. 3 and Chap. 4. That is we see how to prove monomial
and resolution total space lower bounds for random k-CNF formulas (Sect. 7.2),
the pigeonhole principle over a bipartite graph (Sect. 7.3) and Tseitin formulas
(Sect. 7.4).

7.1 From Cover Games to Space Lower Bounds

The way we prove the lower bounds for random k-CNF formulas and the graph
pigeonhole principle is to construct some (w, I)-BG families from the winning strate-
gies we saw in Chap. 6. This is the informal content of Lemma 7.1 and it is what we
prove in this section. We follow the notations used in Sect. 4.5.

Let Y be a set of variables and M = {m j} j∈J be a set of monomials in the ring of
polynomials F[Y ]. Let GM be the adjacency graph of M, that is the bipartite graph
with lower part L(GM) = J, upper part U(GM) = Y and there is an edge { j,y} in
GM if and only if y ∈ var(m j). This definition generalizes immediately considering
families of Boolean assignments instead of variables and in particular this will be
helpful in Sect. 7.3.

Definition 7.1 (A-Adjacency Graph). Given a field F, a set of variables Y , collec-
tion of families of Boolean assignments A= {A1, . . . ,As} and M = {m j} j∈J a set of
monomials in F[Y ]. The A-adjacency graph of M = {m j} j∈J is the bipartite graph
GA

M with lower part L(GA
M ) = J, upper part U(GA

M ) =A and ( j,A�) is an edge in GA
M

if and only if var(m j)∩dom(A�) �= /0.

We then have that winning strategies for the cover game on this particular kind of
bipartite graphs generate space lower bounds, via the existence of suitable (μ, I)-BG
families, see Definition 4.5.

I. Bonacina, Space in Weak Propositional Proof Systems,
https://doi.org/10.1007/978-3-319-73453-8_7

89© Springer International Publishing AG, part of Springer Nature 2017
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Lemma 7.1. Let F be a field, Y a set of variables, M = {m j} j∈J a set of monomials
and I a proper ideal in the ring F[Y ]. Suppose we have a collection A of flippable
families of Boolean assignments A1, . . . ,As in the variables Y that are I-consistent
and domain-disjoint. If Cover wins CovGameC(GA

M ,μ) with C a collection of trees
with no leaves in L(GA

M ), then for every set of polynomials P generating I there exists
a (μ, I)-BG family F for M∪P. Moreover if for each polynomial p ∈ I there exists
an Ai ∈A such that var(p)⊆ dom(Ai) then F is a (μ,0)-BG family for M∪P.

In particular, by Theorem 4.2, this immediately implies that for every I-semantic
polynomial calculus refutation π of M∪P over F[Y ]

MSp(π)� �μ/4	 . (7.1)

Proof. Given F a C-matching in GA
M with connected components F1, . . . ,Fc first we

claim that there exist flippable product-families of Boolean assignments HFi such
that

1. HFi �0 {m j : j ∈ L(Fi)},
2. HFi ⊆

⊗
A�∈U(Fi)

A�, and
3. ‖HFi‖= 1.

Then we define HF = HF1 ⊗·· ·⊗HFc . Suppose for a moment that this holds, then
we can take as family of flippable Boolean assignments F the family of all HF with
F appearing in a given winning strategy for Cover in CovGameC(GA

M ,μ). We claim
that F is a (μ, I)-BG family for M∪P.

The I-consistency property of F follows immediately from the I-consistency of
the families Ai. The restriction property is immediate too. To prove the extension
property suppose we have some HF ∈ F with ‖HF‖ < μ and some p in M ∪P.
Consider first the case when p = m j ∈ M. If F already covers j we have nothing
to extend, HF �0 m j. If not, thanks to the winning strategy of Cover, there exists
some Fj covering j in GA

M disjoint from F . Then by construction H ′ = HF ⊗Hj ∈ F,
H ′ � HF and H ′ �0 m j. In the case p ∈ P, we do nothing since HF is I-consistent
and hence already by definition HF �I p.

Let’s check then that if for each p ∈ I there exists an Ai ∈A such that var(p)⊆
dom(Ai), then F is a (μ,0)-BG family for M ∪P. We then just have to check the
extension property when p ∈ I. In this case, by hypothesis, there exists some Ai ∈A

such that var(p)⊆ dom(Ai). Similarly to before, by the winning strategy of Cover,
then there exists some H ′ in F such that dom(Ai)⊆ dom(H ′), hence, for each Boolean
assignment α ∈ H ′, p�α ∈ F. But since H ′ is I-consistent and p ∈ I then p�α ∈ I.
Since I is a proper ideal p�α ∈ I ∩F= 0 and hence α �0 p.

It only remains to check the claim at the beginning of this proof, the fact that
from C-matchings we can construct flippable product-families. Suppose then F is a
C-matching in GA

M and F consists of a single connected component. We prove the
desired properties by induction on the size of the tree F . We prove the additional
property that for every A� ∈U(F) and every α ∈ A� there exists β ∈ HF such that
β ⊇ α .



7.1 From Cover Games to Space Lower Bounds 91

If F doesn’t cover any j ∈ L(GA
M ) then we can surely take HF =

⊗
A�∈U(F) A�. So

consider the minimal possible non-trivial tree with all its leaves in U(GA
M ). It is a

tree isomorphic to GV (see item (b) on p. 72) and without loss of generality we can
assume that F is as in Fig. 7.1. Then, analogously to what we did in Example 4.1, let

HF = (Om j ,i ⊗A�)∪ (Ai ⊗Om j ,�) , (7.2)

where Om j ,k =
{

α ∈ Ak : α �0 m j
}

. Since both Ai and A� are flippable then HF is
non-empty and flippable. Moreover, by construction, HF �0 m j and ‖HF‖= 1.

U(GA
M )

L(GA
M )

j

Ai A�

Figure 7.1 From C-matchings to flippable products: a minimal example

Consider now a non-minimal tree F . If the tree F is a star, that is all vertices in
U(F) are leaves, then we just take two such leaves and reason as before. Otherwise
there exists a vertex As in U(GM) that is not a leaf of F and such that F is the union
of two trees F ′ and F ′′ whose vertices intersect only on As, see Fig. 7.2.

U(GA
M )

L(GA
M )

As

F ′ F ′′

Figure 7.2 From C-matchings to flippable products: inductive step

By the inductive hypothesis, there exists a flippable family HF ′ such that ‖HF ′ ‖=
1, HF ′ ⊆⊗

A�∈U(F ′) A� and HF ′ �0 {m j : j ∈ L(F ′)}. Similarly we have the same
properties for HF ′′ . Let HF be the set of Boolean assignments obtained by ‘gluing’
together compatible Boolean assignments from HF ′ and HF ′′ . More precisely HF
is the set of all Boolean assignments β in

⊗
A�∈U(F) A� such that β = α ′ ∪α ′′ with

α ′ ∈ HF ′ and α ′′ ∈ HF ′′ that both extend some α ∈ As:

∃α ∈ As ∃α ′ ∈ HF ′ ∃α ′′ ∈ HF ′′ ,α ′ ⊇ α, α ′′ ⊇ α and β = α ′ ∪α ′′ . (7.3)
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Now let i ∈U(F) =U(F ′)∪U(F ′′). We prove that each Boolean assignment in Ai
can be extended to a Boolean assignment in HF , hence the inductive hypothesis will
be proved and in particular HF is flippable. Without loss of generality let i ∈U(F ′)
and let δ ∈ Ai. By the inductive property on HF ′ there exists some α ′ ∈ HF ′ such
that α ′ ⊇ δ . By the inductive hypothesis on HF ′ , there exists α ∈ As such that
α = α ′�dom(As). By the inductive property on HF ′′ there exists α ′′ ∈ HF ′′ such that
α ′′ ⊇ α . Then, by construction, β = α ′ ∪α ′′ ∈ HF and clearly β ⊇ δ . Notice that the
property that the A js are domain-disjoint guarantees that dom(α ′)∩dom(α ′′) = As,
which is ultimately the property guaranteeing that we can glue together in a consistent
way the families given by the inductive hypothesis. ��

7.2 Random k-CNF Formulas

The main results of this section are an asymptotically optimal monomial space lower
bound for random k-CNF formulas in polynomial calculus, Theorem 7.1, and an
asymptotically optimal total space lower bound for those formulas in resolution,
Theorem 7.2. But first things first, let’s first recall the formal definition of random
k-CNF formulas and some properties of those formulas, to give a bit of context.

Definition 7.2 ((n,k,Δ)-Random CNF Formulas). Given a positive integer k and a
positive real number Δ , an (n,k,Δ)-random CNF is a k-CNF formula with n variables
and Δn clauses picked uniformly at random from the set of all CNF formulas in
the variables {x1, . . . ,xn} that consist of exactly Δn clauses, each clause containing
exactly k literals and no variable appearing twice in a clause.

A fundamental conjecture about the (n,k,Δ)-random CNF formulas says that there
exists a constant θk, the satisfiability threshold, such that if Δ > θk then an (n,k,Δ)-
random CNF formula is almost surely unsatisfiable, while if Δ < θk then an (n,k,Δ)-
random CNF formula is almost surely satisfiable, see for instance [CS88, KKKS98,
FS96, BFU93, CF90]. It is known that for each n there exists a threshold θk(n) with
this property [Fri98]. For k = 2 we have that θ2(n) = 1 [CR92, Goe96, dlV01]. In
general for k � 3 and for each n, θk(n) is bounded between two constants that are
independent of n, e.g., 3.003 � θ3(n) � 4.598 [KKKS98, FS96]. Moreover it was
recently shown that for large k there exists an explicit constant γk not depending on
n such that θk(n) = γk [DSS15]. It is believed that (n,k,Δ)-random CNF formulas
with Δ close to the satisfiability threshold θk are the ones for which it is most
computationally hard to show they are unsatisfiable, see for example [CKT91].

Regarding the upper bounds, it is easy to see that the (n,2,Δ)-random CNF for-
mulas are easy for resolution since the easy well-known polynomial-time algorithm
to solve 2-SAT can be formalized to give polynomial-size resolution refutations of
any unsatisfiable 2-CNF formula. Regarding the (n,3,Δ)-random CNF formulas,
[BKPS98] showed that for any (n,3,Δ)-random CNF formula with Δ > θ3, with
high probability there exists a resolution refutation of size at most 2O(n/Δ), which is
a function of polynomial growth when Δ � n/ logn.
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Regarding the lower bounds, [CS88] showed that every (n,k,Δ)-random CNF
formula, with k � 3 and Δ a constant such that Δ > θk, is hard for resolution to
refute. That is with high probability every resolution refutation of those formulas
has size at least 2Ω(n). The importance of this result relies on the fact that it proves
that resolution is a very weak propositional proof system, in the sense that almost all
3-CNF formulas require exponential-size resolution refutations. Since this seminal
result, the hardness of (n,k,Δ)-random CNF formulas has been deeply investigated;
in particular this lower bound was improved and simplified by [BP96], improved
to Δ = o(n1/4) by [BKPS02] and simplified using the size-width inequality, see
eq. (2.10), by [BW01]. All these results, as well as the ones we show in this section,
hold for k � 3. Moreover, the (n,k,Δ)-random CNF formulas have been shown to
be hard to refute also in polynomial calculus, see [BI10, AR01], and for resolution
over k-DNF formulas, see [Ale11]. Recently it has been shown that (n,O(logn) ,Δ)-
random CNF formulas for large enough Δ are exponentially hard to refute for cutting
planes [HP17, FPPR17].

It is not known whether (n,k,Δ)-random CNF formulas with k constant are hard
for cutting planes or bounded-depth Frege, although this is usually conjectured to be
the case.

With respect to the space complexity of (n,k,Δ)-random CNF formulas, they
have been shown to require large clause space in resolution. More precisely given an
(n,k,Δ)-random CNF formula F with Δ > θk with high probability any resolution
refutation π of F has

CSp(π) = Ω(n/Δ 1+ε) , (7.4)

see [BG03]. On the other hand [Zit02] showed an upper bound on their clause space:
there are resolution refutations π ′ of F such that

CSp(π ′) = O(nΔ−1/(k−2)) . (7.5)

Regarding monomial space and total space (in resolution) we have the following
two asymptotically optimal results, conjectured to be true in several works in the
literature, e.g., [BS01, ABRW02, FLN+15].

Theorem 7.1 (Monomial Space Lower Bound). Let F be a field, k � 3, Δ > 1 a
constant and F an (n,k,Δ)-random CNF formula over the variables X = {x1, . . . ,xn}.
Then, for large n, with high probability, for every I-semantic polynomial calculus
refutation π of the polynomial encoding of F in F[X ∪X ],

MSp(π) = Ω (n) , (7.6)

where I is the ideal in F[X ∪X ] generated by the Boolean axioms.

Proof. Let F =
∧

j∈J Cj be an (n,k,Δ)-random CNF formula and let GF be its
clauses-variables adjacency graph. That is the bipartite graph with bipartition
(L(GF),U(GF)) with L(GF) = J and U(GF) = {x1, . . . ,xn}, and { j,xi} is an edge
in GF if xi ∈ var(Cj). Then GF is an (n,k,Δ)-random bipartite graph, see Sect. 6.4.
Now, if k > 3 then, by Theorem 6.5, for large n, with high probability there exists a
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constant γ such that Cover has a winning strategy for CovGameV(GF ,γn). Similarly,
if k = 3, by Theorem 6.5, for large n, with high probability there exists a constant
γ such that Cover has a winning strategy for CovGameVW(GF ,γn). Consider the
following collection of families of flippable Boolean assignments A= {A1, . . . ,An}
with Ai = {αi,α ′

i} where dom(αi) = dom(α ′
i ) = {xi, x̄i} and

αi(xi) = 1−αi(x̄i) = α ′
i (x̄i) = 1−α ′

i (xi) = 0 . (7.7)

The polynomial encoding of F in F[X ∪X ] is the union of a set of monomials
M =

{
m j : j ∈ J

}
encoding the clauses of F and the set of Boolean axioms B. We

have that GA
M is equivalent to GF from the point of view of its graph structure. So we

can apply Lemma 7.1 to obtain that there exists a (γn, I)-BG family for M∪B where
I is the ideal generated by B. Then the monomial space lower bound follows from
Theorem 4.2. ��

Notice that in the previous proof, from the properties of a random bipartite
graph, we are just using the fact that it satisfies the hypotheses of Theorem 6.2 and
Theorem 6.3. That is the same result will hold for any CNF formula Fn with its
clauses-variables adjacency graph satisfying the hypotheses of Theorem 6.2 and
Theorem 6.3.

Theorem 7.2 (Total Space Lower Bound). Let k � 3, Δ > 1 a constant and F an
(n,k,Δ)-random CNF over the variables X = {x1, . . . ,xn}. Then, for large n, with
high probability, for every resolution refutation π of F,

TSp(π) = Ω
(
n2) . (7.8)

Proof. Inspecting the proof of the previous theorem, it is immediate to see that
the (γn, I)-BG family F for M∪B is indeed a (γn,0)-BG family for M∪B. Indeed
for every p ∈ B there exists some Ai such that var(p) ⊆ Ai and then we can apply
Lemma 7.1. Hence we can apply Proposition 4.5 and immediately obtain the desired
total space lower bound on resolution. ��

Alternatively the total space lower bound also follows from the fact that for large
n, with high probability, there exists a constant γ > 0 such that every resolution
refutation π of F requires width at least γn, see [CS88, BW01]. Hence this total
space lower bound on resolution follows also from Theorem 3.6.

As an immediate consequence of this total space lower bound on resolution we
have an optimal separation between semantic resolution (see Sect. 3.1) and resolution.
Indeed for Δ a large enough constant, (n,k,Δ)-random CNF formulas have semantic
resolution refutations of total space O(n) but the previous theorem tells us that every
usual resolution refutation of those formulas must use quadratic total space. This
observation completely answers [ABRW02, Open question 4] for resolution.

Despite this separation we can strengthen Theorem 7.2 as follow.

Theorem 7.3 (dn-Semantic Total Space Lower Bound). Let k � 3, Δ > 1 a con-
stant and F an (n,k,Δ)-random CNF over the variables X = {x1, . . . ,xn}. Then,
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for large n there exists a constant d such that, with high probability, for every
dn-semantic resolution refutation π of F,

TSp(π) = Ω
(
n2) . (7.9)

Proof. This follows immediately from the linear width resolution lower bound for
random k-CNF formulas and Theorem 3.8.

7.3 Pigeonhole Principles over Graphs

In this section we continue the investigation of the pigeonhole principles, so in some
sense this is a continuation of Sect. 5.1.

Let G be a bipartite graph with bipartition (L(G),U(G)) with |L(G)| > |U(G)|.
We think of L(G) as a set of pigeons and U(G) as a set of holes. The graph pigeonhole
principle over the graph G, G-PHP, is an unsatisfiable CNF formula in the variables

X = {xuv : {u,v} ∈ E(G)} . (7.10)

It asserts that the variables describe a map, given by a subset of the edges of G, in
which each pigeon gets mapped to at least one hole but no hole receives two pigeons
or more. Formally, it is a conjunction of all the following clauses:

1. for each distinct pair of variables xuv,xu′v ∈ X , ¬xuv ∨¬xu′v (Hole Axioms);
2. for each u ∈ L(G),

∨{xuv : xuv ∈ X} (Pigeon Axioms).

Notice that if maxv∈L(G) degG(v)� d then G-PHP is a d-CNF formula and, since
|L(G)|> |U(G)|, it is an unsatisfiable CNF formula. The graph pigeonhole principle
is then a generalization of the standard pigeonhole principle we saw in Sect. 5.1: in-
deed PHPm

n is the graph pigeonhole principle Km,n-PHP, where Km,n is the complete
bipartite graph between a set of vertices of size m and a (disjoint) set of vertices of
size n.

Recall that the encoding of G-PHP as a set of polynomials PG-PHP in F[X ∪X ] is
completely analogous to the one we saw for the pigeonhole principle, see Sect. 5.1,
that is the following:

PG-PHP =
{

xuvxu′v : xuv,xu′v ∈ X and u �= u′
}

∪
{

∏
v : xuv∈X

x̄uv : u ∈ L(G)

}
∪{x2

uv − xuv, xuv + x̄uv −1 : {u,v} ∈ E(G)
}
. (7.11)

Matching principles over graphs have been well studied in proof complexity. The
interested reader may, for example, look at [BW01, BG03] or [Juk12, Section 18.1].
Let’s just proceed straight to the point: to prove monomial and total space lower
bound for those formulas.
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Theorem 7.4 (Monomial Space Lower Bound). Let F be a field, d � 3, Δ > 1 and
G an (n,d,Δ)-random bipartite graph. Then, for large n, with high probability, for
every I-semantic polynomial calculus refutation π of the polynomial encoding of
G-PHP in F[X ∪X ],

MSp(π) = Ω (n) , (7.12)

where I is the ideal in F[X ∪X ] generated by polynomial encodings of the hole
axioms and the Boolean axioms of G-PHP, that is the ideal generated by the set P of
polynomials

P =
{

xuvxu′v : xuv,xu′v ∈ X and u �= u′
}∪{x2

uv − xuv, xuv + x̄uv −1 : xuv ∈ X
}
.

(7.13)

Proof. Since G is an (n,d,Δ)-random bipartite graph, then, if d > 3, by Theorem 6.5,
for large n, with high probability there exists a constant γ such that Cover has a
winning strategy for CovGameV(G,γn). Similarly, if d = 3, by Theorem 6.5, for
large n, with high probability there exists a constant γ such that Cover has a winning
strategy for CovGameVW(G,γn). Let M =

{
∏v : xuv∈X x̄uv : u ∈ L(G)

}
, then the

polynomial encoding of G-PHP is M∪P. Then, as done in the proof of Theorem 7.1,
it is sufficient to construct a collection A of flippable product-families satisfying the
hypotheses of Lemma 7.1, such that the bipartite graph GA

M is isomorphic to G.
Let A = {Av : v ∈ U(G)} where Av = {αuv : {u,v} ∈ E(G)} and αuv is the

Boolean assignment with domain {xu′v, x̄u′v : {u′,v} ∈ E(G)} and such that

αuv(xu′v) = 1−αuv(x̄u′v) =

{
1 if u′ = u ,

0 if u′ �= u .
(7.14)

Clearly we have that Av is flippable; dom(Av) = Xv and hence, if v �= v′ then dom(Av)
and dom(Av′) are disjoint. Moreover Av is I-consistent, where I is the ideal generated
by P. Moreover, an edge {u,v} is in E(G) if and only if

var

(
∏

v : xuv∈X
x̄uv

)
∩dom(Av) �= /0 , (7.15)

hence G and GA
M are isomorphic. Then Lemma 7.1 implies that there is a non-empty

(γn, I)-BG family for M∪P and Theorem 4.2 then implies the monomial space lower
bound. ��

Notice that in the previous proof, from the properties of a random bipartite
graph, we are just using the fact that it satisfies the hypotheses of Theorem 6.2
and Theorem 6.3. That is the same result will hold for any graph G satisfying the
hypotheses of Theorem 6.2 and Theorem 6.3.

Theorem 7.5 (Total Space Lower Bound). Let d � 3, Δ > 1 and G an (n,d,Δ)-
random bipartite graph. Then, for large n, with high probability, for every resolution
refutation π of G-PHP,

TSp(π) = Ω
(
n2) . (7.16)



7.4 Tseitin Formulas 97

Proof. In the proof of Theorem 7.4, the (γn, I)-BG family for M ∪ P is also a
(γn,0)-BG family for M ∪P. Indeed for each p ∈ I there exists some Av such that
var(p)⊆ Av and then we can apply Lemma 7.1. Then the total space lower bound
follows from Proposition 4.5. ��

Alternatively, as for Theorem 7.2, we could have proven that each resolution
refutation of G-PHP requires width at least γ ′n and then the total space follows
from Theorem 3.6. This result then clearly generalizes to dn-semantic resolution
refutations of G-PHP.

Theorem 7.6 (dn-Semantic Total Space Lower Bound). Let d � 3, Δ > 1 and G
an (n,d,Δ)-random bipartite graph. Then, for large n there exists a constant d such
that, with high probability, for every dn-semantic resolution refutation π of G-PHP,

TSp(π) = Ω
(
n2) . (7.17)

7.4 Tseitin Formulas

We conclude this chapter by recalling some results on Tseitin formulas. Tseitin
formulas are propositional formulas encoding the fact that the total degree in any
graph is an even number. More precisely, given any graph G with vertex-set V and
edge-set E, we have Boolean variables X = {xe : e ∈ E}. Then the Tseitin formula
encodes as a CNF formula the fact that

∑
v∈V

∑
e!v

xe ≡ 1 (mod 2) , (7.18)

which is clearly a contradiction since in the previous sum each variable xe is counted
twice: once for one endpoint of e and once for the other. Usually in proof complexity
a weaker version of eq. (7.18) is considered where to each vertex v ∈V is additionally
assigned a weight w(v) ∈ {0,1} and it is required that for each v ∈V , ∑e!v xe ≡ w(v)
(mod 2). Then if ∑v∈V w(v) ≡ 1 (mod 2) this task is in some sense even “more
impossible” than eq. (7.18). Then the Tseitin formula Tseitin(G,w) is the natural
encoding as a CNF formula of this principle. More formally, given a weight function
w : V →{0,1} such that

∑
v∈V

w(v)≡ 1 (mod 2) , (7.19)

for every vertex v ∈V consider the CNF formula PARITYv,w naturally encoding the
fact that

∑
e!v

xe ≡ w(v) (mod 2) . (7.20)

Then the Tseitin formula is Tseitin(G,w) =
∧

v∈V PARITYv,w. As argued before
Tseitin(G,w) is an unsatisfiable CNF formula. Moreover, if G has maximum degree
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d then Tseitin(G,w) is a d-CNF formula over at most dn/2 variables and with at
most n2d−1 clauses. Moreover, if w is odd-weight, that is if w satisfies eq. (7.20),
then Tseitin(G,w) is unsatisfiable (and the other implication is also true) [Urq95].

Tseitin formulas were originally used to give the first super-polynomial lower
bounds on refutation size for regular resolution [Tse83]. Then this result was
improved to an exponential lower bound on the size of resolution refutations
[Urq87, Sch97]. Since then Tseitin formulas became one of the standard tools used
in proof complexity to prove lower bounds and trade-offs, for example they have
been investigated regarding the resolution width [BW01], clause space [ET01] and
size-space trade-offs in polynomial calculus [BNT13]. Recently Håstad proved that
Tseitin formulas over square grid graphs with n vertices require super-polynomially
long refutation in depth-d Frege where d = o(logn/ log logn) (pers. comm.).

It turns out that many properties of the proof complexity of Tseitin formulas
Tseitin(G,w) can be captured by the connectivity expansion of G.

Definition 7.3 (Connectivity Expansion). Let G = (V,E) be a finite connected
graph. The connectivity expansion of G, e(G), is

e(G) = min
V ′⊆V

{{
v′,v′′

} ∈ E : v′ ∈V ′, v′′ ∈V \V ′ and
|V ′|
|V | ∈

[
1
3
,

2
3

]}
. (7.21)

Then we say that G is a connectivity expander graph if e(G) = Ω (|V |), for instance
random d-regular graphs with high probability are connectivity expanders [Urq87].

Theorem 7.7 ([BW01, Theorem 4.4]). Given a connected graph G = (V,E) and an
odd-weight function w on V , then every resolution refutation of Tseitin(G,w) has
width at least e(G).

From this result and eq. (2.10), it follows immediately that under the hypotheses
of Theorem 7.7, every resolution refutation π of Tseitin(G,w) has size

S(π) = 2
Ω
(

(e(G)−d)2
m

)
, (7.22)

where d is the maximum degree of G and m is the number of edges in G. Similarly a
clause space lower bound can be obtained from Theorem 3.2: for every resolution
refutation π of Tseitin(G,w)

CSp(π)> e(G)−d . (7.23)

Concerning total space lower bounds in resolution, we have the following result
that answers the open question [ABRW02, Open question 2].

Theorem 7.8. Let G = (V,E) be a connected d-regular graph and w an odd-weight
function over V , then for every resolution refutation π of Tseitin(G,w)

TSp(π)� �(e(G)−d −4)/4	2 . (7.24)
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In particular if G is a 3-regular expander graph over n vertices then for every
resolution refutation π of Tseitin(G,w)

TSp(π) = Ω
(
n2) , (7.25)

and the same conclusion holds if π is a cn-semantic resolution refutation for some
small enough constant c.

Proof. It follows immediately from Theorem 7.7, Theorem 3.8 and Theorem 3.6.
��

Regarding the monomial space in polynomial calculus the picture is more complex.
Relying on a preliminary version of Theorem 4.2, [FLM+13] showed the following
result about the xorification of CNF formulas.

The xorification of a CNF formula F is a new CNF formula F [⊕] obtained by
replacing each occurrence of a variable xi in F with the XOR of two new variables
x′i ⊕x′′i and then expanding everything as a CNF formula using the definition of XOR
and the De Morgan rules. (We will see more general xorifications in Part III.)

Theorem 7.9 ([FLM+13]). Given a k-CNF formula F over a set of variables X and
a field F. If every resolution refutation of F requires width at least W, then for every
semantic polynomial calculus refutation π of the polynomial encoding of F [⊕] in
F[X ∪X ]

MSp(π)� 1
4
(W − k+1) . (7.26)

In particular if G = (V,E) is a d-regular graph with double edges1 and w any odd-
weight function over V , then for every semantic polynomial calculus refutation π of
Tseitin(G,w)

MSp(π) = Ω(e(G)−d) . (7.27)

Proof (sketch). Eq. 7.26 can be proven essentially by showing that from an r-AD
family for F we can construct a suitable (r′,0)-BG family for PF [⊕], And then
using Theorem 2.5 and Theorem 4.2. Then eq. (7.27) follows since Tseitin(G,w)[⊕]
is equivalent to Tseitin(G′,w) where G′ is a multigraph over the vertex-set of G
obtained by doubling the multiplicity of each edge of G. ��

As an application of (a preliminary version of) Theorem 4.2, [FLM+13] showed
also the following monomial space lower bound for random d-regular graphs with
d � 4.

Theorem 7.10 ([FLM+13]). Let G = (V,E) be a random d-regular graph on n
vertices, where d � 4, and let F be a field. Then, with high probability, for every
odd-weight function w on V and every semantic polynomial calculus refutation π of
the polynomial encoding of Tseitin(G,w) over F[X ∪X ]

MSp(π) = Ω
(√

n
)
. �� (7.28)

1 That is each edge has multiplicity 2.
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Notice that unlike the results we saw on random k-CNF formulas and G-PHP, this
result relies more deeply on the fact that G is random.

Over fields of characteristic 2, it is known that the polynomial encoding of
Tseitin formulas has polynomial-size refutations in polynomial calculus, essentially
mimicking Gaussian elimination. On the other hand, the previous monomial space
lower bound does not depend on the characteristic of the ground field. That is, for
instance, despite Tseitin formulas over F2 having short proofs, such refutations still
require reasonably large monomial space.

7.5 Open Problems

Question 7.1. Let F be an (n,k,Δ)-random CNF formula. Is it true that for every
polynomial calculus refutation π of F

TSp(π) = Ω
(
n2) ? (7.29)

More generally, all the open questions on total space in polynomial calculus from
[ABRW02] are still open. Moreover we have the following open questions.

Question 7.2. Given any constant c > 1, a constant γ and an unsatisfiable CNF
formula F in n variables such that the clauses-variables adjacency graph of F is a
(γn,c)-bipartite expander, is this expansion property enough to have that for every
polynomial calculus refutation π of F

MSp(π) = Ω (n) ? (7.30)

This is the case for the clause space in resolution [BG03] and indeed we suspect
that the same happens for the monomial space. Notice that we proved it for c > 1.9
and some additional assumptions on the adjacency graph. This is a consequence of
Lemma 7.1, Theorem 6.3 and Theorem 4.2.

Question 7.3. Is it true that for every 3-regular graph G that is a connectivity expander
with n vertices and w an odd-weight function, for every polynomial calculus refutation
π of Tseitin(G,w),

MSp(π) = Ω (n) ? (7.31)

That is we are asking whether we can improve the monomial space lower bound in
Theorem 7.10 and at the same time weaken its hypothesis.

History

The monomial space result for random k-CNF formulas for k � 4, Theorem 7.1, and
the monomial space for matching principles over left degree-k bipartite expanders,
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Theorem 7.4, were proven in [BG13, BG15]. The total space lower bound for random
k-CNF formulas for k � 4, Theorem 7.2, was originally proved in [BGT14, BGT16].
The case k = 3 of those theorems was proved in [BBG+17].

The monomial space lower bound for Tseitin formulas over 4-regular random
graphs was obtained by [FLM+13] as an application of [BG13, Theorem 1], which
is a preliminary version of Theorem 4.2.

Theorem 7.8, the quadratic total space lower bound for Tseitin formulas, appeared
in [Bon15, Bon16].
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A Postlude



Chapter 8

Strong Size Lower Bounds for (a Subsystem of)

Resolution

In this chapter we put the spotlight again on resolution size and in particular on
its connection with conjectures about the exact complexity of the k-SAT problem,
that is the conjectures known as the Exponential Time Hypothesis (ETH) and the
Strong Exponential Time Hypothesis (SETH). We show a strong width lower bound
(Theorem 8.1) and a strong size lower bound for a subsystem of resolution. The
lower bounds are stronger than the one we could get immediately from the size-width
inequality, eq. (2.10). This is made possible by a general hardness amplification result
that relies on the combinatorial characterizations of size and width (Theorem 8.2).

8.1 SETH and Proof Complexity

We recall that the k-SAT problem is the problem of deciding whether a given k-CNF
formula is satisfiable or not. There are several non-trivial algorithms known to solve
k-SAT including the DPLL algorithms and the CDCL solvers we briefly saw in
Sect. 1.1.4. Other examples of algorithms for k-SAT can be found for instance in
[DGH+02, PPZ97, PPSZ05, Sch02]. Despite all of this however, the exact complex-
ity of k-SAT under suitable hardness assumptions remains unknown. Formalizing
what this complexity could be, [IP01] formulated the following two hypotheses: ETH
and SETH.
The Exponential Time Hypothesis (ETH) states that the k-SAT problem requires
exponential time, for every k � 3.
The Strong Exponential Time Hypothesis (SETH) states that the complexity of k-SAT
grows as k increases and it approaches that of exhaustive search. More precisely let
σk = inf{δ : k-SAT can be solved in time O(2δn) for CNF formulas in n variables}.
SETH states that limk→∞ σk = 1.

Both ETH and SETH are stronger than NP �= P and hence any proof of them is far
beyond reach at the moment, but such hypotheses are important since they imply a
plethora of fine-grained complexity results in the realm of parameterized complexity.

I. Bonacina, Space in Weak Propositional Proof Systems,
https://doi.org/10.1007/978-3-319-73453-8_8

105© Springer International Publishing AG, part of Springer Nature 2017
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We refer to [CFK+15] for more details on how these hypotheses are useful in such
context.

Although a general proof of SETH and ETH seems out of reach at the moment
one might ask whether these hypotheses hold for specific algorithms and classes of
algorithms. That is whether there are k-CNF formulas on which the given algorithms
run for at least 2(1−εk)n steps in the case of SETH or 2Ω(n) in the case of ETH.
Moreover, we can think about the run of a k-SAT algorithm on an unsatisfiable
instance as a proof of its unsatisfiability; then, if the algorithm is structured enough,
we can employ tools from proof complexity and obtain lower bounds on the running
time.

For instance is well known that the run of a DPLL algorithm on an unsatisfiable
k-CNF formula gives a tree-like resolution refutation of it (and vice versa). Therefore
tree-like resolution size lower bounds imply DPLL running-time lower bounds.
Similarly a resolution size lower bound will imply a lower bound on the running
time of CDCL solvers, see Sect. 1.1.4. A resolution size lower bound for some
unsatisfiable k-CNF formula F of the form 2Ω(n) will imply that no CDCL solver
will ever be able to refute ETH. Similarly a resolution size lower bound of the form
2(1−εk)n with εk = o(1) implies that no CDCL solver will ever be able to disprove
SETH.

Lower bounds of the form 2Ω(n) for k-CNF formulas in n variables have been
known for a long time [Urq87]. If we restrict ourselves to tree-like resolution, [PI00]
proved that there are k-CNF formulas Fn such that for every tree-like resolution
refutation π ,

S(π)� 2(1−εk)n , (8.1)

where εk = O
(

k−
1
8

)
. An analogous statement (for a different family of formulas and

εk = Õ
(

k−
1
5

)
) was proved recently for regular resolution [BI13].

Here we prove an analogue of eq. (8.1) for a subsystem of resolution stronger than
regular resolution that we call δ -regular resolution (Definition 8.1 and Corollary 8.2).
Moreover we improve the asymptotic growth of εk in eq. (8.1) also in the case of
tree-like resolution. Both results rely on the following strong width lower bound,
which improves an analogous result in [BI13]. The connection between this result
and a similar one in [BI13] is highlighted in the History section at the end of the
chapter.

Theorem 8.1 ([BT16a]). For any large n and k, there exist unsatisfiable k-CNF
formulas Fn in n variables such that for every resolution refutation π of Fn

W(π)� (1−ζk)n , (8.2)

where ζk = Õ
(

k−
1
3

)
.

The proof of this result is a bit long and technical and hence it is postponed
to Sect. 8.3. Let’s see first how to obtain the desired size lower bounds from this
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strong width lower bound, first for tree-like resolution and then for what we will call
δ -regular resolution.

Corollary 8.1. For any large enough k there exist unsatisfiable k-CNF formulas Fn
in n variables such that for every tree-like resolution refutation π of Fn

S(π)� 2(1−εk)n , (8.3)

where εk = Õ(k−
1
3 ).

Proof. Let Fn be the unsatisfiable k-CNF formula in n variables coming from The-
orem 8.1 with w = (1− Õ

(
k−

1
3

)
)n. By eq. (2.17) then every tree-like resolution

refutation π of Fn is such that
S(π)� 2w−k , (8.4)

hence the strong size lower bound follows. ��
We can now consider the following generalization of regular resolution.

Definition 8.1 (δ -Regular Resolution). Given a CNF formula in n variables and
δ ∈ [0,1], a resolution refutation π is δ -regular if there exists a witness function (see
Definition 2.1) for π giving it a DAG structure where in each path the number of
variables resolved multiple times is at most δn.

Clearly 0-regular resolution refutations are regular in the sense of Sect. 2.1 and
1-regular resolution refutations are just unconstrained resolution refutations.

To prove a strong size lower bound for δ -regular resolution we use a general-
ization of the 2-xorification technique we saw in Sect. 7.4. This is the concept of
�-xorification, a concept that already proved to be helpful in proof complexity, see
for example [Nor13, Section 2.4] and [Ben02].

Definition 8.2 (�-Xorification). Given a CNF formula F over a set of Boolean vari-
ables X = {x1, . . . ,xn}, the �-xorification of F , F [⊕�], is a CNF formula over a set of
new Boolean variables Y = {y j

i : i ∈ [n], j ∈ [�]} that is obtained by replacing each
occurrence of xi in F with y1

i ⊕·· ·⊕y�i and then expanding the obtained propositional
formula in CNF form.

Notice that if F is a k-CNF formula, then F [⊕�] is a k�-CNF formula. An interesting
property of xorifications is the following hardness amplification result, which can be
used to give size lower bounds better than the ones we can get from the size-width
inequality, see eq. (2.10).

Theorem 8.2 ([BT16b]). Let F be an unsatisfiable CNF formula in n variables and
let w, δ and � be parameters. If every resolution refutation of F has width > w then
every δ -regular resolution refutation π ′ of F [⊕�] is such that

S(π ′)� 2(1−ε)w� , (8.5)

where ε = �−1 log
(
e3�nw−1

)
+δnw−1 log

(
e3�δ−1

)
.
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The proof of this result is a bit technical too and hence it is postponed to Sect. 8.2.
From it and Theorem 8.1 there follows immediately a strong size lower bound for
δ -regular resolution, for some small function δ .

Corollary 8.2. For any large enough n and k there exists an unsatisfiable k-CNF
formula Fn in n variables such that for every δ -regular resolution refutation π of Fn

S(π)� 2(1−εk)n , (8.6)

where εk = δ = Õ
(

k−
1
4

)
.

Proof. Let F ′
n′ be the k′-CNF formula in n′ variables given by Theorem 8.1. In

particular for every resolution refutation π of F ′
n′

W(π)� (1−ζk′)n
′ , (8.7)

where ζk′ = Õ
(

1/ 3√k′
)

. Then Fn =F ′
n′ [⊕�] is a k′�-CNF formula on n′� variables. Let

n = n′� and k = k′�. If we choose �= Θ̃( 3√k′), δ = Õ
(

1/ 3√k′
)

and w = (1−ζk′)n′

then, by Theorem 8.2, it follows that every δ -regular resolution refutation π of Fn
has

S(π)� 2(1−ζk′ )n′(�−log( e3�n′
w )− δ�n′

w log e3�
δ ) (8.8)

= 2(1−ζk′ )n
(
�−O(logk′)−�Õ

(
1/ 3√k′

))
(8.9)

= 2
(

1−Õ
(

1/ 3√k′
))

n′�
. (8.10)

In particular eq. (8.9) follows from the choice of �= Θ̃( 3√k′) and δ = Õ
(

1/ 3√k′
)

.
To obtain the asymptotic behaviour of εk with respect to k, just observe that
k = k′�= Θ̃(k′

4
3 ) and Õ

(
1/ 3√k′

)
= Õ

(
k−

1
4

)
, hence εk = Õ

(
k−

1
4

)
. Similarly we

get the asymptotic behaviour of δ as a function of k. ��
It then just remains to prove Theorem 8.1 and Theorem 8.2.

8.2 Game Characterizations of Width and Size

In this section we prove Theorem 8.2. But first we introduce a common terminology
for two games: one characterizing resolution width [AD08], and one characterizing
resolution size [Pud00].

Given an unsatisfiable CNF formula F and a set of Boolean assignments R contain-
ing the empty assignment, we define a game, G(F,R), between two players Prover
(he) and Delayer (she). At each step of the game i ∈ N the two players maintain a
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Boolean assignment αi ∈ R, where α0 ∈ R is the empty Boolean assignment. Then at
step i+1 the following moves take place:

1. Prover queries some variable x �∈ dom(αi).
2. Delayer answers x = b for some bit b ∈ {0,1}.
3. Prover sets αi+1 ∈ R such that αi+1 ⊆ αi ∪{x = b}.

If at any point in the game αi falsifies F then Prover wins; otherwise we say that
Delayer wins. As usual, we say that Prover has a winning strategy for the game
G(F,R) if for any strategy of Delayer, he can play so that he wins the game. Oth-
erwise we say that Delayer has a winning strategy. Notice that we can describe a
strategy for Prover as a collection of pairs (α,x) where α ∈ R and x is a variable. The
meaning of (α,x) is: “whenever in the game we reach the Boolean assignment α ,
query the variable x”. A strategy for Delayer can be represented as a set of pairs of
the form ((α,x),b) with α ∈ R, x a variable and b ∈ {0,1} with the meaning: “when
given the Boolean assignment α , if Prover queries x then answer with x = b”.

For a suitable choice of R the game G(F,R) is exactly the one used by [AD08]
to characterize the minimal width of resolution refutations of F . This is done by
showing that the w-AD families introduced in Sect. 2.3.1 are winning strategies for
Delayer for a suitable game G(F,R) and then using the characterization of width
from Theorem 2.5.

Theorem 8.3 ([AD08]). Let F be an unsatisfiable CNF formula, w an integer and
W the set of all possible Boolean assignments with a domain of size strictly less
than w. Then Delayer has a winning strategy for G(F,W) if and only if there exists a
w-AD family for F. Due to this equivalence, we denote G(F,W) as width-G(F,w).

Similarly, for size [Pud00] showed that one can characterize the minimal size of
resolution refutations using this kind of game.

Theorem 8.4 ([Pud00]). Let F be an unsatisfiable CNF formula. The following are
equivalent:

1. there exists a set R of Boolean assignments such that |R|� s and Prover has a
winning strategy for G(F,R);

2. there exists a resolution refutation π of F such that S(π)� s.

Essentially from a resolution refutation π of size S we can immediately construct a
winning strategy for Prover for the game G(F,R) with a set of Boolean assignments
R of size S and vice versa: each play of the game G(F,R) corresponds to a path in a
DAG associated with π .

We want a similar result but for δ -regular resolution. To do so we need to limit
the power of Prover.

Definition 8.3 (Gδ (F,R)). Let F be a CNF formula in n variables, R a set of Boolean
assignments and δ a parameter. If in each play of G(F,R), Prover is allowed to
re-query at most δn variables, we call the corresponding game Gδ (F,R).

We then have the following characterization of δ -regular resolution size.
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Theorem 8.5 ([BT16b]). Let F be an unsatisfiable CNF formula in n variables and
δ ∈ [0,1]. The following are equivalent

1. there exists a set R of Boolean assignments such that |R|� s and Prover has a
winning strategy for Gδ (F,R);

2. there exists a δ -regular resolution refutation π of F such that S(π)� s.

In what follow we just use the implication (2)⇒ (1) and this is what we are going
to sketch. The full proof can be found in [BT16b] although it is essentially the same
as the proof of Theorem 8.4 from [Pud00], just adapted to δ -regular resolution.

Proof (sketch of (2) ⇒ (1)). Given a refutation π of F of size at most s, for each
clause C in π let αC denote the Boolean assignment setting C to false on domain
var(C). We now define the set R to be R = {αC : C ∈ π}. By assumption we have
that |R|� s. A winning strategy for Prover can be described simply taking a DAG
associated with π and “reversing the direction of all edges.” More precisely if a
clause in π is the result of two clauses resolved over some variable x then just add to
the strategy for Prover the pair (αC,x).

Notice that each play of G(F,R) corresponds to a path in π . Then, if π is δ -regular
then in each play of the game the set of variables Prover is going to query many
times is at most δn. So the strategy of Prover is for Gδ (F,R). ��

We now have all the ingredients to prove the fact that the xorifications give rise to
a hardness amplification, Theorem 8.2.

Restated Theorem 8.2 ([BT16b]) Let F be an unsatisfiable CNF formula in n vari-
ables and let w, δ and � be parameters. If every resolution refutation of F has width
> w then every δ -regular resolution refutation π ′ of F [⊕�] is such that

S(π ′)� 2(1−ε)w� , (8.5)

where ε = �−1 log
(
e3�nw−1

)
+δnw−1 log

(
e3�δ−1

)
.

Proof. To prove the desired lower bound, by Theorem 8.5, it is enough to prove
that whenever Prover wins Gδ (F [⊕�],R), the lower bound from eq. (8.5) is also a
lower bound for |R|. By the assumption on the width needed to refute F we have,
by Theorem 2.5, that there exists a w-AD family for F . Hence by Theorem 8.3,
Delayer has a winning strategy σ for width-G(F,w). We use this strategy to build
many different strategies for Delayer when playing Gδ (F [⊕�],R). Then the idea is
that now if Prover wants to win Gδ (F [⊕�],R), in particular, he must win against all
the particular strategies we built and this will imply that |R| must be large.

Let’s start by fixing some notations. Let X = {x1, . . . ,xn} be the variables of F and
let Y =

{
y1

1, . . . ,y
�
1, . . . ,y

1
n, . . . ,y

�
n
}

be the variables of F [⊕�] where by construction
we have that semantically xi ≡⊕�

j=1 y j
i . To avoid confusion we call the xi variables,

x-variables, and the y j
i variables, y-variables. Moreover we say that the y-variables

y1
i , . . . ,y

�
i form a block of variables corresponding to the x-variable xi.
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With each Boolean assignment α over Y there is naturally associated a Boolean
assignment α ′ over X :

α ′(xi) =

{
α(y1

i )⊕·· ·⊕αr(y�i ) if ∀ j ∈ [�], y j
i ∈ dom(α) ,

� otherwise .
(8.11)

Now, given a winning strategy σ for Delayer in the game width-G(F,w) and any total
Boolean assignment β over the y-variables we can build a strategy σβ for Delayer
in the game Gδ (F [⊕�],R) intuitively answering according to β , except when this
would be a “stupid” idea; then use σ . Formally, given a Boolean assignment α over
Y and a variable y j

i /∈ dom(α) we want to define a b ∈ {0,1} that Delayer should
answer, that is we want to find a reasonable ((α,y j

i ),b) to put in σβ :

1. if ((α ′,xi),0) /∈σ and ((α ′,xi),1) /∈σ then put ((α,y j
i ),0)∈σβ (or ((α,y j

i ),1)∈
σβ , it doesn’t really matter);

2. if ((α ′,xi),b) ∈ σ and there exists j′ �= j such that y j′
i /∈ dom(α) then put

((α,y j
i ),β (y

j
i )) ∈ σβ ;

3. otherwise if ((α ′,xi),b′) ∈ σ and for each j′ �= j, y j′
i ∈ dom(α) let b ∈ {0,1}

such that
b⊕

⊕
j′ �= j

α(y j
i ) = b′ . (8.12)

Then put ((α,y j
i ),b) ∈ σβ .

It is easy to see that for each total Boolean assignment β over Y , σβ is a winning strat-
egy for Delayer in the game width-G(F [⊕�],w�). Since we are assuming that Prover
wins against all of those strategies this means that for each total Boolean assignment
β over Y there exists some Boolean assignment αβ ∈ R such that dom(αβ )� w� and
moreover at least w blocks of y-variables are completely inside dom(αβ ). Without
loss of generality we assume that each αβ has domain consisting of exactly w blocks
of y-variables. That is we (possibly) simply ignore some of the variables in dom(αβ )
and only consider w blocks inside it completely set.

In the remaining part of the proof we show that there must be ‘many’ distinct such
Boolean assignments αβ . Let B ∈ ([n]w

)
and let

SB =
{

β ∈ {0,1}Y : ∀i ∈ B xi ∈ dom(α ′
β )
}
, (8.13)

that is, in other words, SB is the set of total Boolean assignments β over Y such that
the corresponding αβ sets exactly all the y-variables y j

i with i ∈ B and j ∈ [�]. Now,
clearly, for any possible B ∈ ([n]w

)
|R|�

∣∣∣{αβ : β ∈ {0,1}Y
}∣∣∣� ∣∣{αβ : β ∈ SB

}∣∣ . (8.14)
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Let A =
{

αβ : β ∈ SB
}

. Let’s show that there exists some B∗ such that eq. (8.14)
for B∗ gives the desired lower bound of eq. (8.5).

There are 2n� possible total Boolean assignments β over Y and
(n

w

)
possible sets

B ∈ ([n]w

)
, hence, by the pigeonhole principle, there exists a set B∗ ∈ ([n]w

)
such that

|SB∗ |� 2n�(n
w

) . (8.15)

Let S′B∗ be the set of all the restrictions of Boolean assignments in SB∗ to the set{
y j

i : i ∈ B∗ and j ∈ [�]
}

. Then

|SB∗ |� ∣∣S′B∗
∣∣ ·2n�−�|B∗| =

∣∣S′B∗
∣∣ ·2n�−w� , (8.16)

and, by eq. (8.15), then ∣∣S′B∗
∣∣� 2w�(n

w

) . (8.17)

We now have that both S′B∗ and A consist of Boolean assignments with domain{
y j

i : i ∈ B∗ and j ∈ [�]
}

. We show that A cannot be too small compared to S′B∗ .
Intuitively, this will be due to the fact that the β s we start with are very different and
the fact that Prover in each play of the game cannot re-query too many variables.

Now a Boolean assignment β ′ ∈ S′B∗ may not be in A, for instance due to some
y-variable that was set last, and hence σβ prescribes to not answer according to β ′
but preserving σ . This could lead indeed to the fact that some different strategies σβ0
and σβ1 lead to the same Boolean assignment in A, that is αβ0 = αβ1 . More generally
if in the i-th block Zi variables are queried multiple times then β and αβ may differ in
|Zi|+1 variables in the i-block. In each play of the game Prover can, by hypothesis,
re-query at most δn� variables, hence, by counting the variables where a Boolean
assignment in A and a Boolean assignment in S′B∗ might differ, we have that

∣∣S′B∗
∣∣� |A| · ∑

Z∈( Y
δn�)

∏
i∈B∗

2|Zi|+1
(

�

|Zi|+1

)
, (8.18)

where Zi = Z ∩{y1
i , . . . ,y

�
i }. Finally we can simplify this last expression as follows:
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∣∣ (8.18)

� |A| · ∑
Z∈( Y

δn�)
∏
i∈B∗

2|Zi|+1
(

�

|Zi|+1

)
(8.19)

� |A| · ∑
Z∈( Y

δn�)
∏
i∈B∗

(
e2�

|Zi|+1

)|Zi|+1

(8.20)

� |A| · ∑
Z∈( Y

δn�)

(
∑i∈B∗ e2�

∑i∈B∗(|Zi|+1)

)∑i∈B∗ (|Zi|+1)

(8.21)

� |A| ·
(

�n
δ�n

)
· (e2�

)δ�n+w
. (8.22)

The inequality (8.21) follows from the weighted AM-GM inequality1 and the in-
equality (8.22) follows from the fact that w � ∑i∈B∗(|Zi|+ 1) � δ�n+w and the
hypothesis that |B∗|= w. Then, putting everything together, we have that

|R|
(8.14)
� |A|� |S′B∗ |( n�

δ�n
)
(e2�)δ�n+w

(8.17)
� 2w�(n

w

)( �n
δ�n
)
(e2�)δ�n+w (8.24)

� 2w�

( en
w )w

( e
δ
)δ�n

(e2�)δ�n+w
(8.25)

= 2w
(
�−log( e3�n

w )− δ�n
w log( e3�

δ )
)
. �� (8.26)

8.3 A Strong Width Lower Bound

The last missing step now is to prove Theorem 8.1, that is we want to construct
unsatisfiable formulas whose require very large resolution width refutations. Such a
construction is in [BI13] and improved in [BT16a]. Here we show the later improved
version.

Let p be a prime, Fp be the finite field with p elements and v = (v1,v2, . . .) be a
vector over Fp. Then by supp(v) we denote the indices of v with non-zero entries
mod p, that is supp(v) = {i : vi �≡ 0 mod p}. We use the letter E, with subscripts,
to denote linear equations mod p, that is expressions of the form ∑ j a jz j ≡ b mod p
with a j,b ∈ Fp. The set of indices j having non-zero a js is supp(E).

1 The weighted Arithmetic-Geometric Mean inequality says that given non-negative numbers
a1, . . . ,an and non-negative weights w1, . . . ,wn then

∏
i

awi
i �

(
∑i wiai

w

)w

, (8.23)

where w = ∑i wi. We applied this inequality with ai =
e2�

|Zi|+1 and wi = |Zi|+1.
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Given two linear equalities E and E ′, their sum E +E ′ is what one should expect,
that is if E is ∑ j a jz j ≡ b mod p and E ′ is ∑ j a′jz j ≡ b′ mod p then E + E ′ is
∑ j(a j +a′j)z j ≡ (b+b′) mod p. Similarly we define rE for r ∈ F and ∑i riEi for a
set of linear equations {Ei}i and ri ∈ F.

In [BI13] it is proven that there are unsatisfiable systems of linear equations mod
p with good expansion properties.

Proposition 8.1 ([BI13, Lemma 4.2]). Let p be a sufficiently large prime. There
exists a set E := {E1, . . . ,En+1} consisting of linear equations in n variables over Fp

and there exist δ = O(1/p) and θ = Õ(1/p) such that

1. for each Ei ∈ E, |supp(Ei)|� p2;
2. E is unsatisfiable but no subset of at most 3δn equations from E is unsatisfiable;
3. (Expansion) for every v = (v1, . . . ,vm) ∈ F

n+1
p , if |supp(v)| ∈ [δn,3δn] then∣∣∣∣∣supp

(n+1

∑
i=1

viEi
)∣∣∣∣∣� (1−θ)n . �� (8.27)

Now the idea is to encode the system of mod p equations E coming from the
previous proposition using Boolean variables in a redundant way.

Lemma 8.1. Let p be a sufficiently large prime, θ = Õ(1/p) and let u = θ−1 log2 p.
There exists a function g : {0,1}u →{0,1}log p such that for any Boolean assignment
α with |dom(α)|� u− log2 p we have that g�α is surjective.

Proof. Let g be a random function that assigns to every x ∈ {0,1}u a value in
{0,1}log p independently and uniformly at random. We bound the probability that
there exist a y ∈ {0,1}log p and a Boolean assignment α with |dom(α)|= u− log2 p
such that y �∈ Img(g�α). Let A be this event. A bound on Pr [A] is easily given as
follows:

Pr [A]� 2log p
(

u
log2 p

)
2u−log2 p

(
1− 1

p

)2log2 p

(8.28)

� pθ− log2 p2u−log2 pelog2 p− 1
p 2log2 p

(8.29)
= o(1) , (8.30)

since θ = Õ(1/p). The inequality in (8.28) follows by the union bound, since once
we fixed y ∈ {0,1}log p and a Boolean assignment α such that |dom(α)|= u− log2 p
then

Pr [y �∈ Img(g�α)]� (1−1/p)2log2 p
. (8.31)

Then there must exist at least one function g realizing the complementary event that
we bounded. This function works also for each α such that |dom(α)|� u− log2 p.
��
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Given the function g : {0,1}θ−1 log2 p →{0,1}log p provided by the previous propo-
sition we can then redundantly encode systems of linear equations as follows.

Let Z = {z1, . . . ,zn} be a set of variables taking values over Fp. We encode
the mod p value of each variable zi using u = θ−1 log2 p new Boolean variables
X = {xi1, . . . ,xiu}:

zi =
log p

∑
j=1

2 j−1g j(xi1, . . . ,xiu) , (8.32)

where g j represents the projection of g on the j-th coordinate. Hence a mod p linear
equation E in n variables, say

∑
i

aizi ≡ b mod p , (8.33)

can be transformed into a Boolean function Eb using eq. (8.32) and nu = nθ−1 log2 p
Boolean variables xi j:

n

∑
j=1

ai j

log p

∑
k=1

2k−1gk(xi1, . . . ,xiu)≡ bi mod p . (8.34)

Moreover if |supp(a1, . . . ,an)|� d then the natural Boolean encoding of this function
as a CNF formula turns out to be a (du)-CNF formula.

Let’s proceed then to prove Theorem 8.1. This proof is essentially an adaptation
of an analogous proof from [BI13] to this context, see the History section for more
details.

Restated Theorem 8.1 ([BT16a]) For any large n and k, there exist unsatisfiable
k-CNF formulas Fn in n variables such that for every resolution refutation π of Fn

W(π)� (1−ζk)n , (8.2)

where ζk = Õ
(

k−
1
3

)
.

Proof. Let p be a sufficiently large prime and let E := {E1, . . . ,Em}, δ =O(1/p) and
θ = Õ(1/p) be the set of linear equations in n variables over Fp and the parameters
from Proposition 8.1. Let u = θ−1 log2 p and g : {0,1}u →{0,1}log p be the function
from Lemma 8.1. The CNF formula F we consider is the natural encoding of the
Boolean function, that is

m∧
i=1

Eb
i (8.35)

as a CNF formula, where the Eb
i are the Boolean encodings of the Ei ∈ E as in

eq. (8.34).
Since for each i we have |supp(Ei)|� p2, then F is a (p2θ−1 log2 p)-CNF formula

in N = nu = nθ−1 log2 p variables. We prove that for each resolution refutation π of
F it holds that
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W(π)� (1−2θ)N . (8.36)

Recalling that θ = Õ(1/p) this implies immediately eq. (8.2).
To prove eq. (8.36) we use a “medium complexity clause” type of argument. Let

Eb := {Eb
i : Ei ∈ E} and for each clause C let μ(C) be the following complexity

measure:
μ(C) = min

{
|S| : S ⊆ Eb and S �C

}
. (8.37)

A clause C has medium complexity (with respect to μ) if μ(C) ∈ ( 3
2 δn,3δn

]
. We

have that given any clauses C1, C2 and C3 in π such that C1 ∧C2 �C3 then μ(c3)�
μ(C1)+μ(C2) and there will be at least one clause of medium complexity in π . Let
C be one such clause. We show that |C|� (1−2θ)N, hence proving eq. (8.36).

Suppose, for sake of contradiction, that |C| < (1− 2θ)N. Let the variables in
the set Z = {z1, . . . ,zn} be Z-variables and, similarly, the variables in the set X =
{xi j : i ∈ [n] and j ∈ [u]} be X-variables. Let α be the Boolean assignment over
the X-variables setting C to false with domain exactly var(C). That is in particular
|dom(α)|< (1−2θ)N. We say that a Z-variable zi is free if

|dom(α)∩{xi1, . . . ,xiu}|� u− log2 p . (8.38)

Let ξ be the number of Z-variables that are free. First we prove that ξ > θn. We
have both an upper and a lower bound for N −|dom(α)|:

2θN < N −|dom(α)|� (n−ξ )(u− (u− log2 p))+uξ . (8.39)

Hence
2θN < n log2 p−ξ log2 p+uξ . (8.40)

Now if ξ � θn a contradiction follows immediately recalling that N = un and
θN = n log2 p.

We say that a Boolean assignment σ : X → {0,1,�} is a completion of α if it
extends α and has domain {xi j : zi is not free}. Let A be the set of all Boolean
assignments over X that are completions of α . Recalling the definition of the X-
variables in terms of the Z-variables in eq. (8.32), we have that each σ ∈ A naturally
defines a Boolean assignment σ ′ : Z → Fp ∪{�} with domain {zi : zi is not free}.
More precisely

σ ′(zi) =

{
∑log p

j=1 2 j−1g j(σ(xi1), . . . ,σ(xiu)) if zi is not free ,
� otherwise .

(8.41)

So, for each σ ∈ A, the Z-variables that are free are exactly, by construction, the ones
not in the domain of σ ′ and for each σ ∈ A, σ sets C to false. As observed we have
that the number of free variables ξ > cθn and hence

|dom(σ ′)|< n−θn = (1−θ)n . (8.42)
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As C is of medium complexity with respect to μ , there exists some set of equations
S ⊆ Eb such that S �C, |S| ∈ ( 3

2 δn,3δn] and S is minimal with respect to inclusion.
Let S′ = {E : Eb ∈ S}. This implies that for each possible σ ∈ A of the form
described above, both S�σ and S′�σ ′ are unsatisfiable. Moreover, by the minimality
of S, for each equation E ∈ S′ there exists some σ ∈ A such that E�σ ′ is not a
trivial constraint, that is a constraint that is always satisfied. The fact that, for each
σ ∈ A, S′�σ ′ is unsatisfiable means exactly that for all σ ∈ A there exists some
v = (v1, . . . ,vn+1) ∈ F

n+1
p (dependent on σ ) with |supp(v)|� |S|= |S′| and such that

∑n+1
i=1 viEi�σ ′ is unsatisfiable. Hence for each σ ∈ A,

supp(
n+1

∑
i=1

viEi)⊆ dom(σ ′) , (8.43)

otherwise we could use the variables not fixed by σ ′ to satisfy the equality ∑i viEi�σ ′ .
Moreover by what we observed before, for each E ∈ S there exists some σ ∈ A such
that E�σ ′ does not trivialize and hence Ei will appear in the sum above for that σ .

Given σ ∈ A, let Eσ = ∑i viEi, where v = (v1, . . . ,vm) depends on σ as in the sum
above. Then we take a random linear combination of all the Eσ s for all the possible
σ ∈ A: let ∑σ∈A ασ Eσ be this combination. Again we have that

supp( ∑
σ∈A

ασ Eσ )⊆
⋃

σ∈A

dom(σ ′) . (8.44)

Each Ei ∈ S′ appears in the previous sum since, as already observed, for each Ei there
exists some σ ∈A such that Ei appears in Eσ . Moreover, the coefficient of each Ei ∈ S
is uniformly random, and hence by averaging, there exists a linear combination such
that at least (1−1/p) 3

2 δn � δn of the Ei have non-zero coefficient. This contradicts
the expansion property of E as we have that

|supp( ∑
σ∈A

ασ Eσ )|� |
⋃

σ∈A

dom(σ ′)|< (1−θ)n , (8.45)

where the last inequality follows from the inequality in (8.42) and the fact that all the
σ ∈ A have the same domain. ��

8.4 Open Problems

The obvious challenge here is to prove a strong size lower bound for resolution or
any proof system stronger than δ -regular resolution where we already have some
exponential-size lower bound. In particular there is the following natural question.

Question 8.1. Is there any unsatisfiable k-CNF formula Fn in n variables such that
for large enough n and k we have that for every resolution refutation π of Fn

S(π)� 2(1−εk)n , (8.46)
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where εk → 0 as k → ∞?

For (tree-like) resolution we might be asking whether there are formulas for which
the upper bound of Theorem 2.1 is asymptotically tight, that is more formally the
following.

Question 8.2. Is there any unsatisfiable k-CNF formula Fn in n variables such that
for every tree-like resolution refutation π of Fn

log2 S(π)�
(
1−O

(
k−1))n ? (8.47)

Another question that arises quite naturally is whether δ -regular resolution is
exponentially stronger than regular resolution, or more precisely, what is the growth
rate of δ as a function of k needed to guarantee this property? Is 1

2 -regular resolution
p-equivalent to resolution?

History

The results shown in this chapter are mainly based on [BT16b, BT16a]; in particular
Theorem 8.1 and Theorem 8.2 are based on analogous results from those papers.

The proof of Theorem 8.1 has a lot of analogies with a similar result from [BI13].
The main difference between our theorem and the one from [BI13] is a different way
of encoding the linear equations mod p from Proposition 8.1. In [BI13] this is done
using a sum of roughly p2 Boolean variables. The key property of this representation
is the following: let z = ∑p2

i=0 xi, where the xi are Boolean variables, then even setting
a lot of variables (that is p2 − p) we still can obtain all possible Fp values for z by
setting the remaining variables.

In other words what is really needed in [BI13] is a function that can extract log p
bits even after many bits in the input are fixed. The way we address this is to just
show that a random function satisfies this property, see Lemma 8.1. We then use this
function instead of the sum of p2 Boolean variables. Then the same argument from
[BI13] goes through.
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[Kra95] Jan Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cam-
bridge University Press, 1995.
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