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Abstract

Propositional proof complexity is the study of certificates of infeasibility. In

this thesis we consider several proof systems with limited deductive ability and

unconditionally show that they require long refutations of the feasibility of certain

Boolean formulas.

We show that the depth d Frege proof system, restricted to line sizeM, requires

proofs of length at least exp

(
n/(logM)O(d)

)
to refute the Tseitin contradiction

defined over the n × n grid graph, improving upon the recent result of Pitassi et

al. [PRT22]. Along the way we also sharpen the lower bound of Håstad [Hås20]

on the depth d Frege refutation size for the same formula from exponential in

˜Ω(n1/59d) to exponential in
˜Ω(n1/(2d−1)).

We also consider the perfect matching formula defined over a sparse random

graph on an odd number of verticesn. We show that polynomial calculus over fields

of characteristic ≠ 2 and sum of squares require size exponential inΩ(n/log2 n) to
refute said formula. For depth d Frege we show that there is a constant δ > 0 such

that refutations of these formulas require size exp

(
Ω(nδ/d)

)
.

The perfect matching formula has a close sibling over bipartite graphs: the

graph pigeonhole principle. There are two methods to prove resolution refutation

size lower bounds for the pigeonhole principle. On the one hand there is the general

width-size tradeoff by Ben-Sasson and Wigderson [BW01] which can be used to

show resolution refutation size lower bounds in the setting where we have a sparse

bipartite graph with n holes and m � n2 pigeons. On the other hand there is

the pseudo-width technique developed by Razborov [Raz04] that applies for any

number of pigeons, but requires the graph to be somewhat dense. We extend the

latter technique to also cover the previous setting andmore: for example, it has been

open whether the functional pigeonhole principle defined over a random bipartite

graph of bounded degree and poly(n) ≥ n2 pigeons requires super-polynomial

size resolution refutations. We answer this and related questions.

Finally we also study the circuit tautology which claims that a Boolean function

has a circuit of size s computing it. For s = poly(n)we prove an essentially optimal

Sum of Squares degree lower bound ofΩ(s1−ε) to refute this claim for any Boolean

function. Further, we show that for any 0 < α < 1 there are Boolean functions on n

bits with circuit complexity larger than 2
nα

but the Sum of Squares proof system

requires size 2

(
2
Ω(nα)

)
to prove this. Lastly we show that these lower bounds can

also be extended to the monotone setting.
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Sammanfattning

Propositionell beviskomplexitet är studerar certifikat av icke-satisfierbarhet. Vi

betraktar bevissystem med begränsad deduktiv förmåga och bevisar ovillkorliga

undre gränser för längden på vederläggningar av formlers satisferbarhet. Denna

avhandling bevisar flera nya sådana undre gränser för bevissystemen resolution,

polynomialkalkyl, kvadratsummor, och Frege-system av begränsat djup.

Vi visar att Frege-systemet av djup d, begränsat till rader av storlek M, krä-

ver minst bevis av längd minst exp

(
n/(logM)O(d)

)
för att motbevisa Tseitin-

kontradiktionen definierad över n × n-rutnätet, vilket förbättrar ett nyligen visat

resultat av Pitassi et al. [PRT22]. Längs vägen skärper vi även Håstads undre gräns

[Hås20] för längd för Frege av djupd för samma formel från exponentiell i
˜Ω(n1/59d)

till exponentiell i
˜Ω(n1/(2d−1)).

Vi betraktar också formeln för perfekt matchning över en gles slumpgraf med

ett udda antal hörn n. Vi visar att polynomkalkyl över kroppar med karaktäristik

≠ 2 och kvadratsummor kräver längd exponentiell iΩ(n/log2 n) för att motbevisa

denna formel. För Frege av djup d visar vi att det finns en konstant δ > 0 så att

vederläggningar av dessa formler kräver storlek exp

(
Ω(nδ/d)

)
.

Formeln förperfektmatchninghar ett nära syskonöver bipartita grafer: duvslags-

principen över grafer. Det finns tvåmetoder för att visa undre gränser för refutations

för duvslagsprincipen. Å ena sidan finns Ben-Sasson och Wigdersons [BW01] ge-

nerella avvägning mellan bredd och storlek som kan användas för att visa undre

gränser för resolution i fallet där vi har en gles bipartit graf med n hål ochm � n2

duvor. Å andra sidan finns pseudo-bredd-tekniken utvecklad av Razborov [Raz04]

som kan appliceras för valfritt antal duvor, men kräver att grafen är någorlunda tät.

Vi utökar den senare tekniken till att även täcka det förstnämnda fallet och mer: till

exempel har det varit öppet om den funktionella duvslagssprincipen definierad

över en slumpmässig bipartit graf med begränsade gradtal och poly(n) ≥ n2 duvor
kräver motbevis av superpolynomisk storlek. Vi besvarar detta och relaterade frågor.

Slutligen studerar vi också kretstautologin som hävdar att en Boolean funktion

har en krets av storlek s som beräknar den. Vi bevisar en väsentligen optimal undre

gräns för gradtal för kvadratsummor påΩ(s1−ε) för att motbevisa detta påstående

för varje Boolesk funktion, för s > poly(n). Vidare visar vi att det för alla 0 < α < 1

finns Booleska funktioner på n bitar med kretskomplexitet större än 2
nα

men där

kvadratsummor kräver storlek 2

(
2
Ω(nα)

)
för att bevisa detta.
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Introduction

This chapter is a non-technical introduction to the thesis intended for

readers with little or no mathematical background. All notions informally

introduced in this chapter are revisited in Chapter 2.

1.1 Proofs

This thesis is about proofs and contains proofs proving properties of proofs.

But before talking more about proofs (and proofs about proofs) it might

be worthwhile to take a step back and think about what a proof really is –

after all it does seem to be a central concept of this thesis.

Broadly speaking, a proof is an object that, hopefully, convinces others

of some claim. Depending on the situation a proof may have very different

form: sometimes a paper from an authority may be sufficient, while in

other situations, like in court, a proof has to be convincing enough so that

the judge believes it “beyond reasonable doubt”. And even in mathematics

itself there are several notions of a proof. For example a proof published

in an article intended to convince other mathematicians of the validity of

a theorem is usually not very formal. Well-known steps may be skipped,

some statements may be left to prove by the reader and sometimes there

are even oversights by the authors. As such it is not surprising that, once

in a while, mathematicians make mistakes and therefore have to retract

articles.

Mathematicians could prevent this from happening – since the late 19th

century we know of proof systems that produce machine verifiable proofs.

These proofs are great to verify statements and make sure that they are

indeed correct. However, fully formalizing a proof is very time consuming,

they are usually not human readable and cannot convey the intuition of a

proof. As such these formal proofs are an interesting object to study but

not very useful to communicate proofs to other human beings.

The first formal proof system has been put forward by Frege [Fre79]

in 1879 and these systems have later been popularized in the 1920s by

Hilbert when he proposed his program to base mathematics on a solid
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Chapter 1. Introduction

foundation. Hilbert’s ultimate goalwas to basemathematics on a logic basis:

he wanted to reprove all mathematical statements from a finite number

of assumptions (also known as axioms) such that (i) these assumptions do

not contradict each other, and (ii) all true statements can be proven from

these assumptions. This is a seemingly desirable goal if one believes that

mathematics describes universal truth.

However, this turns out to be impossible: in 1931 Gödel [Göd31] proved

that strong enough proof systems, as studied by Hilbert and others, are

either self-contradicting or they cannot prove the statement that the system

itself can prove all correct statements. In other words, we cannot hope for

a single set of non-contradicting axioms A that can prove the statement

“all true consequences can be derived from A”. This theorem, known

as Gödel’s incompleteness theorem, left Hilbert’s original program in

shambles.

On the upside, this led other mathematicians to study related problems

and ask more refined questions about the existence of proofs. We just

learned that we cannot prove everything. Can we at least determine what

statements can be proven? That is, given some statement P, can we decide

whether the claim P can be proven from our favorite set of axioms? Even

this turns out to be too much to ask for. But before discussing this we

should take a small detour explaining what we mean by “we can tell” that

a statement has a proof – what kind of machine are we allowed to use

to determine whether there is a proof of a statement? Mathematicians

put forward different formalisms in the 30s of the last century, one of

them being the Turing machine. This formal machine, proposed by Turing,

intends to be able to perform any task that could also be done “by pen and

paper”, or, in more modern terms, by an algorithm. In 1936 Turing [Tur37],

and independently Church [Chu36] using a different albeit equivalent

formalism, showed that no algorithm running in finite time can determine

whether a statement can be proven from a given set of axioms.

To summarize, there are correct statements with no proof and, even

worse, we cannot tell whether a given statement has a proof. Now, I cannot

blame you if your mind has started to wander and you find this a quite lofty

and dry discussion. So let me give you a very concrete real-life consequence.

We all use computers, smartphones or even smartwatches in our daily lives.

Would it not be great if we could write an algorithm that ensures that all

these devices never crash? No need to ever reboot your computer because

— reasons? Well, you may have guessed, this is unfortunately one of these

so-called undecidable statements. Bear this in mind the next time you

call your computer person – they are trying hard to solve an undecidable

problem. Have some patience, get a coffee, and, in the mean time, reboot

4



1.2. Efficient Proofs

u

v

Figure 1.1: A graph with two labeled nodes u and v

your computer.

But joking aside, it really seems like we have to give up on these

undecidable statements. Maybe there is more to discover in the set of

decidable statements? For example, do such statements always have small

proofs? Can small proofs be found efficiently? These, and related questions,

are the foundations of theoretical computer science.

1.2 Efficient Proofs

From now on we only study claims that are decidable, i.e., have a proof,

though it may be long. Let us start with a simple example of the kind of

statements that we want to consider. Suppose we are given a graph with

two labeled nodes u, v and the claim that these two nodes are connected

by a path of length 5. An illustration of an example graph can be found in

Figure 1.1.

Is this claim correct? Staring at the graph for a bit one can actually find

a path of length 5, as illustrated in Figure 1.2 on the following page. This

illustration is a pretty convincing proof – that was not so hard to prove.

What about the claim that there is no path of length at most 4 connecting u

to v? Canwe convince ourselves that this holds? We could try to enumerate

all paths between u and v and check that there is no shorter path. This

would indeed give us a valid proof, but it seems cumbersome as there are

so many paths connecting u to v.

Let us try to create a more concise proof, as follows. Find all nodes at

distance at most one from u. This is not difficult: this is u and all neighbors

N(u) of u. Once we have found the nodes V1 at distance at most 1 from u,

5



Chapter 1. Introduction

u

v

Figure 1.2: A path of length 5

we can now find all nodes at distance at most two from u: these are the

nodes of V1 as well as the neighborhood N(V1) of it. Iterating this idea, we

see that v is not in the set of nodes V4 at distance at most 4 from u. Thus

we proved the claim. This proof is illustrated in Figure 1.3 on the following

page.

Observe that this argument gives us an algorithm to determine the

length of the shortest path between u and v: simply run the described

procedure until v is, for the first time, in the set Vi and report that the

shortest path between u and v is of distance i. Claims that have an efficient

algorithm, as the one just described, make up the class P. That is, P consists

of all claims that can be efficiently proven and, furthermore, this short proof

can also be found efficiently.

Let us consider a claim that we suspect is of a different nature: the

claim that a graph contains a cycle visiting every node exactly once (this

is known as a Hamiltonian cycle). If you have the stamina, you can stare

at the graph in Figure 1.1 for a while and you will notice that there is

indeed a Hamiltonian cycle – one example is highlighted in Figure 1.4 on

the following page. Again, this illustration is a short, efficient proof similar

to the proof of the existence of a path of length 5 in Figure 1.2. So far there

is no evidence that would justify calling this claim of a different nature.1

It gets more interesting if we consider the negation of the previous claim,

namely the claim that “there is no Hamiltonian cycle”. Suppose our graph

does not contain a Hamiltonian cycle. How would we prove this? Of

course there is the brute-force proof: enumerate each ordering of nodes

1
Here we ignore the question whether such proofs can be found efficiently. We discuss

this question in detail later on.
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1.2. Efficient Proofs

u

v

Figure 1.3: The nodes at distance 0, 1, 2, 3, 4 and 5 from u

and rule out that this ordering gives rise to a Hamiltonian cycle. If we

consider a graph on 28 nodes, as in Figure 1.1, then this brute-force proof

would consist of about 28! ≈ 10
29

many orderings. To get a feeling for this

number, suppose that we are really quick at checking orderings, say, we

can check a million orderings a second. In this case it would take us a mere

10
15

years to check all orderings – as the universe is only about 10
10

years

old this is not an awfully useful proof.

If the naïve proof of such a small graph is already this long, we have

to investigate whether there are more efficient proofs of this claim. So far

we have not succeeded in this endeavor and it is generally believed that

there are no proofs significantly shorter than our naïve proof.2 And this

is by far the only statement for which we do not have short proofs – there

is an entire cluster of statements that seem impossible to prove efficiently.

In order to discuss this in the language of theoretical computer science we

need to introduce two classes of statements.

The first class is called NP and consists of all statements that have an

efficient proof, e.g., “there is a Hamiltonian cycle” or “there is no path of

length 4”. The second class is coNP which consists of all statements whose

negation has an efficient proof: for example, “there is noHamiltonian cycle”

or “there is no path of length 4”. Already from the given examples we

see that NP and coNP have certain statements in common. The big open

question is whether all claims of coNP are also in NP, or in words, whether

the negation of efficiently verifiable statements also have short proofs. It is

widely believed that this is not the case: it is believed that there are claims in

2
It should be mentioned that there are slightly more efficient proofs. If a graph has n

nodes, then proofs can be made of length roughly 2
n
instead of the n! ≈ 2

n logn
length our

naïve proof has.
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Chapter 1. Introduction

Figure 1.4: A Hamiltonian cycle

coNP, for example, “there is no Hamiltonian cycle”, that inherently require

long proofs.

This thesis continues a line of work that eventually hopes to separate

NP from coNP. The program, put forward by Cook and Reckhow [CR79],

suggests to study increasingly more powerful proof systems and prove that

these systems require long proofs for some claims in coNP. Starting with

“weak” proof systems, i.e., proof systems of limited deductive ability, we

hope to develop a toolbox of lower bound techniques that can be applied

to increasingly stronger proof systems. Apart from its intrinsic interest,

separating NP from coNP would have some interesting consequences. Let

us explain.

By definition we have that P is contained in NP, as all claims in P have

short proofs. Also, it is not so hard to convince yourself that a claim C is in

P if and only if the claim “not C” is also in P: as in the path example, we

can run the efficient algorithm that finds a proof of C. By definition, this

algorithm is complete, meaning that it always outputs a proof if one exists.

Thus running the efficient algorithm and obtaining no proof from it is itself

a short proof of the claim “not C”. As such we conclude that P lies in the

intersection of coNP and NP. Equivalently we can write this in symbols as

P ⊆ NP ∩ coNP.
Now suppose that we can separate NP from coNP. We claim that

this implies that P is a strict subset of NP: because P is closed under

complementation but NP is not, there has to be some statement that is in

NP but not in P. To determine whether P ?

= NP, or equivalently whether a

claim with a short proof also has an efficient algorithm that recovers the

short proof, is one of the seven millennium problems put forward in 2000

8



1.2. Efficient Proofs

by the Clay Mathematics Institute [CJW06].

As previously mentioned, this thesis continues the program of Cook

and Reckhow with the eventual goal to separate NP from coNP. We

prove several new proof size lower bounds for different formulas and

proof systems. We achieve this by adapting and extending known lower

bound techniques, thereby expanding the current toolbox of lower bound

techniques for proof complexity. In Chapter 2 we cover the necessary

background to then discuss our contributions in Chapter 3. No formal

proofs are covered in the first part of the thesis. The proofs of thementioned

theorems can be found in Part II which contains all the discussed papers.

9





Background

In the first section of this chapter we revisit some well-known notions from

complexity theory as well as some basic graph theory. In Section 2.2 we

introduce the relevant proof systems and in Section 2.3 the propositional

formulas that we intend to study.

2.1 Preliminaries

For an integer n ∈ N we let [n] = {1, . . . ,n} denote the set of integers from
1 through n, and we let logn denote the logarithm of n to the base 2.

Let f,g : R→ R be two functions. Wewrite f(n) ∈ O
(
g(n)

)
, respectively

f(n) ∈ Ω
(
g(n)

)
, if there is a constant c and an n0 such that for all n ≥ n0

it holds that f(n) ≤ c · g(n), respectively f(n) ≥ c · g(n). We say that f

is poly-bounded if there is a constant c such that f ∈ O(nc). We further

introduce the notation f(n) ∈ o
(
g(n)

)
to mean that for all constants c > 0

there is an n0 such that f(n) ≤ c · g(n), for all n ≥ n0.

Similarly we sometimes want to supress dependencies on constants and

write f(n, ε) ∈ Oε
(
g(n, ε)

)
, respectively f(n, ε) ∈ Ωε

(
g(n, ε)

)
, to mean that

there exists a function c(ε) > 0 and a constant n0 such that for all n ≥ n0

it holds that f(n, ε) ≤ c(ε) · g(n, ε), respectively f(n, ε) ≥ c(ε) · g(n, ε). In a

similar veinwe sometimes evenwant to suppress logarithmic dependencies:

we write f(n) ∈ ˜O
(
g(n)

)
to mean that there are constants c and n0 such

that for all n ≥ n0 it holds that f(n) ≤ log
c(n) · g(n), and f(n) ∈ ˜Ω

(
g(n)

)
if

there are constants c and n0 such that f(n) ≥ log
c(n) · g(n), for all n ≥ n0.

2.1.1 Graph Theory

Let us recall some standard graph terminology. A graph G = (V ,E) is
a 2-tuple that consists of a set of vertices V = V(G) and a set of edges

E = E(G) ⊆ V × V , and a bipartite graph G = (U,V ,E) is a 3-tuple that

consists of two disjoint vertex sets U and V , with V(G) = U ∪ V , and an

edge set E = E(G) ⊆ (U × V) ∪ (V ×U).

11



Chapter 2. Background

We only consider simple and undirected graphs; all graphs contain no

self-loops, i.e., edges (u,u), and if (u, v) ∈ E, then also (v,u) ∈ E and we

may thus think of the edge set E as containing sets of size 2.

The neighborhood of a vertex u ∈ V(G) is N(u) = {v | {u, v} ∈ E}, the
neighborhood of a set of vertices U ⊆ V(G) is N(U) = ⋃

u∈UN(u) and for

sets U,W ⊆ V(G) the neighborhood of U in W is N(U,W) = N(U) ∩W.

We denote by deg(v) = |N(v)| the degree of a vertex v ∈ V , by ∆(G) the
maximum degree, δ(G) the minimum degree and by d(G) the average

degree of G. For a set of vertices U ⊆ V(G) we let G[U] denote the graph
induced by U, i.e., G[U] = (U,EU), where Eu = {e ∈ E(G) | e ⊆ U}.

A graph G = (V ,E) on n vertices is an α-expander (has vertex expansion
α) if for all sets U ⊆ V of size |U| ≤ n/2 it holds that |N(U,V \U)| ≥ α|U|.

The grid graph (more commonly torus)G = (V ,E) of dimensionn consists

of vertices V = {(i, j) | 0 ≤ i, j < n} and the vertex (i, j) is connected by

edges to the four neighbors at distance 1, i.e., where one coordinate is

identical and the other changes by ±1 modulo n.

We denote the uniform distribution over d-regular graphs on n vertices by
G(n,d) and tacitly assume that nd is even. A graph G contains H as a

topological minor if there is an injective map σ : V(H) → V(G) and for every

{u, v} ∈ E(H) there is a path puv ⊆ G from σ(u) to σ(v) that is pairwise

vertex-disjoint from all other paths except in the endpoints. The paths puv
are the edge embeddings of the minor.

2.1.2 Languages, Formulas and Circuits

An alphabet Σ is a finite set of symbols and we let Σ∗ be the set of finite

length strings that can be formed over Σ. For a string w ∈ Σ∗ we let |w|
denote the length of w. A language L ⊆ Σ∗ is a set of finite length strings

over the alphabet Σ. We may usually assume that the alphabet is {0, 1} but
it is often convenient to work with larger alphabets.

Let us say that the depth of a string is the number of changes of symbols

in a string: the depth is 0 if the string s is empty, and otherwise, if

s = (s1, . . . , sk), then the depth is defined to be 1+Depth(si, . . . , sk), where

i is the largest integer such that si−1 = s1.

Formulas The language of DeMorgan formulas consists of all strings de-
fined recursively over the alphabet consisting of variables x1, . . . , xn, the

connectives ∨,∧,¬, the symbols >,⊥, and the brackets (, ) as follows.

1. The symbols > and ⊥ denote formulas,

2. any variable xi is a formula,

12
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3. if F is a formula, then so is ¬F,

4. if F1 and F2 are formulas, then so are (F1 ∧ F2) and (F1 ∨ F2).

We use x̄i as a shorthand for the formula ¬xi and call the formulas xi and

x̄i literals. A subformula of a formula F is a substring of F that is also a

formula and the size of a formula is the length of the string representing it.

We can think of a formula F as a binary tree TF where each internal node

is either a nodewith 2 children and labeledwith an∨ or an∧ or a nodewith

1 child labeled with ¬, and each leaf node is either labeled with a variable

or one of the symbols > or ⊥. For a branch b in TF, let L(b) = (`1, . . . , `k)
denote the string of internal labels encountered on b if traversed from root

to leaf. We define the depth of the branch b as Depth

(
L(b)

)
, and the depth

of a formula F as the maximum depth of any branch in TF.

An assignment is a mapping α : {x1, . . . , xn} → {True, False} that sets
each variable to either True or False. We often identify True with 1 and

False with 0 and call a variable that may be True or False a bit. A formula

F evaluates to True under an assignment α if

1. F is of the form >, or

2. F is of the form xi and α(xi) = True, or

3. F is of the form ¬G and G does not evaluate to True under α, or

4. F is of the form (G1 ∧G2) and both G1 and G2 evaluate to True under

α, or

5. F is of the form (G1 ∨G2) and at least one Gi evaluates to True under

α.

If F does not evaluate to True under α, then we say that it evaluates to

False under α and write F(α), or α(F), to denote the (unique) value F

evaluates to under α. When writing formulas we usually ignore most

brackets. In particular we write x1 ∨ x2 ∨ · · · ∨ xn as a shorthand for

(x1 ∨ (x2 ∨ (· · · (xn−1 ∨ xn) · · · ) and similarly for ∧. A formula G is logically
implied by the formulas F1, . . . , Fk, written as F1, . . . , Fk |= G, if for all

assignments α such that α(F1 ∧ · · · ∧ Fk) = True it also holds that G(α) =
True.

A formula F is satisfiable if there is an assignment α such that F(α) =
True, a formula F is unsatisfiable, or a contradiction, if F(α) = False for all

assignments α and similarly a formula F is a tautology if F(α) = True under

all assignments. We denote the language that consists of all satisfiable

formulas by SAT, the language of unsatisfiable formulas by UNSAT and

the language of tautologies by TAUT.

13
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A disjunction of literals, e.g., C =
(
x3 ∨ x̄42 ∨ · · · ∨ x̄7

)
, is called a clause,

the width of C, denoted by Width(C), is equal to the number of literals in C,

and a k-clause is any clause of width at most k. A formula F is in conjunctive
normal form (CNF) if it is a conjunction of clauses, i.e., of the form

∧m
i=1 Ci,

where each Ci is a clause. The width of F, denoted by Width(F) is the

maximum width of any clause occurring, the formula F is a k-CNF if each

clause in F is a k-clause and F is of bounded width if there is a constant k

such that F is a k-CNF.

A Boolean function f : {0, 1}n → {0, 1} on n bits is represented by a

formula F over n variables if for all assignments α it holds that f(α) = F(α).
Proposition 2.1.1. Every Boolean function f : {0, 1}n → {0, 1} on n bits can be
represented as a CNF of size O(n · 2n).

Proof. We construct the CNF F as follows. For each assignment α such that

f(α) = False, we add the negation, written as a clause, of the unique n

variable conjunction that is satisfied by α to F. It is readily verified that

f(α) = F(α) for all assignements α. �

The language that consists of all satisfiableCNFs is denotedbyCNF-SAT,

and we let the set of unsatisfiable CNFs be denoted by CNF-UNSAT.

Circuits Note that when defining formulas, we may be forced to write

down the exact same subformula several times. Circuits allow the re-use

of such subformulas, thus decreasing the size of the representation.

We define the language of Boolean circuits over the DeMorgan basis as

follows. A string C is a circuit if it is a sequence (F1, . . . , Fs) of DeMorgan

formulas over the variables x1, . . . , xn,y1, . . . ,ys, where each Fi is of the

following form:

1. one of the symbols > or ⊥, or

2. xj, for j ∈ [n], or

3. ¬yj, for j < i, or

4. (yj ◦ yk), for j,k < i and ◦ ∈ {∧,∨}.

We determine whether a circuit C = (F1, . . . , Fs) evaluates to True under

an assignment α (to the variables x1, . . . , xn) as follows. Starting with i = 1

and α0 = α, we sequentially evaluate the formula Fi under the assignment

αi−1, and extend αi−1 to the variable yi to obtain αi defined as

αi(z) =
{
αi−1(z), if z ≠ yi,

αi−1(Fi), otherwise.

14
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We say that C evaluates to True under α if αs(ys) = True and C evaluates

to False otherwise. As for formulas we write C(α) to denote the unique

value that C evaluates to under α. Finally, we say that a Boolean function f

is represented by the circuit C, or computed by the circuit C, if C(α) = f(α) for
all assignments α.

Note that we can view a circuit C as a directed acyclic graph: for each

i ∈ [s] we have a node that is connected by an incoming edge to all nodes j

such that yj occurs in the formula Fi. We label each internal node by the

function it computes, i.e. ∧, ∨, or ¬, and add an additional outgoing edge

from the node s. The depth of a circuit is defined analogously to formulas:

the depth of a source to sink path is Depth(L(p)), where the function L is

defined as for formulas, and the depth of the circuit is the maximum depth

of any source to sink path.

Let us recall that most Boolean functions require large circuits.

Theorem 2.1.2 ([Sha49]). Asymptotically almost surely as n → ∞ a random
Boolean function f : {0, 1}n → {0, 1} needs a circuit of size at leastΩ(2n/logn).

2.1.3 The Complexity Classes P, P/poly, NP and coNP

A language L ⊆ Σ∗ is computable in polynomial time if there is an algorithm

A that takes a poly-bounded number of steps in the input length, such

that A(`) = 1 if and only if ` ∈ L. We denote by P all languages that are

computable in polynomial time.

Similarly, we say that a language L ⊆ {0, 1}∗ is in P/poly if there is a

polynomial p and a family of circuits (Cn)n∈N, each circuit Cn of size at

most p(n), such that Cn(α) = 1 if and only if α ∈ L ∩ {0, 1}n.
The class NP consists of all languages L ⊆ Σ∗

1
for which there is an

algorithm A, taking a poly-bounded number of steps in the input length,

such that for all ` ∈ L there is an x ∈ Σ∗
2
such that |x| = poly(|`|) and

A(`, x) = 1. The class coNP consists of all languages whose complement is

in NP, i.e., all languages L ⊆ Σ∗ such that the language
¯L = Σ∗ \ L is in NP.

A language L is complete for a class C if L is in C and for all other

problems L′ ∈ C there is an algorithm A, taking a poly-bounded number

of steps in the input length, such that A(`′) ∈ L if and only if `′ ∈ L′. It is
well-known that the languages SAT and CNF-SAT are NP-complete while

the languages TAUT, UNSAT and CNF-UNSAT are coNP-complete.

Note that P ⊆ NP ∩ coNP. Literally the $1 million question is whether

P ≠ NP [CJW06]. It is widely believed that P is a proper subset of NP but

this statement seems to be out of reach for current techniques. A question of

similar flavor is whether NP ≠ coNP. This is also open but widely believed
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to be incomparable. Note that NP ≠ coNP implies that P ≠ NP, as P is

closed under the complement.

2.2 Proof Systems

The following definition is due to Cook and Reckhow [CR79]. A proof
system P for a language L ⊆ Σ∗

1
is a language in Σ∗

1
× Σ∗

2
such that

1. P is poly-time computable, i.e., there is an algorithm A such that

A(`,π) = 1 if and only if (`,π) ∈ P, and A runs in time poly(|`|, |π|),

2. for each ` ∈ L there is a π ∈ Σ∗
2
such that (`,π) ∈ P, and

3. for all ` ∈ Σ∗
1
\ L and any π ∈ Σ∗

2
it holds that (`,π) ∉ P.

A proof system is said to be complete if it satisfies Item 2, and sound if it

satisfies Item 3. Throughout the thesis we only consider complete and

sound proof systems. We say that π ∈ Σ∗
2
is a P proof of ` ∈ L if (`,π) ∈ P.

The size of a proof π is |π|, also denoted by Size(π), and the size of refuting

` in P is SizeP(`) = minπ Size(π), where the minimum ranges over all P

proofs of `. The proof system P for L is poly-bounded if there is a polynomial

p such that for all ` ∈ L it holds that SizeP(`) ≤ p(|`|). A propositional proof
system is a proof system for the language CNF-UNSAT. Note that we could

also consider proof systems for TAUT but it is customary to work with

proof systems for CNF-UNSAT and we follow the crowd. A proof in a

propositional proof system is also called a refutation and we use these terms

interchangeably.

Proposition 2.2.1 ([CR79]). There is a poly-bounded propositional proof system
if and only if NP = coNP.

This proposition suggest the following program to separate NP from

coNP: prove for stronger and stronger proof systems that they are not

poly-bounded. In the past 30 years there has been a lot of work on proving

exponential lower bounds for “weak” propositional proof systems such

as resolution [Tse68; Hak85; BW01; Raz04a; ABRW04; IOSS16; ABdR+18;

AM19], bounded depth Frege [Ajt94; PBI93; KPW95; BP96; Ben02; PRST16;

Hås20], polynomial calculus [Raz98; BGIP01; BI10; AR03; MN15; LN17],

sum of squares [Gri01; MPW15; BHK+16; KMOW17; Pot17; AH19], or

cutting planes [Pud97; BPR97; FPPR17; HP17]. Ultimately the hope is that

we understand lower bound strategies well enough so that we can start

tackling “strong” propositional proof systems like Frege [Fre79], extended

Frege [CR79] or the ideal proof system [GP18].

16



2.2. Proof Systems

For now we settle to prove lower bounds for “weak” proof systems

in order to extend the current toolbox of lower bound techniques. This

thesis fits in there and proves several new lower bounds by extending and

adapting lower bounds techniques to our needs.

Before defining the proof systems that we use throughout this thesis we

need a way to compare the strength of two proof systems. Let P ⊆ Σ∗
1
× Σ∗

2

and Q ⊆ Σ∗
1
× Σ∗

3
be proof systems for a language L. We say that P poly-

simulates Q if there is a function f : Σ∗
3
→ Σ∗

2
, computable in polynomial

time in the input length, such that for all ` ∈ L and π ∈ Σ∗
3
it holds that

if (`,π) ∈ Q, then (`, f(π)) ∈ P. Put in words, the function f translates

Q-proofs of ` to P-proofs of `with at most a polynomial increase in size, for

all ` ∈ L. It is readily seen that if Q is poly-bounded and P poly-simulates

Q, then P is poly-bounded as well.

Furthermore, some of the propositional proof systems are based on

(semi-)algebraic reasoning. As such we need to discuss how to translate a

CNF F = ∧m
i=1
Ci over n variables x1, . . . , xn into a system of polynomials

PF. We define PF over the 2n variables x1, . . . , xn, x̄1, . . . , x̄n and say that

the system is satisfied under an assignment α if and only if all polynomials

evaluate to zero under α. In order to enforce that each variable only takes

Boolean values, we add the Boolean axioms

y(1 − y)
to PF for each variable y. We also want to ensure that x̄i is the negation of

xi and thus also add the negation axioms

xi + x̄i − 1
to PF. Finally we add for each clause Ci the following polynomial to PF.
Assuming that the clause Ci can be written as ∨wi

j=1
vij, for the appropriate

literals vij, we translate Ci into the monomial

wi∏
i=1

v̄ij ,

where we use the convention that ¯̄xk = xk. Assuming that the Boolean

axioms and the negation axioms are honored it should be evident that

above polynomial is equal to 0 if and only if one literal vij is set to 1 and

thus the clause Ci is satisfied. For a CNF F, let us denote by Deg(F) the
maximum degree of any polynomial occurring in PF.

2.2.1 Resolution

Resolution is arguably the most studied proof system and has been first

defined by Blake [Bla37] in the 30ies of the last century. Resolution is
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a propositional proof system with refutations of the following form. A

resolution refutation π of an unsatisfiable CNF F is a sequence of clauses

(C1, . . . ,CL) such that CL = ⊥ is the empty clause and each clause Ci either

occurs in F or is derived from come clauses Cj and Ck, for j,k < i, by the

resolution rule
B ∨ x C ∨ x

B ∨ C .

The length of π, denoted Length(π), is L and the width of π is the maximum

width of any clause occurring in π. We denote by WidthR(F) the minimum

width of any resolution refutation of F and, similarly, let LengthR(F) =
minπ Length(π)where π ranges over all resolution refutations of F.

The most common way to prove resolution size lower bounds is by

proving a lower bound on the width required to refute a formula and

then applying the following width-length trade off due to Ben-Sasson and

Wigderson.

Theorem 2.2.2 ([BW01]). For any CNF F over n variables it holds that

LengthR(F) = exp

(
Ω

( (WidthR(F) −Width(F))2
n

))
.

Thus, assuming that the CNF F is of constant width, if we manage

to show a width lower bound linear in the number of variables, then we

obtain a 2
Ω(n)

length lower bound on any resolution refutation of F. It is

worth noting that this is essentially optimal as there is always a resolution

refutation of length 2
n
.

2.2.2 Bounded Depth Frege

Let us first define the more general Frege proof system that can derive

any consequence from a set of axioms. We then specialize the system to a

propositional proof system. A k-ary Frege rule is any rule of the form

A1 A2 . . . Ak
B

such thatA1, . . . ,Ak |= B. Let ℛ be a set of Frege rules. A Frege proof of the

formula G from the formulas F1, . . . , Fm over ℛ is a sequence of formulas

(H1, . . . ,HL) such that HL = G and each line Hi is either equal to an axiom

Fj or is derived from Hj1 , . . . ,Hjk , for j1, . . . , jk < i, by a k-ary Frege rule in

ℛ.
The width of a proof is the size of the largest formula occurring, the

length is the number of formulas in the proof and the depth of a proof is

the maximum depth of any formula appearing.
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A Frege proof system Fp is a finite set of Frege rules ℛ that are im-

plicationally complete, i.e., if the formulas F1, . . . , Fm logically imply G,

then there is a Frege proof of G from the fromulas F1, . . . , Fm over ℛ. The
following theorem due to Reckhow states that any two Frege systems

poly-simulate each other.

Theorem 2.2.3 ([Rec75]). Any two Frege propositional proof systems poly-
simulate each other. Furthermore, the simulation preserves the depth of the proof
up to an additive constant, while the size of the proof increases by at most a
multiplicative constant.

Reckhow in fact proved a more general statement, which also allows

a certain freedom in the choice of the basis over which the formulas are

defined. We stick to the DeMorgan basis and this extension is thus not

central to the following discussion. The interested reader is encouraged to

consult [Kra19] for a more complete treatment.

As different Frege systems poly-simulate each other, we may consider

any such system. Fix an arbitrary Frege proof system Fp as defined above.

We define the Frege propositional proof system F to be the language that

contains all tuples (F,π), where F =
∧m
i=1 Ci is an unsatisfiable CNF and π

is an Fp proof of ⊥ from the formulas C1, . . . ,Cm.

Similarly we define the depth d Frege refutational proof system Fd: it

is the language that contains all tuples (F,π) from Fwhere π is of depth at

most d.

Note that by Theorem 2.2.3 there is a constant d0, such that for all d ≥ d0,
the proof systems Fd is complete. We only consider such d in this thesis.

Note that when the depth is reduced, then the size of a proof may blow up

substantially.

2.2.3 Polynomial Calculus

The polynomial calculus propositional proof system, introduced in [CEI96]

though we use the slightly stronger version introduced in [ABRW02], is

based on algebraic reasoning. A polynomial calculus refutation π of the

CNF F over a field F consists of an ordered sequence of polynomials

(p1, . . . ,pL) such that pL is the constant 1 polynomial and each polynomial

pi occurs either in PF or is derived by one of the following two polynomial

calculus rules from pj and pk, where j,k < i,

q1 q2
αq1 + βq2

q
xq ,

for some variable x and constants α,β ∈ F. We denote the polynomial

calculus propositional proof system over F by PCF.

19



Chapter 2. Background

The degree of π is the maximum degree of any polynomial that occurs

in π and the length of π is L. The degree of refuting F in PCF is denoted by

Deg
PCF
(F) and defined as the minimum degree of any polynomial calculus

refutation over F of the CNF F. Finally, let us also define the monomial size
of a refutation, which simply counts the number of monomials occurring

in the proof and the monomial size of refuting F in PCF, denoted by

MSizePCF(F), is the minimum monomial size of any PCF refutation.

While for resolution we had a width-length trade off, for polynomial

calculus we have a degree-monomial-size trade off.This trade off in fact

predates the celebrated resolution trade off. Recall that Deg(F) denotes the
maximum degree of any polynomial occurring in PF.

Theorem 2.2.4 ([CEI96; IPS99]). For any unsatisfying CNF F over n variables
and any field F it holds that

MSizePCF(F) = exp

(
Ω

( (Deg
PCF
(F) −Deg(F))2

n

))
.

Let us remark that polynomial calculus over any field F simulates

resolution with respect to size as well as degree [ABRW02], i.e., a resolution

proof of size s and width w can be translated into a PCF proof of size O(s)
and degree O(w).

2.2.4 Sum of Squares

Sum of Squares (SoS) is a propositional proof system based on semi-

algebraic reasoning. In contrast to the other proof systems SoS is static

meaning that a proof is a single line. In fact, it is a single polynomial

identity.

A Sum of Squares (SoS) refutation of a CNF F consists of a sequence of

polynomials (r1, . . . , rm, s1, . . . , st) such that∑
i∈[m]

ripi +
∑
i∈[t]

s2i = −1 ,

for PF = {p1, . . . ,pm}. As for polynomial calculus one can define the

degree and monomial size of a refutation. For SoS there is also a degree-

monomial-size trade off.

Theorem 2.2.5 ([AH19]). For any unsatisfying CNF F over n variables it holds
that

MSizeSoS(F) = exp

(
Ω

( (Deg
SoS
(F) −Deg(F))2
n

))
.
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It is not so hard to show that SoS poly-simulates resolution. Quite

surprisingly, Berkholz [Ber18] showed that SoS also poly-simulates PCR. It

should be mentioned that there is a separation for finite fields and this is

thus the best one could hope for.

2.3 Propositional Formulas

We are interested in several simple principles which, as we show in the

following, turn out to be hard for different proof systems.

2.3.1 Tseitin

The Tseitin formula is defined over a graph G = (V ,E). At the heart of the
formula is the following idea: count the number of edges by a double sum

over the vertices and a sum over the edges incident to a single vertex

1

2

∑
v∈V

∑
e:v∈e

1 = m ,

where we divide by 2 as each edge is summed over twice. This implies in

particular that the sum ∑
v∈V

∑
e:v∈e

1 = 2m

is equal to an even number. Moreover, if we associate each edge e with a

Boolean variable xe, no matter the assignment α : {xe | e ∈ E} → {0, 1}
this sum is still even: ∑

v∈V

∑
e:v∈e

α(xe) = 2|α−1(1)| . (2.1)

Suppose we are given a charge function τ : V → {0, 1} that assigns each
vertex either a charge of 0 or 1 and, furthermore, that we enforce that at

each vertex v the incident edge variables sum to the charge τ(v)modulo 2.

That is, for each vertex v ∈ V we have the constraint∑
e:v∈e

xe = τ(v) mod 2 . (2.2)

All these constraints together imply that the double sum fromEquation (2.1)

is equal to ∑
v∈V

∑
e:v∈e

xe =
∑
v∈V

τ(v) mod 2 .
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Thus if |τ−1(1)| is odd, then there is no satisfying assignment. This defines

the Tseitin contradiction: fix a charge function that assigns an odd charge

to the graph and claim that there is an assignment as described above.

The CNF associatedwith above system of equationsmodulo 2 is defined

as follows. For each vertex v ∈ V and a fixed τ note that the vertex axiom

of v (Axiom 2.2) can be used to define a Boolean function, mapping from

deg(v)many inputs to True, False, depending on whether the constraint

is satisfied by a given assignment, identifying True with 1 and False with

0. By Proposition 2.1.1 we may obtain a CNF Fv,τ of size O(deg(v) · 2deg(v))
that is satisfied if and only if the corresponding vertex axiom is satisfied.

Then, the CNF associated with the Tseitin contradiction is defined as

Tseitin(G, τ) =
∧
v∈V

Fv,τ .

Observe that this formula is of exponential size in the maximum degree of

the graph. As such this formula is usually only considered in combination

with graphs of constant degree.

2.3.2 Perfect Matching

The perfect matching formula is also defined over a graph G = (V ,E). The
formula claims that there is a subset of edgesM ⊆ E such that every edge

is in precisely one edge ofM. In other words, we want a setM ⊆ E such

that for every vertex v ∈ V it holds that

|{e ∈M | v ∈ e}| = 1 .

A moment of reflection reveals that a matching always contains an even

number of vertices: every edge inM consists of two vertices, each of which

is in precisely one edge and hence there is an even number of vertices

matched. Thus if we start with a graph G defined over an odd number of

vertices, there cannot be a perfect matching in this graph. This defines the

perfect matching contradiction.

We have a variable per edge {xe | e ∈ E} and for each vertex v ∈ V we

add the following clauses to the CNF formula PM(G):∨
e:v∈e

xe , and x̄e ∨ x̄e′ ,

for any e, e′ ∈ E such that e ∩ e′ = {v}.

2.3.3 Pigeonhole Principle

One encoding of the pigeonhole principle (PHP) is the perfect matching

formula PM(G) defined over a bipartite graph G = (U,V ,E) with |U| > |V |.
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This is the strongest encoding of the principle: there are subformulas of

PM(G) that are contradictions. Let us define two subformulas of interest to

us.

Recall that we have a variable for each edge in the graph {xe | e ∈ E}.
The ordinary pigeonhole principle PHP(G), for G = (U,V ,E), has a clause
per vertex u ∈ U ∨

e:u∈e
xe , (2.3)

ensuring that the vertex u is matched to some vertex in the neighborhood,

and for any two distinct edges {u, v}, {u′, v} ∈ E, where v ∈ V and u,u′ ∈ U,
we add the axiom

x̄e ∨ x̄e′ . (2.4)

These axioms ensure that each vertex in V is matched to at most one vertex

in U. This is a contradiction if |U| > |V |.
We can add further axioms, making the formula more and more

constrained and thus easier to refute. The functional pigeonhole prin-

ciple FPHP(G) is defined by also adding Axiom 2.4 for distinct edges

{u, v}, {u, v′} ∈ E, where u ∈ U and v, v′ ∈ V . Finally, we can recover the

perfect matching principle PM(G) by adding Axiom 2.3 for every vertex V .

2.3.4 The Truthtable Formula

The truthtable formula is a bit more involved to define. We want to encode

the claim that a Boolean function f : {0, 1}n → {0, 1}, given as a binary

string of length 2
n
, has a circuit of size at most s. By Theorem 2.1.2

most Boolean functions require circuits of size Ω(2n/logn) and thus for

s � 2
n/logn, this formula is a contradiction for most Boolean functions f.

The formula Circuits(f) consists of two parts. The first part of the

formula defines a circuit, and the second part of the formula ensures that

the circuit encoded by the first part indeed computes f. In the following we

describe a polynomial encoding of the truthtable formula. This encoding

conveys enough of an idea for the following discussion and is already

cumbersome to explain – the CNF translation consists of even more axioms

and variables. For the formal encoding used in Paper C we recommend

the interested reader to consult Section C.2.3 as well as Section C.7.

Let us first describe the structure variables which are used in the first

part of the formula to describe the circuit.

Each of the s gates is indexed from 1 to s, with the output gate being

gate s. This labeling will be topological, in a sense that each gate v ∈ [s]
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has no input from a gate u > v. Each gate v ∈ [s] has three variables

isNeg(v), isOr(v) and isAnd(v) associated with it, indicating the operation

computed at v. Similarly, for a gate v ∈ [s] and a wire a ∈ {1, 2} we

have variables isFromConst(v,a), isFromInput(v,a) and isFromGate(v,a)
indicating whether the input wire a of v is connected to a constant, a

variable or a gate.

Finally we have the variables indicating to what constant, variable or

gate an input wire is connected to: We have variables constantValue(v,a),
isInput(v,a, i) and isGate(v,a,u), for a ∈ {1, 2}, i ∈ [n] and u < v. The

corresponding variables indicate the constant value, the input xi or the

gate u that the input wire a of v is connected to – assuming a is indeed

connected to the corresponding kind.

The structure variables come along with a set of axioms that we refer to

as the structure axioms. The first axioms ensure that every wire is connected

to a single kind

isFromConst(v,a) + isFromInput(v,a) + isFromGate(v,a) = 1 ∀v ∈ [s] ,

and the second group of axioms makes sure that each gate is of precisely

one kind

isNeg(v) + isOr(v) + isAnd(v) = 1 ∀v ∈ [s] .

The final group of structure axioms ensures that the variables that indicate

to what input or gate a fixed wire is connected to always sum to one, except

at gate 1 as it cannot have any inputs from other gates

n∑
i=1

isInput(v,a, i) = 1 ∀v ∈ [s] , and

v−1∑
u=1

isGate(v,a,u) = 1 ∀v ∈ [s] \ {1} .

This completes the description of the first part of the formula.

The second part of the formula is defined over the so-called evaluation
variables which describe what value is computed at each gate v on input

α = α1, . . . ,αn.

Each gate has 3 · 2n evaluation variables associated with it. These are

outα(v), indicating the Boolean value computed at gate v ∈ [s] on input

α ∈ {0, 1}n, and the variables inα(v,a)which indicate the value brought to

vertex v ∈ [s] on wire a ∈ {1, 2} on input α ∈ {0, 1}n.
Note that we have Θ(s2 + sn) structure variables and 3s2n evaluation

variables, for a total of Θ(s2 + s2n) variables in Circuits(f).
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The evaluation variables are accompanied by the evaluation axioms
ensuring that the evaluation variables indeed compute the intended values.

The first set of axioms ensures that the wires carry the value intended by the

structure axioms. If a wire is connected to a constant, then the evaluation

variable associated with that wire should always be equal to the constant

isFromConst(v,a) ·
(
inα(v,a) − constantValue(v,a)

)
= 0 ,

and similarly if a wire is connected to an input or a gate

isFromInput(v,a) · isInput(v,a, i) ·
(
inα(v,a) − αi

)
= 0 ,

isFromGate(v,a) · isGate(v,a,u) ·
(
inα(v,a) − outα(u)

)
= 0 .

The final set of evaluation axioms makes sure that the output evaluation

variable of a gate is correctly related to the input evaluation variables:

isNeg(v) · outα(v) = isNeg(v) · inα(v, 1) ,
isOr(v) · outα(v) = isOr(v) ·

(
1 − inα(v, 1) · inα(v, 2)

)
,

isAnd(v) · outα(v) = isAnd(v) · inα(v, 1) · inα(v, 2) .

Last but not least we have the axioms that ensure that the circuit outputs

the function specified by the truthtable

outα(s) = f(α) .
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Contributions

In this chapter we highlight the main results of the included papers. Each

paper is discussed in a separate section. The sections first give some context

how our results fit into the literature, followed by the main theorem and a

brief discussion about the employed proof techniques.

3.1 On Bounded Depth Frege Refutations of the Tseitin
Formula

Johan Håstad and Kilian Risse, “On Bounded Depth Proofs for Tseitin Formulas on the Grid;
Revisited”, accepted to FOCS’22 [HR22]

Paper A concerns bounded depth Frege refutations of the Tseitin contradic-

tion defined over grid graphs.

The study of bounded depth Frege refutations was initiated by Ajtai

[Ajt94] who proved that the PHP cannot be refuted in polynomial size for

any constant depth Frege system. This pioneering result was followed up

by several papers in the 1990s, first improving Ajtai’s result to hold up to

depth O(log logn) [PBI93; KPW95], and then extending it to the Tseitin

contradiction defined over complete [UF96], as well as expander graphs

[Ben02].

These developments followed previous work where the computational

power of the class of bounded depth circuits1 was studied [Sip83; FSS84;

Yao85; Hås86; Raz88; Smo87]. It should not be surprising that it is simpler

to argue about the computational power of a single circuit rather than a

sequence of formulas forming a proof. This is exemplified by the lower

bounds achieved by the end of the 1990s: while the bounded depth Frege

lower bounds remained stuck at depth O(log logn), the results for circuit
size extended to almost logarithmic depth.

This gap was recently closed in two steps. First Pitassi et al. [PRST16]

obtained super-polynomial bounded depth Frege lower bounds up to depth

1
As in the bounded depth setting there is no major difference between circuits and

formulas we gloss over the difference between these.
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o(
√
logn) and then Håstad [Hås20] managed to extend these results up to

depth Θ
(

logn

log logn

)
, which matches the result for circuits up to constants.

All these previous bounded depth Frege lower bounds considered the

total size of a proof. The total size is composed of the length (number of

steps) of a refutation and the size of each line. For some proof systems, such

as resolution, each line is bounded in size and hence any super-polynomial

lower bound on proof size also implies a lower bound on the number of

proof steps. This is not necessarily true for bounded depth Frege – the line

size may grow and it is thus an interesting question to study the number

of lines required, given that each line is of bounded size.

This line of investigation was recently initiated by Pitassi et al. [PRT22].

They consider the Tseitin contradiction defined over the grid of size n × n
and showed that if each line of the refutation is limited to size M and

depth d, then a Frege refutation must consist of at least exp

(
n/2O(d

√
logM))

many lines. For most interesting values of M this greatly improves the

bounds implied by the results for total proof size of Håstad [Hås20]. In

particular, if M is a polynomial, then the lower bounds are of the form

exp(n1−o(1)), as long as d = o(
√
logn), in contrast to the total size lower

bounds of the form exp(nΩ(1/d)). Pitassi, Ramakrishnan, and Tan [PRT22]

rely on the restrictions introduced by Håstad [Hås20] but analyze them

using the methods of Pitassi et al. [PRST16].

We study the same Tseitin contradiction on the grid but analyze the

restrictions using the machinery set up by Håstad [Hås20]. This allows

us to improve the result of Pitassi et al. [PRT22] to obtain the lower bound

conjectured by them.

Theorem 3.1.1. For any Frege refutation of the Tseitin principle defined over the
n× n grid graph the following holds. If each line of the refutation is of sizeM and
depth d, then the length of the refutation is

exp

( n(
(logn)O(1) logM

)
2d

)
.

Along the way we also improve the parameters of the refutation size

lower bound due to Håstad [Hås20] from exponential in
˜Ω(n1/59d) to

exponential in
˜Ω(n1/(2d−1)).

Theorem 3.1.2. For d ≤ O
(

logn

log logn

)
the following holds. Any depth-d Frege

refutation of the Tseitin contradiction defined on the n × n grid requires size

exp

(
Ω(n1/(2d−1)(logn)O(1))

)
.

Weachieve the improvements on total size by revisitingHåstad’s original

proof and carefully eliminating some undesired dependencies on the depth
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in the switching lemma. This forces us to use slightly more general

restrictions for book-keeping but the over all proof remains unchanged.

We then use this improved proof of the switching lemma to obtain a

multi-switching lemma with which we are able to prove Theorem 3.1.1.

In order to prove the multi-switching lemma we need to analyze a new

combinatorial game played on the grid graph. Already Håstad [Hås20]

needed to analyze such a combinatorial game. This new game is quite a bit

more complicated and requires an entirely new amortized analysis.

3.2 Average-Case Perfect Matching Lower Bounds
Per Austrin and Kilian Risse, “Perfect Matching in Random Graphs is as Hard as Tseitin”,
SODA’22, to appear in TheoretiCS [AR22a]

This paper studies the power (or lack thereof) of the SoS, PC and bounded

depth Frege proof systems when it comes to refuting the perfect matching

formula PM(G) defined over sparse random graphsG on an odd number of

vertices. Apart from being a natural and well-studied problem on its own,

the perfect matching formula is interesting because of its close relation

to two other widely studied families of formulas, namely the pigeonhole

principle (PHP) and the Tseitin formula.

While most variants of the PHP are hard for PC [Raz98; MN15], the

perfect matching variant is in fact easy to refute over any field [Rii93] and

in SoS all variants of the PHP are easy to refute [GHP02]. On the other

hand the Tseitin formula is (almost) always hard: for PCF over fields F of

characteristic distinct from 2 [BGIP01; AR03] and SoS [Gri01] these formulas

require linear degree if the underlying graph G is a good expander.2

Hence the perfect matching formula lies somewhere in between the

easy PHP formula and the hard Tseitin formula and it is natural to wonder

whether SoS or PC requires large degree to refute the perfect matching

formula over non-bipartite graphs.

This is well understood if the perfect matching principle is defined

over a complete graph on an odd nuber of vertices (also know as “MOD 2

principle”): the proof systems SoS and PC require degreeΩ(n), except for
PC defined over fields of characteristic 2 [BGIP01; Gri01]. Less is known for

sparse graphs: Buss et al. [BGIP01] obtained worst-case lower bounds for

PC showing that there exist bounded degree graphs on n vertices requiring

Ω(n) degree refutations. This is obtained by a reduction from Tseitin

formulas and while the work of Buss et al. predates the current interest in

2
Observe that we cannot hope to prove degree lower bounds over fields of characteristic

2 as the constraints become linear and we can thus refute the Tseitin formula using Gaussian

elimination. As the perfect matching formula PM(G) implies the Tseitin formula, PC over

fields of characteristic 2 can easily refute PM(G), ifG has an odd number of vertices.
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the SoS system, it is not hard to see that the same reduction yields a similar

Ω(n) degree lower bound for SoS.

However, for random graphs G little is known about the hardness of

the perfect matching formula and, e.g., Razborov [Raz17] asked whether

it is true that the Lovász-Schrĳver hierarchy [LS91] (a proof system poly-

simulated by SoS) requires nε rounds to refute the perfect matching princi-

ple on a random sparse regular graph with high probability. We answer

this question by proving the following theorem.

Theorem 3.2.1. There is a constant d0 such that for all constants d ≥ d0 the
following holds asymptotically almost surely for G ∼ G(n,d).

1. Deg
PCF

(
PM(G)

)
= Ω(n/logn) for any fixed field F with char(F) ≠ 2.

2. Deg
SoS

(
PM(G)

)
= Ω(n/logn).

3. There is a δ > 0 such that SizeFd
(
PM(G)

)
= exp

(
Ω(nδ/D)

)
, for all

D ≤ δ logn

log logn
.

Using the known degree-monomial-size tradeoffs for Polynomial Cal-

culus [IPS99; CEI96] and Sum of Squares [AH19], the degree lower bounds

from Theorem 3.2.1 imply near-optimal monomial size lower bounds of

exp

(
Ω(n/log2 n)

)
.

We obtain these lower bounds by a worst-case to average-case reduction.

We achieve this by using the embedding technique as introduced to proof

complexity by Pitassi et al. [PRST16]: for, say, the SoS lower bound, our

starting point is theΩ(n) worst-case degree lower bound in sparse graphs,

and we then prove that these hard instances can be embedded in a random

d-regular graph in such a way that the hardness of refuting the formula is

preserved.

There are two main components to this argument. One of them is a new

graph embedding theorem which may be of independent interest. Very

loosely speaking, we show that any bounded-degree graphwithO(n/logn)
edges can be embedded as a topological minor into any bounded-degree

α-expander onn vertices. But this does not quite suffice: for our application

we also need to be able to control the parities of the path lengths used in the

topological embedding. We show that as long as every large linear-sized

subgraph contains an odd cycle of lengthΩ(1/α), this is indeed possible.

The following is a quite informal statement of our embedding theorem.

Theorem 3.2.2 (Informal). Let G be a constant degree α-expander on n vertices.
If H is a graph with at most εn

logn
edges and ∆(H) � α2 · d(G), then G contains

H as a topological minor. Furthermore, if all large vertex induced subgraphs of
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G contain an odd cycle of lengthΩ(1/α), then one can choose the parities of the
length of all the edge embeddings in the minor.

This generalizes various classical results of a similar flavor (e.g. [KR96;

KN19; CN19; Kri19]). See Paper B for a discussion comparing these (and

other) existing embedding results to Theorem 3.2.2.

To motivate the second component of our worst-case to average-case,

we need to look the reduction in a bit more detail. A quite naïve attempt to

obtain average-case lower bounds from a sparse worst-case instance H on

n vertices is to topologically embed the worst-case instance into a random

regular graph G on O(n logn) vertices using Theorem 3.2.2. One would

then like to argue that PM(G) is hard.
Suppose each path puv in the embedding of H in G corresponding

to some edge {u, v} ∈ E(H) is of odd length. Then it is straightforward

to verify that the perfect matching formula defined over the embedding

is at least as hard to refute as the worst-case instance PM(H): map each

variable ye, for e ∈ puv, alternatingly to xuv or x̄uv such that the first

and last edges of puv are mapped to xuv (using that puv is of odd length).

This simple projection maps the perfect matching formula defined over

the embedding of H to PM(H) and thus shows that the hardness of PM(H)
should be inherited.

But having such a worst-case instance as a topological minor is not
sufficient to conclude that PM(G) is hard. For instance Gmay contain an

isolated vertex and it is then trivial to refute PM(G). On the other hand if

we could guarantee that there is a perfect matchingM in the subgraph of

G induced by the vertices not used in the embedding ofH, we can conclude

that PM(G) is hard: hit the formula with the restriction corresponding to

the matchingM and by the argument from the previous paragraph we are

basically left with the worst-case formula.

Thus if we can ensure that H is a topological minor of Gwith the two

additional properties that (i) every path used in the embedding of H has

odd length, and (ii) there exists a perfect matching in the subgraph of G

induced by the vertices not used in the embedding of H, then we obtain

average-case lower bounds for the perfect matching formula PM(G).
Let us elaborate a bit further on the properties required from the

topological minor of H in G. As mentioned previously, our embedding

theorem can ensure that all paths are of odd length. To ensure the second

property we in fact do not embedH directly intoG but rather into a suitably

chosen vertex induced subgraph G[T ] with the crucial property that for

any set of vertices U ⊆ T of odd cardinality the induced subgraph G[V \U]
has a perfect matching. As the embedding of H will consist of an odd

number of vertices we then obtain property (ii) above. Since we now want
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to apply Theorem 3.2.2 not to G but to G[T ], we have to ensure that G[T ]
satisfies all the conditions of that theorem. We prove what we refer to as

the Partition Lemma, which asserts that an induced subgraph G[T ] exists
that satisfies both the perfect matching property described above, as well

as all conditions of Theorem 3.2.2. The proof of the Partition Lemma relies

primarily on the Lovász Local Lemma and spectral bounds to obtain the

desired properties.

3.3 The Circuit Tautology is Hard for Sum of Squares
Per Austrin and Kilian Risse, “The Minimum Circuit Size Problem is Hard for Sum of Squares”,
in submission [AR22b]

The minimum circuit size problem (MCSP), is central to complexity theory:

given the truthtable of a Boolean function f : {0, 1}n → {0, 1} and a

parameter s, the MCSP problem asks whether there is a Boolean circuit

of size at most s computing f. The MCSP is clearly in NP: given a circuit

of size at most swe can easily check in time O(s · 2n)whether this circuit

computes f.

Despite decades of research it is not knownwhether the MCSP problem

is NP-hard. In fact establishing this has been shown to be a difficult itself

[KC00; MW15; Hir18]. As such it is an important goal to at least rule out

that certain classes of efficient algorithms solve the MCSP problem.

Despite the intrinsic motivation to study MCSP, there are further good

arguments from a proof complexity viewpoint to study this problem. For

starters, the MCSP problem is believed to be a source of hard formulas

even for strong proof systems. There are not many formulas that are

conjectured hard for strong proof systems and as such it is important to

at least establish this claim for weak proof systems. There are some lower

bounds for resolution [Raz04a; Raz04b], polynomial calculus [Raz98] and

resolution over low width CNFs [Raz15], but due to the meta complexity

flavor of this problem it seems difficult to prove strong lower bounds. It

is worth mentioning that it has been stated as an explicit open problem

[Raz22] to prove SoS degree lower bounds for the Circuits(f) formula.

Another proof complexity angle that motivates the study of this formula

is that it tells us how hard it is to prove circuit lower bounds: consider the

formula Circuits(SAT), for s = nω(1). Proving that a proof system cannot

refute this formula is essentially showing that this proof system cannot

efficiently refute that problems in NP possess polynomial size circuits, i.e.,

the proof system cannot efficiently prove NP * P/poly.
The main result of this paper is an essentially optimal3 degree lower

3
There is an SoS refutation of degree s: see Section C.6 for details.
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bound for any Boolean function.

Theorem 3.3.1. For all ε > 0 there is a d = d(ε) such that the following holds.
For n ∈ N, all s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits,
SoS requires degreeΩε(s1−ε) to refute Circuits(f).

From this lower bound one can also extract a monomial size lower

bound for a restricted class of circuits. Furthermore, it can also be shown

that SoS requires large degree to refute the claim that monotone slice

functions have small monotone circuits. For details on these results we

refer the interested reader to Paper C.

The idea of the proof is to restrict the structure part of the formula

Circuits(f) in such a manner that the remaining satisfying assignments

to the structure axioms (ignoring all other axioms) correspond to a well-

behaved class of circuits C. In a bit more detail we want that each circuit

Cγ ∈ C, where γ ∈ {0, 1}m, on input α ∈ {0, 1}n computes Cγ(α) =
⊕i∈N(α)γi, for a bipartite graph G = ({0, 1}n, [m],E).

Once we have this family of circuits C, SoS simply has to show that

none of the circuits in C compute the given truthtable, i.e., SoS has to show

that there is no γ ∈ {0, 1}m such that⊕
i∈N(α)

γi = f(α) ,

for all α ∈ {0, 1}n. But note that this is an xor constraint satisfaction

problem and Grigoriev [Gri01] proved that if G is a good expander, then

SoS requires linear degree in m to refute this. Thus by setting G to be a

good expander we obtain the desired degree lower bound. There are some

details to be filled in but this is the general gist of the argument.

3.4 The Sparse Weak Pigeonhole Principle is Hard for
Resolution

Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov,

“Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas
over Sparse Graphs”, CCC’20 [dRNRS20]

As previously mentioned, the main aim of proof complexity is to prove

superpolynomial lower bounds for stronger and stronger proof systems

to establish that NP ≠ coNP. A slightly different strand of research has

been to study different combinatorial principles and investigate what kinds

of arguments are needed to efficiently establish these principles. This

quantifies, in a way, the mathematical “depth” of these statements in terms

of how strong a proof system is required to prove them.
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In this work we consider the resolution proof system and the pigeon-

hole principle (PHP). This is one of the simplest, and yet most useful,

combinatorial principles in mathematics and it has been widely studied

in proof complexity. We consider the somewhat unorthodox setting when

m is a super-polynomial function of n. This setting has been useful to

establish that resolution refutations of the claim NP * P/poly are of doubly

exponential size in nO(1) [Raz04a; Raz04b] by a reduction from the weak

pigeonhole principle to the Circuits(f) formula.

These just mentioned lower bounds break with the general paradigm

of proving resolution lower bounds. As mentioned in Section 2.2.1, the

most common way to prove resolution refutation size lower bounds is to

prove a width lower bound to then apply the width-length trade off to

obtain a length (and thus size) lower bound. As the PHP can always be

refuted by a resolution proof of width at most linear in number of holes n,

independent of the number of pigeonsm > n, we see that the width-length

tradeoff stops giving useful lower bounds oncem ≥ n2
, as the number of

variables increase as we increase the number of pigeons. However, there

are resolution size lower bounds for the setting when there are m > n2

pigeons: these can be shown by the seemingly ad-hoc arguments due to

Raz [Raz04a] and subsequently Razborov [Raz04b].

A further peculiarity about the latter lower bounds is that they only

apply to fairly dense graphs (recall that the PHP is defined over a bipartite

graph G = (U,V ,E)), while up tom � n2
the lower bounds also hold for

constant degree graphs. As such it is natural to wonder whether (i) the

lower bounds for the settingm ≥ n2
can be strengthened to also holds for

sparse graphs, and (ii) whether there is a single framework in which all

these lower bounds can be proven.

We answer the latter in the affirmative and show how to generalize the

pseudo-width method, devised by Razborov [Raz01; Raz03; Raz04b] in a

series of 3 papers, to also apply in the sparse case.

Let us state three examples of the kind of lower bounds we obtain – the

full, formal statements can be found in Paper D. The first theorem is an

average-case lower bound for perfect matching formulas over a bipartite

graph with a slightly superpolynomial number of pigeons.

Theorem 3.4.1 (Informal). Let G be a randomly sampled bipartite graph with
n right vertices, m = no(logn) left vertices, and left degree Θ

(
log

2m
)
. Then

refuting the perfect matching formula over G in resolution requires length
exp

(
Ω

(
n1−o(1)) ) asymptotically almost surely.

Note that as the number of pigeons grow larger, it is clear that the left

degree also has to grow – otherwise the birthday paradox will yield a small

unsatisfiable subformula that can easily be refuted by brute force.
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Ifm increases further to weakly exponential, then randomly sampled

graphs no longer have good enough expansion for our techniques. However,

there are explicit constructions of unbalanced expanders for which we can

still get lower bounds.

Theorem 3.4.2 (Informal). There are explicitly constructible bipartite graphs G
with n right vertices,m = exp

(
O

(
n1/16) ) left vertices, and left degreeΘ(

log
4m

)
such that refuting PM(G) requires length exp

(
Ω

(
n1/8−ε) ) in resolution.

Finally, for functional pigeonhole principle formulas we can also prove

an exponential lower bound for constant left degree even if the number of

pigeons is a large polynomial.

Theorem 3.4.3 (Informal). Let G be a randomly sampled bipartite graph with
n right vertices,m = nk left vertices, and left degree Θ

(
(k/ε)2

)
. Then refuting

the functional pigeonhole principle formula over G in resolution requires length
exp

(
Ω

(
n1−ε) ) asymptotically almost surely.

As alreadymentioned, we heavily build on the pseudo-width technique

devised byRazborov. In order to handle sparse bipartite graphs, we join this

technique with the idea of a “closure”, as introduced to proof complexity

by [AR03; ABRW04]. Consider a good bipartite expander G = (U,V ,E).
Then, the closure of a set of verticesW is a set cl(W) ⊇ W of vertices such

that if we remove this set from G, then the resulting graph is still a fairly

good expander. The maybe at first somewhat surprising fact is that for the

correct setting of parameters, it can be shown that the size of the closure is

linearly related to the size ofW.

This notion allows us to build a matching in an iterative fashion such

that the remainder of the graph is always a good expander and thus, by

Hall’s condition, can be extended to any small set of vertices – as if we were

on a complete bipartite graph. Combining this idea with the pseudo-width

technique turns out to be fairly involved and we recommend the interested

reader to consult the introduction of Paper D for a more detailed proof

overview.
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On Bounded Depth Proofs for
Tseitin Formulas on the Grid;

Revisited
Johan Håstad and Kilian Risse

Abstract

We study Frege proofs using depth-d Boolean formulas for the

Tseitin contradiction on n × n grids. We prove that if each line in

the proof is of size M then the number of lines is exponential in

n/(logM)O(d). This strengthens a recent result of Pitassi et al. [PRT22].
The key technical step is a multi-switching lemma extending the

switching lemma of Håstad [Hås20] for a space of restrictions related

to the Tseitin contradiction.

The strengthened lemma also allows us to improve the lower

bound for standard proof size of bounded depth Frege refutations

from exponential in
˜Ω(n1/59d) to exponential in

˜Ω(n1/(2d−1)).



Paper A. On Bounded Depth Frege Refutations of the Tseitin Formula

A.1 Introduction

Mathematicians like proofs, formal statements where each line follows by

simple reasoning rules from previously derived lines. Each line derived

in this manner, assuming that the reasoning steps are sound, can give

us some insight into the initial assumptions of the proof. A particularly

interesting consequence is contradiction. Deriving an obviously false

statement allows us to conclude that the initial assumptions, also called

axioms, are contradictory. We continue the study of Frege proofs of

contradiction where each line in the proof is a Boolean formula of depth d.

This subject has a long tradition, so let us start with a very brief history.

A very basic proof system is resolution: each line of such a proof simply

consists of a disjunction of literals. The derivation rules of resolution are

also easy to understand and simple to implement, but the proof system

nevertheless gives rise to reasonably short proofs for some formulas. It is

far from easy to give lower bounds for the size of proofs in resolution but

it has been studied for a long time and by now many strong bounds are

known. An early paper by Tseitin [Tse68] defined an important class of

contradictions based on graphs that is central to this and many previous

papers. For each edge there is a variable and the requirement is that the

parity of the variables incident to any given node sum to a particular bit

which is called the charge of that vertex. If the sum of the charges is one

modulo two this is a contradiction. For a subsystem of resolution, called

regular resolution, Tseitin proved exponential lower bounds on refutations

of these formulas. After this initial lower bound it took almost another

two decades before the first strong lower bound for general resolution was

obtained by Haken [Hak85], whose lower bound applied to the pigeonhole

principle (PHP). Many other resolution lower bounds followed, but as we

are not so interested in resolution and rather intend to study the more

powerful proof systemwith formulas of larger, though still bounded, depth

d on each line, let us turn to such proof systems.

The study of proofs with lines limited to depth d dates back several

decades. A pioneering result was obtained by Ajtai [Ajt94] who showed

that the PHP cannot be proved in polynomial size for any constant depth d.

Developments continued in the 1990s and polynomial size proof were ruled

out for values of d up to O(log logn) for both the PHP [PBI93; KPW95] as

well as the Tseitin contradiction defined over complete [UF96] and expander

graphs [Ben02].

These developments followed previous work where the computational

power of the class of circuits1 of depth d was studied [Sip83; FSS84; Yao85;

1
When the depth is small, there is no major difference between circuits and formulas so
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Hås86; Raz88; Smo87]. It is not surprising that it is easier to understand

the computational power of a single circuit rather than to reason about a

sequence of formulas giving a proof. This manifested itself in that while the

highest value of d for which strong bounds were known for size of proofs

remained at O(log logn), the results for circuit size extended to almost

logarithmic depth.

This gapwas (essentially) closed in two steps. First Pitassi et al. [PRST16]

proved superpolynomial lower bounds for d up to o(
√
logn) and then

Håstad [Hås20] extended this to depth Θ( logn

log logn
)which, up to constants,

matches the result for circuits.

The key technique used in most of the described results is the use of

restrictions. These set most of the variables to constants which simplifies

the circuit or formulas studied. If done carefully one can at the same

time preserve the contradiction refuted or the function computed. Of

course one cannot exactly preserve the contradiction and to be more

precise a contradiction with parameter n before the restriction turns into a

contradiction of the same type but with a smaller parameter, n/T , after the
restriction.

The simplification under a restriction usually takes place in the form of

a switching lemma. This makes it possible to convert depth d formulas to

formulas of depth d− 1. A sequence of restrictions is applied to reduce the

depth to (essentially) zero making the circuit or formula straightforward to

analyze. The balance to be struck is to find a set of restrictions that leave

a large resulting contradiction but at the same time allows a switching

lemma to be proved with good parameters.

In proof complexity the most commonly studied measure is the total

size of a proof. There are two components to this size, the number of

reasoning steps needed and the size of each line of the proof. In some cases,

such as resolution, each line is automatically bounded in size and hence

any lower bound for proof size is closely related to the number of proof

steps. In some other situation the line sizes may grow and an interesting

question is whether this can be avoided.

This line of investigation for Frege proofs with bounded depth formulas

was recently initiated by Pitassi et al. [PRT22]. They consider the Tseitin

contradiction defined over the grid of sizen×n, a settingwhere strong total

size lower bounds for Frege refutations of bounded depth had previously

been given by Håstad [Hås20]. If each line of the refutation is limited to

sizeM and depth d, then Pitassi et al. [PRT22] showed that the Frege proof

must consist of at least exp(n/2O(d
√

logM))many lines. For most interesting

the reader should feel free to ignore this difference.
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values ofM this greatly improves the bounds implied by the results for

total proof size. In particular ifM is a polynomial the lower bounds are of

the form exp(n1−o(1)), as long as d = o(
√
logn), in contrast to the total size

lower bounds of the form exp(nΩ(1/d)). Pitassi, Ramakrishnan, and Tan

[PRT22] rely on the restrictions introduced by Håstad [Hås20] but analyze

them using the methods of Pitassi et al. [PRST16].

We study the same Tseitin contradiction on the grid and improve the

lower bounds to exp(n/(logM)O(d)), a bound conjectured by Pitassi et

al. [PRT22]. These bounds are the strongest bounds that can be proved by

the present methods and even if we cannot match them by constructing

actual proofs we can at least represent the intermediate results of a natural

proof by such formulas. We discuss this in more detail below.

A.1.1 Overview of proof techniques

The structure of the proof of ourmain result follows the approach of [PRT22]

but relies on proving much sharper variants of the switching lemma.

In a standard application of a switching lemma to proof complexity one

picks a restriction and demands that switching happens to all depth two

formulas in the entire proof. Each formula switches successfully with high

probability and by an application of a union bound it is possible to find a

restriction to get them all to switch simultaneously.

The key idea of [PRT22] is that one need not consider all formulas in

the proof at the same time. Rather one can focus on the sub-formulas of a

given line. It is sufficient to establish that these admit what is called an `

partial common decision tree of small depth. This is a decision tree with

the property that at each leaf, each of the formulas can be described by a

decision tree of depth `. It turns out that this is enough to analyze the proof

and establish that it cannot derive contradiction. The key property is that

it is sufficient to only look at the constant number of formulas involved in

each derivation step and analyze each such step separately.

The possibility to compute a set of formulas by an ` common partial

decision tree after having been hit by a restriction is exactlywhat is analyzed

by what has become known as a “multi-switching lemma” as introduced

by [Hås14; IMP12]. This concept was introduced in order to analyze the

correlation of a small circuits of bounded depth with parity but turns out

to also be very useful in the current context.

Even though there is no general method, it seems like when it is possible

to prove a standard switching lemma there is good hope to also prove a

multi-switching lemmawith similar parameters. This happens when going

from [Hås86] to [Hås14] and when going from [PRST16] to [PRT22]. We

follow the same approach here and this paper very much builds on [Hås20].
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We need a slight modification of the space of restrictions and changes to

some steps of the proof, but a large fraction of the proof remains untouched.

Let us briefly touch on the necessary changes.

The switching lemma of Håstad [Hås20] has a failure probability to not

switch to a decision tree of depth s of the form (As)Ω(s) where A depends

on other parameters. As a first step one needs to eliminate the factor s in

the base of the exponent. This triggers the above mentioned change in the

space of restrictions. This change enables us to prove a standard switching

lemma with stronger parameters and, as a warm-up, we give this proof in

the current paper. This results in an improvement of the lower bound for

total proof size from exp( ˜Ω(n1/58d)) to exp( ˜Ω(n1/(2d−1))). Even though the

exponent’s exponent is probably still off by a factor of 2, this is a substantial

improvement in the parameters.

The high level idea of the proof of the multi-switching lemma is that for

each of the formulas analyzed we try to construct a decision tree of depth `.

If this fails then we take the long branch in the resulting decision tree and

instead query these variables in the common decision tree. A complication

that arises is that the answers on the long path in the local decision tree

and the answers on a potentially long branch in the common decision tree

are different. This causes us to analyze a new combinatorial game on the

grid, as defined in Section A.3.1.

A.1.2 Constructing small proofs

Let us finally comment on a possible upper bound; how to construct efficient

refutations. If we are allowed to reason with linear equations modulo two

then the Tseitin contradiction has efficient refutations. In particular on

the grid we can sum all equations in a single column giving an equation

containingO(n) variables thatmust be satisfied. Adding the corresponding

equation for the adjacent column maintains an equation of the same size

and we can keep adding equations from adjacent columns until we have

covered the entire grid. We derive a contradiction and we never use an

equation containing more than O(n) variables.
If we consider resolution then it is possible to represent a parity of size

m as a set of clauses. Indeed, looking at the equation

∑m
i=1 xi = 0 we can

replace this by the 2
m−1

clauses of full width where an odd number of

variables appear in negative form. Now replace each parity in the above

proof by its corresponding clauses. It is not difficult to check that Gaussian

elimination can be simulated by resolution. Given linear equation L1 = b1
and L2 = b2 withm1, andm2 variables respectively, and both containing

the variable x we want to derive all clauses representing L1 ⊕ L2 = b1 ⊕ b2.
We have 2

m1−1
clauses representing the first linear equation and the 2

m2−1
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clauses representing the second linear equation. Now we can take each

pair of clauses and resolve over x and this produces a good set of clauses.

If L1 and L2 do not have any other common variables we are done. If they

do contain more common variables then additional resolution steps are

needed but these are not difficult to find and we leave it to the reader to

figure out this detail. We conclude that Tseitin on the grid allows resolution

proofs of length 2
O(n)

.

Let us consider proofs that contain formulas of depth d and let us see

how to represent a parity. Given

∑m
i=1 xi = 0 we can divide the variables

in to groups of size (logM)d−1 and write down formulas of depth d and

size M that represent the parity and the negation of the parity of each

group. Assume that the output gate of each of these formulas is an or. We

now use the above clause representation of the parity of the groups and

get a set of 2
m/(logM)d−1

formulas of size mM/(logM)d−1 that represent
the linear equations This means that we can represent each line in the

parity proof by about 2
n/(logM)d−1

lines of size aboutM. We do not know

how to syntactically translate a Gaussian elimination step to some proof

steps in this representation and thus we do not actually get a proof, only a

representation of the partial results.

A.1.3 Organization

Let us outline the contents of this paper. We start in Section A.2 and

Section A.3 with some preliminaries. In Section A.4 we define the set of

restrictions used in the current paper which are almost the same as in

[Hås20]. We give some details how decision trees should bemodified using

local consistency in Section A.5. The important tool for turning switching

lemmas to lower bounds for proofs is by something called t-evaluations

and we recall this in Section A.6. Next we show how to construct these

evaluations and derive our twomain theorems assuming the new switching

lemmas in Section A.7. The strengthened version of the standard switching

lemma is given in Section A.8 and the extension to amulti-switching lemma

is presented in Section A.9. Large portions of the proof for the standard

switching lemma as well as many definitions are identical to the proof of

[Hås20]. We end with some conclusions in Section A.10.

A.2 Preliminaries

We have a graph Gwhich we call “the grid” but to avoid problems at the

perimeter we in fact use the torus. In other words we have nodes indexed

by (i, j), for 0 ≤ i, j ≤ n − 1 where n is an odd integer and a node (i, j)
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is connected to the four nodes at distance 1, i.e. where one coordinate is

identical and the other moves up or down by 1 modulo n. For each node v

we have a charge αv and for each edge e in the graph we have a variable xe.

A Tseitin formula is given by a set of linear equalities modulo 2. That is,

for each vertex v in Gwe have ∑
e3v

xe = αv.

The main case we consider, which we call “the Tseitin contradictions”

is when αv = 1 for each v. We do use more general charges in intermediate

steps and hence the following lemma from [Hås20] is useful for us.

Lemma A.2.1. Consider the Tseitin formulas with charges αv. If
∑
v αv = 0 this

formula is satisfiable and has 2rn solutions where the positive integer rn depends
only on n and not on the value of αv.

As a converse to the above lemma, when

∑
v αv = 1 it is easy to see, by

summing all equations, that the system is contradictory. In particular the

Tseitin contradictions with αv = 1 for all v are indeed contradictions for

graphs with an odd number of nodes. We note that each Tseitin formula

for the grid graph can be written as a 4-CNF formula by having 8 clauses

of length four for each node.

We are interested in proofs in the form of deriving the constant false

from these axioms. The exact reasoning rules turn out not to be of central

importance but are stated in Section A.6. The important properties of these

rules are that they are sound and of constant size.

The sub-formulas that appear in this proof are allowed to contain only

∨-gates and negations. We simulate ∧ using ∧Fi = ¬ ∨ ¬Fi and we define

the depth of a formula to be the number of alternations of ∨ and ¬.

A.3 Properties of assignments on the grid and some games

We are interested in solutions to subsystems of the Tseitin contradictions.

It follows from Lemma A.2.1 that as soon as we drop the constraints at a

single node we have a consistent system and indeed many solutions.

On a set X of nodes we say that a partial assignment is complete if it gives
values to exactly all variables with at least an endpoint in X. The support

of a partial assignment α is denoted by supp(α) and is the set of nodes

adjacent to a variable given a value. Note that the support of a complete

assignment on X also includes the neighbors of X.

We consider partial assignments that give values to few variables and

in particular we are interested in cases where the size of the set X is at
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most 2n/3 and hence cannot touch all rows or columns of the grid. Let Xc

denote the complement of X.

In this case, Xc contains a giant component containing almost all nodes

of the grid. This follows as there are at leastn/3 complete rows and columns

in Xc and the nodes of these rows and columns are all connected. The

other, small, components of Xc are important to control as an assignment

on Xmight fail to extend in a consistent way to such a component. To avoid

this problem, for a set Xwe let the closure of X, cl(X) denote all nodes either
in X or in small connected components of Xc. Note that cl(X)c is exactly
the giant component of Xc.

Definition A.3.1. An assignment α with X = supp(α) is locally consistent if
it can be extended to a complete assignment on cl(X) that satisfies all parity
constraints on this set.

We extend this definition to say that two assignments are consistent

with each other if they do not give different values to the same variable

and when you look at the union of the two assignment this gives a locally

consistent assignment. The following lemma from [Hås20] is many times

useful.

Lemma A.3.2. Suppose α is a locally consistent assignment where | supp(α)| ≤
n/2 and xe a variable not in supp(α). Then there is a locally consistent assignment
α′ that extends α and gives a value to xe.

We are interested in complete assignments on some sets X and the grid

and in particular how it looks from the outside. Let a border assignment be
an assignment to the variables with one end-point in X and one outside X.

Such an assignment α is achievable iff there is an assignment that has the

border assignment α and satisfies the parity conditions on X.

Lemma A.3.3. Let X be a connected set. The a border assignment α is achievable
iff the parity of the bits α equals the parity of the size of X.

Proof. By induction on |X|, and the base case when X is a singleton is

obvious. For the induction step take any v such that removing v keeps

X connected. Of the variables next to v some are forced by the border

assignment. Fix the rest of the variables next to v that satisfies the parity

constraint at v. Apply induction to X with v removed and the border

assignment including the just made assignment to the variables next to

v. �

By a simple extension we have the following.
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Lemma A.3.4. Let X be a connected set. The a border assignment α is achievable
by a locally consistent assignment iff the parity of the bits α equals the parity of
the size of X and this is true also for the border assignment of any small connected
component of the complement of X.

A process that is useful is the following dynamic matching game. We

have two players, one adversarial player that supplies nodes while the

other, matching player PM, is supposed to dynamically create a matching

that contains the nodes given by the adversarial player. Our strengthened

lower bound for the size of a proof uses the same combinatorial lemma as

the proof in [Hås20] namely the following.

Lemma A.3.5. [Hås20] When the dynamic matching game is played on the n×n
grid, PM can survive for at least n/2 moves.

The purpose of this lemma is to find which variables to include in the

extended decision tree used. As discussed in the introduction our new

lower bound for the number of lines of a proof with short lines needs a

multi-switching lemma and it turns out that the decision which variables

to include is described by a more complicated combinatorial game. We

now discuss this game. The reader that wants motivation for this game

is encouraged to first read the proof of the standard switching lemma to

find the reason for Lemma A.3.5 and then start reading the proof of the

multi-switching lemma.

A.3.1 Another game on the grid

The game is played on the grid between an adversary A and a player P.

They take turns picking vertices and edges on the n×n grid. Once a vertex

is picked it can never be picked again. The set of picked vertices is called S.

The vertices outside S are called “free”. The total number of picked nodes

always remains less than n/2 and hence there is always a large connected

component in the complement of S. Other connected components in the

complement are called “small”. Some of the picked elements are called

“active”.

The task of P is to pick as few vertices as possible such that the following

properties hold.

1. The number of picked nodes has the correct parity in some special

components of S described below.

2. The size of any small component in the complement of S is even.

The game starts with an empty grid, and takes place in rounds where

A decides when to start the next round. A can do two types of moves.
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1. Pick an arbitrary new vertex v and make it active. This is called a

“simple” move.

2. Declare that a round is over. In this case A can make any edge

between an active vertex and a free vertex active. Each connected

component must have an even number of activated edges leading in

to it.

This second type of move is called a completionmove. When this move

is completed all vertices become inactive and the next round starts.

After a simple move P must pick some vertices to form a connected

component of even size jointly with the just placed vertex. P must also

make sure that each connected component of the complement is of even

size. Any vertex picked by P in response to a simple move becomes active.

Note that in this situation P picks an odd number of vertices and hence at

least one.

After a completion move P must pick the free vertices with at least

one adjacent active edge. It may pick some more vertices to achieve the

following.

1. The parity of the size of each connected component of the just picked

vertices must equal to the parity of active edges adjacent to it.

2. The number of vertices in any small connected component in the

complement is even.

Although this looks complicated please note that if the there is only one

active edge going in to the nodes P must pick and these do not split any

connected component of the complement, then these forced nodes is all

that P needs to select.

What forces P to act in general is the creation of small odd size compo-

nents in the complement of S due to making the “obvious” choices. For

any such component C, P needs to add vertices to S to make it of even size.

It is also restricted to only adding vertices adjacent to a supplied starting

vertex. This vertex is in S but connected to at least some vertex in C. We

call this “evenizing” with starting point w. All connected components

of the complement created in this process must be made of to be of even

size. It is simple to see that this can always be done, simply add any vertex

adjacent to w. If this does not split C in to at least two components then P

is done. Otherwise P can simply recurse on any created component of odd

size with the chosen vertex as the starting point. We must prove that, over

the course of the entire game, A cannot force P to add too many vertices.
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To get some understanding of the problems, let us first give an example

where P is forced to make many moves.

Example. Suppose C consists of the vertices (1, x) for 1 ≤ x ≤ t jointly with

(2, x) for even x at most t − 1 and (0, x) for odd x at most t − 1. This has an

odd number of vertices (in fact 2t − 1) and suppose the starting vertex is

(1, 0). P needs to add (1, 1) since this is the only vertex in C connected to

(1, 0). This creates the isolated vertex (0, 1) and a component of size 2t − 3
that is very similar to the starting component. It is easy to see that P ends

up picking all vertices of this component.

We set up a potential function to prove that suchmassive responses as in

the example can only happen rarely. For each connected component of the

complement consider its edges to elements of S. For each edge to an active

vertex we assign four points and for each other edge one point. Suppose

the total number of points for component Ci is fi and this number is called

the score of Ci. We have a parameter T and we say that each component

of size at most T is ultra small. We later fix T to a suitable constant. A

component that is not ultra small is called sizeable. This includes the large
component. We now define the potential as∑

i

fi +G −D(F − 1)

where the sum is over components that are sizeable, F the number of

components that are sizeable,D is a constant to be chosen suitably, andG is

the number of ultra small components. For G we only count a component

the first time it becomes ultra small. Further splitting of an ultra small

component is ignored. The reason for using (F − 1) is that we want to start

the potential at 0 and hence not count the large component in this number.

We want to prove that this potential increases by at most a constant for

each simple move and decreases by at least one half for other moves. By

setting T large enough (after we have chosenD) we make sure that fi ≥ 2D

for any component of size at least T .

Let us first analyze simple moves. When A chooses a vertex it might

increase

∑
i fi by at most 16. This might also cause a component of the

complement of S to split. To analyze the cost of such a split we first pay the

increase by the addition of the extra vertex to S in the form of increase to fi.

We then see how the splitting of a component of the complement affects

the potential. First note that splitting an ultra small component does not

affect the potential (remember that we do not count this as an increase in

G) and thus we are interested in splitting a sizeable component. We have

sequence of simple lemmas.
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Lemma A.3.6. If a sizeable component splits into ultra small components then
the potential decreases by at least D − 4.

Proof. Suppose Ci splits. This means that the term fi −D disappears in the

potential. By construction this is at least D. We might have an increase of

G by 4 but no other increase. The lemma follows. �

Next we have.

Lemma A.3.7. If a sizeable component splits and the result contains at least two
sizeable components then the potential decreases by at least D.

Proof. The creation of a sizeable component increases F. Any ultra small

component created increases G by one but at the same time its score is

removed from the sum causing a decrease of that sum by at least 4. �

Finally we analyze the third possibility.

Lemma A.3.8. If a sizeable component splits into a sizeable component and one
or more ultra small components the potential decreases by at least three for each
component split off.

Proof. The value of F does not change. Any ultra small component created

increases G by one but its score of at least 4 is removed from the sum∑
i fi. �

The above lemmas imply that the splitting of components only decreases

the potential. What remains is to analyze the costwhenP is forced to evenize

an odd size component. By “cost” we here mean increase in potential. We

might have a negative cost which is a decrease in potential.

Lemma A.3.9. The cost of evenizing a component with an active starting point
is at most 11 − m/2 where m is the number of moves made by P in sizeable
components. The cost of evenizing an ultra small component is 0.

Proof. We prove the lemma by induction over the size of the component. If

the component is ultra small then no term of the potential can change so

there is no cost.

As a first attempt let P pick an arbitrary vertex, v, next to the starting

which we call w. If this does not result in any new odd size component

we are done. We have added at most three more edges at cost four each

while eliminating the cost of (v,w). As a result fi might have increased by

at most 8 giving the same increase in the potential and P has made one

move in sizeable component.

Now suppose that choosing v creates some new odd size components

that have to be evenized. We know that this number must be even and
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since any component has to be adjacent to v and since v has at most three

neighbors other than w there must be exactly two such components and

call them C1 and C2. Let vi be an element in Ci that is a neighbor of v.

Suppose the scores of these two components are f1 and f2 and the score of

the component that splits is f. Note that f is measured before v is placed in

Swhile f1 and f2 are measured after this has happened and thus we need

to keep track of what happens to edges next to v. One fact to our advantage

is that while (v,w)was counted in f its four points do not appear in neither

f1 or f2.

There are a number of cases depending on the status of the fourth

neighbor of v (on top of w, v1 and v2). It can be in a third, new, component,

be an element of S, or belong to C1 or C2. In the first case that third

component is of even size and hence need not be evenized. If it is sizeable

we get a decrease in potential of at least D and if it is ultra small by at least

three. In either case we are doing strictly better then if this node belongs to

S and hence we can ignore this case and we may assume that we get exactly

two new components.

If neither of these two new components is ultra small, then the potential

decreases by Lemma A.3.7. The total increase in the score is bounded by

8 as we eliminate the score of (v,w) and add at most 3 new edges with

three points each. The cost, by induction, to evenize C1 and C2 is at most

22 − (m1 +m2)/2 wheremi is the number of moves of P made in sizeable

components when evenizing Ci. The total change to the potential is thus

bounded from above by 30− (m1 +m2)/2−D and making sure thatD ≥ 20

the lemma follows in this case.

Now suppose C1 and C2 are both ultra small. Then G increases by two

but we have a decrease ofD in potential by LemmaA.3.6 and in this case we

in fact have a total decrease in the potential and no more moves in sizeable

components. This establishes the lemma in this case.

Finally assume that C1 is ultra small while C2 is not. In this case we get

an increase of G by one while F does not change. We need to analyze the

change in scores and the cost of possible recursive calls.

If the fourth neighbor of v (on top of v1, w and v2) does not belong to

C2 then f2 ≤ f − 3. This follows as the only new edge in C2 that was not

present in C is (v2, v) but this is compensated by (v,w) being present in C

but not in C2. On top of this at least three points have disappeared from

f when forming C1. For the recursive costs we have that, by induction,

the cost to evenize C2 is at most 11 −m2/2. As C1 is ultra small we have

no cost for its recursive call. The net cost is thus bounded from above by

1 − 3 + 11 −m2/2 ≤ 10 −m/2 and the lemma follows also in this case.

Finally consider the case when the missing neighbor of v, call it v′
2
,
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Figure A.1: The larger circles are elements of S

belongs to C2. This causes the potential addition of 4 to f2 by the edge

(v, v′
2
) and this needs to be addressed. Unfortunately this leads to a rather

tedious case analysis.

Suppose without loss of generality that w is to the left of v. We first

have three cases whether v1 is to right, above, or below v. The cases above

and below are symmetric so in fact we can drop the case of v1 being below

v.

Let us assume that v1 is to the right of v and v2 above and v
′
2
is below.

The situation looks like in Figure A.1, where we note that the vertices to the

right of v2 and v
′
2
must be in S to make removing v disconnect C1 and C2.

Now suppose that we can remove v2 from C2 and keep it connected.

Then P can pick v and v2 and the remaining part of C2 is even and there is

no recursive call. Let us compare f2 and f. We have lost at least 3 points

from f that now belongs to C1. We also lost 4 points from (w, v) becoming

internal of S. We gain 4 points from (v, v′
2
). Finally we can have two new

edges next to v2 (going left and up). There is a net gain in potential of at

most 5 and the lemma follows also in this case as P only made two moves.

The case when we can remove v′
2
and keepC2 is connected is symmetric

and hence we need to consider the case when both create new components

and thus we can assume that both removing v2 and v
′
2
splits C2. The two

components that C2 splits to when v2 is removed must then be connected

to v2 from top and from the left and for v′
2
the two components attach from

left and below.

Put both of v2 and v′
2
into S. Then C2 splits in to three components,

two of which might have to be evenized. If two of these are sizeable then

we have increased F by one. The analysis is very much as before and the

extra decrease of D provided by Lemma A.3.7 well compensates for the

two recursive evenizing calls.

The case when C2 splits into three ultra small components is also very

similar to previous cases. There is no recursive call and Lemma A.3.6

provides a large decrease. The case that remains to analyze is that we have
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Figure A.2: The larger circle is an elements of S

exactly two ultra small components.

We have (remember we also have C1) created three ultra small compo-

nents. Each decreases the score by at least three and increaseG by three for

a net decrease of 6. The edge (v,w) is now interior to Swhile it is counted

in f. The only new edges in f2 are one from each of v2 and v
′
2
. Thus we

have net decrease of 2. We still have one recursive call on the remaining

component that is sizeable but this costs, by induction, at most 11 −m/2
where m is the number of nodes chosen by P in this recursive call. The

lemma follows in the case when both v2 and v
′
2
disconnect C2.

We have the final case when v2 is to the right of v and v′
2
is below.

Suppose first that adding either v2 or v
′
2
to S does not disconnect C2. Then

if P removes this vertex and v and there is no recursive call. Suppose it

removes v′
2
(the case of v2 being similar). Then we might get three new

edges costing four points next to v′
2
and the edge (v, v2) is of the same cost

while the cost of (v,w) disappears. At least three points disappear with

the creation of C1 while there is an increase of one for G. This implies

that there is an increase of at most 10 and as P has picked two vertices the

lemma follows in this case.

We need to analyze the situation when both removing either v2 and v
′
2

disconnects C2. Let us first observe that the vertex v
′′
2
in the picture belong

to C2 since otherwise removing v2 does not disconnect C2. The situation is

like in Figure A.2.

Now, consider putting all four vertices v, v2 v
′
2
, and v′′

2
in S. This splits

C2 into a number of components as we may have one component hanging

off each side of the square. If at least two are sizeable we get an increase

in F and Lemma A.3.7 takes care of of the local costs and we can apply

induction. Similarly if all components are ultra small Lemma A.3.6 tells

us that there is a decrease in potential. We need to analyze what happens

when exactly one component is sizeable.

In fact we must have three ultra small components hanging off the

square each giving a net decrease of at least 2. Indeed we have C1 and the
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ultra small components created when v2 and v′
2
are removed. Since we

have a sizeable component we must have one component hanging off each

of the four sides of the cube, as we cannot have two components attaching

to the same side.

We only have one recursive call with a cost of 11 −m/2, and we have

net decrease in 6 from the ultra small components. Finally for edges, we

do not any more count the cost of (v,w) and we can only have two new

edges entering the component of the recursive call. The new edges to the

ultra small components do not count. Thus apart from the recursive call

we have a net decrease of 2 and this compensates for the four points added

by P. �

The above takes care of all simple moves. Let us look at completion

moves.

Lemma A.3.10. A completion decreases the potential by at least the number of
active edges chosen by A. This includes the forced response by P

Proof. The first that happens is that an edge which costs 4 is replaced by an

inactive vertex next to it. This results in at most three edges of cost one and

is hence a decrease of at least one in potential. If several active edges go

to the same vertex P has to add two vertices but this gives a decrease of at

least two. Now unless this causes a split of a component we are done.

If it splits an ultra small component then there is no further change

in the potential. If it splits a sizeable component then we might have to

evenize two components and the following lemma is what we need.

Lemma A.3.11. The cost of evenizing a component with an inactive starting
point is at most 3 −m wherem is the number of vertices added by P to sizeable
components. The cost of evenizing an ultra small component is at most 0.

Let us assume this lemma then finish the proof of Lemma A.3.10. As

many times previously unlesswe get exactly one non ultra small component

it is easy to prove that there is a decrease so assume that this is the case.

Each ultra small component decreases the potential by a least three and

this is sufficient to pay for the evenizing of the component and this is

demonstrated by Lemma A.3.11. �

The proof of Lemma A.3.11 is surprisingly much simpler than the proof

of Lemma A.3.9. The key difference is that new edges added only cost

one and not four. This makes it much easier to compensate the cost of

new edges by the loss in potential due to the appearance of ultra small

components.
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Proof of Lemma A.3.11. If the response of putting a vertex, v, next to the

starting vertex is sufficient then we havem = 1 and the potential increases

by atmost 2 as three edges are added andone is removed. The lemma is thus

true in this case and let us analyze what happens to the potential if v causes

the component of the complement to split. As before, unless it is a sizeable

component that splits and the result is exactly one sizeable component and

one or more ultra small components, we do have a substantial decrease in

the potential due to the loss of a term D.

As in the previous proof the worst case is when v splits the component

into two components C1 and C2 where the first is sizeable and the the

second is ultra small and the third neighbor of v belongs to C1. In this

case we have added two more edges of v into C1. We have removed one

edge (between v and the starting point) and lost the cost of at least three

edges that are now part of C2. This is a net loss of two to the potential. We

need to evenize C1 and this cost by induction at most 3 −m1 if P picksm1

vertices in this process. Finally we have one more ultra small component

and thus the total cost is at most 2 −m1. Since P picksm1 + 1 vertices in

total, the lemma follows. �

We finally state the conclusion of this section.

Lemma A.3.12. If A makes s simple moves in the game, then the total number of
moves is bounded by O(s).

Proof. The potential increases by O(1) for each simple move of A. The

evenizing of any odd component created costs at mostO(1) but is decreased
by 1/2 for any vertex chosen by P is a sizeable component. We conclude

that the total number of moves in sizeable components is at most O(s).
As the number of ultra small component created is bounded by the

potential, their number is O(s). In each such component there are O(1)
moves. �

A.4 Restrictions

We use (essentially) the same space of random restriction as [Hås20]. The

only difference is the choice in the number of live centers in the partial

restrictions. This is the parameter k below which changes its value from

Cs(n/T )2 to C logn(n/T )2. For completeness we repeat all definitons from

[Hås20] but we keep the description brief and for intuition and motivation

we refer to [Hås20].
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Figure A.3: The centers and central areas

A.4.1 Full restrictions

In an n × n grid we make sub-squares of size T × T where T is odd. In

each sub-square we choose2 ∆ =
√
T/2 of the nodes and call them centers.

These are located evenly spaced on the diagonal of the 3T/4 × 3T/4 central

sub-square. This implies that they have separation 3

√
T/2 = 3∆ in both

dimensions. A schematic picture of this is given in Figure A.3.

The centers in neighboring sub-squares are connected by paths that are

edge-disjoint except close to the endpoints. Let us describe how to connect

a given center to a center in the sub-square on top. As there are T/4 = ∆2

rows between the two central areas, for each pair of centers (the jth center,

cj in the bottom sub-square and ith center c′
i
in the top sub-square) we can

designate a unique row, rij in this middle area.

To connect cj to c
′
i
we first go i steps to the left and then straight up to

the designated row rij. This is completed by starting at c′
i
and then going

j steps to the right and down to the designated row. We finally use the

appropriate segment from the designated row to complete the path (which

might be in either direction). A picture of this is given in Figure A.4. We

index the centers from 1 to ∆ and hence each path consists of 5 non-empty

2
For simplicity we assume that some arithmetical expressions that are supposed to be

integers are in fact exact as integers. By a careful choice of parameters this can be achieved

but we leave this detail to the reader.
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Figure A.4: A path

segments. The first and last segments are totally within the central area

while the middle segment is totally in the area between the central areas.

Segments two and four go from the central areas to the area in-between.

Connecting cj to a center c′
i
in a sub-square to the left is done in an

analogous way. There is a unique column cij reserved for the pair and the

path again consists of five non-empty segments. The first and last segments

consist of i vertical edges up from cj, and j vertical edges down from c′
i
.

We add horizontal segments connecting to the designated column cij the

and middle segment is along this column. The below lemma is proved in

[Hås20].

LemmaA.4.1. The described paths are edge-disjoint except for the at most∆ edges
closest to an endpoint. For each edge e, if there is more than one path containing e,
these paths all have the same endpoint closest to e.

We let the term closest endpoint of an edge denote the closest endpoint

breaking ties in an arbitrary way. The key property we need is that the

“closest endpoint” of a path through an edge is uniquely defined by the

edge.

We define the direction of a path to be the relative positions of the

sub-squares of its two endpoints. It is true that the paths are undirected

but at times when we consider paths from a fixed center v it is convenient

to think of such paths as starting at v and thus speak of paths going left

or right from v rather than sideways. We note that apart from having the

same closest endpoint, all paths through one fixed edge e have the same

direction.

A restriction is defined by first choosing one center in each T × T sub-

square and then the paths described above connecting these centers. Note

that these paths are edge-disjoint. The chosen centers naturally form a

n/T×n/T grid if we interpret the paths between the chosen centers as edges.
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Weproceed tomake the correspondencemore complete by assigning values

to variables.

We choose a solution to the Tseitin formula with charges 0 at the chosen

centers and 1 at other nodes. As the number of chosen centers is odd,

by Lemma A.2.1, there are many such solutions. For variables not on the

chosen paths these are the final values while for variables on the chosen

paths we call them suggested values.

For each path P between two chosen centers we have a new variable xP
and for each variable xe on P it is replaced by xP if the suggested value of

xe is 0 and otherwise it is replaced by x̄P.

We claim that with these substitutions we have reduced the Tseitin

problem on an n × n grid to the same problem on an n/T × n/T grid. This

is true in the sense that we have an induced grid when we interpret paths

as new edges and we need to see what happens to the axioms.

Given a formula Fwe can apply a restriction σ to it in the natural way

resulting in a formula denoted by Fdσ. Variables given constant values

are replaced by constants while surviving variables are replaced by the

appropriate negation of the corresponding path-variable. A restriction has

a natural effect on the Tseitin contradiction as follows.

• The axioms for nodes not on a chosen paths are all reduced to true

as all variables occurring in them are fixed in such a way that the

axioms are true.

• The axioms for interior nodes of a chosen path are reduced to tau-

tologies as the axiom is true independent of the value of the involved

variable(s) xP. This is true as flipping a single xP changes the value

of two variables next to any such node.

• The axioms at the chosen centers turn into the axioms of the smaller

instance.

These just defined restrictions are called full restrictions and a typical

full restriction is denoted by σ. Note that these full restrictions are really

“affine restrictions” in the vocabulary of [RST15] as they do not only assign

values to variables but also identify several old variables with the same

new variable that might also be negated. For simplicity, however, we keep

the simpler term “restrictions”.

A.4.2 Partial restrictions and pairings

A typical partial restriction is called ρ and as we mostly discuss partial

restrictions we simply call them “restrictions” while we use the term “full
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restrictions” when that is what we have in mind. At the same time as

describing partial restrictions we give a probability distribution on such

restrictions.

Let k be an odd integer of the form C logn(n/T )2 for a constant C to be

determined. The first step of constructing ρ is picking k centers uniformly

at random from the set of all∆(n/T )2 centers defined in the previous section.

These are the alive centers. In the future we only consider the case when the

number of live centers in each sub-square is between a factor .99 and 1.01

of its expected value C logn. By choosing C appropriately the probability

of this being false is can be made to be 1/n.
We define charges that are 0 for all live centers and 1 for dead centers.

As the number of live centers is odd we can apply Lemma A.2.1 and pick a

random solution with these charges to the Tseitin formula. For edges not

on paths between live centers these are final values while for variables on

such paths we call them preferred values.
The choice of the centers together with the fixed and preferred variables

is denoted by ρ. The choice of ρ is the main probabilistic event. Note that by

Lemma A.2.1 the number of possible values for fixed and preferred values

is independent of which centers are alive and even of k as long as it is odd.

We now describe how to turn a partial restriction ρ into a full restriction

σ. Choose one center to survive in each sub-square3. These are called the

chosen centers and paths between such centers correspond to the variables

that remain and are called chosen paths. Centers that were alive through

the first part of the process but are not chosen are called non-chosen. The
centers killed already by ρ are simply called dead. We proceed to define a

pairing.

Definition A.4.2 (pairing). A pairing π is a graph supported on the non-

chosen centers. Each component of π is either a single edge or a star of size

four with one center and three nodes of degree one. Connected centers are

located in adjacent sub-squares.

The following lemma follows from the proof of the corresponding

lemma from [Hås20] which had the paramter s instead of logn.

Lemma A.4.3. If each sub-square has between .99C logn and 1.01C logn non-
chosen centers, a pairing π exists.

Let us establish some notation. As the original grid is also a graph

with edges we from now on use the term “grid-edges” to refer to edges

in the original grid. The chosen centers form a smaller grid and this also

3
This choice can be done in an arbitrary way but to be definite let us choose the center

from the lowest numbered row.
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has edges and we call these “new grid-edges”. We only consider paths

in the original grid and we keep the shorter term “path” for these. In

other words, from now on an “edge” is a connection between two live

centers and corresponds to a path in the grid-graph. A “new grid-edge”

corresponds to a chosen path and is thus also an edge in the graph of the

live centers. We say that two chosen centers are neighbors if they are in

adjacent sub-squares.

Some edges are conflicting in that we do not allow them to be present

in the graph at the same time. More precisely we allow at most one path in

each of the four directions from a center. As picking a path corresponds

to changing the variables on this path this is the same as saying that the

variables can only change values at most once.

As stated above πmakes it possible to turn ρ into σ. Variables not on

live paths take their fixed values. Variables on live paths but not on chosen

paths take their preferred values unless they are on a path chosen by π in

which case these values are negated. On the chosen paths, the preferred

values now becomes suggested and this completes the description of σ.

Thus σ is obtained deterministically from ρ and π and when we want to

stress this dependence we sometimes write σ(ρ,π).
We use the term “preferred values” as a vast majority of the variables

will eventually be fixed to these values as very few variables appear on the

paths of π or turn into suggested values. On the other hand “suggested

values” are much less certain as the path-variables should be thought of as

equally likely to be 0 and 1 and thus these variables are equally likely to

take also the non-suggested value.

As an intermediate between ρ and the full restriction σwe have ρ and

some information in the form of existence or non-existence of edges. We

have the following definition.

Definition A.4.4 (information piece). An information piece is either in form

of an edge (v,w) for two centers v andw or (v, δ,⊥)where v is a center and

δ is a direction (i.e. “left”, “right” “up” or “down”). The former says that

there is an edge from v towwhile the latter says that there is no edge from

v in the direction δ.

We note that, as edges are undirected, (v,w) and (w, v) denote the same

information. We also use sets of information pieces.

Definition A.4.5 (consistent information set). An information set I is a

collection of information pieces. Its support, denoted by supp(I), is the set
of centers mentioned in these pieces. An information set I is consistent if

1. it does not have two different pieces of information from the same

center in one fixed direction, and
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2. if I has information in all four directions from a center v then it has

an odd number of edges touching v.

A partial assignment to some path-variables naturally corresponds to

a set of information pieces. An assignment of 0 to a path-variable gives

two non-edges, in the appropriate directions, with closest end-points at the

two chosen centers connected by this path. An assignment of 1 gives an

information piece in the form of an edge between the two chosen centers.

We use the term “consistent” both for sets of information pieces and partial

assignments. Consistency for assignments requires an odd number of ones

adjacent to any center that has all its variable assigned and this exactly

corresponds to the property of information pieces in all four directions in

the definition above. This makes the two notions close and hence using

“consistent” for both should hopefully not confuse the reader.

Jointly with ρ an information set fixes the values of somemore variables

as follows.

Definition A.4.6 (forcing). Let ρ be a restriction and I an information set.

A variable xe is considered forced by (ρ, I) iff either its closest endpoint, v, is

not live in ρ or if the information of v in the direction of e is contained in I.

It is forced to its preferred value in ρ unless the relevant information piece

states that there is an edge from v in the direction of e that corresponds

to a path that passes through e in which case it takes the opposite value.

Variables not on live paths take the value given by ρ.

There are other situations where the value of a variable might be

determined by ρ and I, such as the lack, or scarcity, of live centers in a

sub-square but we do not use this information in the reasoning below. We

need the notion of a closed information set.

Definition A.4.7 (closed information set). An information set I is closed if I

is consistent and for each v ∈ supp(I), the set I contains the information in

all four directions.

The definition implies that for any v ∈ supp(I), in any direction δwhere

there is not an element of supp(I), we have a non-edge (v, δ,⊥). When

considered as a graph such an information set is an odd-degree graph

(with degrees one and three) on the centers of supp(I).
Note that if we have a closed information set I then if we consider

all variables forced by (ρ, I) this can be described by a restriction where

the centers in the supp(I) are killed. We simply negate the values of any

preferred variable on any path in I and then forget that the centers in

supp(I)were alive.
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Thus, if we let such a closed information set operate on a restriction

ρ we get a restriction with fewer live centers where the number of killed

centers is exactly the number of centers in the support of the corresponding

graph.

A.4.3 Generalized restrictions

In our proof we allow generalized (partial) restrictions. These are like

standard restrictions but we allow the violation of the Tseitin condition

at some dead centers. Such centers are called bad and we keep a close

track on their number. These generalized restrictions are only used for

book-keeping reasons.

A.5 Decision trees

We have decision trees where each internal node is marked with a variable

and the outgoing edges are marked with 0 and 1. The leaves of a decision

tree are labeled by 0 and 1. We allow decision trees of depth 0 which are

constants 0 or 1.

All decision trees considered in this paper have a depth that is smaller

than half the dimension of the grid we are currently considering. For each

branch in a decision tree there is minimal partial assignment, τ such that

any extension of this partial assignment creates an assignment that follows

this path. We use this τ to identify that branch and we call it consistent if τ
is consistent in the sense of Definition A.3.1.

We trim decision trees to maintain the property that all branches of a

decision tree are consistent. When a decision tree is created this is not a

problem but trimming takes place when we consider what happens under

a partial assignment τ or a full restriction σ. In that latter case, the initial

decision tree uses the variables xe while the resulting decision tree uses

the new variables xP.

We sometimes think of a decision tree T as the set of all branches leading

from the root to the leaves. These have labels and fit together in a tree

structure and each corresponds to a partial assignment τ′ as discussed

above. When creating the decision tree after τ or σ the idea is to keep all

branches that are consistent with the new information.

In the case of a partial assignment τwe keep all branches corresponding

to τ′ such that τ and τ′ are consistent as discussed after Definition A.3.1. In

the case of a full restriction σ the situation is not difficult but slightly more

complicated so let us define this explicitly.

The assignment τ′ assigns values to some variables xe. Some of these are

given values by σ while the rest are now on chosen paths. To be consistent
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we require that for the variables given values by both σ and τ′, the two

values agree. For each variable xe given a value by τ′ we get a value for the

corresponding path-variable xP. For σ and τ′ to be consistent we require

that no xP gets two conflicting values and that the values xP are consistent

in the sense of Definition A.3.1 when considered as an assignment on the

smaller grid.

The key property that we need is that if the depth of T is small enough

then at least some branch of T is consistent with τ or σ. In the former case

we make sure that the total number of assigned variables under τ and τ′ is
at most half the dimension of the grid and in the latter case that the depth

is a most half the dimension of the grid after σ. This together with the fact

for each internal node of T has out-degree two and Lemma A.3.2 makes

sure that some branch is consistent.

Oncewe have identifiedwhich branches remain it is easy to see that they

form a decision tree. In fact it is also possible to define the new decision

tree by a dynamic process where we start at the root of T and consider each

node in the tree. As we walk down the tree we can, for each node, check

whether both values of the current variable are consistent with the partial

assignment of the branch so far jointly with τ or σ. For a full restriction

σwe of course take into account that once we have determined the value

on one variable on a path, all the other variables on the same path are

determined. If only one value is consistent we eliminate the other sub-tree

while if both values are consistent we have found a node in the new tree.

In some situations we might get a tree which has a single branch consistent

with τ or σ. This is considered a depth-0 tree with only one leaf. For a

decision tree T we let T dτ we the decision tree after we have applied τ.

We let a 1-tree be a decision tree where all leaves are labeled 1 and define

a 0-tree analogously. Special cases of such trees are trees of depth 0. We say

T dπ = b if the decision tree given by Tidπ is a b-tree.

We say that a decision tree T is an ` common partial decision tree for

T1, . . . , Tm of depth t if

1. T is of depth t, and

2. for every Ti and branch π in T there are decision trees T (i,π) of depth
` such that the following holds. Let Ti be the decision tree obtained

from T by appending the trees T (i,π) at the corresponding leaf π of

T . Then, if a branch π′ in Ti ends in a leaf labeled b, it holds that

Tidπ′ = b.

Next we turn to a procedure of representing formulas by decision trees of

small depth.
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A.6 Basics for t-evaluations

The concept of t-evaluations was introduced by Krajíček et al. [KPW95]

and is a very convenient tool for proving lower bounds on proof size.

The content of this section is standard and we follow the presentation

of Urquhart and Fu [UF96] while using the notation of Håstad [Hås20].

We need a generalization of previous notions essentially as introduced by

Pitassi et al. [PRT22].

A tree T represents T1 ∨ . . . ∨ Ts if for every branch π of T ending in a

leaf labeled 1 it holds that there is an i ∈ [s] such that Tidπ = 1, and if π

ends in a leaf labeled 0, then for all i ∈ [s] it holds that Tidπ = 0. The set

of formulas Γ has a t-evaluation ϕ, mapping formulas from Γ to decision

trees of depth at most t, if the following holds.

1. ϕmaps constants to the appropriate decision tree of depth 0,

2. axioms are mapped by ϕ to 1-trees,

3. if ϕ(F) = T then ϕ(¬F) is a decision tree with the same topology as T

but where the value at each leaf is negated, and

4. if F = ∨i∈[s]Fi, then ϕ(F) represents ∨i∈[s]ϕ(Fi).

Each line of a proof has its own t-evaluation. In order to argue about the

proof we need that these different t-evaluations are consistent, as explained

next.

Let us first define what it means for decision trees to be consistent. Two

decision trees T1, T2 are consistent if for every branch π of T1 ending in a

leaf labeled b it holds that T2dπ = b and vice-versa. Further, T1 and T2 are

¬-consistent, if for every branch π of T1 ending in a leaf labeled b, it holds

that T2dπ = ¬b and vice-versa.

Let us say that two formulas are isomorphic if they only differ in

the order of the or’s, and let us say that two formulas F,G = ¬G′ are
¬-isomorphic if F and G′ are isomorphic.

Consider a t-evaluationϕ defined over a set of formulas Γ and similarly

let ϕ′ be a t-evaluation defined over the set of formulas Γ ′. The two

t-evaluations ϕ and ϕ′ are consistent if

1. for all isomorphic formulas F ∈ Γ and F′ ∈ Γ ′ it holds that ϕ(F) and
ϕ′(F′) are consistent, and

2. for all ¬-isomorphic formulas F ∈ Γ and F′ ∈ Γ ′ it holds that ϕ(F) and
ϕ′(F′) are ¬-consistent.
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We say that a Frege proof has a t-evaluation if for every line ν in the proof

we have a t-evaluation ϕν and for all lines ν,ν′ it holds that ϕν and ϕν
′

are consistent.

Let us consider a Frege proof of depth d and for a line ν in the proof

let Γν be the set of subformulas occuring on line ν. In the following we

construct a sequence of restrictions σ1,σ2, . . . ,σd such that for every line

and all formulas of depth at most kwe have consistent t(k)-evaluations if
the formulas are hit by the concatenation σ∗

k
of the first k restrictions in

the sequence. When considering proof size we in fact have that all t(k) are
equal to the same value t, while in the proof when we lower bound the

number of small lines, the value t(k) grows as a function of k. In fact, in

the latter situation, each line has a common part to all decision trees of that

line and this common part increses in size with k.

Getting back to t(k)-evaluations, put different we build by induction on

k for every line ν a t(k)-evaluation for all formulas in

Γνk = {Fdσ∗
k
| F ∈ Γν ∧ depth(F) ≤ k}

that are pairwise consistent and we look to extend these t(k)-evaluations to
Γν
k+1. To make sure that the domain of the t-evaluations does not decrease

whenwe apply a restrictionwe use the lemma below from [Hås20]. The fact

that we allow consistent t(k)-evaluations, instead of a single t(k)-evaluation
for the entire proof, does not change the proof which is a simple and fairly

formal verifiction and hence omitted.

Lemma A.6.1. Let ϕ and ϕ′ be two consistent t-evaluations respectively defined
on the set of formulas Γ and Γ ′, and let σ be a full restriction whose output is a
grid of size n. Then, provided that t < n/4, ϕ(F)dσ and ϕ′(F)dσ are consistent
t-evaluations whose domain includes Γ dσ, and Γ ′dσ respectively.

The important step of the argument is to use a switching lemma to

extend the domain of the t(k)-evaluation from Γν
k
to Γν

k+1. We give that

argument in the next section and here we turn to formulating the punch

line once we have a t(k)-evaluation for a small Frege proof, where we think

of t(k) as small.

It turns out that under these assumptions all lines in the proof are

represented by 1-trees. As the the constant false is represented by a 0-tree

we can thus not derive the desired contradiction. Hence in order to obtain

the desired contradiction the Frege proof must be large, respectively long

in the case of Frege proofs of bounded line size.

In order to formalize this argument we need to fix a Frege system so

we can argue about the derivation rules. By a result of Cook and Reckhow

[CR79] the precise choice of the Frege system is not important and we
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choose the same system as [PRST16; Hås20; PRT22]. This system consists

of the following rules.

• (Excluded middle) (p ∨ ¬p)

• (Expansion rule) p→ (p ∨ q)

• (Contraction rule) (p ∨ p) → p

• (Association rule) p ∨ (q ∨ r) → (p ∨ q) ∨ r

• (Cut rule) p ∨ q,¬p ∨ r→ q ∨ r

These rules should be understood in the followingmanner: a depth d Frege

proof can at any time, by excluded middle, write down a line of the form

(p ∨ ¬p) for any formula p if the line is of depth at most d. Similarly the

expansion rule says that if we have derived the formula p, then we can

write down the line (p ∨ q) for any formula q such that the line is of depth

at most d. The crucial lemma is as follows.

Lemma A.6.2. Suppose we have a derivation using the above rules starting from
the Tseitin axioms defined on the n × n grid, that also has a t-evaluation. Then,
if t ≤ n/8, each line in the derivation is mapped to a 1-tree. This, in particular,
implies that we cannot derive contradiction.

The proof in the standard case of this lemma is again a tedious and

formal verification and can be found in full in [Hås20]. The proof is by

induction over the number of derivation steps and the key property is to

take any path that leads to 0 in the derived formula and find a path that

leads to a 0 in one of the assumptions. The fact that all decision trees are

of depth less than n/8 ensures that it is possible to find a branch of any

decision tree that is consistent with the given 0-branch.

In the current case, where each line has its own t-evaluation, due

to consistency, not much is different. We can again take any 0-branch

in the decision tree of a derived formula and find a 0-branch in one of

the assumptions. Instead of repeating all cases let us do only the most

interesting one: the cut rule.

We have F = (q ∨ r) derived on line ν and suppose ϕν(F) is not a 1-tree.

Take a supposed leaf with label 0 in ϕν(F) and let τ be the assignment

leading to this leaf. We know that ϕν(q)dτ and ϕν(r)dτ are both 0-trees by

the definition of a t-evaluation.

Now suppose (p ∨ q) was dervied on line ν′ < ν and (¬p ∨ r) was

derived on line ν′′ < ν. By consistency of ν and ν′ we know that ϕν
′(q)dτ

is a 0-tree and, as also ν and ν′′ are consistent, so is ϕν
′′(r)dτ.
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Now, if any branch inϕν
′(p)dτ ends in a leaf labeled 0, thenϕν

′(p ∨ q)dτ
can be extended to reach a 0-leaf. This is in contradiction to the inductive

assumption. For similar reasons ϕν
′′(¬p)dτ is a 1-tree. This contradicts the

assumed consistency of ν′ and ν′′.

A.7 Proofs of the main theorems

We first reprove the main theorem of [Hås20] with improved parameters.

Theorem A.7.1. For d ≤ O( logn

log logn
) the following holds. Any depth-d Frege

refutation of the Tseitin contradiction defined on the n × n grid requires size

exp

(
Ω(n1/(2d−1)(logn)O(1))

)
.

As outlined in the previous section, we construct a t-evaluation for all

sub-formulas occurring in a short and shallowFrege proof. By LemmaA.6.2

we then conclude that all shallow Frege proofs of the Tseitin contradiction

must be long. For the total size lower boundwe in fact do not create distinct

t-evaluations per line but rather a single one, used on each line. Such

a t-evaluation is clearly consistent and hence satisfies our needs. Let Γ

denote the set of sub-formulas occurring in the alleged proof. Our plan is

to proceed as follows for i = 0, 1, 2, . . . ,d.

• We have a t-evaluation for all formulas of Γ that were originally of

depth i.

• Pick a random full restriction σi and extend the t-evaluation to all

formulas of Γ dσi of original depth at most i + 1.

At the starting point, i = 0, each formula is a literal which is represented

by a natural decision tree of depth 1. In order to extend the t-evaluation to

larger depth we use the following lemma, central to the argument.

LemmaA.7.2 (Switching Lemma). There is a constantA such that the following
holds. Suppose there is a t-evaluation that includes Fi, 1 ≤ i ≤ m in its domain
and let F = ∨m

i=1
Fi. Let σ be a random full restriction from the space of restrictions

defined in Section A.4. Then the probability that Fdσ cannot be represented by a
decision tree of depth at most s ≥ t and the number of live variables in each center
is in the interval [.99C logn, 1.01C logn] is at most(

A(logn)27t∆−1
)s/108

.

We postpone the proof of this lemma to Section A.8 and see how to use

it when studying a refutation of size N. We start with a t1-evaluation with
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t1 = 1 for single literals and apply the lemma with s = Ω(logN) in the first

step, while we choose ti = s in later steps. We set ∆i = Ω(ti(logn)27) and
hence have that Ti = 4∆2

i
for each step.

We start with the original Tseitin contradiction on the n × n grid. Start

with n0 = n and set ni+1 = n/Ti for i = 0, 1, . . . ,d − 1. We are going to

choose a sequence of full restrictions σi mapping a grid of size ni to a grid

of size ni+1 randomly. Let σ∗
i
be the composition of σ0,σ1, . . . ,σi. Let Γ be

the set of sub-formulas that appear in an alleged proof and we let

Γi = {Fdσ∗
i
| F ∈ Γ ∧ depth(F) ≤ i} .

Let fi be the number of sub-formulas of depth at most i in Γ .

Lemma A.7.3. With probability 1 − fi2−Ω(s) there is a t-evaluation ϕi whose
domain includes Γi.

Proof. This is essentially collecting the pieces. We prove the lemma by

induction over i. For i = 0 we have the t-evaluation that maps each literal

to its natural decision tree of depth 1.

When going from depth i to depth i + 1 we need to define ϕi+1 on all

formulas originally of depth at most i + 1 and consider any such F.

1. Each F of depth at most i is, by induction, in the domain of ϕi and

we can appeal to Lemma A.6.1.

2. If F is of depth i then ϕi+1(¬F) is defined from ϕi+1(F) negating the

labels at the leaves.

3. For F = ∨Fi where each Fi is of at most depth iwe apply LemmaA.7.2.

The only place where the extension might fail is under step three but,

by Lemma A.7.2, the probability of failure for any individual formula is at

most 2
−Ω(s)

and as we have at most fi − fi−1 formulas of depth exactly i the

induction is complete. �

Fixing parameters we reprove the main theorem from [Hås20] with

stronger parameters.

Proof of Theorem A.7.1. Suppose we have a refutation of size

N ≤ exp(c1(n1/(2d−1)(logn)−c2)) ,

for suitable positive constants c1 and c2. In the first iteration we use

Lemma A.7.2 with t = 1 and ∆ = (2tA(logn)27)−1 and s = 110 logN. In

later applications we use t = s. It is easy to see that with these numbers
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we have successful switching at each round with high probability. The

number of live centers are in the desired interval and we are always able to

construct the new t-evaluation.

Up to polylogarithmic factors we have that the final side length of

the grid after all the restrictions is n(logN)−2(d−1) and it is a t-evaluation

with t = O(logN). Thus if logN is a polylogarithmic factor smaller than

n1/(2d−1)
we get a contradiction to Lemma A.6.2. �

Let us turn our attention to the main result of the present paper.

TheoremA.7.4. For any Frege proof of the Tseitin principle defined over the n×n
grid graph the following holds. If each line of the proof is of sizeM and depth d,
then the number of lines in the proof is

exp

(
Ω

(
n(

(logn)O(1) logM
)
2d

))
.

The strategy of the proof is similar to the proof of Theorem A.7.1: we

again build a t-evaluation for a supposed Frege proof. The main difference

is that instead of creating a single t-evaluation for the entire proof we in

fact independently create t-evaluations for each line. These t-evaluations

turn out to be consistent, as defined in Section A.6, and we thus obtain the

claimed bounds.

Suppose we are given a Frege refutation of the Tseitin principle defined

over the n × n grid consisting of N lines, where each line is a formula of

sizeM and depth d. We denote by Γν the set of sub-formulas of line ν in

the proof and continue to construct a sequence of restrictions σ1,σ2, . . . ,σd
such that all formulas of depth at most k have consistent t(k)-evaluations if
hit by the concatenation σ∗

k
of the first k restrictions in the sequence, where

t(k) is some function dependent on k to be fixed later. That is, for every

line νwe have a t(k)-evaluation ϕν
k
for all formulas in the set

Γνk = {Fdσ∗
k
| F ∈ Γν ∧ depth(F) ≤ k},

and all these t(k)-evaluations are consistent. In addition to these t(k)-
evaluations, for each line ν we also maintain a decision tree Tk(ν). We

maintain the property that Tk(ν) is a t common partial decision tree for all

t(k)-evaluations ϕν
k
(Γν
k
) of bounded depth.

These partial common decision trees Tk(ν) are useful to extend the

t(k)-evaluations ϕν
k
to larger depths. In each such step, increasing k, we

apply for each branch π from Tk(ν) the followingmulti-switching lemma to

the set of decision trees ϕν
k
(Γν
k
)dπ of depth at most t. We then extend Tk(ν)

in each leaf π by the the partial common decision tree from the lemma to

obtain Tk+1(ν) of slightly larger depth.
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Lemma A.7.5 (Multi-switching Lemma). There are constants A, c1, and c2
such that the following holds. Consider formulas Fj

i
, for j ∈ [M] and i ∈ [mj],

each associated with a decision tree of depth at most t and let Fj = ∨mj
i=1
F
j

i
. Let σ be

a random full restriction from the space of restrictions defined in Section A.4. Then
the probability that the number of live variables in each center is in the interval
[.99C logn, 1.01C logn] and (Fjdσ)Mj=1 cannot be represented by an ` common
partial decision tree of depth at most s is at most

Ms/` (A(logn)c1t∆−1)s/c2 .

We defer the proof of this lemma to Section A.9. We apply Lemma A.7.5

withmostly the sameparameters so let us fix these. We choose ` = t = logM

and ∆ = D · t · (logn)c1 , for a sufficiently large constant D. The parameter

s depends on k and is fixed to s = sk = 2
k−1

logN. With these parameters

in place we can finally also fix t(k) = ∑
i≤k si + logM ≤ 2

k
logN + logM.

Lemma A.7.6. Suppose that for every line ν ∈ [N] we have consistent t(k − 1)-
evaluations ϕν

k−1 for formulas in Γν
k−1 along with a t common partial decision tree

Tk−1(ν) for ϕνk−1(Γ
ν
k−1) of depth

∑
i<k si. Then, with probability 1 −N−1, there

is a full restriction σk whose output grid is of dimension n and, assuming that
t(k) ≤ n/8, for every line ν ∈ [N] there is a consistent t(k)-evaluation ϕν

k
for

formulas in Γν
k
and a t common partial decision tree Tk(ν) for ϕνk(Γνk ) of depth∑

i≤k si.

Proof. Let us first extend the commonpartial decision trees and then explain

how to obtain ϕν
k
for different lines ν ∈ [N].

The interesting formulas of original depth k to consider are the ones

with a top ∨ gate. Let us fix a line ν ∈ [N] and consider all sub-formulas

{Fj = ∨mj
i=1
F
j

i
}Mν
j=1

of line ν of original depth kwith a top ∨ gate under the

restriction σ∗
k−1. As the original depth of every F

j

i
is at most k − 1, all these

formulas are in the domain of ϕν
k−1. Let us further fix a path π in Tk−1(ν)

and recall that all decision trees ϕν
k−1(F

j

i
)dπ are of depth at most t.

For every ν ∈ [N] and branch π of Tk−1(ν) we apply Lemma A.7.5

to the set of formulas F
j

i
dπ with associated trees ϕν

k−1(F
j

i
)dπ of depth at

most t. The probability of failure of a single application is bounded by

N−2
k−1

, assuming an appropriate choice of the constant D. As we invoke

Lemma A.7.5 at most N · 2
∑
i<k si ≤ N2

k
times, by a union bound, with

probability at least 1 −N−1, there is a full restriction σk such that for every

line ν ∈ [N] and every branch π ∈ Tk−1(ν) we get a t common partial

decision tree of depth at most sk for the formulas (Fjdπσk)Mνj=1 . Let us

denote this common decision tree by T (ν,π) and attach it to Tk−1(ν) at
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the leaf π to obtain Tk(ν). The trees Tk(ν) are of depth at most

∑
i≤k sk as

required.

Let us explain how to define ϕν
k
for a fixed line ν ∈ [N]. Consider any

formula F in Γν
k
.

• If F is of depth less than k, then F is in the domain of ϕν
k−1 and we

can appeal to Lemma A.6.1.

• If F is of depth k − 1 then ϕν
k
(¬F) is defined from ϕν

k
(F) negating the

labels at the leaves.

• For F = ∨iFi of depth kwe use the previously constructed common

partial decision trees. We define ϕν
k
(F) to be the decision tree whose

first

∑
i≤k si levels are equivalent to Tk(ν) followed by t levels unique

to F obtained from the multi-switching lemma.

Let us check that the decision trees Tk(ν) are indeed t common partial

decision trees forϕν
k
(Γν
k
). By construction this clearly holds for formulas of

depth kwith a top ∨ gate. As Tk(ν) is equivalent to Tk−1(ν) on the upper

levels, and restrictions only decrease the depth of decision trees, by the

initial assumptions this also holds for formulas of depth less than k. As the

t(k)-evaluations of formulas of depth k with a top ¬-gate are defined in

terms of formulas of depth less than k, we also see that Tk(ν) is a t common

partial decision tree for such formulas.

Last we need to check that each ϕν
k
is a t(k)-evaluation plus that these

are pairwise consistent.

By Lemma A.6.1 all the properties hold for formulas of depth less than

k. Let us verify the t(k)-evaluation properties for formulas of depth k.

Property 1 is immediate, as k > 0. As we only consider consistent

decision trees, property 2 also follows. Further, property 3 is satisfied by

construction. Property 4 can be established by checking the property for

each branch π in Tk−1(ν) separately; for a fixed π we see by Lemma A.7.5

that this indeed holds.

Finally we need to establish that two t(k)-evaluations ϕν
k
and ϕν

′
k

are

consistent for formulas of depth k. By the inductive hypothesis we clearly

have that ¬-isomorphic formulas are ¬-consistent. Further, isomorphic

formulas with a top ¬ gate are consistent. Hence we are only left with

checking consistency for isomorphic formulas of depth kwith a top ∨ gate.

Let F = ∨iFi and F′ = ∨iF′i be two isomorphic formulas from Γν
k

and Γν
′
k

respectively. For the sake of contradiction suppose ϕν
k
(F)dπ = 1

but ϕν
′
k
(F′)dπ = 0 for some assignment π. In the following we use that

t(k) ≤ n/8 and hence there are consistent branches as claimed. By property

2 we know that for some Fi it holds that ϕ
ν
k
(Fi)dπ = 1. As F and F′ are

81



Paper A. On Bounded Depth Frege Refutations of the Tseitin Formula

isomorphic formulas we know that there is an F′
j
such that Fi and F

′
j
are

isomorphic formulas. As such formulas have consistent decision trees (by

induction and Lemma A.6.1) we get that ϕν
′
k
(F′
j
)dπ = 1. But this cannot be

as by property 4 of a t(k)-evaluation this implies that ϕν
′
k
(F′)dπ = 1. This

establishes that the different t(k)-evaluations are consistent, as required. �

With all pieces in place we are ready to prove Theorem A.7.4.

Proof of Theorem A.7.4. Suppose we are given a proof of length

N = exp(n/((logn)c logM)2d) ,

for some constant c. We may assume thatM ≤ exp(n1/2d−1/2d(2d−1)), as
otherwise we can apply Theorem A.7.1.

In order to create the consistent t(k)-evaluationsϕν for each line ν ∈ [N]
we consecutively apply Lemma A.7.6 d times. We start with ϕν

0
which

maps constants to the appropriate depth 0 decision tree and literals to the

corresponding depth 1 decision trees. The partial common decision trees

T0(ν) are all empty.

After applying Lemma A.7.6 d times we are left with a t(d)-evaluation
for the proof. We need to ensure that t(d) is upper bounded by the

dimension of the final grid: t(d) ≤ 2
d
logN + logM, while the final side

length of the grid is n · (4∆2)−d = n · (2D(logn)c1 logM)−2d. For our choice
of N and the assumption onM this indeed holds and by Lemma A.6.2 the

theorem follows. �

A.8 The improved standard switching lemma

This section is dedicated to the proof of the switching lemma, restated here

for convenience.

LemmaA.7.2 (Switching Lemma). There is a constantA such that the following
holds. Suppose there is a t-evaluation that includes Fi, 1 ≤ i ≤ m in its domain
and let F = ∨m

i=1
Fi. Let σ be a random full restriction from the space of restrictions

defined in Section A.4. Then the probability that Fdσ cannot be represented by a
decision tree of depth at most s ≥ t and the number of live variables in each center
is in the interval [.99C logn, 1.01C logn] is at most(

A(logn)27t∆−1
)s/108

.

The proof very much follows the proof of [Hås20]. In fact large parts

of the proof are the same. We repeat the proofs to make it possible for

a reader not familiar with the mentioned proof to follow the argument.
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To make the argument slightly shorter we do not repeat all proofs of the

various lemmas.

For the benefit of the reader completely on top of [Hås20] let us outline

the differences in the following section. This section can be safely skipped

by the less experienced reader.

A.8.1 Changes in the Argument

The key number that has changed is the parameter k, the total number of

centers that are alive. In the definition of a partial restriction this parameter

k has changed from Cs(n/T )2 to C logn(n/T )2. The fact that we hadΩ(s)
live centers in each square was crucial in finding live centers to extend

the information sets Jj to closed sets γj. This process needed O(s) fresh
centers from specific squares and there is nothing that prevents these from

all being required to be in the same square. In the current proof we allow

γj to be not closed and this implies that the restriction ρ∗ is a generalized
restriction where the Tseitin condition is violated at some vertices. This

only happens when we have Ω(logn) exposed non-chosen centers in a

sub-square and results in a single violating vertex. As the there are at most

O(s) exposed centers over all we can have at most O(s/logn) violating
centers. The number of generalized restrictions with B violating centers

is at most a factor n2B
more than the the number of ordinary restrictions.

This number is 2
O(s)

and this factor can be absorbed in the constant A in

the statement of the switching lemma.

A.8.2 Proof Overview

Let us recall the setup. We have a full restriction σ as defined in Section A.4

that is made up of a restriction ρ and a pairing π. The restriction ρ has

(1 ± 0.01)C lognmany live centers in each sub-square, for a large enough

constant C. We have a formula F = ∨m
i=1
Fi and a t-evaluation ϕ that

includes each Fi in its domain and let Ti = ϕ(Fi). As ϕ is a t-evaluation

each such tree Ti is of depth at most t.

In the following we construct a decision tree T for Fdσ which is with

high probability, over the choice of ρ, of depth at most s. The decision tree

T is created in a similar manner as the canonical decision tree is usually

constructed: we proceed in stages, where in each stage the current branch τ

is extended by querying variables related to the first 1-branchψ in the trees

T1dστ, T2dστ, . . . , Tmdστ. For now it is not so important what the related

variables ofψ precisely are andwe can simply think of these as the variables

on the branch ψ. Once all these variables have been queried, we check in

each new leaf of the tree whether we traversed the path ψ. If so, then we
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label the leaf with a 1 and otherwise we continue with the next stage. If

there are no 1-branches left, we label the leaf with a 0.

It is not so hard to see that this process indeed results in a tree T that

represents ∨m
i=1
Tidσ: for each leaf τ of T that is labeled 1 it holds that there

is an i ∈ [m] such that Tidστ = 1 and if τ is labeled 0, then for all i ∈ [m]
we have that Tidστ = 0, as required. It remains to argue that T is with high

probability of depth at most s.

We analyse this event using the labeling technique of Razborov [Raz95].

The idea of this technique is to come up with an (almost) bĳection from

restrictions ρ that give rise to a decision tree T of depth larger than s to a

set of restrictions that is much smaller than the set of all restrictions. In a

bit more detail, given such a bad ρ, we create a restriction ρ∗ with fewer

live centers such that with a bit of extra information we can recover ρ from

ρ∗. As the restriction ρ∗ has roughly s fewer live centers than ρ, and the

inversion requires little extra information, we obtain our statment.

Let us explain how to obtain ρ∗ from a ρ that gives rise to a decision tree

T of depth larger than s. To this end, we first need to slightly refine the

construction process of T . Namely, we need to discuss what the related

variables of a branch ψ are. Instead of thinking of this as a set of variables

we rather want to think of it as an information set J, as introduced in

Section A.4. The information set J is a minimal set that forces, along with

the already collected information set on the branch τ, the branch ψ. Once

we identified such a set J, we then query all necessary variables to see

whether we agree with J (along with some further variables).

Recall that we are trying to explain how to construct ρ∗ from a ρ that

gives rise to a decision tree T of large depth. Fix a long branch τ in T and

consider all the sets J1, J2, . . . , Jg identified on τ. For this proof overview,

let us assume that each Jj is closed and the support of these information

sets are pairwise disjoint. Let us stress that this is a simplification and does

not hold in general. Assuming this holds, note that the union J∗ = ∪g
i=1
Jj

is also closed and recall from Section A.4 that all variables forced by (ρ, J∗)
can be described by a restriction where the centers in supp(J∗) are killed.

This defines the restricion ρ∗: it is the restriction that forces all variables

forced by (ρ, J∗). Assuming that the support of J∗ is large, we see that ρ∗ has
much fewer centers that are alive.

What remains is to argue thatwe can cheaply recover ρ from ρ∗. The idea
is to remove the set Jj, starting with j = 1, one-by-one from ρ∗. To do this

cheaply we use the decision trees T1, . . . , Tm. Recall that the information

set J1 determines all variables on the first 1-branch ψ1. This implies in

particular that ρ∗ traverses the branch ψ1. Hence identifying ψ1 is for free:

it is the first 1-branch in T1, . . . , Tm traversed by ρ∗ (assuming that the set J1
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is pairwise disjoint from all later sets Jj). Once we identified the branch ψ1,

we want to recover the first part of the long branch τ so that we can repeat

this argument with J2. As ψ1 is of length at most t, using only log t bits

per variable, we indicate which variables are different on τ from J1. This

lets us cheaply recover τ along with the centers killed by J1. Repeating this

argument g times lets us recover ρ.

This completes the proof overview. We allowed ourselves several

simplifications and left out a fair number of details. The most significant

simplification is the assumption that all the information sets Jj are closed.

In the actual proof we extend each set Jj into a closed set γj and then take

the union of these to define ρ∗. The process of closing a set Jj may even fail

at times and therefore ρ∗ has to slightly bend the rules of being a restriction.

It turns out that ρ∗ is a generalized restriction as mentioned in Section A.4.3.

The step of closing up the Jj is the main source of technical difficulty in the

full proof.

The proof is split into four separate sections. In Section A.8.3 we define

the extended canonical decision tree T and in the susequent Section A.8.4

we prove some crucial properties of these decision trees. Section A.8.5

explains how to extend the sets Jj into closed information sets γj in order

to construct the restriction ρ∗. Finally, in Section A.8.6 we show how to

cheaply recover ρ from ρ∗ and thereby prove Lemma A.7.2.

A.8.3 Extended Canonical Decision Trees

Let us construct an extended canonical decision tree T for Fdσ. We start with

T the empty tree and extend it for each branch τ separately. For every

branch τwe maintain the following objects throught the creation of T :

1. a set S = S(τ,σ) of centers, called the exposed centers,

2. a set I = I(τ,σ) of information pieces as defined in Definition A.4.5,

and

3. a (state of a) matching game G = G(τ,σ), as described in Section A.3,

played on the chosen centers of σ.

Initially the sets S and I are empty, and the matching game G is a new game

with no vertices matched. We require that S, I and G satisfy the following

invariants.

1. No element is ever removed from S or I. In other words, the sets S

and I only become larger throughout the creation of a branch τ.

2. The matched nodes in the game G are precisely the chosen centers in

S.
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3. The information set I does not contain a path between a chosen center

and a non-chosen center.

4. For non-chosen centers in S, the set I consists of the closed information

pieces corresponding to their component in π (both edges and non-

edges). If one center of such a connected component belongs to S,

then so does the entire component. Thus for non-chosen centers in S

we have information pieces in all four directions.

5. For every chosen center in Swe have queried all incident variables xP
in τ and this is the information that is present as information pieces

in I. The one-answers are recorded in the form of a path while the

zero answers as two non-edges, one at the neighboring chosen center

in the appropriate direction which may or may not be an element of

S. Observe that the value of xP jointly with ρ determines the value of

all variables xe on the chosen path P.

Let us stress the fact that information about π comes from the restriction

σ and hence in Invariant 4 we do not query a variable in T . However,

querying a variable xP, as done in Invariant 5, causes a query in the decision

tree T .
Further, observe that there is a crucial difference between Invariant 4

and Invariant 5: on the non-chosen centers we have information pieces in I

only on the centers in S. In contrast Imay contain information pieces from

chosen centers that are not in S.

Let us discuss the creation of T . We proceed in stages. In each stage

we fix a branch τ in T . We go over the decision trees Ti = ϕ(Fi) one by one.

Suppose we consider Ti. Take the first (in some fixed order) branch ψ in Ti
that leads to a leaf labeled 1 which is consistent with τ and σ. If there is no

such branch, then we continue with Ti+1 and if there is no such branch ψ

for any Ti, then we label the τ leaf of T by 0 and continue with a different

branch τ′ of T until all leaves of T are labelled. But for now let us assume

that there is a branch ψ as described.

For the variables appearing on ψ we have unique values required to

reach this leaf. We let a possible forcing information J be an information set

that jointlywith I and ρ forces4 all variables onψ to take these unique values.

Let us call ψ the forceable branch. The intuition is that if the information set

J agrees with the actual input, then indeed ψ is followed and we can safely

end with a 1-leaf. In most cases, however, the actual input does not agree

with J and we need to continue evaluating the extended canonical decision

tree T . We require the following properties of J.

4
Recall from Definition A.4.6 that a variable is forced if we have the relevant information

at its closest endpoint.
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1. If J contains a non-edge from a chosen center it also contains a

non-edge in the “reverse direction”. As an example if it contains a

non-edge going left from a chosen center v then it contains a non-edge

going right from the chosen center in the sub-square to the left of v.

2. The information set J does not contain a path between a chosen center

and a non-chosen center.

3. The information sets I and J are consistent and disjoint.

4. The part of J on the non-chosen centers is closed and consistent with

π, that is, J contains a subset of the components of π in the form of a

closed set of information pieces.

5. J is minimal given the above properties and the fact that, along with

I, it should determine the values of all the variables on the forceable

branch ψ.

Note that a set J may not be unique for a given path ψ. If there

are several sets as described above, choose one in a fixed but otherwise

aribitrary manner. While the choice is not essential for what follows, we do

need to establish that whenever some Ti can still reach a 1-leaf, then there is

a possible forcing information J. We postpone this to the following section

(see Lemma A.8.1) and for now assume that such a set J exists whenver we

have a branch ψ as described.

Denote by U the set of closest endpoints of variables on ψ that are

chosen centers but not contained in S. A somewhat subtle point to note is

that Umay contain a closest endpoint of a variable that is determined by I:

the set Imay contain information pieces about chosen centers outside the

set of exposed centers S. The set U is needed to ensure that we treat such

centers correctly.

Let us continue the construction of the extended canonical decision

tree T at τ. Add U and all centers in supp(J) to S along with the centers

described next. Let the adversary in the game G supply U along with

all chosen centers in supp(J). We apply Lemma A.3.5 and add all nodes

providedbyPM toS (we tacitly assume throughout that |S| ≤ n/2). Observe

that this game is played on nodes of the grid and does not take into account

any other information from I or J.

Finally we need to update I and extend T . This is straightforward for

the non-chosen centers added to S: for every such non-chosen center v we

add the information from v’s connected component in π to I (in the form of

edges and non-edges).

For every chosen center added to S we query all the incident variables,

thereby extending T . For every newly created consistent extension τ′
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of τ we need to update the set I. Record one-answers as an edge and

zero-answers as two non-edges including the other endpoint of a potential

chosen path, i.e., the chosen center in the adjacent sub-square in the

given direction. Recall that we only consider consistent branches τ′ (as
assignments) and hence we create consistent information sets.

Finally, for every consistent τ′ extending τ, we check whether the

information set I(τ′,σ) traversed the forceable branch ψ of Ti. This can

clearly be done: all variables on ψ have their closest endpoint in S and each

exposed center has information pieces in all four directions. If ψ is indeed

followed, we label the leaf τ′ with a 1. Otherwise, if the forceable branch is

not followed, then we proceed with the next stage.

This completes the description of the creation of the extended canonical

decision tree T for Fdσ. It is straightforward to check that the invariants

hold after every completed stage.

A.8.4 Some Properties of Extended Canonical Decision Trees

In this section we prove two important properties of extended canoncial

decision trees, along with some auxilary lemmas. The first important prop-

erty is that the decision tree T does indeed represent ∨m
i=1
Tidσ. Secondly,

we show that the construction process of T is independent of the choice

of the negations of the preferred values along the paths between chosen

centers. This allows us to focus on long branches that have well-behaved

information sets I.

Before proving these two statements, recall that we postponed the proof

of the claim that if it is possible to each a 1-leaf of Ti, then there is a possible

forcing information J. Let us establish this fact. Observe that at any point

when forming the extended canonical decision tree, the information I

comes from information in π and from queries already done in the decision

tree T with answers τ. Remember that σ includes all the information from

π.

Lemma A.8.1. If there is a 1-branch ψ in Tidσ that is consistent with τ, then
there is a possible forcing information J for ψ.

Proof. Let ψ′ be the branch in Ti that gives rise to ψ. Consider the assign-

ment τ′ to the path variables xP such that the 1-leaf of Tidσ is reached. Let

us find a possible J such that ψ′ is followed.

The information pieces next to chosen centers are simply those given

by τ′. These are, by definition, consistent with τ and can hence be included

in J.
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The information pieces next to non-chosen centers are the relevant

information pieces from π. As all information pieces from π are consistent,

consistency is automatically satisfied for these pieces.

Dropping any non-required piece and all the pieces already in Imakes

J disjoint from I and minimal. Clearly J forces ψ′ to be followed. This

completes the proof of the lemma. �

As an immediate corollary we have that the decision tree T is indeed a

legitimate choice for ϕ(Fdσ).

Corollary A.8.2. The extended canonical decision tree T represents ∨m
i=1
Tidσ.

The creation of the extended canononical decision tree depends on ρ

and π but not, in a serious way, on the negations of the preferred values

along the paths between the chosen centers. The following lemma makes

this intuition precise.

Lemma A.8.3. Let σ1 be obtained from ρ1 and π and σ2 from ρ2 and π where ρ1
and ρ2 pick the same set of centers and fixed values. Assume furthermore that the
only difference between ρ1 and ρ2 is that for each chosen path P there is a bit cP
such that for each grid-edge e on P the preferred values of xe differ by cP in ρ1 and
ρ2. Then the only difference between the extended canonical decision trees of Fdσ1

and Fdσ2
is the labeling of the internal edges.

Proof. This follows by inspection of the procedure for forming the extended

canonical decision tree. The only difference is that variables on chosen

paths in one case are forced by a path and in the other case by two non-edges.

This does not cause any difference in the construction of T as the supports

of the two corresponding sets J1 and J2 are identical by Property 1 of a

possible forcing information. �

This lemma is crucial in our analysis. It allows us to focus on long

branches whose information set I is well-behaved in the following sense.

Definition A.8.4 (Closed branch). Let T be an extended canonical decision

tree. A branch τ in T is closed if the information set I(τ,σ) contains a path

between two chosen centers u, v if and only if the matching game G(τ,σ)
matched u to v.

This slightly overloads the notion “closed” but as the information

pieces given by the answers on a closed branch τ is (essentially) a closed

information set we hope that this causes no confusion. The following

lemma is an immediate consequence of Lemma A.8.3.
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LemmaA.8.5. If the probability that Fdσ needs a decision tree of depth s is at least
q, then the probability that the extended canonical decision tree of Fdσ contains a
closed branch of length at least s is at least 2−sq.

This lemma allows us to only analyze closed branches. The main

advantage of considering closed branches is that the information sets I

have a nice structure. We use the following property throught the proof.

Lemma A.8.6. On a closed branch, after the completion of a stage, I consists of a
closed part on the exposed vertices S jointly with a set of non-edges from chosen
centers not in S towards chosen centers in S.

Proof. The information in I about non-chosen centers in S is from π and

thus by definition closed. Further, because we are on a closed branch, the

set I is also closed on the chosen centers in S. The only other information

pieces in I are non-edges from chosen centers not in S towards chosen

centers in S. �

Lastly we have an auxillary lemma regarding the size of the set of

exposed centers S.

Lemma A.8.7. In each stage at most 8t vertices are added to the set of exposed
vertices S.

Proof. A forceable branchψ is of length at most t as the trees Ti are of depth

at most t. For each variable xe on ψ there are at most 2 chosen centers in

supp(J)∪U if the closest endpoint of xe is chosen and at most 4 non-chosen

centers if the closest endpoint is non-chosen.

When adding supp(J) ∪U to Swe add at most 1 extra center per chosen

center in supp(J) ∪U to S. We conclude that at most 8t vertices are added

to S in a given stage. �

A.8.5 From ρ to ρ∗

We want to bound the number of restrictions ρ (as defined in Section A.4)

that give rise to an extended canonical decision tree T of depth at least s.

In light of Lemma A.8.5 we can focus on T that contain a closed branch τ

of length at least s. Let us fix such a ρ along with the extended canonical

decision tree T and the closed branch τ of length at least s.

The goal of this section is to construct a restriction ρ∗ that is related to ρ

but has fewer live variables. In the following section we then show how

to recover ρ from ρ∗ with a bit of extra information. As ρ∗ has fewer live

variables there are fewer such restrictions and, assuming we require only

little extra information to recover ρ, we thus establish that there are very
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few ρ that cause the extended canonical decision trees to be of depth at

least s.

Recall that an information set γ∗ is closed if for every center v in supp(γ∗)
the set γ∗ contains information in all four directions of v and, furthermore,

γ∗ has an odd number of edges incident to every such v. The idea is to

reduce the number of live variables with the help of a closed information

set γ∗. Consider all variables forced by (ρ,γ∗). Observe that (ρ,γ∗) can be

described by a restriction ρ∗ where all the centers in supp(γ∗) are killed:

negate the values of any preferred variable on any path in γ∗. In the

following we are going to construct a closed information set γ∗ with large

support (linear in s) such that ρ can be recovered from the resulting ρ∗ with

a bit of extra information.

As suggested in the proof outline, we would like to choose γ∗ to be the

union of all the possible forcing information sets used when creating the

long branch τ. Unfortunately this does not work: a possible forcing infor-

mation is not always closed and insisting on a possible forcing information

to be closed creates a dependence between T and the negations of the

preferred values along paths between chosen centers. As such it becomes

difficult to prove the crucial Lemma A.8.5.

So it is not obvious how to guarantee that the possible forcing infor-

mation is closed. What we can do, however, is to close these information

sets afterwe have found a long closed branch τ. We can then take γ∗ to be

the union of these newly closed possible forcing information sets. Let us

proceed by explaining how to close the possible forcing information sets.

As τ is a branch of length s, there is a first stage g such that at the end of

stage g at least s/4 centers are exposed: only variables incident to exposed

centers are queried and each exposed center causes at most 4 queries on

the branch τ. Put different, if we let τg ⊆ τ be the closed path constructed

by the end of stage g, then the set of exposed centers S∗g = S(τg,σ) is for the
first time of size at least s/4. We analyze the event of ever reaching such a

stage g.

Note that |S∗g | < s/4 + 8t by Lemma A.8.7 and g ≤ s/4 as in each stage

at least one center is added to the exposed centers S. For j ∈ [g]we let the

forceable branch of stage j in the decision tree Tij be denoted byψj, let Jj be

the corresponding possible forcing information and τj ⊆ τg be the branch

inT created by the end of stage j. Denote the information set added at stage

j by Ij and let I∗
j
= I∗(τj,σ), or equivalently I∗j = ∪

j

i=1
Ii, be the information

set gathered during the first j stages. In the following we explain how to

extend the information sets Jj into (usually) closed sets γj. Sometimes this

extension may fail to produce a closed set γj but this happens rarely and

hence enough centers are killed in ρ∗ to finish the argument.
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Consider the sets J1, . . . , Jg in order. Initially we set γj = Jj and extend

it as follows. Recall that when we create the extended canonical decision

tree T , in stage j, we add a set Uj of chosen centers to S∗
j−1 = S(τj−1,σ)

that are closest endpoints of variables on ψj. Add all information pieces

in I∗
j−1 incident to a chosen center in Uj to γj. Note that because τg is a

closed branch andUj is disjoint from S∗
j−1, by Lemma A.8.6, all these added

information pieces are non-edges towards chosen centers in S∗
j−1.

We need to close the set γj. Let us consider each center v ∈ supp(γj)
separately. We want to close γj at v, meaning that (1) there are information

pieces in all directions next to v and (2) an odd number of these edges are

present. Note that the non-chosen part in γj is already closed as this part is

closed in Jj. Hence we only need to add information pieces next to chosen

centers and we thus focus on the case when v is a chosen center. We claim

that if v has information pieces in all four directions in γj, then γj is closed

at v: since I∗
j−1 and Jj are consistent (by Property 3) there is an odd number

of edges next to v.

Otherwise, if v has no information piece in some direction(s), add a

non-edge in all but one such direction to γj. In case v already has an odd

number of edges next to v, add another non-edge in the final direction. Else

we need to add an edge to an appropriately selected center in the suitable

sub-square R. At this point we slightly bend the rules and allow to connect

the chosen center v to a non-chosen center in R.

Namely, we add an edge from v to a so-called fresh center in R, unless
there are no fresh centers available. A fresh center is a non-chosen but alive

center that is not a member of S∗g and is not an element of any of the sets

supp(γ1), . . . , supp(γj−1). If we add a fresh center we also add non-edges

from the fresh center in the other three directions, ensuring that γj is closed.

Let us emphasize that we choose which fresh centers to add to γj after the
long branch τg has been constructed. This allows us to ensure that these

centers do not appear in S∗g.
If there is no such fresh center available in R, then we do not add

anything and let γj have a center of even degree. Let us call these centers

bad. This completes the description of the construction of the sets γ1, . . . ,γg.

In the following we want to argue that the union of the different γj is

closed if we disregard the bad centers. We establish this by arguing that

the γj have pairwise disjoint supports.

Lemma A.8.8. For j ≠ j′ it holds that supp(γj) ∩ supp(γj′) = ∅.

Proof. Let us assume that j′ < j. By definition (Property 3) Jj and I
∗
j−1 are

disjoint but their supports may intersect. As I∗
j−1 contains information

pieces in all directions of every center in S∗
j−1 (Invariants 5 and 4), the
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supports of Jj and I
∗
j−1 can only intersect in centers that are not in S∗

j−1.
Because the support of Jj′ was added to the set of exposed centers at the

end of stage j′ we have that supp(Jj′) ⊆ S∗j−1. This implies that supp(Jj′)
does not intersect supp(Jj) ∪Uj as Uj is disjoint from S∗

j−1 by definition.

Further, becauseUj′ is a subset of S
∗
j−1 and supp(Jj)∪Uj is disjoint from

S∗
j−1, we have that Uj′ and supp(Jj) ∪Uj are disjoint. As the support of γj

consist of the support of Jj along with Uj and the added fresh centers, we

conclude that the support of γj and the support of γj′ are disjoint. �

The bad centers are the reason that ρ∗ is a generalized restriction as

defined in Section A.4.3. Before formally defining ρ∗ let us bound the

number of bad centers in the information sets γ1, . . . ,γg.

Lemma A.8.9. The number of bad centers in the information sets γ1, . . . ,γg is
at most O(s/logn).

Proof. Only chosen centers can become bad. For a chosen center in γj to

become bad, each non-chosen center in a neighboring square either occurs

in S∗g or in one of the supports of γi, for i < j.

We claim that

∑
j≤g | supp(γj)| = O(|S∗g |). This is readily verified: when

defining γj we start out with the support being supp(Jj) ∪ Uj and then

enlarge it by atmost a single center per element in the support. LemmaA.8.8

implies in particular that∑
j≤g

��
supp(Jj) ∪Uj

�� = ���⋃
j≤g

supp(Jj) ∪Uj
��� ≤ |S∗g | , (A.1)

and thus the claim follows.

By definition of g and LemmaA.8.7we have that |S∗g | < s/4+8t. Further,
by assumption it holds that t ≤ s and thus |S∗g | +

∑
j≤g | supp(γj)| = O(s).

Finally, every square containsΩ(logn) non-chosen centers and hence there

are at most O(s/logn)many bad centers. �

As mentioned before, closed graphs can be used to define restrictions

with fewer live centers. Let B denote the number of bad centers in the

support of the differentγj and letγ∗ = ∪g
j=1
γj. As eachγj is closed (except at

the bad centers) and, by Lemma A.8.8, they have pairwise disjoint supports

we conclude that γ∗ has at most B bad centers. We define ρ∗ to be the

restriction defined by ρ composed with the information γ∗. As previously

explained, the bad centers cause ρ∗ to be a generalized restriction where

all centers in supp(γ∗) are now dead. We call these the disappearing centers.

By Lemma A.8.9 we have at most B ≤ O(s/logn) bad centers, while at least

|S∗g | ≥ s/4 centers disappear.
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A.8.6 Encoding ρ

We first need to introduce some more notation. Recall that Uj is the set

of closest endpoints of variables on the jth forceable branch ψj that are

chosen centers but not contained in S∗
j−1. We let aj be the number of closest

endpoints of variables on ψj that are also in supp(Jj) ∪ Uj and let bj be

the number of additional centers in γj, i.e., bj = | supp(γj)| − aj. We let

a =
∑g
j=1
aj, define b similarly and let c =

��
supp(I∗g) \ supp(γ∗)

��
be the

number of centers in the support of I∗g that do not appear in the support of

γ∗. The main goal of this section is to prove the following lemma stating

that a restriction ρ that causes the extended canonical decision tree to have

a closed path of length at least s can be encoded using few bits, given ρ∗

and T1, . . . , Tm. Put different, the mapping from ρ to ρ∗ can be inverted

with a bit of extra information. Recall that ∆ is the number of centers in

each sub-square.

Lemma A.8.10. Suppose we are given ρ∗ as well as the decision trees T1, . . . , Tm
each of depth at most t. Then

a log t + b log∆ + c log logn +O(a + b + c)

many bits are needed to encode ρ.

Before diving into the proof of this lemma let us showhow the switching

lemma follows from Lemma A.8.10. For the proof of the switching lemma

we need one further lemma that relates the parameters a,b and c: it is not

so hard to convince oneself that b+c is of orderO(a). Indeed, it was shown

by Håstad [Hås20] that b + c is bounded by 25a.

Lemma A.8.11 ([Hås20]). It holds that b + c ≤ 25a.

Proof of Lemma A.7.2. Let us analyze the probability that a random ρ gives

rise to a closed branch of length at least s. Let m = ∆(n/T )2 be the total

number of centers and recall that k = C logn(n/T )2 is the total number of

live centers.

Let us first count the number of restrictions ρ that give rise to a closed

branch of length at least s. By Lemma A.8.10 this is upper bounded by the

number of ways to choose ρ∗ times ta∆b(logn)cAa+b+c, for some absolute

constantA. The number of ways to choose ρ∗ is5 at most 2
1+rn ( m

k−(b+a)
)
n2B

,

where 2
rn

is the number of possibilities for the choice of the fixed and

preferred variables once the choice of centers is fixed, and B is the number

of bad centers.

5
We sum the binomial coefficient over possible values of a + b but this sequence is

exponentially increasing and thus dominated by twice the maximal term.
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In order to bound the probability that a restriction gives rise to a closed

branch of length at least s we also need to count the number of restrictions

ρ. We can count these restrictions in a similar manner as we counted

the restrictions ρ∗: there are 2
rn

(m
k

)
many such restrictions. Thus the

probability of having a closed branch of length at least s is bounded by

ta∆b(logn)cAa+b+c21+rn
( m
k−(a+b)

)
n2B

2
rn

(m
k

) . (A.2)

The quotient of the the binomial coefficients can be bounded by

a+b−1∏
i=0

k − i
m + i − k ≤

(
k

m − k

)a+b
=

(
C logn

∆ − C logn

)a+b
≤ ∆−(a+b)(logn)a+bAa+b , (A.3)

for some different constant A. We conclude that the probability of a closed

branch of length at least s appearing in the extended canonical decision

tree is at most

∆−a(logn)a+b+ctaAa+b+cn2B
, (A.4)

for a new constant A. Applying Lemma A.8.11 and modifying A again we

can bound this by

∆−a(logn)26ataAa = (A(logn)26t∆−1)an2B
. (A.5)

Finally, as the number of exposed centers is at most a + b + c and the

number of queried variables is at most four times the number of exposed

centers we have a + b + c ≥ s/4 and hence a ≥ s/104 by Lemma A.8.11. By

Lemma A.8.9 we have that n2B ≤ 2
O(s)

and we can thus incorporate this

factor into the constant A. This concludes the analysis of the probability of

the event that a closed branch of length at least s appears in the extended

canonical decision tree. Lemma A.7.2 now follows from Lemma A.8.5 and

a final modification of the constant A. �

The rest of this section is dedicated to the proof of Lemma A.8.10. On a

very high level, we want to remove γ∗ from ρ∗. We do this in stages, where

in each stage we remove a single γj from ρ∗ by utilizing the decision trees

T1, . . . , Tm and reading a bit of extra information. Let us introduce some

notation and note a simple observation in order to give a bit more detailed
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proof outline. For convenience let I∗
0
= ∅, let γ∗≥j = ∪

g

i=j
γi, and let ρ∗≥j be

the restriction obtained from composing ρ with the information γ∗≥j, i.e.,

ρ∗≥j forces the same variables as (ρ,γ∗≥j) forces.
Recall that the possible forcing information Jj alongwith I∗

j−1 determines

all variables on the forceable branch ψj of stage j. As γj extends Jj we

observe that (ρ, I∗
j−1 ∪ γj) traverses ψj. Further, as γ∗≥j extends γj and

is consistent with I∗
j−1, it also holds that (ρ, I∗

j−1 ∪ γ
∗
≥j), or equivalently

(ρ∗≥j, I∗j−1), traverses ψj. This observation allows us to pursue the following

high level plan.

We proceed in stages j = 1, . . . ,g. At the beginning of each stage j we

assume that we know the restriction (ρ∗≥j, I∗j−1). Note that because I∗
0
= ∅

and ρ∗≥1 = ρ∗, we have that (ρ∗≥1, I
∗
0
) forces the same variables as ρ∗ and

we hence have the necessary information to start at stage j = 1. By above

observation the restriction (ρ∗≥j, I∗j−1) traverses the forceable branch ψj. Let
us assume for now that ψj is the first 1-branch traversed, which allows

us to identify ψj for free. This branch can in turn be used to identify a

good fraction of γj: as ψj is of length at most twe only need to spend log t

bits per variable on ψj forced by Jj to identify the corresponding closest

center that disappeared. To find the remaining elements of γj, along with

its graph structure, we use some additional external information. This lets

us “remove” γj from ρ∗≥j to obtain ρ∗≥j+1. Before we can proceed with stage

j + 1 we also need to recover Ij. As a good fraction of the support of Ij
is already identified by γj we can again use some external information to

obtain the final missing pieces.

Unfortunately there are some complications. Recall that whenwe closed

up the information sets γj we potentially added information pieces to γj
that correspond to paths between chosen and non-chosen centers. Such

information pieces are not allowed in a potential forcing information Jj. So

it may well be that the first 1-branch traversed by (ρ∗≥j, I∗j−1) is different from
ψj. In order to find the correct forceable branch we introduce signatures.

Definition A.8.12 (signature). Let v be a center in the support of γj. The

signature of any disappearing center v consists of 9 bits. The first bit is

1 iff v is a chosen center. For each of the four directions there is a bit

indicating whether v is the closest endpoint of a variable in this direction

on the forceable branch ψj. For each of the four directions there is also a

bit indicating whether there is an information piece in this direction in Jj.

Remark: Note that the stage j, although mentioned in the definition, is not
part of the signature (as it was in [Hås20]). This change is mandated by our

desire to get a tighter bound which requires a smaller signature.
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By Lemma A.8.8 the supports of two distinct information sets γj and

γj′ are disjoint and hence each center in the support of γ∗ has a unique

signature. Also, recall that Jj determines all variables on the forceable

branch ψj that are not determined by I∗
j−1. Hence every variable on ψj that

is not determined by I∗
j−1 has a closest endpoint with a signature.

As elaborated previously we use signatures to rule out that a candidate

1-branch is equal to the forced branch ψj. Let us define what it means for a

signature to be in conflict with a 1-branch and an information set I. To this

end observe that a chosen center v along with its signature defines a partial

assignment to the incident path variables: the variables in the domain of

the partial assignment are all variables in the directions in which v is the

closest endpoint of some variable on the forceable branch (according to

the first set of four bits) and these variables take values as indicated by the

second set of four bits.

Definition A.8.13 (conflict). Let I be an information set, ψ be a branch and

E be a set of tuples (v, sign) each consisting of a center v along with the

signature sign of v. The set E is in conflictwith ψ and I iff either

1. there is a tuple (v, sign) ∈ E such that the directions in which ψ has

variables whose closest endpoint is v do not agree with sign, or

2. the partial assignment on chosen path variables obtained from I

jointly with the assignments defined by the signatures (v, sign) ∈ E,
where v is a chosen center and there is a variable on ψ whose closest

endpoint is v, is not consistent.

The following lemma states that if a set of signatures is not in conflict,

then we have indeed identified the jth forceable branch ψj. This is the

central lemma of the reconstruction process.

Lemma A.8.14. Let E be the set of tuples (v, sign) where v ∈ supp(γ∗≥j) and
sign is the signature of v. If ψ is the first 1-branch traversed by (ρ∗≥j, I∗j−1) such
that E is not in conflict with I∗

j−1 and ψ, then ψ is the jth forceable branch ψj.

Proof. We need to establish that E is in conflict with I∗
j−1 and all branches

ψ before ψj. Suppose otherwise and let us construct a possible forcing

information Jj that could have been used in stage j of the construction of

the extended canonical decision tree to force the branch ψ.

On the non-chosen centers the set Jj contains the pieces of π needed to

force all variables on ψ.

On the chosen centers the set Jj consists of information pieces as given by

the partial assignments defined by signatures (v, sign) ∈ E such that there

is a variable on ψ whose closest endpoint is v. These information pieces
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are consistent with I∗
j−1 as E is not in conflict with I∗

j−1 and ψ. Furthermore,

these force the input to traverse ψ as these information pieces are the same

as used in γ∗≥j. �

Before we describe the reconstruction procedure in detail we need a

technical definition. Let I∗−
j−1 be I

∗
j−1 except that we remove the information

pieces that have at least one of their endpoints in supp(γ∗≥j). Furthermore,

let I−
j
be Ij with the same type of pieces taken away. The removed pieces

are simple to describe. Recall that S∗
j
= ∪j

i=1
S(τi,σ) is the set of exposed

centers at the end of stage j.

Lemma A.8.15. An information piece in I∗
j−1 that is from a center in supp(γ∗≥j)

is in the form of a non-edge from a chosen center not in S∗
j−1 in the direction of a

chosen center in S∗
j−1.

Proof. According to Lemma A.8.6 the information set I∗
j−1 consists of a

closed graph on S∗
j−1 jointly with some non-edges from chosen centers not

in S∗
j−1. Also, by Property 3, all information sets Jj′ with j′ ≥ j are pairwise

disjoint with I∗
j−1.

When extending Jj′ to γj′ we add the set Uj′ to the support, which may

intersect with the support of I∗
j−1 but is disjoint from S∗

j−1. Also, we add

the fresh centers to the support but these are by definition disjoint from

S∗g ⊇ S∗j−1. Hence no γj′ with j′ ≥ j can intersect the closed part of I∗
j−1. The

statement follows. �

Hence very few information pieces are in I∗
j−1 \ I

∗−
j−1. Furthermore, these

information pieces are in some sense redundant – the set γ∗≥j contains the
removed information pieces from I∗

j−1.

Lemma A.8.16. Any variable forced by (ρ∗≥j, I∗j−1) is also forced by (ρ∗≥j, I∗−j−1).

Proof. By Lemma A.8.15 the pieces removed from I∗
j−1 are next to centers

that disappear in ρ∗≥j. As the information piece is a non-edge in both I∗
j−1

and γ∗≥j it is forced to the same value. �

Furthermore when considered as assignments on the path variables,

even though we do not know the other endpoint we know that a particular

path variables is 0. This implies that I∗
j−1 and I∗−

j−1 are equally powerful

when considering consistent values of path variables.

We can finally explain the reconstruction procedure. Throughout the

procedure we maintain the following objects. A counter j of the current

stage to be reconstructed, the restriction ρ∗≥j, the information set I∗−
j−1, the

exposed centers S∗
j−1, and a set E of (prematurely identified) disappearing
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centers along with their signatures. Initially we set j = 1, ρ∗≥1 = ρ∗, and
S∗
0
= I∗−

0
= E = ∅. Let us formally define the reconstruction process.

1. Find the next 1-branch ψ traversed by the information (ρ∗≥j, I∗−j−1).

2. If ψ and I∗−
j−1 is in conflict with E, then go to Step 1.

3. Read a bit b to determine if there are more disappearing centers to

be found as the closest endpoint of a variable on ψ.

4. If b = 1, then we read an integer i of magnitude at most t. This iden-

tifies the closest endpoint v of the ith variable on ψ as a disappearing

center. Read the signature sign of v and add (v, sign) to E. If E is in

conflict with ψ and I∗−
j−1, then go to Step 1. Otherwise repeat Step 3.

5. If b = 0, thenwe have found the forceable branch. Read some external

information to determine γj and I
−
j
(details below). Update ρ∗≥j to

ρ∗≥j+1, I
∗−
j−1 to I

∗−
j

and S∗
j−1 to S

∗
j
, remove all closest endpoints ofψ from

E, and set j = j + 1. If |S∗
j
| ≥ s/4, then terminate. Otherwise go to

Step 1.

Recall that each exposed center leads to atmost 4 queries in the extended

canonical decision tree and thus if there is a branch of length s, then this

gives rise to a set of exposed centers S∗g of size at least s/4.
Let us note that for each variable identified on the forceable branch we

have the signature of its closest endpoint as each such center belongs to

E. Also, once we identified I∗−
j

it is straightforward to recover the set of

exposed centers S∗
j
.

By LemmaA.8.14 andLemmaA.8.16we indeed identify the jth forceable

branch ψj in stage j. All that is left is to explain how to recover γj and I
−
j
.

We start with the reconstruction of γj. We identified all the closest

endpoints of variables on ψj and we know, by their signature, in which

directions they need another center as the other endpoint of an edge. We

read the identity of these other endpoints at a cost6 of at most log∆ for each

center. This identifies Jj along with some non-edge information pieces next

to chosen centers in Uj that are not contained in supp(Jj). To finalize the

description of γj we, unless a center is bad, read the identity of the unique

fresh centers used to make γj closed. This is done at a cost of log∆ for each

such center. Having identified γj we turn to I−
j
. We first have a bit for each

element in γj to indicate whether it is also an element of I−
j
.

6
It might be the case that some of these centers were found previously and are part of E

or that also the other endpoint is uniquely defined by occurring variable. In either case the

cost, including the signature isO(log t)which is bounded by log∆.
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Recall that, by definition, any additional center in supp(I−
j
) does not

belong to supp(γ∗≥j+1). Thus any such center is still alive in ρ∗≥j and can

hence be identified using at most log logn + log 1.01C many bits as we

know the sub-square to which it belongs.

What remains is to reconstruct the structure of I−
j
. Let us first reconstruct

the non-chosen centers. For each non-chosen center in Jj, using O(1) bits,
we find out the size of the connected component in π and the directions of

each edge. Then we identify the other endpoint of each such edge using

log logn + log 1.01Cmany bits.

For the chosen centers we can again discover the graph part with

O(1) bits per center for structure and an integer of magnitude 1.01C logn

for the identity. The non-edges not in supp(γ∗≥j) are also reconstructed

using log logn + log 1.01C bits for the identity and O(1) bits per center for
direction.

Finally, for any center in γj we have 4 bits to describe whether the piece

of information in the form of a non-edge in any direction should be added

to I∗−
j
.

This concludes the description of the reconstruction and we need to

sum up the external information needed.

Recall that aj is the number of disappearing centers that are discovered

through being the closest endpoint of a discovered variable and are part

of ψj and that bj is the number of additional centers in γj. Furthermore

let cj be the number of centers needed to be discovered in I−
j
after γj was

discovered. As before we let a =
∑g
j=1
aj and define b and c similarly. The

following summarizes the amount of external information needed.

• The disappearing centers that are discovered as closest endpoints

contribute a log tmany bits.

• The other disappearing centers contribute at most b log∆ bits (or less

as discussed in Footnote 6).

• The signatures contribute at most (a + b) log(A) many bits for a

constant A: signatures are only needed for disappearing centers.

• The centersdiscovered tobepart of I contribute c
(
log 1.01C + log logn

)
bits.

• The graph structure of γ∗ and I as well as the information which

elements of γj are included in Ij contributes a factor (a + b + c) logB,
for some constant B.
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• Throughout reconstruction at most s + 8t + s/4 bits b are read. This

follows aswe can have atmost s+8t bits that are 1 (as each time adisap-

pearing variable is discovered, and this is bounded by Lemma A.8.7)

and atmost s bits that are 0 (as a stage is ended each time and g ≤ s/4).

As the number of exposed centers is at most a + b + c and the number

of queried variables is at most 4 times the number of exposed centers, we

have that a + b + c ≥ s/4. As t = O(s), we see that the final point requires

at most O(a + b + c) bits. The lemma follows.

A.9 The multi-switching lemma

The purpose of this section is to prove the multi-switching lemma, restated

here for convenience.

Lemma A.7.5 (Multi-switching Lemma). There are constants A, c1, and c2
such that the following holds. Consider formulas Fj

i
, for j ∈ [M] and i ∈ [mj],

each associated with a decision tree of depth at most t and let Fj = ∨mj
i=1
F
j

i
. Let σ be

a random full restriction from the space of restrictions defined in Section A.4. Then
the probability that the number of live variables in each center is in the interval
[.99C logn, 1.01C logn] and (Fjdσ)Mj=1 cannot be represented by an ` common
partial decision tree of depth at most s is at most

Ms/` (A(logn)c1t∆−1)s/c2 .

The proof of Lemma A.7.5 follows very much the proof of Lemma A.7.2.

The strategy of the proof is essentially as follows.

If Fj is not turned in to a decision tree of depth `, find the branch of in the

extended canonical decision tree of length at least ` and put the variables

on this branch in the common decision tree. Query those variables and

some extra variables and recurse.

We again take any ρ for which the lemma fails and with the aid of the

formulas we transform it in to ρ∗. This mapping can later be inverted by

the use of some extra information. One complication to handle is that the

answers to the variables found on the long branch in the extended decision

tree of Fj and the the answers on the long branch in the common decision

tree to the same variables are different. This leads to the more complicated

game analyzed in Section A.3.1.

The common decision tree must consider all the Fjs and once such a

formula becomes true we need to consider other formulas. As we know
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from Lemma A.7.2 most Fj can be represented by shallow decision trees

and those we can simply ignore. The factorMs/`
in our bounds comes from

all possible ways of choosing s/` formulas that do not turn in to trees of

depth at most `. The high level idea to create a common canonical decision

tree as follows.

• Set j = 1, 2 . . .M.

• If Fj is represented by a depth ` decision tree under the restriction σ

jointly with the answers so far in the common decision, proceed with

next j.

• Otherwise create the extended canonical decision tree of Fj. Query

the variables on the long branch in the common decision tree and

also some extra variables. Repeat the step with the same j and these

extra answers from the common decision tree.

The extended canonical decision tree is extended in slightly different

compared to the standard case, but we keep the same name hoping no

confusion arrives.

If our set of formulas does not allow a ` common partial decision tree

of depth s some branch of the above procedure queries at least s variables.

We use this to create a generalized restriction ρ∗ exactly as in the standard

switching lemma.

We have a set of exposed vertices S that starts out empty and we keep

adding vertices to S. Nothing is ever removed. In particular, except for the

first formula processed we already have some elements in S. We also have

a set of information pieces which, when we start processing Fj contains

pieces from π and answers from the common decision tree on path next

to chosen centers. We let a “round” denote the processing of a specific Fj.

Each round consists of a number of stages similar to the single formula

switching.

The extended canonical decision tree for Fj follows closely the extended

canonical decision tree in the standard case. We find the next forceable

branch and forcing information J
j

i
and we expose all vertices in its support.

The chosen centers that are exposed are now the simple moves of the

adversary in the game in Section A.3.1 and we expose also the vertices

picked by P.

To find out whether the forceable branch is followed we get information

sets I
j

i
consisting of pieces from π and answers from the decision tree of Fj.

Of course we also here record answers in the decision tree as edges or two

non-edges.
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We follow this approach until ` new centers have been exposed during

the processing of Fj. We know that this happens as Fjdσ cannot be computed

by a decision tree of depth `.

Once we have this long branch in the decision tree for Fj we ask all

variables on this branch in the common decision tree. We now compare

the answers to variables which go between one exposed center and one

non-exposed center in the long branch in the decision tree for Fj and in the

common decision tree. If these differ then this edge is chosen as an active

edge in the completion move of the adversary in the grid game. As values

in both decision trees are locally consistent the number of edges they differ

at next to any connected component is even and thus it is a legitimate move

for the adversary.

We now also expose the nodes in the response of P and ask all question

next to these nodes in the common decision tree. These terminates the end

of a round.

Note that at the end of this round the available information pieces

are given by the answers from the common decision tree and π. The

information pieces on the chosen centers used in the m-extended decision

tree for Fj are now forgotten. These answers were only used to find the

long branch in that decision tree.

Clearly the above process creates an ` partial common decision tree and

we need to analyze the probability that we get a tree of depth at least s.

As in the standard switching lemma case, the creation of the common

decision tree remains the same if we negate the answers, simultaneously

in both the extended decision tree and the common decision tree, and the

suggested values on the paths between chosen live centers that are exposed.

We state this as a lemma.

Lemma A.9.1. Let σ1 be obtained from ρ1 and π and σ2 from ρ2 and π where ρ1
and ρ2 pick the same set of centers and fixed values. Assume furthermore that the
only difference between ρ1 and ρ2 is that for each chosen path P there is a bit cP
such that for each grid-edge e on P the preferred values of xe differ by cP in ρ1
and ρ2. Then the only difference between the common decision decision trees of
(Fjdσ1

)M
j=1

and (Fjdσ2
)M
j=1

is the labeling of the internal edges.

Next we need to define the notion of a closed path in the common

decision tree. Informally we want any answer between an exposed center

and a non-exposed center to be 0. As we query variables both in the

decision tree for Fj and the common decision tree let us be more specific.

We require the following questions to have answers 0.
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• At any stage in the processing of Fj an edge between a center exposed

in this stage and a non-exposed center. This is the answer in the

m-extended decision tree.

• At the end of the round any answer between a center exposed in the

round and a non-exposed center. This is the answer in the common

decision tree.

Note that an edge of the first type, if it remains an edge between an exposed

center and a non-exposed center also after the completion of the round,

then the answer is 0 also in the common decision tree. Indeed if the

answers differ in the decision tree for Fj and the common decision tree, the

non-exposed node is exposed by the rules of the game.

Lemma A.9.2. If the probability that (Fjdσ)Mj=1 needs a ` partial common decision
tree of depth s is at least q, then the probability that this happens with a closed
execution of length at least s is at least 2−sq.

Proof. We just need to show that there are locally consistent assignments

that gives the required values. By the rules of our combinatorial game,

at each stage of the game each connected component is of even size and

hence by Lemma A.3.3 we can get border values that are all zero. As each

connected component of the complement is of even size we can make the

assignment also locally consistent.

Similarly at the end of round. An active edge corresponds to a value

that is one in the common decision tree (as it is zero in the Fj decision tree

and they are different). The condition that number of active edges next to

any component is even is implied by local consistency. �

Once we have set up the machinery the proof parallels the proof in

the standard switching case. We need to verify that it works but no new

complications arise.

Using fresh centers we again extend J
j

i
to make them closed forming

information sets γ
j

i
. There might be O(s/logn) centers for which this

process fails and this gives O(s/logn) bad centers as in the standard

switching lemma. The restriction ρ∗ is obtained by applying these γ
j

i
to ρ.

We need to specify the information needed to invert this mapping. Each

round is very similar to the standard switching of a single formula and we

use the following information.

• The identities of which Fj are processed.

• The inverting information for each single formula, Fj, as used in the

inversion process in the standard switching lemma.
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• The difference in values of variables queried in the decision tree for

Fj and the same variables in the common decision tree.

• The identities of the centers exposed at the end of each round.

The inversion process of each round runs completely parallel to the

inversion for the standard switching lemma. The information of which Fj

to process is here crucial as ρ does force many Fjs to constants. We recover

the information pieces used in the single formula process. At the end of

the round we use the knowledge of the differences to turn this into the

information pieces for the common decision tree. We recover the identities

of vertices exposed at the end of each round and add these information

pieces to our information set before starting the next round.

For the final calculation, as in the standard case, there is a profit of

Ω(log(∆) − log logn − log t) bits for each center discovered as the closest

endpoint of a variable on the forceable branch. This corresponds to the

simple moves of the adversary in the combinatorial game.

All other exposed centers are retrieved at cost O(log logn). The key to

the analysis is Lemma A.3.12 that establishes that a constant fraction of all

moves are profitable.

Of the extra information needed, only the identities of the processed

formulas cannot be absorbed into the constant A or in polylogarithmic

factors, and it gives the first factor of the lemma.

A.10 Conclusion

Of course our bounds are not exactly tight so there is always room for

improvement. We could hope to get truly exponential exponential for

a bounded depth Frege proof, i.e., essentially bounds 2
n
where n is the

number of variables. Since any formula given by a small CNF has a

resolution proof this is the best we could hope for. As our formulas have

O(n2) variables we are off by a square. If one is to stay with the Tseitin

contradiction one would need to change the graph and the first alternative

that comes to mind is an expander graph. We have not really studied this

question but as our current proof relies heavily on properties of the grid;

significant modifications are probably needed.

This brings up the question for which probability distributions of

restrictions it is possible to prove a (multi) switching lemma. Experience

shows that this is possible surprisingly often. It seems, however, that it

needs to be done on a case by case basis. Probably it is too much to ask for a

general characterization but maybe it could be possible to prove switching

lemmas that cover several of the known cases.
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Perfect Matching in Random
Graphs is as Hard as Tseitin

Per Austrin and Kilian Risse

Abstract

We study the complexity of proving that a sparse random regular

graph on an odd number of vertices does not have a perfect match-

ing, and related problems involving each vertex being matched some

pre-specified number of times. We show that this requires proofs of

degree Ω(n/logn) in the Polynomial Calculus (over fields of charac-

teristic ≠ 2) and Sum-of-Squares proof systems, and exponential size

in the bounded-depth Frege proof system. This resolves a question by

Razborov asking whether the Lovász-Schrĳver proof system requires

nδ rounds to refute these formulas for some δ > 0. The results are

obtained by a worst-case to average-case reduction of these formu-

las relying on a topological embedding theorem which may be of

independent interest.
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B.1 Introduction

Proof complexity is the study of certificates of unsatisfiability, initiated

by Cook and Reckhow [CR79] as a program to separate NP from coNP.
The main goal of this program is to prove size lower bounds on proofs of

unsatisfiability of logical formulas. This is a daunting job – indeed we are

far from proving general size lower bounds on certificates of unsatisfiability.

As an intermediate step we study proof systems with restricted deductive

power and prove size lower bounds for such restricted certificates of

unsatisfiability. The most studied such proof system is resolution [Bla37]

which is fairly well understood by now, see e.g., the proof complexity book

by Krajíček [Kra19].

But resolution is by far not the only proof system. A closely related and

quite general proof system is the bounded depth Frege proof system [CR79]

which manipulates propositional formulas of bounded depth. While we

have some results for the bounded depth Frege proof system, in this

introduction we instead focus on two other systems as these were the

primary motivation behind our work. These are the two proof systems

Polynomial Calculus (PC) [CEI96; ABRW04] and Sum-of-Squares (SoS)

[Sho87; Par00; Las01]. These proof systems do not rely on propositional

logic, like resolution or Frege, but rather on algebraic reasoning and are

examples of so-called (semi-)algebraic proof systems (see e.g. [GHP02]).

Both PC and SoS provide refutations of (satisfiability of) a set of polyno-

mial equations Q = {qi(x) = 0 | i ∈ [m]} over n variables x1, . . . , xn. In the

case of PC, these polynomials can be over any field F (finite or infinite), and

in the case of SoS, these polynomials are overR. A key complexity measure

of a PCF or SoS refutation ofQ is its degree, defined as themaximumdegree

of any polynomial appearing in the refutation. The degree of refuting Q
in PCF or SoS, which we denote by Deg

PCF
(Q) and Deg

SoS
(Q) respectively,

is the minimum degree of any PCF or SoS refutation of Q. For Boolean

systems of equations, meaning that Q contains the equations x2
i
−xi = 0 for

all i ∈ [n], strong enough degree lower bounds imply size lower bounds

in both PCF [CEI96; IPS99] and SoS [AH19], where the size of a refutation

is the total number of monomials appearing in it. For finite F the proof

system PCF is incomparable to SoS [Raz98; Gri01; GHP02] whereas SoS can

simulate PCR by the recent result of Berkholz [Ber18].

There is by now a large number of lower bound results for both PC

[Raz98; IPS99; BGIP01; AR01; GL10;MN15], and SoS [Gri01; Sch08; MPW15;

BHK+16; KMOW17; AH19; Pot20; AGK20], with SoS in particular having

received considerable attention in recent years due to its close connection

to the Sum-of-Squares hierarchy of semidefinite programming, a powerful

“meta-algorithm” for combinatorial optimization problems [BS14].
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In this paper we study the power (or lack thereof) of these proof systems

when it comes to refuting the perfect matching formula PM(G) defined
over sparse random graphs G = (V ,E) on an odd number of vertices. This

formula can be viewed as a system of linear equations over R on a set

of Boolean variables: for each edge e ∈ E there is a variable xe ∈ {0, 1}
(indicating whether the edge is used in the matching) and for each vertex

v ∈ V there is an equation

∑
e3v xe = 1. Apart from being a natural well-

studied problem on its own, the perfect matching formula is interesting

because of its close relation to two otherwidely studied families of formulas,

namely the pigeonhole principle (PHP), and Tseitin formulas.

PHP asserts thatm pigeons cannot fit in n < m holes (where each hole

can fit at most one pigeon). This can be viewed as a bipartite matching

problem on the complete bipartite graph withm + n vertices, where each

vertex on the large side (with m vertices) must be matched at least once,

and each vertex on the small side (with n vertices) can be matched at most

once. There are many variants of PHP (see e.g. the survey [Raz02]), and the

one closest to the perfect matching formula is the so-called “onto functional

PHP”, in which each vertex on both sides must be matched exactly once

(rather than at least/at most once). Equivalently, this formula is simply

the perfect matching formula on a complete bipartite graph with n +m
vertices. While most variants of PHP are hard for PC [Raz98; MN15], the

onto functional PHP variant is in fact easy to refute in PC over any field

[Rii93]. In SoS, all variants of PHP are easy to refute [GHP02].

The Tseitin formula over a graph G claims that there is a subgraph of

G such that each vertex has odd degree. As the sum of the degrees of

a graph is even, this formula is not satisfiable if G has an odd number

of vertices. In contrast to the PHP, the Tseitin formula is (almost) always

hard: for PCF over fields F of characteristic distinct from 2 [BGIP01; AR01]

and SoS [Gri01] these formulas require linear degree if G is a good vertex

expander. We cannot hope to prove degree lower bounds over fields of

characteristic 2 as the constraints become linear and we can thus refute

the Tseitin formula using Gaussian elimination. As the perfect matching

formula PM(G) implies the Tseitin formula, PC over fields of characteristic

2 can also easily refute PM(G) for Gwith an odd number of vertices.

In summary, the perfect matching formula lies somewhere in between

PHP and Tseitin, of which the former is easy to refute in SoS (and easy

to refute in PC in the onto functional variant), and the latter is hard to

refute in SoS (as well as in PC with characteristic ≠ 2). Hence it is natural

to wonder whether SoS or PC requires large degree to refute the perfect

matching formula over non-bipartite graphs.

The case of perfect matching in the complete graph on an odd number of
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vertices (sometimes called the “MOD 2 principle”) is well-understood in

both PC [BGIP01] and SoS [Gri01; Pot17], requiring degree Ω(n) in both

proof systems unless the underlying field of PC is of characteristic 2. For

sparse graphs, less is known. Buss et al. [BGIP01] obtained worst-case

lower bounds in PC showing that there exist bounded degree graphs on n

vertices requiringΩ(n) degree refutations. This is obtained by a reduction

from Tseitin formulas and while the work of Buss et al. predates the current

interest in the SoS system, it is not hard to see that the same reduction yields

a similarΩ(n) degree lower bound for SoS (details provided in Section B.7).

However, for random graphsG little is known about the hardness of the

perfect matching formula and, e.g., Razborov [Raz17] asked whether it is

true that the Lovász-Schrĳver hierarchy [LS91] (which is weaker than SoS)

requires nε rounds to refute the perfect matching principle on a random

sparse regular graph with high probability.

B.1.1 Our results

We show that indeed the perfect matching principle requires large size

on random d-regular graphs (for some constant d) in the Sum-of-Squares,

Polynomial Calculus, and bounded-depth Frege proof systems. Our results

apply more generally to Tseitin-like formulas defined by linear equations

over the reals induced by some graph, so let us now define these.

For a graphG = (V ,E) and integer vector b ∈ ZV , consider the system of

linear equations over the reals having a variable xe for each e ∈ E, and the

equation

∑
e3v xe = bv for each v ∈ V . Let Card(G,b) denote this system

of linear equations along with the Boolean constraints xe ∈ {0, 1} (viewed

as a quadratic equation x2e − xe = 0) for each edge – in Section B.2.2 the

encoding is discussed in more detail. Note that Card(G, ®1) corresponds to
the perfect matching problem inG and in general Card(G,b) can be viewed

as asserting that G has a “matching” where each vertex is matched exactly

bv times. Note that whenever

∑
v∈V bv is odd, Card(G,b) is unsatisfiable

(since the equations imply

∑
v bv = 2

∑
e xe which is even)1.

We focus on the special case of Card(G,b) where G is d-regular and

b = ®t = (t, t, . . . , t) is the all-t vector for some t ∈ [d]. If in this scenario both

n and t are odd (implying d is even) then as observed above Card(G,®t) is
unsatisfiable. On the other hand if n is odd and t is even then Card(G,®t) is

1
As pointed out to us by Aleksa Stanković, decidability of Card(G,b) is in polynomial

time: starting with the all 0 assignment, iteratively build up an assignment that may match

some vertices fewer times than required. If there is a satisfying assignment, then there is

always an augmenting path along which the current assignment can be improved, i.e., more

edges set to 1, by a similar argument as for matchings [Ber57]. Such a path can be found in

polynomial time by an adaptation of the blossom algorithm [Edm65].
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always satisfiable (because suchG admits a 2-factorization). The remaining

case when n is even may be either satisfiable or unsatisfiable, but for a

random d-regular G with d ≥ 3, Card(G,®t) will be satisfiable with high

probability (because such G can be partitioned into perfect matchings with

high probability).

If we let FD denote a Frege system restricted to depth-D formulas (see

Section B.2.1), then our main theorem is as follows.

Theorem B.1.1. There is a constant d0 such that for all constants d ≥ d0 and
t ∈ [d], the following holds asymptotically almost surely over a random d-regular
graph G on n vertices.

1. Deg
PCF
(Card(G,®t)) = Ω(n/logn) for any fixed field F with char(F) ≠ 2.

2. Deg
SoS
(Card(G,®t)) = Ω(n/logn).

3. There is a δ > 0 such that SizeFD(Card(G,®t)) = exp

(
Ω(nδ/D)

)
, for all

D ≤ δ logn

log logn
.

The interesting case of the above theorem is when both n and t are odd

so that Card(G,®t) is unsatisfiable; in the other cases Card(G,®t) is satisfiable
with high probability and the lower bounds are vacuous.

By known size-degree tradeoffs for Polynomial Calculus [IPS99; CEI96]

and Sum-of-Squares [AH19] the degree lower bounds in Theorem B.1.1

imply near-optimal size lower bounds of exp

(
Ω(n/log2 n)

)
.

Apart from the perfect matching formula, another special case of

Card(G,®t) is the so-called even coloring formula, introduced by Mark-

ström [Mar06], which is the case when t = deg(v)/2. An open problem

of Buss and Nordström [BN20, Open Problem 7.7] asks whether these for-

mulas are hard on spectral expanders for Polynomial Calculus over fields

of characteristic ≠ 2. Theorem B.1.1 partially resolves this open problem,

establishing that it is hard on random graphs (rather than on all spectral

expanders). See Section B.6 for some further remarks on what parts of our

proof use the randomness assumption.

We will give a more detailed overview of how the results are obtained

in Section B.1.3 below, but for now let us mention that we obtain them using

embedding techniques, as introduced to proof complexity by Pitassi et

al. [PRST16] (see discussion of related work in Section B.1.2). In particular

for, say, the SoS lower bound, our starting point is the Ω(n) worst-case
degree lower bound in sparse graphs, and we then prove that these hard

instances can be embedded in a random d-regular graph in such a way that

the hardness of refuting the formula is preserved.
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To achieve this, one of the components we need is a new graph embed-

ding theoremwhichmay be of independent interest. Very loosely speaking,

we show that any bounded-degree graph with O(n/logn) edges can be

embedded as a topological minor in any bounded-degree α-expander on n

vertices and sufficiently many edges. In addition, for our application to

perfect matching (and more generally the Card(G,®t) formulas), we need to

be able to control the parities of the path lengths used in the topological

embedding, and we show that as long as every large linear-sized subgraph

contains an odd cycle of lengthΩ(1/α), this is indeed possible.

Somewhat informally, we prove the following.

Theorem B.1.2 (Informal statement of Theorem B.3.3). Let G be a constant
degree α-expander on n vertices. If H is a graph with at most εn

logn
edges and

∆(H) � α2 · d(G), then G contains H as a topological minor. Furthermore, if all
large vertex induced subgraphs of G contain an odd cycle of lengthΩ(1/α), then
one can choose the parities of the length of all the edge embeddings in the minor.

This generalizes various classical results of a similar flavor (e.g. [KR96;

KN19; CN19; Kri19]). See the next subsection for a discussion comparing

these (and other) existing embedding results to ours.

As a further illustration of the applicability of this theorem we partially

resolve a question of Filmus et al. [FLM+13]. They prove that with high

probability for random d-regular graphs G, where d ≥ 4, PC requires space
Ω(
√
n) to refute the Tseitin formula, and conjecture that PC in fact requires

spaceΩ(n). On the other hand, Galesi et al. [GKT19] considered it plausible

that the Ω(
√
n) bound is optimal. We (almost) resolve this question by

provingΩ(n/logn) space lower bounds for the Tseitin formula defined on

vertex expanders, but only of large enough (constant) average degree.

Theorem B.1.3. For all α > 0 there is a d0 such that the following holds. Let G
be a bounded degree α-expander on n vertices of average degree at least d0. Then
over any field F it holds that PCF requires spaceΩ(n/logn) to refute the Tseitin
formula defined on G.

Let us mention that the constant hidden in the lower boundΩ(n/logn)
depends on the maximum degree of G. Unlike Theorem B.1.1, vertex

expansion is sufficient and we require no randomness. This lower bound

is obtained by embedding a worst-case instance, due to Filmus et al., into a

vertex expander. We provide more details in Section B.6.1.

B.1.2 Related work

Proof Complexity Lower Bounds Using Embedding Techniques There

are a few other papers that employ embedding techniques in proof com-
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plexity [PRST16; GI19; GIRS19; IRSS19], though none of these use the

embedding techniques in connection with algebraic systems like PC or SoS.

As far as we are aware the first such work is that of Pitassi et al. [PRST16],

who apply embedding techniques to obtain Tseitin lower bounds for Frege

Systems, and their use is most similar to ours. They rely on a result of

Kleinberg and Rubinfeld [KR96] that guarantees that any small enough

graph is a minor of an expander (note that we require topologicalminors).

This is in contrast to the other results that rely on the fundamental result

that a graph of large enough treewidth contains the grid graph as a minor

[RS86].

Connection to Constraint Satisfaction Problems For a k-ary predicate

P : {0, 1}k → {0, 1}, an instance of the CSP(P) problem consists of a set

of constraints over n Boolean variables x1, . . . , xn, each constraint being

an application of P on a list of k variables. The Card(G,®t) formulas we

study can be viewed as instances of CSP(P) where each variable appears

in exactly two constraints and P : {0, 1}d → {0, 1} is the constraint that

exactly t of the d inputs are 1.

CSP problems have been extensively studied throughout the years, and

fairly general conditions under which CSP(P) is hard for PC and SoS are

known [AR01; KMOW17]. To be more accurate, these results are for the

more general CSP(P±) problem in which each constraint is an application

of P on k literals rather than variables. In particular, Alekhnovich and

Razborov [AR01] showed that if P is, say, 8-immune2 over the underlying

field F, then any PCF refutation of a random CSP(P±) instance with a

linear number of constraints requires degree
˜Ω(n). For SoS, Kothari et

al. [KMOW17] showed that, if there exists a pairwise uniform distribution3

µ over {0, 1}k supported on satisfying assignments of P, then with high

probability a randomCSP(P±) instance onm = ∆n constraints needs degree

˜Ω(n/∆2) to be refuted by the SoS proof system.

The predicates we study are linear equations over R and are neither

immune nor do they support a pairwise uniform distribution. As such,

our results provide CSP lower bounds that fall outside the immunity and

pairwise independence frameworks, which are the source of a majority of

existing CSP lower bounds in PC and SoS. To the authors’ best knowledge

the only other attempt to overcome this framework in the average-case

setting is the paper by Deshpande et al. [DMO+19], showing lower bounds

for the basic SDP of random regular instances of CSP(NAE
±
3
), where NAE3

2P is r-immune over F if there is no degree-r polynomial q : {0, 1}k → F such that for

all satisfying assignments α ∈ {0, 1}k of P it holds that q(α) = 0.

3
A distribution µ over {0, 1}k is said to be pairwise uniform if for all 1 ≤ i < j ≤ k, the

marginal distribution of µ restricted to coordinates i and j is uniform.
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is the not-all-equal predicate on three bits. In contrast to their work we

show (almost) linear degree lower bounds for the stronger Sum-of-Squares

hierarchy, but only for a very wide predicate of some large (but constant)

arity.

Embedding Theorems There is a rich literature on embeddings of graphs

as minors or topological minors into expander graphs. We focus here on

the ones most closely related to Theorem B.1.2.

The classical result of Kleinberg andRubinfeld [KR96] shows that a regu-

lar expanderG on n vertices contains every graphHwithO(n/polylog(n))
vertices and edges as a minor. Krivelevich and Nenadov [KN19] simpli-

fied and strengthened this by improving the bound on the size of H to

O(n/logn). These results differ from ours in two key ways: (i) we want

topological minors, and (ii) we want to be able to control the parities of

the path lengths in the embedding. We now discuss these two aspects

separately.

Results on topological minors, while somewhat less common, also exist.

A result similar to ours is the result of Broder et al. [BFSU96] that with high

probability the random graph G(n,m) on n vertices and m = Ω(n logn)
edges contains any graph Hwith ∆(H) = O(m/n) and at most O(n/logn)
edges (and at most n/2 vertices) as a topological minor.

For our second property, the possibility to choose the parities of the

paths used in the topological embedding, we are not aware of any previous

work studying this question. A related notion are so called odd minors
which are more general than topological minors with odd length paths.

This notion has been considered in connection with a strengthening of

Hadwiger’s Conjecture, see e.g., the survey by Seymour [Sey16]. This line

of research mostly considers complete odd minors, e.g., [GGR+09], and

thus is not directly applicable to our situation.

Recently Draganić et al. [DKN20] independently obtained a new em-

bedding theorem similar to ours. They assume the somewhat stronger

property that the host graph G is a spectral expander but also obtain a

stronger conclusion: each path of the topological embedding is of equal

(odd) length and the embedding even works in an adversarial setting.

Namely, the adversary is allowed to fix the embedding of the vertices, as

long as no neighborhood in G contains too many vertex embeddings.

The embedding theorem of Draganić et al. can be used to implement

our proof strategy. The results are unaffected by this change except in the

setting of Theorem B.1.3. There, instead of considering vertex expanders,

we need to consider regular spectral expanders with the benefit that the

required average degree d0 is considerably decreased.
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Extended Formulations There has been a fair amount of work studying

the extension complexity of the perfect matching polytope [Yan88; Rot17],

but these lower bounds do not have any direct implications for the PC and

SoS degree of the perfect matching formula. Let us elaborate.

Suppose we have a convex polytope P consisting of many facets. A

natural question is whether there is simpler polytope Q in a higher dimen-

sional space so that P is the “shadow” of Q, or a bit more formally that

there is a linear projection π such that π(Q) = P. Such a Q is then called a

linear extension of P and the extension complexity of a polytope P is the

minimum number of facets of any linear extension of P.
Rothvoss [Rot17] proved that the perfect matching polytope of a com-

plete n-node graph has extension compexity exp(Ω(n)) for n even. This

result is incomparable to our lower bounds: as the graphs we consider do

not contain a perfect matching, their perfect matching polytope is empty

and thus has extension complexity 0. Rather than linear programs, i.e.,

polytopes, we consider semidefinite programs which are more expressive.

The extension complexity in the semidefinite setting has also been studied

before [LRS15; BBH+17] but these results are incomparable for the same

reason just mentioned. While these results are incomparable, it is worth

mentioning that there is a connection between Sherali-Adams (a proof

system weaker than SoS) and extended formulations [CLRS16; KMR17].

B.1.3 Overview of Proof Techniques

As previously mentioned, our high level approach is to first obtain worst-

case perfect matching lower bounds and to then embed these into the

Card(G,®t) formula for G a random regular graph. The worst-case lower

bounds are obtained by a gadget reduction from Tseitin to perfect matching,

due to Buss et al. [BGIP01]. Using known lower bounds for the Tseitin

formula in the corresponding proof systems [BGIP01; Gri01; Hås20] we

then obtain the desired worst-case lower bounds for the perfect matching

formula.

A naïve attempt to obtain average-case lower bounds from a sparse

worst-case instance H on n vertices is to topologically embed the worst-

case instance into a random regular graph G on O(n logn) vertices using
Theorem B.1.2. One would then like to argue that PM(G) is hard.

Suppose each path puv in the embedding of H in G corresponding

to some edge {u, v} ∈ E(H) is of odd length. Then it is straightforward

to verify that the perfect matching formula defined over the embedding

is at least as hard to refute as the worst-case instance PM(H): map each

variable ye, for e ∈ puv, alternatingly to xuv or x̄uv such that the first

and last edges of puv are mapped to xuv (using that puv is of odd length).
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This simple projection maps the perfect matching formula defined over

the embedding of H to PM(H) and thus shows that the hardness of PM(H)
should be inherited.

But having such a worst-case instance as a topological minor is not
sufficient to conclude that PM(G) is hard. For instance Gmay contain an

isolated vertex and it is then trivial to refute PM(G). On the other hand if

we could guarantee that there is a perfect matchingm in the subgraph ofG

induced by the vertices not used in the embedding of H, we can conclude

that PM(G) is hard: hit the formula with the restriction corresponding to

the matchingm and by the argument from the previous paragraph we are

basically left with the worst-case formula.

Thus if we can ensure that H is a topological minor of Gwith the two

additional properties that (i) every path used in the embedding ofHhas odd

length, and (ii) there exists a perfect matching in the subgraph ofG induced

by the vertices not used in the embedding ofH, then we obtain average-case

lower bounds for the perfect matching formula PM(G) ≡ Card(G, ®1). The
lower bounds for Card(G,®t) for t > 1 can then be obtained by a reduction

to the t = 1 case: after fixing the value of the edges in bt/2c cycle covers of
G to 1, a restriction of Card(G,®t) is obtained which behaves like Card(G′, ®1)
for a somewhat sparser random regular graph G′.

Let us elaborate a bit further on the properties required from the

topological minor of H in G. As mentioned previously, our embedding

theorem can ensure that all paths are of odd length. To ensure the second

property, we in fact do not embedH directly intoG but rather into a suitably

chosen vertex induced subgraph G[T ] with the crucial property that for

any set of vertices U ⊆ T of odd cardinality the induced subgraph G[V \U]
has a perfect matching. As the embedding of H will consist of an odd

number of vertices we then obtain property (ii) above. Since we now want

to apply Theorem B.1.2 not to G but to G[T ], we have to ensure that G[T ]
satisfies all the conditions of that theorem. We prove what we refer to as

the Partition Lemma, which asserts that an induced subgraph G[T ] exists
that satisfies both the perfect matching property described above, as well

as all conditions of Theorem B.1.2. The proof of the Partition Lemma relies

primarily on the Lovász Local Lemma and spectral bounds to obtain the

desired properties.

For the proof of our embedding theorem (Theorem B.1.2), we extend

an argument due to Krivelevich and Nenadov [KN19] (see also [Kri19])

for ordinary minors (rather than topological minors). In order to obtain a

minor embedding of H in G, the idea there is to embed the vertices one

by one from H in G while maintaining an “unused” subgraph G′ of G
which is a slightly worse expander than G is. During this process it may
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happen that some vertex embedding cannot be connected to a neighbor. If

this happens, the embedding of that vertex is removed and it needs to be

embedded again.

In order to obtain topological embeddings, we need to adapt this proce-

dure. Since we now want vertex-disjoint paths connecting the embedded

vertices, we would ideally like to embed each vertex ofH as a large star, and

then embed the edges ofH as paths connecting different leaves of these stars.

In order tomake this work out, rather than embedding the vertices as actual

stars, we embed them as “star-like” subgraphs ofG (more precisely defined

in Definition B.5.3) that consist of a central vertex connected to many large

vertex-disjoint connected subgraphs of G and show (Lemma B.5.4) that we

can always embed the vertices of H as such “star-like” subraphs of G.

With this in place, obtaining control of the parities of the path lengths

used in the embedding (under the assumption on odd cycles in Theo-

rem B.1.2) is relatively straightforward: almost by definition, when embed-

ding an edge of H into a path of G, we can route it via an odd cycle and

can then choose which of the two halves of the odd cycles to use, obtaining

two possible embeddings with different path length parity, and can choose

the one with the appropriate parity.

B.1.4 Organization

We give some preliminaries in Section B.2, formally defining the used

proof systems and encodings used, and recalling some general background

results. In Section B.3 we provide most of the proof of Theorem B.1.1

while deferring the proofs of two key results, the aforementioned Partition

Lemma and our embedding theorem. The proof of the Partition Lemma is

given in Section B.4, and the proof of the embedding theorem can be found

in Section B.5.

In Section B.7 we recall the reduction of Buss et al. [BGIP01] from

Tseitin to perfect matching and show that it yields lower bounds not only

for Polynomial Calculus but also for Sum-of-Squares and bounded depth

Frege.
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B.2 Preliminaries

Natural logarithms (base e) are denoted by ln, whereas base 2 logarithms

are denoted by log. For integers n ≥ 1 we introduce the shorthand

[n] = {1, 2, . . . ,n} and sometimes identify singletons {u} with the element

u. For a set U we denote the power set of U by 2
U
and a transversal A of

a family of sets ℬ = {B1,B2, . . . Bn} is a set such that there is a bĳective

function f : A→ ℬ satisfying that a ∈ f(a) for all elements a ∈ A.

B.2.1 Proof Systems

Let P = {p1 = 0, . . . ,pm = 0} be a system of polynomial equations over

the set of variables X = {x1, . . . , xn, x̄1, . . . , x̄n}. Each pi is called an axiom,

and throughout the paper we always assume P includes all axioms x2
i
− xi

and x̄2
i
− x̄i, ensuring that the variables are boolean, as well as the axioms

1 − xi − x̄i, making sure that the “bar” variables are in fact the negation of

the “non-bar” variables.

Sum-of-Squares (SoS) is a static semi-algebraic proof system. An SoS

proof of f ≥ 0 fromP is a sequenceofpolynomialsπ = (t1, . . . , tm; s1, . . . , sa)
such that ∑

i∈[m]
tipi +

∑
i∈[a]

s2i = f . (B.1)

The degree of a proof π is

Deg(π) = max{max

i∈[m]
deg(ti) + deg(pi),max

i∈[a]
2 deg(si)} . (B.2)

An SoS refutation of P is an SoS proof of −1 ≥ 0 from P, and the SoS degree

to refute P is the minimum degree of any SoS refutation of P: if we let π

range over all SoS refutations of P, we can write Deg
SoS
(P) = minπDeg(π).

Definition B.2.1 (Pseudoexpectation). A degree d pseudo-expectation for

P is a linear operator Ẽ on the space of real polynomials of degree at most

d, such that

(i) Ẽ[1] = 1,

(ii) Ẽ[tp] = 0 for all polynomials t and p ∈ P with deg(t) + deg(p) ≤ d,
and

(iii) Ẽ[s2] ≥ 0 for all polynomials s of degree deg(s) ≤ d/2.
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It is easy to check that if there is a degree d pseudo-expectation for P,
then there is no SoS refutation of P of degree at most d: if Ẽ is applied to

both sides of (B.1), where f = −1, then the right side is equal to −1 while

the left is greater than or equal to 0.

The size of an SoS refutation π, Size(π), is the sum of the number

of monomials in each polynomial in π and the size of refuting P is the

minimum size over all refutations Size
SoS
(P) = minπ Size(π).

Polynomial Calculus is a dynamic proof system operating on polynomial

equations over a field F. Let P be over F. Polynomial Calculus over F (PCF)

consists of the derivation rules

• linear combination

p = 0 q = 0

αp + βq = 0

,wherep,q ∈ F[X] andα,β ∈ F,
and

• multiplication

p = 0

xp = 0

, where p ∈ F[X] and x ∈ X.

A PC refutation of P is a sequence of polynomials π = t1, . . . , t` such that

t` = 1 and each polynomial ti is either in P or can be derived by one of

the derivation rules from earlier polynomials. The degree of a refutation is

the maximum degree appearing in the sequence Deg(π) = maxi∈[`]Deg(ti)
and the PCF degree of refuting P is the minimum degree required of any

refutation Deg
PCF
(P) = minπDeg(π). Similarly, the size of a refutation

π is the sum of the number of monomials in each line of π and the

PCF size of refuting P is the minimum size required of any refutation

Size
PCF(P) = minπ Size(π).

Frege System Let us describe a Frege system due to Shoenfield, as pre-

sented in [UF96]. As Frege systems over the basis ∨, ∧ and ¬ can polynomi-

ally simulate each other [CR79], the details of the system are not essential

and hold for any Frege system over the mentioned basis.

Schoenfield’s Frege system works over the basis ∨ and ¬. We treat the

conjunction A∧ B as an abbreviation for the formula ¬(¬A∨¬B) and let 0,

1 denote “false” and “true” respectively. If A is a formula over variables

p1, . . . ,pm, and σ maps the variables p1, . . . ,pm to formulas B1, . . . ,Bm,

then σ(A) is the formula obtained from A by replacing the variable pi with

Bi = σ(pi) for all i ∈ [m].
A rule is a sequence of formulas written as A1, . . . ,Ak ` A0. If every

truth assignment satisfying all ofA1, . . . ,Ak also satisfiesA0, then the rule is

sound. A formulaC0 is inferred fromC1, . . . ,Ck by the ruleA1, . . . ,Ak ` A0

if there is a function σ mapping the variables p1, . . . ,pm, over which
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A0, . . . ,Ak aredefined, to formulasB1, . . . ,Bm such that for all i ∈ {0, . . . ,k}
it holds that Ci = f(Ai).

The Frege system F that we consider consists of the following rules:

` p ∨ ¬p Excluded Middle,

p ` q ∨ p Expansion rule,

p ∨ p ` p Contraction rule,

p ∨ (q ∨ r) ` (p ∨ q) ∨ r Associative rule,

p ∨ q,¬p ∨ r ` q ∨ r Cut rule.

An F-refutation of an unsatisfiable formula A = C1 ∧ . . . ∧ Cm is a

sequence of formulas F1, F2, . . . , F` such that F` = 0 and every formula Fi
is either one of C1, . . . ,Cm or inferred from formulas Fj1 , . . . , Fjk earlier in

the sequence by a rule in F. As F is sound and complete a formula A has

a refutation if and only if it is unsatisfiable.

The size of a formula is the number of connectives in the formula and

the size of a refutation π, denoted by Size(π), is the sum of the sizes of all

formulas in the refutation. The depth of π is the maximum depth of any

formula F ∈ π. We denote by Fd the proof system F restricted to formulas

of depth at most d.

B.2.2 Propositional Formulas

As we are only interested in constant degree graphs all our axioms are of

constant size. Hence the precise encoding of the axioms is not significant

as we can change the encoding in constant size/degree.

As the encoding is not essential, we view a propositional formulaℱ over

the Boolean variables x1, . . . , xn as a family of functions ℱ = {f1, . . . , fm}
where each fi : {0, 1}n → {True, False} is a function that depends on a

constant number of variables. The formula ℱ is satisfied by an assignment

α ∈ {0, 1}n if under α all functions evaluate to True: fi(α) = True for all

i ∈ [m].
For a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} and a func-

tion f : {0, 1}n → {True, False}, denote by fdρ the function defined by

fdρ(x1, . . . , xn) = f(ρ(x1), . . . , ρ(xn)). We extend this notation to formulas

in the obvious way, i.e., ℱ dρ = {f1dρ, f2dρ, . . . , fmdρ}.
Two formulas ℱ and ℱ ′ are equivalent, denoted by ℱ ≡ ℱ ′ if the

formulas are element-wise equivalent, disregarding functions that are

constant True. We say that a formula ℱ ′ is an affine restriction of ℱ if there is

a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} such that ℱ ′ ≡ ℱ dρ.
The following lemma states that a formula ℱ is at least as hard as any of its

affine restrictions.
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Lemma B.2.2. Let ℱ ,ℱ ′ be formulas such that ℱ ′ is an affine restriction of ℱ
and each axiom of ℱ depends on a constant number of variables. Then,

(i) for any field F it holds that Deg
PCF
(ℱ ) ∈ Ω

(
Deg

PCF
(ℱ ′)

)
,

(ii) Deg
SoS
(ℱ ) ∈ Ω

(
Deg

SoS
(ℱ ′)

)
, and

(iii) for all d ≥ 2 it holds that SizeFd(ℱ ) ∈ Ω
(
SizeFd+1(ℱ ′)

)
.

Proof. Suppose we have a refutation π of ℱ in one of the mentioned proof

systems. We want to show that if we hit the proof with the restriction ρ

such that ℱ dρ ≡ ℱ ′ then we obtain a proof π′ = πdρ of ℱ ′.
First we need to ensure that we can derive all the axioms of ℱ ′. These

may be encoded in a different manner, but as these proof systems are

implicationally complete, and each axiom only depends on a constant

number of variables, this can be done in constant degree (constant size).

This shows that the SoS degree of the resulting refutation is at most a

constant factor larger. For Polynomial Calculus and Frege the statement is

readily verified by an inductive argument over the proof. �

For concreteness let us also define the encoding of the formulas that we

are interested in.

Perfect Matching and Card (G, ®b) The Perfect Matching formula PM(G)
encodes the claim that the graph G contains a perfect matching. For every

edge e ∈ E(G) introduce a boolean variable xe ∈ {0, 1} and add for every

vertex v ∈ V(G) an axiom claiming that precisely one incident edge is set to

true. As a polynomial over R, we encode this claim as

qPMv =
∑
e3v

xe − 1 , (B.3)

which is satisfied under an assignment α if qPMv (α) = 0. Over other fields

we encode this as a sum over indicator polynomials (see example for Tseitin

below). For the Frege proof system we encode the vertex axiom as the

propositional formula

qPMv =
∨
e3v

xe ∧
∧
e,e′3v
e≠e′

x̄e ∨ x̄e′ . (B.4)

The formula Card(G, ®b) is encoded in a similar fashion: in the polyno-

mial encoding replace the 1 with bv, whereas in the propositional encoding

we let the latter ∧ range over edge-tuples of size bv + 1.
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Tseitin Formula The Tseitin formula τ(G) claims that the edges of the

graph G can be labeled by 0, 1 such that the number of 1-labeled edges

incident to any vertex is odd. For every edge e ∈ E(G) introduce a boolean

variable ye ∈ {0, 1}, denote the set of variables corresponding to edges

incident to v by Yv = {ye | v ∈ e} and let Av ⊆ {0, 1}Yv contain all

assignments to the variables Yv that set an odd number of variables to 1.

We encode the claim that an odd number of edges incident to v ∈ V(G) are
set to 1 as the polynomial

qτv =
∑
α∈Av

1{Yv = α} − 1 , (B.5)

where 1{Yv = α} =
∏
y∈Yv
α(y)=1

y
∏
y∈Yv
α(y)=0

ȳ is the indicator polynomial that is

1 iff the variables in Yv are set according to α. As before, we also add the

boolean axioms to ensure that the variables take values in {0, 1}.
For the Frege system we encode the claim that an odd number of edges

incident to v ∈ V(G) is set to 1 as the propositional formula

qτv =
∨
α∈Av

1{Yv = α} , (B.6)

where the indicator is now encoded as the formula 1{Yv = α} =
∧
y∈Yv
α(y)=1

y ∧∧
y∈Yv
α(y)=0

ȳ.

B.2.3 Graph Theory

This paper only considers simple, undirected graphs: all graphs have no

self-loops nor multiple edges. For a graph G = (V ,E) the neighborhood

of a vertex u ∈ V is N(u) = {v ∈ V | {u, v} ∈ E}, the neighborhood of

a set of vertices U ⊆ V is N(U) = ⋃
u∈UN(u) and for sets U,W ⊆ V(G)

the neighborhood of U in W is N(U,W) = N(U) ∩ W. We denote by

deg(v) = |N(v)| the degree of a vertex v ∈ V , by ∆(G) the maximum degree,

δ(G) the minimum degree and by d(G) the average degree of G. The edges
between two vertex sets U,W ⊆ V are denoted by E(U,W) = {{u,w} ∈ E |
u ∈ U,w ∈ W}. For a set U ⊆ V , we denote by G[U] = (U,E(U,U)) the
induced subgraph ofU inG. For a set T ⊆ V we also useG \ T as a shorthand

for the induced subgraph G[V \ T ]. For a path p in G we denote by |p|
the number of edges and by V(p) ⊆ V(G) the set of vertices of p. For two

vertices vertices u, v ∈ V(p), we let p[u, v] denote the subpath of p between

(and including) the vertices u and v. The distance between two vertices

u, v ∈ V is the length of the shortest path from u to v and the distance

between two sets U,W ⊂ V is the minimum distance between any pair of
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vertices u ∈ U and w ∈ W. Let diam(G) denote the diameter of G, that

is, the maximum distance between any two vertices in G. For a vertex set

U ⊆ V , and an integer r ∈ N, let BGr (U) ⊆ V(G) be the ball aroundU of radius
r in G: BGr (U) contains all vertices v ∈ V that are at distance at most r from

U.

A graphG on n vertices is an α-expander (has vertex expansion α) if for all
setsU ⊆ V(G)of size |U| ≤ n/2 it holds that |N(U,V\U)| ≥ α|U|. Wedenote

the uniform distribution over d-regular graphs on n vertices by G(n,d) and
tacitly assume throughout this paper that nd is even. A graph G contains

H as a topological minor if there is an injective map σ : V(H) → V(G) and
for every {u, v} ∈ E(H) there is a path puv ⊆ G from σ(u) to σ(v) that is
pairwise vertex-disjoint from all other paths except in the endpoints. The

paths puv are the edge embeddings of the minor.

Let us record the well-known fact that vertex expanders have small

diameter.

Lemma B.2.3 ([Kri19]). LetG be an α-expander on n vertices. Then the diameter
of G is upper bounded by

⌈
2(logn−1)
log(1+α)

⌉
+ 1 = Oα(logn).

As this constant will show up in a few places, let Dø

α = 2

log(1+α) + 3 and

hence diam(G) ≤ Dø

α · logn, if G is an α-expander.

The following lemma states that even if a small set of vertices is removed

from a vertex expander, large sets still have many vertices at small distance.

Lemma B.2.4. Let G be an α-expander on n vertices. Then for all r ≥ 0

and all disjoint S, T ⊆ V(G) satisfying |T | ≥ 2

α |S| it holds that |B
G\S
r (T )| ≥

min{n/2, (1 + α/2)r |T |}.

Proof. Using expansion and |S| ≤ α
2
|T | ≤ α

2
|BG\Sr (T )| we have that for all

r ≥ 0

|BG\S
r+1 (T )| ≥ (1 + α)|B

G\S
r (T )| − |S| ≥ (1 + α/2)|BG\Sr (T )| ,

unless B
G\S
r (T ) is already as large as n/2. �

A simple consequence of this is that two large sets are connected by

short paths even after the removal of a small set of vertices.

Corollary B.2.5. Let G be an α-expander on n vertices. Then for all sets
S, T ,U ⊆ V(G) satisfying that T ,U ≠ ∅, that S∩(T∪U) = ∅, and |T |, |U| ≥ 2

α |S|
it holds that in G \ S the distance between T and U is at most Dø

α/2 logn.

Proof. Apply Lemma B.2.4 to S, T and r = d logn

log(1+α/2) e to conclude that at

distance r from T there are at least n/2 vertices in the graphG\S. Applying
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the same argument to U and S, we see that also from U there are at least

n/2 vertices reachable by length r paths inG \ S. But this implies that there

is a path of length at most 2r + 1 ≤ Dø

α/2 logn between T and U. �

B.2.4 Probabilistic Bounds

We use the following version of the multiplicative Chernoff bound.

Theorem B.2.6 (Chernoff). Suppose X1, . . . ,Xn are independent random vari-
ables taking values in {0, 1}. Let X denote their sum and let µ = E[X]. Then, for
every 0 ≤ δ ≤ 1 we have

Pr[|X − µ| ≥ δµ] ≤ 2 exp(−δ2µ/3) .

We also need a similar bound for Poisson random variables.

Theorem B.2.7 ([MU05], Theorem 5.4). Let X be a Poisson random variable
with parameter µ. If x > µ, then

Pr[X ≥ x] ≤ e−µ
(eµ
x

)x
.

Finally we also need the following form of the Lovász local lemma.

LemmaB.2.8 (Lovász local lemma; [AS00], Lemma5.1.1). LetA1,A2, . . . ,An
be events in an arbitrary probability spacce. A directed graph D = (V ,E) on
the set of vertices V = {1, 2, . . . n} is called a dependency digraph for the events
A1, . . . ,An if for each i, 1 ≤ i ≤ n, the event Ai is mutually independent
of all the events {Aj | (i, j) ∉ E}. Suppose that D = (V ,E) is a dependency
digraph for the above events and suppose there are real numbers x1, . . . xn such
that 0 ≤ xi < 1 and Pr[Ai] ≤ xi

∏
(i,j)∈E(1 − xj) for all 1 ≤ i ≤ n. Then

Pr[∧n
i=1

¯Ai] ≥
∏n
i=1(1 − xi).

B.3 Lower Bounds on Average

In this section we establish our main result Theorem B.1.1 giving average-

case lower bounds in PC, SoS and bounded depth Frege for the Card(G,®t)
formulas.

B.3.1 Lower Bounds for Perfect Matching

Recall that we aim to prove that any sparse graph H (in particular a graph

where PM(H) is hard to refute) can be topologically embedded into a

random graph such that all paths in the embedding have odd length. In

order to do this, we need to assume that the graph is far from bipartite
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(since otherwise H would need to be bipartite as well, and PM(H) is easy
for bipartite graphs). Furthermore our embedding theorem relies on all

large induced subgraphs of G having sufficiently large maximum degree.

The two following definitions capture that both properties hold for all large

induced subgraphs of G.

Definition B.3.1. A graph G on n vertices is (κ,d)-max-degree-robust if for
all U ⊆ V(G) of size |U| ≥ κn it holds that the maximum degree of the

induced subgraph G[U] is ∆(G[U]) ≥ d.

Definition B.3.2. A graph G on n vertices is (κ,α, `)-odd-cycle-robust if for
all U ⊆ V(G) of size |U| ≥ κn and such that G[U] is an α-expander it

holds that the induced subgraph G[U] contains an odd cycle C of length

` ≤ |C| ≤ 3Dø

α/2 logn.

Note that in the latter definition, assuming that G[U] is an α-expander,
the diameter ofG[U] is at mostDø

α log(n) ≤ Dø

α/2 log(n)which means that,

unless G[U] is bipartite, it certainly has short odd cycles of length at most

1 + 2Dø

α/2 logn. But a priori these may all be shorter than `. The definition

asks for short odd cycles of length at least `, at the cost of a slightly worse

upper bound on the cycle length.

Both properties are clearly monotone in κ: if the properties hold for

some κ0 > 0, then they also hold for all κ ≥ κ0. With these definitions at

hand we can state our embedding theorem.

TheoremB.3.3 (Embedding Theorem). For α > 0 there are ε,n0 > 0 such that
the following holds. LetG be anα-expander onn > n0 vertices, letk ≥ 6, and letH
be a graph on at most εn/k logn vertices and edges. IfG is (1−4/k, 550∆(H)/α2)-
max-degree-robust, then G contains H as a topological minor. Furthermore, if G is
also (1 − 2/k,β, 1 + 2/β)-odd-cycle-robust, for β = α

3(1+α) , then one can choose
the parities of the lengths of all the edge embeddings in the minor.

Let us highlight that kmay depend on the graph G. We have made no

attempt to optimize the constants. The proof of the embedding theorem

can be found in Section B.5.

As mentioned before we need to ensure that once we obtain an embed-

ding of the worst-case graphH inG, that there is a matching in the graphG

with the embedding ofH removed. To ensure this we will in fact not embed

H directly in G but rather in a subgraph of G: first we identify a set of

vertices T ⊆ V(G) such that no matter what set U ⊆ T of odd cardinality is

removed fromG, the graphG \U still contains a perfect matching. We then
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proceed to show that the graph G[T ] satisfies all the properties required in

order to embed H into it. The following lemma captures these properties4.

Lemma B.3.4 (Partition Lemma). There is a d0 such that for all d > d0 there is
an n0 such that the following holds. Let n > n0 be odd and G ∼ G(n,d). Then,
asymptotically almost surely, there is a set T ⊆ V(G) of size |T | ≥ n/8 such that
G[T ] is a 1/3-expander, (1/2, 1/12, 25)-odd-cycle-robust, (1/3,d/32)-max-degree-
robust and for any set U ⊆ T of odd cardinality it holds that G \U has a perfect
matching.

Thepartition lemma isproved inSectionB.4. The constants inLemmaB.3.4

are rather arbitrarily chosen and their precise values are not significant –

the interested reader can find the precise dependencies between them in

the proof. With Lemmas B.3.4 and B.3.3 at hand, we can now easily state

and prove our lower bounds for the perfect matching formula (i.e., the

special case t = 1 of Theorem B.1.1).

Theorem B.3.5. There is a d0 and an ε > 0 such that for all d > d0 the following
holds. For n and n′ ≤ εn

logn
both odd, let G ∼ G(n,d) and H be any graph on n′

vertices of degree ∆(H) ≤ 5. Then, asymptotically almost surely, PM(H) is an
affine restriction of PM(G).

Using the graphs from Section B.7 (i.e., the graphs from Theorems B.7.4,

B.7.3 and B.7.1) as our choice of H and combining Theorem B.3.5 with

Lemma B.2.2 finishes the proof of Theorem B.1.1 for the perfect matching

formula.

Proof of Theorem B.3.5. LetG ∼ G(n,d) as in the statement. ApplyLemmaB.3.4

to G to obtain a set T with the mentioned properties. In order to apply

Theorem B.3.3 to G[T ] and the graph H to obtain a topological minor

BH ⊆ G[T ], where all edge embeddings in BH are of odd length, we need

to check that (for our choice α = 1/3,k = 6)

(i) G[T ] is a 1/3-expander,

(ii) G[T ] is (1/3, 550 · 5 · 9)-max-degree-robust,

(iii) G[T ] is (2/3, 1/12, 1 + 2 · 12)-odd-cycle-robust, and

(iv) H is a graph on at most εn/6 logn vertices and edges, for some ε > 0.

4
For clarity of exposition we say that an event holds for oddn asymptotically almost surely

asn→∞ ifn = 2n′ + 1 for some non-negative integern′ and the event holds asymptotically

almost surely as n′→∞.
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From the guarantees of Lemma B.3.4 we see that (i) is satisfied, that for d
large (ii)holds and also that (iii)holds as odd-cycle-robustness ismonotone

in the first argument. Lastly, (iv) holds if we let ε = ε/6.
With the topologicalminorBH ofH inG at hand,weproceed to construct

a restriction ρ to argue that PM(H) is an affine restriction of PM(G). As

all edge embeddings in BH are of odd length and the number of vertices

in H is odd, we see that |V(BH)| is odd. Hence Lemma B.3.4 guarantees

that there exists a perfect matchingM in the graph G′ = G \ V(BH). The
restriction ρ sets all variables outside of BH to 0 or 1 depending on whether

the edge e ∈M.

We still need to specify how ρmaps the variables in BH. For every edge

embedding puv of BH, choose an arbitrary edge euv ∈ puv and map the

edge variables xe, for e ∈ puv, alternatingly along puv to either xeuv or

x̄euv such that the first and last edge of puv are mapped to xeuv (where

we use that |puv | is odd). By inspection we see that PM(H) is an affine

restriction of PM(G) as claimed. �

B.3.2 Lower Bounds for Card (G, ®t)

In the following we prove the average-case lower bounds on the Card(G,®t)
formulas for G ∼ G(n,d). We consider the special case when n and t ≤ d
are odd and thus d is even. Without loss of generality, assume that t ≤ d/2:
otherwise “flip” the roles of 0 and 1.

The idea is to split the edge set of the graph G into bt/2c 2-regular
graphs G1, . . . ,Gbt/2c and one d0-regular graph G0, where d0 = d − 2bt/2c.
Then we want to set all variables that correspond to an edge in any of

the 2-regular graphs G1, . . . ,Gbt/2c to 1 so that we are left with the perfect

matching formula PM(G0), onwhichwewill embed theworst-case instance

of Section B.7.

In order to be able to apply Theorem B.3.5 to PM(G0), we need to argue

that G0 is a random d0-regular graph. Also, we need to show that it is in

fact possible to decompose a random d-regular graph into bt/2c 2-regular
graphs plus a d0-regular graph. For this, we use the notion of contiguity.
Intuitively, two sequences of probability measures are contiguous, if all

properties that hold with high probability in one also hold with high

probability in the other measure.

Definition B.3.6. Let (Pn)∞
1

and (Qn)∞
1

be two sequences of probability

measures, such that for each n, Pn and Qn both are defined on the same

measurable space (Ωn,ℱn). The two sequences are contiguous if for every
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sequence of sets (An)∞
1
, where An ∈ ℱn, it holds that

lim

n→∞
Pn(An) = 0⇔ lim

n→∞
Qn(An) = 0 .

We denote contiguity of two sequences by Pn ≈ Qn.

For two random graphs Gn andℋn on the same set of n vertices, we

denote by Gn ⊕ ℋn the union of two independent samples conditioned

on the result being simple. If Gn = G(n,d) andℋn = G(n,d′) are uniform
distributions over random regular graphs we can think of this as a proccess

where we first sample G ∼ Gn and then repeatedly sample H ∼ ℋn until

the union of G and H is simple.

Theorem B.3.7 (Corollary 9.44, [JŁR00]). For all constants d ≥ 3,m ≥ 1 and
d1, . . . ,dm ≥ 1 satisfying d =

∑m
i=1 di it holds that

G(n,d1) ⊕ · · · ⊕ G(n,dm) ≈ G(n,d) .

In other words, if we can show that e.g. SoS requires linear degree for

a formula over G ∼ G(n,d0) ⊕
⊕
i∈bt/2c G(n, 2)with high probability, then

this also holds for the same formula over graphsG ∼ G(n,d). Implementing

our idea in the former probability distribution is straightforward and we

have the following theorem.

Theorem B.3.8. There is a d0 and an ε > 0 such that for all d ≥ d0 the following
holds. Let n,n′ ≤ εn

logn
and t ∈ [d] all be odd, let G ∼ G(n,d) and H be a graph

on n′ vertices of degree ∆(H) ≤ 5. Then, asymptotically almost surely, PM(H) is
an affine restriction of Card(G,®t).

Analogously to how Theorem B.3.5 implied the t = 1 case of Theo-

rem B.1.1, this theorem implies the general case of Theorem B.1.1.

Proof of Theorem B.3.8. As n is odd d must be even. Note that we may

assume that t ≤ d/2: if t > d/2, let us flip the role of 1 and 0 in the formula

to obtain Card(G,−−−→d − t). Let d0 = d − 2bt/2c ≥ d/2 and sample

G′ = G0 ∪
⋃

1≤i≤bt/2c
Gi ∼ G(n,d0) ⊕

⊕
1≤i≤bt/2c

G(n, 2) . (B.7)

By Theorem B.3.7, if we show the statement for G′, then it also holds for

G ∼ G(n,d).
Set all variables in G1, . . . Gbt/2c to 1. When Card(G,®t) is hit with this

restriction we are left with the formula PM(G0). As G0 is distributed

according to G(n,d0), we may apply Theorem B.3.5 to conclude that PM(H)
is an affine restriction of Card(G,®t). �
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B.4 Proof of the Partition Lemma

In this section we prove Lemma B.3.4, restated here for convenience.

Lemma B.3.4 (Partition Lemma). There is a d0 such that for all d > d0 there is
an n0 such that the following holds. Let n > n0 be odd and G ∼ G(n,d). Then,
asymptotically almost surely, there is a set T ⊆ V(G) of size |T | ≥ n/8 such that
G[T ] is a 1/3-expander, (1/2, 1/12, 25)-odd-cycle-robust, (1/3,d/32)-max-degree-
robust and for any set U ⊆ T of odd cardinality it holds that G \U has a perfect
matching.

We proceed as follows. First, we partition V(G) = S
.

∪ T into two sets

such that every vertex v ∈ V(G) has a good fraction of its neighbors in S.

Definition B.4.1. A (c, ε)-degree-balanced cut of a graph G is a partition

S
.

∪ T = V(G) of the n vertices of G such that:

(i)
��|S| − cn�� ≤ εn

(ii) for every vertex u ∈ V , the fraction of u’s neighbors that are in S is at

least c − ε and at most c + ε.

It turns out that in random regular graphs any (c, ε)-degree-balanced
cut possesses the properties needed in the Partition Lemma, as summarized

in the following lemma.

Lemma B.4.2. For all constants c, ε,d > 0 satisfying c > 1/2 + ε and d ≥
max{(c − 1/2 − ε)−2, 4 · ε−2} the following holds. Let n be odd and G ∼ G(n,d).
Then, asymptotically almost surely as n→∞, for any (c, ε)-degree-balanced cut
(S, T ) of G it holds that

(i) the graph G is
(
κ,d

(
κ − 2

√
1−κ
κd

) )
-max-degree-robust for all constants

κ ∈ [0, 1],

(ii) the graph G is (6/
√
d,β, `)-odd-cycle-robust, for any constants β and `,

(iii) the graph G[T ] is an α-expander, where α = 1−c−2ε
2(1−c−ε) , and

(iv) the graph G \U has a perfect matching for any U ⊆ T of odd cardinality.

Deferring the proof of this lemma to Section B.4.2, let us first show that

(c, ε)-degree-balanced cuts always exist in regular graphs of large enough

degree.

Lemma B.4.3. For all c ∈ [0, 1], ε > 0 there is a d0 ∈ O
(
c
ε2

log
2( c
ε2
)
)
such

that the following holds. For every d > d0, every d-regular graph G has a
(c, ε)-degree-balanced cut.
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Proof. Independently include every vertex v ∈ V(G) in Swith probability

c. Let Au denote the bad event that

��|N(u,S)| − cd�� ≥ εd. By the Chernoff

bound (Theorem B.2.6), we have

Pr[Au] ≤ 2 exp(−ε2d/3c) . (B.8)

Note that the eventAu depends only onAv for vwithin distance 2 of u inG,

and there are at most d2 many such v’s. We want to apply the Lovász local

lemma (Lemma B.2.8) to the events {Av | v ∈ V(G)} and xv = x for some

parameter x. The local lemma conditions then require Pr[Au] ≤ x(1 − x)d
2

and this right hand side is maximized at x = 1

d2+1 where, using the bound

1 − x = 1 − 1/(d2 + 1) ≥ e−1/d2

, it becomes

x · (1 − x)d2

=
1

d2 + 1 ·
(
1 − 1

d2 + 1

)d2

≥ 1

d2 + 1 ·
1

e
.

For large enough d = Ω( c
ε2

log( c
ε2
)), this is much larger than Pr[Au] ≤

2 exp(−ε2d/3c) so by Lemma B.2.8 we conclude that Pr[∧v∈V(G) ¯Av] >
(1 − x)n ≥ exp(− n

d2
). All that remains is to argue that there is a positive

probability that both this happens as well as the size of S being close to cn.

In particular if Pr

[��|S| − cn�� ≥ εd] < Pr[∧v∈V(G) ¯Av], the lemma follows.

By the Chernoff bound (Theorem B.2.6), the cardinality of S is in

[cn ± εn] except with probability at most 2 exp(−ε2n/3c). Hence it is

sufficient that 2 exp(−ε2n
3c ) < exp(− n

d2
), and for d �

√
c/ε this clearly holds.

This concludes the proof. �

With Lemmas B.4.3 and B.4.2 at hand, proving the Partition Lemma

simply boils down to choosing appropriate values for the different constants.

Proof of Lemma B.3.4. Fix c = 3/4, ε = κ = 1/16 and ` = 7. Let (S, T ) be the
(c, ε)-degree-balanced cut as guaranteed to exist in G by Lemma B.4.3. The

cut (S, T ) satisfies all the properties of Lemma B.4.2. Hence all that remains

is to verify that the constants were chosen appropriately.

(i) G[T ] is (1/3,d/32)-max-degree-robust: wehave that |T | ≥ (1−c−ε)n =

3n/16. Thus if the graph G is (1/16,d/32)-max-degree-robust, the

statement follows. Observe that for our choice of κ andd large enough

(e.g. d ≥ 2
16

suffices) it holds that

d

(
κ − 2

√
1 − κ
κd

)
= d

(
1

16

− 2
√

15

d

)
≥ d/32.

(ii) G[T ] is (1/2, 1/12, 25)-odd-cycle-robust: as we may assume that d ≥
144, this property is satisfied.
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(iii) G[T ] is a 1/3-expander: the expansion α guaranteed by Lemma B.4.2

is

α =
1 − c − 2ε
2(1 − c − ε) =

1/8
3/8 = 1/3 .

The statement follows. �

All that remains is to prove Lemma B.4.2. In the following section we

recall some results from spectral graph theory needed for the proof of

Lemma B.4.2 which is then given in Section B.4.2.

B.4.1 Spectral Bounds

Let us establish some notation and recall some results from spectral graph

theory.

We denote the adjacency matrix of a graph G by AG and by LG its

Laplacian LG = DG − AG (where DG is the diagonal matrix containing

the degrees of the vertices of G). For a matrix A ∈ Rn×n, denote by

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) the eigenvalues of A in non-decreasing order.

The edge expansion of a graph G on n vertices is

Φ(G) = min

U⊆V(G)
|U|≤n/2

|E(U,V(G) \U)|
|U| . (B.9)

It is well-known that if the second smallest eigenvalue of the Laplacian

is large, then the graph is a good expander. Note that the following theorem

does not require that G is regular.

Theorem B.4.4 ([Moh89]). For all graphs G it holds that λ2(LG)
2
≤ Φ(G).

Corollary B.4.5. All graphs G have vertex expansion λ2(LG)
2∆(G) .

Proof. As every vertex has at most ∆(G) neighbors, the neighborhood of

every set U, satisfying |U| ≤ n/2, is of size at least Φ(G)/∆(G). The

statement follows from Theorem B.4.4. �

Recall that regular random graphs are very good spectral expanders.

For the sake of conciseness, let λ = max{|λ1(AG)|, |λn−1(AG)|}.

Theorem B.4.6 ([Fri08]). Fix d ≥ 3 and let nd be even. Then, for G ∼ G(n,d)
it holds asymptotically almost surely as n→∞ that λ ≤ 2

√
d − 1 + o(1).

Another well-known result from spectral graph theory is that the

smallest eigenvalue of the adjacency matrix puts a limit on the maximum

size of an independent set.
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Theorem B.4.7 (Hoffman’s bound). Let G be a d-regular graph on n vertices.
If S ⊆ V(G) is an independent set of G, then

|S| ≤ − n · λ1(AG)
d − λ1(AG)

.

Corollary B.4.8. LetG be a d-regular graph on n vertices. For any set S ⊆ V(G)
it holds that if |S| > − 2·n·λ1(AG)

d−λ1(AG) , then G[S] is not bipartite.

Proof. For the sake of contradiction suppose that there is an S ⊆ V(G) such
that G[S] is bipartite and |S| > − 2·n·λ1(AG)

d−λ1(AG) . Let us denote the partition by

S = A
.

∪ B. W.l.o.g., assume that |A| ≥ |S|/2 and apply Theorem B.4.7 to A

to conclude that − n·λ1(AG)
d−λ1(AG) < |A| ≤ −

n·λ1(AG)
d−λ1(AG) . �

Let us recall the mixing lemma; it states that between linearly sized sets

of vertices there are about as many edges as expected in a random regular

graph.

Lemma B.4.9 (Expander Mixing Lemma [HLW06]). Let G be a d-regular
graph on n vertices. Then for all S, T ⊆ V(G):����|E(S, T )| − d|S| |T |n

���� ≤ λ√|S| |T | .
We also rely on the following theorem that relates the spectrum of the

Laplacian and the existence of a perfect matching.

Theorem B.4.10 ([BH05]). Let G be a graph on n vertices. If n is even and
λn(LG) ≤ 2λ2(LG), then G has a perfect matching.

The following statements consider large induced subgraphs H ⊆ G.
Proposition B.4.13 states that if we have good control of the degrees in H,

then we have good control of the spectrum of the Laplacian ofH in terms of

the spectrum of the adjacency matrix of G. The proof uses Weyl’s theorem

and Cauchy’s interlacing theorem, so let us first state these.

Theorem B.4.11 (Weyl). Let A,B ∈ Rn×n be Hermitian. Then, for all k ∈ [n],

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B) .

Theorem B.4.12 (Interlacing Theorem). Suppose A ∈ Rn×n is symmetric. Let
B ∈ Rm×m, withm < n, be a principal submatrix. Then, for all k ∈ [m],

λk(A) ≤ λk(B) ≤ λk+n−m(A) .
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Proposition B.4.13. LetG be a graph onn vertices andH be an induced subgraph
of G withm vertices. Then, for all k ∈ [m],

δ(H) − λn−k+1(AG) ≤ λk(LH) ≤ ∆(H) − λm−k+1(AG) .

Proof. By Theorem B.4.12, applied to −AG and −AH, we see that for all

k ∈ [m]

λk(−AG) ≤ λk(−AH) ≤ λk+n−m(−AG) . (B.10)

Note that λ1(DH) = δ(H) and λm(DH) = ∆(H). Applying Theorem B.4.11

to DH and −AH, we conclude that, for all k ∈ [m]

λk(−AG) + δ(H) ≤ λk(−AH) + λ1(DH) (B.11)

≤ λk(DH −AH) (B.12)

≤ λk(−AH) + λm(DH) ≤ λk+n−m(−AG) + ∆(H) . (B.13)

As λk(−AG) = −λn−k+1(AG) and λk+n−m(−AG) = −λm−k+1(AG), the state-
ment follows. �

Before commencing with the proof of Lemma B.4.2, let us state two

results that are of non-spectral nature. The following is a theorem by

Bollobás which captures the distribution of short cycles in random regular

graphs.

Theorem B.4.14 ([Bol01], Corollary 2.19). Let d ≥ 2 and k ≥ 3 be fixed natural
numbers and denote by Yi = Yi(G) the number of i-cycles in a graph G ∼ G(n,d).
Then Y3, Y4, . . . Yk are asymptotically independent Poisson random variables with
means λ3, λ4, . . . , λk, where λi = (d − 1)i/(2i).

Let us also record a simple observation that establishes that shortest

odd cycles contain no shortcut.

Lemma B.4.15. Let G be any graph and suppose that C is a shortest odd cycle in
G. Then there is no path p connecting two vertices u, v on C such that both paths
of C connecting u to v are longer than p.

Proof. Suppose such a path p exists. Let q ⊆ p be a subpath of p such that

(i) q only shares its endpoints w0,w1 with C, and

(ii) the two paths a0,a1 from w0 to w1 on C are longer than q.

Note that such a subpath q exists as the two paths connecting u to v on C

are both longer than p: if no such path q exists, then each potential q can
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be replaced by a part of C, thereby obtaining a walk from u to v on C of

length at most |p|; a contradiction.
But note that such a q gives rise to a shorter odd cycle: either a0 ∪ q or

a1 ∪ q is an odd cycle, of length less than C. This is in contradiction to the

initial assumption that C is a shortest odd cycle. The statement follows. �

B.4.2 Proof of Lemma B.4.2

Recall that by Theorem B.4.6, with high probability all but the largest

eigenvalue of the adjacency matrix of G are bounded in magnitude by

2

√
d − 1 + o(1). In the following we assume that n is large enough such

that the o(1) term is small. Let us argue each property separately.

(i) Let U ⊆ V(G) be any set of size κn. Apply the mixing lemma

(Lemma B.4.9) to the graph G to conclude that

|E(U,V(G) \U)| ≤ κn · d
(
(1 − κ) + 2

√
1 − κ
κd
+ o(1)

)
.

As G is a d-regular graph, we conclude that the average degree in

G[U] is at least d(κ − 2

√
1−κ
κd − o(1)). By the observation that if the

average degree is at least t, then there is a vertex of degree at least

dte, the statement follows for n large enough.

(ii) Recall that a sum of independent Poisson variables X1, . . . ,Xk with

means µ1, . . . ,µk is again a Poisson variable with mean

∑
i∈[k] µi.

Hence the number of cycles in G of length at most ` is, according to

Theorem B.4.14, a Poisson random variable Y with mean

µ =
∑̀
i=3

(d − 1)i
2i

≤ d`/6 , (B.14)

where we used that d`−1 + (d − 1)` ≤ d`. Theorem B.2.7 then tells us

that for any γ > 0, independent of n, it holds that

Pr[Y ≥ γ logn] ≤ e−µ
(
eµ

γ logn

)γ logn

<
1

n
, (B.15)

where the strict inequality holds for n large enough. Hence we

may assume that Y < γ logn. Let S ⊆ V(G) be a set of vertices that

contains one vertex from each cycle of length atmost `. By assumption

|S| < γ logn and the shortest cycle in G \ S is of length at least `.
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We also know that all but the largest eigenvalue of the adjacency

matrix of G are bounded in magnitude by 2

√
d − 1 + o(1). Apply

Corollary B.4.8 to conclude that no subsetW ⊆ V(G) of size at least
|W | ≥ 5

n√
d
induces a bipartite subgraph, in other words any such

G[W] contains an odd cycle.

LetU ⊆ V(G) be of size at least 6 n√
d
. For n large, it holds thatG[U\S]

is of size at least 5
n√
d
and thus contains an odd cycle of length at least

`. Let C denote such a cycle. What remains is to show that there is

a cycle in G[U] that is simultaneously of length at least ` as well as

bounded in length by 3Dø

β/2 logn.

Towards contradiction suppose that |C| ≥ 3Dø

β/2 logn and that C is a

shortest odd cycle in G[U \ S]. Arbitrarily split the cycle C into four

paths A1,B1,A2 and B2, such that B1 and B2 separate A1 from A2 on

C, both Ais are of size at least
1

4
Dø

β/2 logn, and both Bis are of size

at least
9

8
Dø

β/2 logn.

We may assume that γ ≤ β
9
Dø

β/2 so that for n large we can apply

Corollary B.2.5 to G[U], S,A1 and A2 to conclude that in G[U \ S]
there is a path p connecting A1 to A2 of length at most Dø

β/2 logn.

This contradicts Lemma B.4.15 as both paths of C connecting A1 to

A2 are of length at least
9

8
Dø

β/2 logn.

We conclude that there is an odd cycle of length at most 3Dø

β/2 logn

in G[U \ S]. As there are no cycles of length at most ` in G[U \ S] we

see that this cycle is also of length at least `, as required.

(iii) Applying Proposition B.4.13 to G and G[T ], we see that

λ2(LG[T ]) ≥ δ(G[T ]) − λn−1(AG) . (B.16)

Every vertex v ∈ T has degree at least (1−c−ε)d inG[T ]. Furthermore,

as λn−1(AG) is bounded by 2

√
d − 1 + o(1) and we assumed that d ≥

4/ε2, we obtain thatλ2(LG[T ]) ≥ (1−c−2ε)d. ApplyingCorollary B.4.5,

we conclude that G[T ] has vertex expansion at least
1−c−2ε
2(1−c−ε) .

(iv) Let U ⊆ T of odd cardinality be as in the statement, and denote by

m the number of vertices in G \U. By Theorem B.4.10, it is sufficient

to establish the bound λm(LG\U) ≤ 2λ2(LG\U) on the eigenvalues of

the Laplacian of G \U. Applying Proposition B.4.13 to G \U, we can

bound these eigenvalues in terms of the eigenvalues of the adjacency
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matrix of G, obtaining

λm(LG\U) ≤ d − λ1(AG) and (B.17)

λ2(LG\U) ≥ (c − ε)d − λn−1(AG) . (B.18)

As λ1(AG) and λn−1(AG) are both bounded in absolute value by

2

√
d − 1 + o(1)we thus conclude

2λ2(LG\U) − λm(LG\U) ≥ (2(c − ε) − 1)d − 2
√
d − 1 − o(1).

Since c > 1/2 + ε and we assumed that d ≥ (c − 1/2 − ε)−2, we have

that λm(LG\U) ≤ 2λ1(LG\U) as desired.

B.5 Embedding Theorem

In this section we prove our embedding theorem (Theorem B.3.3). Before

starting with the proof, let us establish some notation and recall some facts

from graph theory.

B.5.1 Further Graph Theory Preliminaries

In a graph G = (V ,E) on n vertices a vertex set S ⊆ V is a balanced separator
in G if there is a partition V = A

.

∪ B
.

∪ S of the vertex set of G such that

|A|, |B| ≤ 2n/3, and G has no edges between A and B.

Large vertex expansion implies that balanced separators are large: the

next lemma makes this well-known connection precise.

Lemma B.5.1. Let G be an α-expander on n vertices, and let S be a balanced
separator in G. Then |S| ≥ αn

3(1+α) .

Proof. Let S be a balanced separator inG of size |S| = s, separatingA and B,

with |A| = a, |B| = b. Without loss of generality assume that a ≤ b ≤ 2n/3.
Clearly, a + s ≥ n/3. Further, N(A) ⊆ S, and since a ≤ n/2, by expansion,

we get that s ≥ αa. In other words, s/α ≥ a, which when substituted into

a + s ≥ n/3 yields s(1 + 1/α) ≥ n/3. �

We also require the following lemma on vertex-disjoint paths in ex-

panders.

Lemma B.5.2 ([FK19]). Let G = (V ,E) be an α-expander and let A,B ⊆ V be
two vertex sets of sizes |A|, |B| ≥ t for some t > 0. Then G contains at least tα

1+α
vertex-disjoint paths between A and B.
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B.5.2 Proof of Theorem B.3.3

We now proceed with the proof of Theorem B.3.3, restated here for conve-

nience.

TheoremB.3.3 (Embedding Theorem). For α > 0 there are ε,n0 > 0 such that
the following holds. LetG be anα-expander onn > n0 vertices, letk ≥ 6, and letH
be a graph on at most εn/k logn vertices and edges. IfG is (1−4/k, 550∆(H)/α2)-
max-degree-robust, then G contains H as a topological minor. Furthermore, if G is
also (1 − 2/k,β, 1 + 2/β)-odd-cycle-robust, for β = α

3(1+α) , then one can choose
the parities of the lengths of all the edge embeddings in the minor.

When embedding a high degree vertex x ∈ V(H) intoG, we want to find

a vertex v ∈ V(G) of high degree such that many neighbors are connected

to large, disjoint sets of vertices. These large sets are very useful as they

guarantee that there are many vertices to which we can connect a vertex

embedding. The following definition makes this intuition precise.

Definition B.5.3 (Cross). An (r, s)-cross in a graph G = (V ,E) is a tuple

(v,U), where v ∈ V is a vertex andU ⊆ 2
V
consists of r pairwise disjoint

vertex sets U ⊆ V \ {v}, each of size |U| = s, such thatN(v) ∩U ≠ ∅ and the

graph G[U] is connected. We refer to v as the center of the cross and toU
as the branches of the cross.

The following lemma shows that crosses always exist in expanders with

sufficiently large maximum degree.

Lemma B.5.4. For all β > 0 and γ =
β

3(1+β) the following holds. Let G be a
β-expander on n vertices that is (1−2/k, (1+1/β)r)-max-degree-robust, for some
k ≥ 3 and r > 0 such that r ≤ γ3n

k(1+γ) . Then G contains an (r, s)-cross, for all s
that satisfy r · s ≤ γ2n

k(1+γ) .

Theproof is anadaptationof aproof byKrivelevich andNenadov [KN19]

and is deferred to Section B.5.3. We also have the following lemmawhich is

what allows us to choose the path length parities in the “furthermore” part

of Theorem B.3.3. It states that if there is an odd cycle in the graph, then

there is an odd and even path between any vertex u and a large enough

set A of vertices. Note that this does not necessarily hold if A is too small:

the vertex u may have degree 1 and A may be the single neighbor of u.

Similarly a lower bound on the length of the odd cycle is needed.

Lemma B.5.5. For all β > 0 the following holds. Let G be a β-expander on n
vertices that contains an odd cycle of length ` ≥ 1 + 2/β. Then, for all u ∈ V(G)
and A ⊆ V(G), of size |A| ≥ (Dø

β
logn + 1)(1 + 2/β), there is a vertex v ∈ A
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such that u and v are connected by both an odd and an even path, each of length at
most (15Dø

β/2/β) logn + `.

We defer the proof of Lemma B.5.5 to Section B.5.4.

WenowproveTheoremB.3.3with the assumptionof odd-cycle-robustness.

Furthermore, the proof makes all paths of odd length, though it is imme-

diate that one can choose the parities. To get the theorem without the

assumption of odd-cycle-robustness, one just has to replace the application

of Lemma B.5.5 by any shortest path (which, by Lemma B.2.3 is short).

The main idea is due to Krivelevich and Nenadov [KN19] (see also

[Kri19]). In contrast to their work we cannot directly embed the vertices

into the graph but rather take a detour by embedding appropriately sized

crosses for each vertex and then connect branches of crosses that correspond

to embeddings of adjacent vertices. The reason for this difference is that

the present theorem deals with topological minors rather than plain graph

minors (the difference is that in topological minors vertices are connected

by vertex disjoint paths while in graph minors subgraphs are connected).

In order for this to work we need to make some further changes to the

embedding process used. In theirwork, three sets of vertices aremaintained

throughout the process: one set A of “discarded” vertices, one set B of

vertices used in the embedding, and the remaining set C of vertices. A key

invariant which is maintained is that the set of discarded vertices expand

poorly into the set of remaining vertices, which together with expansion

implies that not too many vertices can be discarded. In our case, some of

the discarded vertices may in fact have good expansion into C, but we can

maintain the property that there are not too many such vertices. The details

are worked out in what follows. If the verbal description is ambiguous,

there is an algorithmic description in Section B.8 (Algorithm 4).

Formally, the algorithm maintains a partition A
.

∪A′
.

∪ ⋃̇
B∈ℬB

.

∪ C of

the vertices ofG. The setsA, B, andC play the same roles as in the informal

description above, and A′ is an additional set of discarded vertices which

may have large expansion into C. When the algorithm terminates, every

vertex v ∈ V(H) (edge e ∈ E(H), respectively) has a vertex embedding

Bv ∈ ℬ (an edge embedding Be ∈ ℬ) giving a topological minor of H in G.

Initially, all sets except C = V(G) are empty.

Let β = α
3(1+α) be the constant from Lemma B.5.1 for the lower bound on

the size of a balanced separator in an α-expander. At several points in the

algorithm we want to ensure thatG[C] is a β-expander. This is achieved by

removing any subset U ⊆ C of size |U| ≤ |C|/2 with small neighborhood

|N(U,C \U)| < β|U| from C and adding it to A (i.e., letting C← C \U and

A← A ∪U). Clearly once there are no sets U ⊆ C left as above, G[C] is a
β-expander.
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Throughout the algorithm the following invariants are maintained:

(i) C never increases in size and |C| ≥ n(1 − 2/k),

(ii) G[C] is a β-expander (by restoring expansion as described above

whenever needed),

(iii) N(A,C) < β|A|, and

(iv) |A′ | < β|A|/2.

The algorithm maintains the set I ⊆ V(H) to keep track of the vertices

already embedded.

Let r(d) = d(1 + 4/β) − 1 < 25d/α and s =
(
18Dø

β/2/β
)
logn. In what

follows we assume ε is sufficiently small as a function of β.

Fix a vertex x ∈ V(H) \ I not already embedded and apply Lemma B.5.4

to G[C] to obtain a (r(degH(x)), s)-cross Bx. Remove Bx from C and add it

to ℬ as the vertex embedding of x (set C ← C \ Bx and ℬ ← ℬ ∪ {Bx}),
and restore β-expansion in G[C].

Let us check that all the conditions of Lemma B.5.4 are satisfied. First,

we need thatG[C] is (1−2/k, (1+3(1+β)/β)r(degH(x)))-max-degree-robust.

We have 1 + 3(1 + β)/β ≤ 22/α and thus

r(degH(x))(1 + 3(1 + β)/β) ≤ r(∆(H))
22

α
<

550

α2

∆(H).

Furthermore sinceG is (1− 4/k, 550∆(H)/α2)-max-degree-robust and |C| ≥
(1 − 2/k)n, G[C] is (1 − 2/k, 550∆(H)/α2)-max-degree-robust. Second we

need to check that

r(degH(x)) ≤
γ3 |C|
k(1 + γ) and r(degH(x)) · s ≤

γ2 |C|
k(1 + γ) ,

where γ =
β

3(1+β) . Since |C| ≥ (1 − 2/k)n and ∆(H) ≤ |V(H)| ≤ εn
k logn

the

first bound clearly holds for n large enough, and provided ε is sufficiently

small as a function of α the second bound also holds. Thus we can indeed

apply Lemma B.5.4 on G[C]with the desired choice of r and s.

After embedding x, we need to connect the embedding Bx to the embed-

dings of the neighborsNH(x)∩ I = {y1, . . . ,yν} that are already embedded.

Suppose, for now, that the vertex embeddings have branches Ux ∈ Bx and
Uyi ∈ Byi that are β-expanding into C (i.e. |N(Ux,C)|, |N(Uyi ,C)| ≥ βs),
and such that neither of the two branches are already used to connect x,

resp. yi, to a neighbor.
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Ux

UyiBx Byi

qi

G[C]

Figure B.1: The vertex embedding Bx is connected to Byi by the path qi
which connects the two branches Ux and Uyi . The dotted branches have

an edge embedding adjacent and can thus not be used to connect Byi to
Bx.

By the assumption on odd-cycle-robustness, we see that G[C] is non-
bipartite and contains an odd cycle c of length

1 + 2/β ≤ |c| ≤ 3Dø

β/2 logn . (B.19)

As each branch is rather large, of size s, we can apply Lemma B.5.5 to G[C],
N(Ux,C) and N(Uyi ,C) to conclude that in G[C] there is an odd path qi
connecting Ux to Uyi of length

(
18Dø

β/2/β
)
logn ≤ s. Remove qi from C,

add it to ℬ as the edge embedding B{x,yi} and restore β-expansion inG[C].
This process is illustrated in Figure B.1 and can be found as pseudo code in

Algorithm 4.

If all branches of a vertex embeddingBz have either too few neighbors in

C or are already adjacent to an edge embedding (i.e., have already been used

to embed some other edge), then we want to remove the embedding of z.

This has to be done in a careful manner in order not to break the invariants.

First, move all branches that are not used to connect z to a neighbor to A.

Note that each such branch U satisfies |N(U,C)| < β|U|. Next, move the

remaining branches along with the adjacent edge embeddings to A′. Last,
the center of Bz is moved to A′ and z is removed from I. Note that at most

2(degH(z) − 1)smany vertices are moved to A′: at most degH(z) − 1 many

branches of size s and as many edge embeddings, each again of size at most

s. On the other hand at least(
r(degH(z)) − (degH(z) − 1)

)
· s = degH(z) · 4s/β (B.20)
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many vertices are moved to A. Hence the invariant |A′ | < β|A|/2 is

maintained.

The algorithm terminates the first time either I = V(H) or |A| ≥ n/k.
This completes the description of the algorithm.

It remains to argue that it cannot happen that |A| ≥ n/k, in other words

that when the algorithm terminates, all ofH is embedded in G. To this end,

observe that the size of ∪B∈ℬB is upper bounded by

s · ©«|E(H)| +
∑

v∈V(H)
r(degH(v))

ª®¬ < s · ©«|E(H)| + (4/β + 1)
∑

v∈V(H)
degH(v)

ª®¬
≤ s · |E(H)| · 11

β

≤ s · εn

k logn
· 11
β

≤ βn/2k .

Furthermore, while |A| ≤ n/k we have that

|A′ | < β|A|/2 ≤ βn/2k .

Note that this also holds the first time |A| becomes larger than n/k. This
shows, in particular, that the invariant |C| ≥ n(1 − 2/k) is maintained

throughout the execution of the algorithm.

For the sake of contradiction, suppose that the algorithm terminates

because of |A| ≥ n/k. Note that |N(A)| ≤ |A′ | + |∪B∈ℬB| + |N(A,C)| <
β(|A| + n/k). We do a case distinction, depending on the size of A. In

both cases we derive contradiction and thus show that the algorithm only

terminates after having embedded all of H into G.

Case 1: n/k ≤ |A| ≤ n/2. By expansion and using β < α/3 we have

α|A| ≤ |N(A)| < β(|A| + n/k) < α

3

(|A| + n/k) ,

which together with |A| ≥ n/k yields the desired contradiction.

Case 2: |A| > n/2. Note that the first time |A| ≥ n/k, it also holds that

|A| ≤ n(1 + 1/k)/2 as the sets added to A are of size at most

|C|/2 ≤ (n − |A|)/2. Hence we get that

|N(A)| < β
(
n/k + |A|

)
< βn

(
1/k + (1 + 1/k)/2

)
≤ αn

3(1 + α) ,

using that k ≥ 3. Note that N(A) is a balanced separator, sepa-

rating A from V(G) \ A \N(A). But this is a contradiction, since

Lemma B.5.1 states that any balanced separator of G has size at

least
αn

3(1+α) .
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B.5.3 Crosses in Expanders

Let us now turn to the proof of Lemma B.5.4, restated here for convenience.

Lemma B.5.4. For all β > 0 and γ =
β

3(1+β) the following holds. Let G be a
β-expander on n vertices that is (1−2/k, (1+1/β)r)-max-degree-robust, for some
k ≥ 3 and r > 0 such that r ≤ γ3n

k(1+γ) . Then G contains an (r, s)-cross, for all s
that satisfy r · s ≤ γ2n

k(1+γ) .

The proof follows a similar algorithm as the proof of Theorem B.3.3. In

this casewe can in fact more or less use the original argument of Krivelevich

and Nenadov [KN19] without any extensions.

Proof. The high-level idea of the proof is as follows. First, using the

embedding argument of Krivelevich and Nenadov, we find some number

r′ > r pairwise disjoint sets B1, . . . ,Br′ of vertices of G and a final set C

disjoint from all Bis such that (i) each Bi is a connected subgraph of G on s

vertices, (ii) the Bis have many neighbors in C, and (iii) G[C] is expanding.
Having these subsets, we can then choose a representative ui ∈ N(Bi,C) of
each Bi, take a vertex v ∈ C of high degree (which exists by the max-degree-

robustness of G), and apply Lemma B.5.2 to find vertex-disjoint paths

connecting N(v) to the uis. This establishes the existence of a cross with

v as the center and the Bis together with the respective paths as branches.

See Figure B.2 for an illustration.

Let us proceed with the details. In case there is some ambiguity in the

verbal description there is also a pseudo code description in Section B.8 of

what follows.

Fix r, set r′ = r(1 + 1/γ) and choose s ∈ N maximal such that s ≤ γn
k·r′ .

Note that s ≥ 1/γ and if the statement holds for this maximal s, then it also

holds for smaller values of s, as one can always shrink the branches to the

appropriate size.

Let us describe an algorithm to identify the sets ℬ = {Bi ⊆ V(G) | i ∈
[r′]}. The algorithm maintains a partition A

.

∪ ⋃̇
B∈ℬB

.

∪ C of the vertices

of G. Initially, all sets except C = V(G) are empty. After running the

procedure, the set ℬ contains r′ pairwise vertex-disjoint sets such that for

each Bi ∈ ℬ it holds that |Bi | = s and the induced subgraph G[Bi] is a
single connected component. Further, for all subfamilies ℱ ⊆ ℬ it holds

that

��⋃
F∈ℱ N(F,C)

�� ≥ γs|ℱ |. Throughout the execution of the algorithm

the following invariants are maintained

(i) C never increases in size and |C| ≥ n(1 − 2/k),

(ii) G[C] is a γ-expander (by restoring expansion whenever needed),
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v

Bi

pi
G[C] N(Bi, C)

Figure B.2: A cross with center v and branches {V(pi) ∪ Bi | i ∈ [r]}.

(iii) N(A,C) < β|A|, and

(iv)
��⋃̇
B∈ℬB

�� ≤ r′ · s ≤ γn/k.
The algorithm terminates if ℬ contains r′ vertex sets as described, or if the

size of A reaches |A| ≥ n/k. The latter case can only occur if there is a

small balanced separator in G. But G is a β-expander, so we know from

Lemma B.5.1 that there are no small balanced separators and hence when

the algorithm terminates, ℬ must contain r′ sets as described above.

Like in the main algorithm used in the proof of Theorem B.3.3, we want

to ensure that G[C] is a γ-expander throughout the algorithm, which is

achieved by removing any subset U ⊆ C of size |U| ≤ |C|/2 with small

neighborhood |N(U,C \ U)| < γ|U| from C = C \ U and adding it to

A = A ∪U.
Repeat the following while there are less than r′ sets in ℬ. Choose a

set of vertices U ⊆ C of size |U| = s such that G[U] is a single connected

component. Remove this set from C = C \ U, add it to ℬ = ℬ ∪ {U}
and restore expansion in G[C]. After expansion is restored, let ℱ ⊆ ℬ
be a maximal (possibly empty) family such that

��⋃
F∈ℱ N(F,C)

�� < γs|ℱ |.
Remove ℱ from ℬ = ℬ \ ℱ , and add these sets to A = A ∪F∈ℱ F.

As mentioned before, the algorithm terminates once there are either r′

sets in ℬ or the set A is large |A| ≥ n/k. This completes the description of

the algorithm. Let us argue that the latter cannot happen – for the sake of

contradiction, suppose the algorithm terminates because |A| ≥ n/k. Note

that we have |N(A)| ≤ | ∪B∈ℬ B| + |N(A,C)| < γ(|A| + n/k). We do a case

distincion on the size of |A|.
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Case 1: n/k ≤ |A| ≤ n/2. By expansion, β|A| ≤ N(A) < γ(|A| + n/k) <
β
3
(|A| + n/k). As |A| ≥ n/k this is a contradiction.

Case 2: |A| ≥ n/2. Note that the first time |A| ≥ n/k, it also holds that

|A| ≤ n(1 + 1/k)/2 as the sets added to A are of size at most

|C|/2 ≤ (n − |A|)/2. Hence we get (using k ≥ 3) that

|N(A)| ≤ γ(n/k + |A|) ≤ γn =
βn

3(1 + β) .

Note thatN(A) is a balanced separator, separatingA from V(G) \A.
But this is a contradiction, since Lemma B.5.1 states that any

balanced separator of G has size at least
βn

3(1+β) .

It remains to obtain an (r, s)-cross from the sets Bi and the remaining

part C. Choose a vertex v ∈ C of degree at least degG[C](v) ≥ r′. Such a

vertex v exists, as |C| ≥ (1−2/k)n is large (first invariant) and the statement

assumes that there is a vertex of degree r′ in every induced subgraph of size

at least (1 − 2/k)n. Let T be a transversal of the family {N(B,C) | B ∈ ℬ}.
Note that such a transversal T exists by Hall’s marriage theorem, using that

s ≥ 1/β and that every subset of ℬ is β-expanding into C.

Apply Lemma B.5.2 to G[C] and the vertex sets N(v) and T to conclude

that there are pairwise vertex-disjoint paths {pi | i ∈ [r]} each connecting

N(v) to a setN(Bi,C), for some Bi ∈ ℬ. We let the (r, s)-cross have center v
and branches {V(pi) ∪ Bi | i ∈ [r]}. Let us verify that this is indeed a valid

(r, s)-cross.
Each path pi connects N(v) to N(Bi,C) and we thus have that, as

required, each branch intersects N(v) and that the branches are connected,

where we use that the sets Bi ∈ ℬ are by definition connected. We also

need to verify that the branches are pairwise vertex-disjoint. To this end

recall that the sets Bi ∈ ℬ are pairwise disjoint and, furthermore, each such

set is disjoint from C. As the pairwise vertex-disjoint paths pi live in G[C],
these paths do not intersect ∪i∈[r]Bi and we may thus conclude that the

branches are pairwise vertex-disjoint. Finally, we also need to check that

each branch is of size s: each set Bi is of size s and thus each branch is of

size at least s. Shrinking the branches to the appropriate size recovers the

statement. �

B.5.4 Odd and Even Paths

In this section we prove Lemma B.5.5.

Lemma B.5.5. For all β > 0 the following holds. Let G be a β-expander on n
vertices that contains an odd cycle of length ` ≥ 1 + 2/β. Then, for all u ∈ V(G)
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and A ⊆ V(G), of size |A| ≥ (Dø
β
logn + 1)(1 + 2/β), there is a vertex v ∈ A

such that u and v are connected by both an odd and an even path, each of length at
most (15Dø

β/2/β) logn + `.

The lemma is a corollary of a more general statement about short paths

in α-expanders. The lemma states that if sets S, T , where |S| & |T |/α, are
connected by |T | many short vertex-disjoint paths, then for any large set U

there is again a set of short vertex-disjoint paths that does not only connect

every vertex of T to S but also a vertex from U to S.

In order to state the lemma, let us introduce some notation. For a graph

G and vertex sets S, T ⊆ V(G), denote by LG
disj
(T ,S) the minimum total

length of connecting all vertices of T to S by pairwise vertex-disjoint paths;

LG
disj
(T ,S) = min

{pt |t∈T }

∑
t∈T
|pt | (B.21)

where {pt | t ∈ T } ranges over all sets of pairwise vertex-disjoint paths

such that pt connects t to S (note the paths {pt} are not allowed to intersect

even in S). If no such set of paths exists, the value of the minimum is taken

to be∞. If the graph G is clear from context, we omit the superscript.

A similar lemma (though without the essential upper bound on the

path lengths) has appeared in e.g. [FK19].

Lemma B.5.6. LetG be a β-expander on n vertices and S, T ⊆ V(G) satisfy |S| ≥
|T |(1+ 2/β). Then every setU ⊆ V(G), of size |U| ≥ (Ldisj(T ,S) + |T |)(1+ 2/β),
contains a vertex u ∈ U such that Ldisj(T ∪ {u},S) ≤ 7(Ldisj(T ,S) + |T |)/β +
2Dø
β/2 logn.

Lemma B.5.5 follows by a single application of Lemma B.5.6.

Proof of Lemma B.5.5. Let C denote an odd cycle of length ` ≥ 1 + 2/β, as
guaranteed to exist, and denote by p a shortest path connecting u to C. By

Lemma B.2.3, we know that |p| ≤ Dø

β
logn. Apply Lemma B.5.6 to S = C,

T = {u}, pu = p, and U = A. We conclude that there is a v ∈ A and two

vertex-disjoint paths p′u,p
′
v connecting u and v to C, of total length at most

(15Dø

β/2/β) logn. We can join these paths into a path between u and v by

walking along C in either of the two directions. Since C has odd length

this results in one odd and one even length path connecting u to v, each of

length at most ` + (15Dø

β/2/β) logn, as required. �

Proof of Lemma B.5.6. Denote by P = {pt | t ∈ T } a set of pairwise vertex-

disjoint paths of smallest total length, where the path pt connects t to S.

Let V(P) = ∪p∈PV(p) denote all the vertices in the paths in P. Clearly,
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|V(P)| = L
disj
(T ,S)+ |T |. Setm = |V(P)|(1+ 2/β) and r = d logm

log(1+β/2) e. Note

that n ≥ |U| ≥ m and hence r ≤ 1

2
Dø

β/2 logn.

If |S| ≥ m, apply Corollary B.2.5 to V(P), S \ V(P) and U \ V(P) to
conclude that there is a path p of length Dø

β/2 logn connecting S \ V(P) to
U \V(P) in G \V(P). The set P ∪ {p} clearly satisfies the conclusion of the

lemma.

Otherwise, if |S| < m, we want to get into a position where we can again

apply Corollary B.2.5. To this end, we define a sequence of sets of vertices

S = S0 ⊆ S1 ⊆ . . . ⊆ S` ⊆ V(G) that are in some sense well-connected to S.

We formalize this property after explaining how to obtain these sets.

The set Si+1 is defined in terms of Si using the following process. Let

wit be the last vertex on the path pt (viewed as a path from S to t) that is in

Si andWi = {wit | t ∈ T }. Suppose |Si | < m and there is a path of length

at most r connecting Si \Wi to V(P) \Si in the graphG \Wi . Denote by qi
a minimal such path, denote by w the endpoint of qi in V(P) \ Si, and let

ti ∈ T be such that w ∈ V(pti). Then, define Si+1 = Si ∪ qi ∪ pti[w
ti
i
,w].

Otherwise, if |Si | ≥ m or there is no such qi, set ` = i and stop the process.

There is an illustration of this process in Figure B.3.

The following claim formalizes the well-connectedness property of S`.

Claim B.5.7. For every vertex s? ∈ S` \ W` it holds that LG[S`∪V(P)]disj (T ∪
{s?},S) ≤ LGdisj(T ,S) + |S` | and furthermore the paths achieving this bound are
the same as the paths in P outside S` \W`.

Proof. Proof by induction on i ∈ {0, . . . , `}. The base case i = 0 clearly holds

– we have for all s? ∈ S0 \W0 ⊆ S that LG[S0∪V(P)]
disj

(T ∪ {s?},S) = LG
disj
(T ,S).

Suppose the statement is true for some i ∈ {0, . . . ` − 1} and let us

prove that is then true for i + 1 as well. By the inductive hypothesis,

L
G[Si∪V(P)]
disj

(T ∪ {si},S) ≤ LG
disj
(T ,S) + |Si |, and this bound can be achieved

by a set of paths P′ which follow P outside Si \Wi.
Fix an arbitrary s? ∈ Si+1 \Wi+1. By the induction hypothesis the

claim holds for s? ∈ Si \Wi, so we may assume 5 that either s? ∈ qi, or
s? ∈ pti[w

ti
i
,w
ti
i+1]. If s? ∈ qi (excluding its endpointw

ti
i+1) then we simply

extend the path in P′ ending in si with the subpath of qi from s? to si,

increasing the total length of P′ by at most |qi |. On the other hand if

s? ∈ pti[w
ti
i
,w
ti
i+1] then we reroute the path from ti in P′ to si via qi and

then use the now unused part of pti to connect s? to S, again increasing the

total length of P′ by at most |qi |. There is an illustration of the two cases in

Figure B.3.

5
Here we are using thatWi = (Wi−1 \ {wtii−1}) ∪ {w

ti
i
}.
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Si

pti

qi

wti
i+1

wti
i

Si+1

Si

pti

qi

wti
i+1

wti
i s?

Si

pti

qi

wti
i+1

wti
i

s?

Figure B.3: Given the set Si, the first figure depicts the process of obtaining
the set Si+1. The following figures indicate how to route the paths, as in

the proof of Claim B.5.7, depending on where s? is located.

In either case, we can connect T and s? to S via vertex-disjoint paths of

length at most

L
G[Si+1∪V(P)]
disj

(T ∪ {s?},S) ≤ LG
disj
(T ,S) + |Si | + |qi | ≤ LG

disj
(T ,S) + |Si+1 |,

as desired. �

It is easy to see that |S` | ≤ 2m + r: the number of vertices added by

pti[w
ti
i
,w
ti
i+1] is always upper bounded by |V(P)| ≤ m. Suppose there is a

path p? of length |p? | ≤ Dø

β/2 logn+ r connecting some vertex s? ∈ S` \W`
to u? ∈ U \ V(P`) in G \ V(P`). We can then “compose” the paths to

conclude that

LG
disj
(T ∪ {u?},S) ≤ LG[S`]

disj
(W` ∪ {s?},S) +

L
G\(S`\(W`∪{s?}))
disj

(W` ∪ {s?}, T ∪ {u?}) (B.22)

≤ |S` | + LG
disj
(T ,S) + |p? | (B.23)

≤ |S` | + LG
disj
(T ,S) +Dø

β/2 logn + r (B.24)

≤ 2m + r + LG
disj
(T ,S) +Dø

β/2 logn + r (B.25)

≤ 7(LG
disj
(T ,S) + |T |)/β + 2Dø

β/2 logn , (B.26)

as claimed in the statement.

It remains to establish that such a path p? exists. If |S` | ≥ m, apply

Corollary B.2.5 to V(P), S` \W` and U \ V(P) to conclude that there is a

path p? of length at most |p? | ≤ Dø

β/2 logn that connects S` \W` toU\V(P)
in G \ V(P).

Otherwise, by construction, S` \W` cannot reach V(P) \W` within

r steps in G \W`. Hence, to argue that in G \ V(P) the ball of radius r
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around S` \W` is large, we do not need to apply Lemma B.2.4 to V(P)
and S` \W` but in fact can apply it toW` and S` \W`, where we use that

|S` \W` | ≥ |S| − |T | ≥ 2|T |/β. This enables us to grow S` \W` into a set

S? = B
G\W`
r (S` \W`) = BG\V(P)r (S` \W`) of size at leastm. Nowwe are in a

position to apply Corollary B.2.5 to V(P), S? and U \V(P) to conclude that

there is a path of length at most Dø

β/2 logn that connects S? to U \ V(P) in
G \ V(P). Taking an additional r steps in G[S?], one can reach S` \W`, as
required. This concludes the proof of the lemma. �

B.6 Concluding Remarks

We have established average-case lower bounds for refuting the perfect

matching formula and more generally the Card(G,®t) formula in random d-

regular graphs on an odd number of vertices. Let us conclude by discussing

some further loose ends and mention some open problems.

B.6.1 Polynomial Calculus Space Lower Bounds

The space of a PC refutation π is the amount of memory needed to verify π.

The PC space of a formula ℱ is then the minimum space required for any

PC refutation π of ℱ . As this is rather tangential to the rest of the paper

we refer to [FLM+13] for formal definitions. For convenience, let us restate

our result on PC space.

Theorem B.1.3. For all α > 0 there is a d0 such that the following holds. Let G
be a bounded degree α-expander on n vertices of average degree at least d0. Then
over any field F it holds that PCF requires spaceΩ(n/logn) to refute the Tseitin
formula defined on G.

The proof idea is to take the worst-case Tseitin lower bounds from

Filmus et al. [FLM+13] for which PC requires Ω(n) space and embed

these into a vertex expander of large enough average degree. The only

compication that arises is that these formulas are defined over multigraphs

– the multigraphH is obtained from an appropriate6 constant degree graph

G by doubling each edge. An inspection of the proof of Theorem B.3.3

reveals that Hmay be a multigraph and we can thus implement our proof

strategy.

Proof Sketch. Consider theworst-case instanceH fromFilmus et al. [FLM+13]

on εn/logn vertices, for some small enough ε > 0. Apply Theorem B.3.3

to H and G. This gives a topological embedding of H in G, with no control

6
See the proof of Theorem 8 in [FLM+13].
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of the parities of the length of the paths. Consider a restriction ρ that sets

the variables outside the embedding of H such that no axiom is falsified

(see, e.g., [PRST16]). By appropriately substituting the variables on each

path of the topological embedding we obtain that the worst-case instance

τ(H) is an affine restriction of τ(G). As an affine restriction only reduces

the amount of space needed to verify a proof, we see that τ(G) requires PC
spaceΩ(n/logn). �

B.6.2 Paths in Expanders

The arguments used in the proof of Theorem B.3.3 can be adapted to make

partial progress on a question by Friedman and Krivelevich [FK19]. They

asked, given a positive integer q, whether it is possible to guarantee the

existence of a cycle whose length is divisible by q in every α-expander.

We can show that for all primesq satisfying 1/poly(α) � q �
√
n/logn,

this indeed holds. In fact, for all a ∈ Zq, we can show that there is a cycle

of length a mod q.

The idea is to embed a cycle Cq2 of length q2 into G such that between

any two vertices there are two paths whose length difference is non-zero

modulo q. If we can ensure this, as all 0 ≠ b ∈ Zq are generators, we can

choose one path between all embedded vertices such that the length of the

cycle is a mod q for any a ∈ Zq.
In order to obtain paths of different length modulo q, let us embed a

cycle ce (of length � 1/poly(α)) for each edge e = {u, v}. We then want

to connect the vertex embeddings Bu,Bv to ce such that the two resulting

paths are of different length modulo q. Note that once a vertex is connected

to the cycle, there are only about 2/q vertices in ce such that both paths are

of equal length modulo q. As q is rather large and thus there are few such

“bad” vertices, when an edge embedding has to be moved to the sets A,A′,
we can ensure that the set A′ remains relatively small compared to A.

B.6.3 Open Problems

The main concrete problem left open is to reduce the degree of the hard

graphs: the embedding approach taken in the worst-case to average-case

reduction results in very large degree d; while Theorem B.1.1 does not

give an explicit estimate on d0 one can trace through the proofs and

get an estimate somewhere around 15 000. The main bottleneck that

prevents us from reducing this is the Partition Lemma and in particular

the dependence of d0 on c and ε in Lemma B.4.3. If this part could be

significantly improved or circumvented we believe that the degree of the

graph could be significantly reduced, although it would still be relatively
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large (at least a few hundred). It would be interesting to see what happens

for very small degrees such as a 4-regular graph (recall that sincen is odd, d

must be even) – is PM(G) hard with high probability even for these graphs?

Another interesting question is the proof complexity of perfectmatching

in Polynomial Calculus over F2 (or any other field of characteristic 2). While

PCF2
can refute the perfect matching formula on an odd number of vertices

for parity reasons, the situation is less clear when the number of vertices

is even. Are there graphs G that do not admit perfect matchings but PCF2

requires exponential size refutations?

We establish Theorem B.1.1 for random graphs and not for all spectral

expanders. Our proof mostly uses the expansion properties of random

graphs, except for two places: in the Partition Lemma to argue that every

subgraph contains a not too short odd cycle, and for the contiguity argument

in SectionB.3.2. However,webelieve that it shouldbepossible to circumvent

these uses of randomness and establish the lower bounds for all spectral

expanders.

Theorem B.1.1 only gives lower bounds for Card(G,b)when b = ®t is a
constant vector (and G is regular). It would be nice to characterize more

generally for which vectors b the formula is hard. In the analogous setting

for Tseitin formulas, the precise charges of the vertices do not matter, as

long as the sum of charges is odd the formula remains hard to refute on a

random graph [BGIP01; Gri01]. In the Card(G,b) case however this is not

the case. For instance, if the vector of target degrees b violates any of the

inequalities of the Erdős-Gallai characterization of degree sequences then

SoS (in fact even Sherali-Adams) can easily refute Card(G,b).7
In the case when G is the complete graph this in fact gives a complete

characterization of the easy and hard vectors b but for sparse graphs the

situation is less clear. Is there a nice characterization of vectors b for which

Card(G,b) is hard for SoS with high probability over a random d-regular

G?

More broadly, another open problem is to prove SoS lower bounds for

random CSPs that do not support pairwise uniform distributions (cf. the

brief discussion on CSPs in Section B.1.2). Viewed this way, our results

establish hardness of random monotone 1-in-k-SAT instances with two

occurrences per variable, for some large constantk. Reducingk corresponds

to the aforementioned problem of reducing the degree, but some other

natural questions are to look at other CSPs such as 1-in-k-SAT with negated

7
To see this, note that for any S ⊆ V(G), SoS of degree 1 can derive

∑
v∈S bv =∑

v∈S
∑
e3v xe ≤ |E(S,S)| +

∑
e∈E(S,S) xe ≤ |S|(|S| − 1) + ∑

v∉S

∑
e∈E(S,v) xe, and also that∑

e∈E(S,v) xe ≤ min(bv, |S|) for every v ∉ S. Combining these, Sherali-Adams can derive∑
v∈S bv ≤ |S|(|S| − 1) +∑

v∉Smin(bv, |S|) which in particular means it can derive all the

inequalities of the Erdős-Gallai theorem.
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(a) The graphG. (b) The lift of a single vertex. (c) The lifted graphH.

Figure B.4: An illustration of the blow-up construction, starting from a

4-regular graph.

literals, or to understand the hardness as a function of the density of the

instances.

B.7 Worst-Case Lower Bounds

In this section we describe a general reduction from the Tseitin formula to

the Perfect Matching formula as it appeared in [BGIP01] for Polynomial

Calculus. We then observe that this reduction also works for the SoS and

bounded depth Frege proof systems.

Starting from a graph G such that the Tseitin formula τ(G) is hard for

a proof system P, we want to craft a graph H so that PM(H) is hard for P.

To simplify the presentation, let us assume that G is d-regular. As we are

interested in unsatisfiable instances, i.e., when G has an odd number of

vertices, we may assume that d is even.

The graph H is a “blow-up” (or “lift”) of G: each vertex in V(G) is
lifted to a clique of d + 1 vertices and each lifted edge connects a single

pair of vertices from the corresponding cliques. If we denote the lifted

vertices of v ∈ V(G) by lift(v) = {(v, ?), (v, 1), . . . , (v,d)}, we add for each

edge {u, v} ∈ E(G), where v is the ith neighbor ofu andu is the jth neighbor

of v, an edge {(u, i), (v, j)}. An illustration of the construction of H can be

found in Figure B.4.

For intuition, let us describe how we would obtain a satisfying as-

signment to the Perfect Matching Formula from a hypothetical satisfying

assignment to the Tseitin Formula. Set the lifted edges to the same value as

they are set to in the Tseitin Formula. Now observe that each charge is odd

and hence there is an even number of vertices left that are not matched yet

in each lift(v), for v ∈ V(G). As the vertices in lift(v) form a clique, we can
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select a perfect matching on these unmatched vertices to obtain a satisfying

assignment to the Perfect Matching Formula.

Buss et al. [BGIP01] showed that Polynomial Calculus can simulate this

reduction.

Theorem B.7.1 ([BGIP01]). There are graphs G on an odd number of vertices n
and maximum degree ∆(G) = 5 such that Polynomial Calculus over any field of
characteristic different from 2 requires degree Θ(n) to refute PM(G).

What remains is to check that this reduction also gives Perfect Matching

worst-case lower bounds for Sum-of-Squares and bounded depth Frege.

This straightforward verification is carried out in the following two sections.

B.7.1 Sum-of-Squares

A nice property of the Sum-of-Squares system is that if the variables for a

formula Q can be expressed as well-behaved low-degree polynomials in

the variables of another formula P for which a pseudo-expectation exists,

then a pseudo-expectation also exists for Q. This property is well-known

but let us state and quickly prove the exact version we need.

Claim B.7.2. Let P ⊆ R[x1, . . . , xn] and Q ⊆ R[y1, . . . ,ym] be two systems of
polynomial equations. Let ẼQ be a degree D pseudo-expectation for Q. Suppose
there is a function f : {x1, . . . , xm} → R[y1, . . . yn], mapping the x variables to
polynomials in y of degree at most t. Extend f to polynomials by applying the
function to each variable individually. If f satisfies that ẼQ[f(r · p)] = 0, for all
p ∈ P and r ∈ R[x1, . . . xm] of degree deg(r · p) ≤ D/t, then ẼQ ◦ f is a degree
D/t pseudo-expectation for P.

Proof. As f only maps variables we have that ẼQ[f(1)] = ẼQ[1] = 1. Also,

we need to check that ẼQ[f(s2)] ≥ 0 for s ∈ R[x1, . . . , xm] of degree deg(s) ≤
D/2t. As we apply f individually to each variable, we can write ẼQ[f(s2)] =
ẼQ[

( ∑
t∈s f(t)

)
2] ≥ 0, as ẼQ is a degree D pseudo-expectation. �

In order to apply Claim B.7.2 with Q = τ(G) and P = PM(H), we need

to express each variable from the Perfect Matching formula as a low degree

polynomial in the Tseitin variables.

Let us recall some notation. For a vertex v ∈ V(G), let Yv be the set

of Tseitin variables corresponding to edges incident to v and denote by

Av all boolean assignments to Yv that satisfy the vertex axiom of v, i.e.,

assignments that set an odd number of edges to true. For a Tseitin variable

ye, where e ∈ E(G), let lift(ye) ∈ E(H) denote the lifted edge variable.

With this notation at hand, let us define the function f to use in

Claim B.7.2. Variables that correspond to lifted edges, xe = lift(ye′) for
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some e′ ∈ E(G), are set to 1 if and only if ye′ is set to 1 and the variables in

Yv are set according to some assignment in Av:

f(xe) =
∑
α∈Av
α(ye′ )=1

1{Yv = α} . (B.27)

Note that this is a polynomial of degree deg(v) = d in the ye’s. For each

assignment α ∈ Av, set the variables in lift(Yv) according to α and fix a

matching mα on the vertices in lift(v) not matched by α. For any edge

e ⊆ lift(v), let

f(xe) =
∑
α∈Av
e∈mα

1{Yv = α} . (B.28)

If we apply f individually to each variable, we claim that for i ∈ {1, . . . ,d}
and v ∈ V(G) the polynomial f(qPM(v,i)) is equal to the Tseitin axiom qτv:

f(qPM(v,i)) =
∑
e3(v,i)

f(xe) − 1 (B.29)

=
∑
α∈Av
α(ye′ )=1

1{Yv = α} +
∑
α∈Av
α(ye′ )=0

1{Yv = α} − 1 (B.30)

= qτv , (B.31)

using that themα are matchings. The axioms qPM(v,?) are handled similarly:

f(qPM(v,?)) =
∑
e3(v,?)

f(xe) − 1 =
∑
α∈Av

1{Yv = α} − 1 = qτv . (B.32)

As Ẽτ(G) maps all axioms multiplied by a low degree polynomial to 0,

the same holds for Ẽτ(G) ◦ f and we can thus apply Claim B.7.2.

We conclude that if there is a degree D pseudo-expectation Ẽτ(G) for
the Tseitin Formula τ(G), then there is a degree D/d pseudo-expectation

Ẽ
PM(H) for the Perfect Matching formula over the lifted graph H. Using

Grigoriev’s Tseitin lower bound [Gri01] we obtain the following Theorem.

TheoremB.7.3. There are graphsG on an odd number of verticesn andmaximum
degree ∆(G) = 5 for which SoS requires degree Θ(n) to refute PM(G).

B.7.2 Bounded Depth Frege

In this section we intend to prove the following theorem.
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Theorem B.7.4. There is a constant c > 0 such that the following holds. Suppose
D ≤ c logn

log logn
. Then there are graphs G on an odd number of vertices n and

maximum degree ∆(G) = 5 such that any depth-D Frege refutation of PM(G)
requires size exp(Ω(nc/D)).

As in the previous sectionweuse a function f, mappingPerfectMatching

variables to low depth formulas in the Tseitin Variables, to argue that we

can transform a refutation of PM(H) into a refutation of the Tseitin formula

τ(G). Assuming that this can be done, we use the following recent result

of Håstad about the Tseitin formula over the grid to obtain Theorem B.7.4.

Theorem B.7.5 ([Hås20]). Suppose thatD ≤ logn

59 log logn
, then any depth-D Frege

refutation of the Tseitin formula on then×n grid requires size exp(Ω(n1/58(D+1))).
In the previous section f mapped to polynomials. As we are now

working with formulas we need to translate the polynomials to formulas.

This is straightforward; reusing notation from the previous section, let

f(xe) =
∨
α∈Av
α(ye′ )=1

1{Yv = α} , (B.33)

if xe = lift(ye′) is a lifted edge. Else let

f(xe) =
∨
α∈Av
e∈mα

1{Yv = α} . (B.34)

Suppose there is a depth-D Frege refutation π of the Perfect Matching

formula PM(H). Replace each occurrence of a Perfect Matching variable xe
by f(xe) to obtain a depth-(D + 2) refutation π′. We claim that π′ can be

massaged into a refutation of the Tseitin formula τ(G) of size Od(Size(π)).
To this end we need to argue that f maps Perfect Matching axioms to

Tseitin Axioms or tautologies that are derivable in small size and depth.

Analoguous to SoS observe that for all v ∈ V(G) and i ∈ {1, . . . ,d},

f(
∨
e3(v,i)

xe) =
∨
e3(v,i)

f(xe) (B.35)

=
∨
α∈Av
α(ye′ )=1

1{Yv = α} ∨
∨
α∈Av
α(ye′ )=0

1{Yv = α} . (B.36)

Note that that the final formula is equal to the axiom qτv, up to a reordering

of the terms. As the axioms are over d variables, which is constant in our

case, this formula can be derived from qτv in constant depth and size. The

axiom for the vertex (v, ?) is handled in a similar manner.
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Last we need to show that the axioms x̄e ∨ x̄e′ , for edges e ≠ e′ ∈ E(H)
satisfying e ∩ e′ ≠ ∅, are mapped to a tautology derivable in small size and

depth. If we let {(v, i)} = e ∩ e′ we can write

f(x̄e ∨ x̄e′) =
(
¬

∨
β∈B

1{Yv = β}
)
∨

(
¬

∨
γ∈C

1{Yv = γ}
)
, (B.37)

for disjoint subsets B,C ⊆ Av. Observe that this formula is a tautology

and defined on d variables. Thus it is derivable in constant depth and size

dependent on d, which is constant in our case.

B.8 Embedding Algorithm

Algorithm 1 Restores β-expansion of G[C].
1: procedure FixExpansion(G,C,A,β)
2: while G[C] is not a β-expander do
3: U←any subset of C s.t. |U| ≤ |C|/2 and |N(U,C \U)| < β|U|
4: C← C \U
5: A← A ∪U

Algorithm 2 Finds an (r, s)-cross in an β-expander G as in the proof of

Lemma B.5.4.

Require: Conditions of Lemma B.5.4.

1: procedure EmbedVertex(G, r, s,β,k)

2: γ← β
3(1+β)

3: s← max{1/γ, s}
4: r′← (1 + 1/γ)r
5: A,ℬ ← ∅;C← V(G)
6: while |ℬ| < r′ do
7: U←any subset of C s.t. |U| = s and G[U] is connected
8: ℬ ← ℬ ∪ {U}; C← C \U
9: FixExpansion(G,C,A,γ)
10: ℱ ⊆ ℬ maximal such that | ∪F∈ℱ N(F,C)| < γs|ℱ |
11: ℬ ← ℬ \ ℱ ; A← A ∪F∈ℱ F

12: v←any C such that degG[C](v) ≥ r′
13: F← a transversal of {N(B,C) | B ∈ ℬ}
14: {pi | i ∈ [r]} ← from Lemma B.5.2 applied to G[C], v and F
15: return {v} ∪ {V(pi) ∪ Bi | i ∈ [r]} . Shrink branches appropriately
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Algorithm 3 Remove the embedding of vertex x.

1: procedure UnEmbedVertex(A,A′,B,H, I, x)
2: (v,U) ← Bx . v is the center andU are the branches of Bx
3: B← B \ Bx; I← I \ x
4: W ← ∅
5: for all e ∈ E(H) such that x ∈ e and e is embedded do
6: let U←U be the branch adjacent to Be
7: U ←U \U
8: B← B \ Be
9: W ←W ∪U ∪ Be
10: A← A ∪U . First add to A, then to A′ to maintain the invariant

11: A′← A′ ∪W ∪ {v}

Algorithm 4 EmbedsH in anα-expanderG as in the proof of Theorem B.3.3.

1: procedure EmbedGraph(H,G,α)
2: β← α/3(1 + α)
3: A,A′,B← ∅;C← V(G)
4: I← ∅
5: while I ≠ V(H) do
6: x←any V(H) \ I
7: Bx ← EmbedVertex(G[C], degH(x), s,β,k)
8: C← C \ Bx; B← B ∪ Bx; I← I ∪ x
9: FixExpansion(G,C,A,β)

10: Ufree(K) ← branches of cross K not used for edge embeddings

11: for all {x,y} ∈ E(H) such that y ∈ I do
12: try
13: Uz ←any Ufree(Bz) s.t. |N(Uz,C)| ≥ β|Uz | for z ∈ {x,y}
14: catch no such Uz for z ∈ {x,y}
15: UnEmbedVertex(A,A′,B,H, I, z); continue
16: Bxy ← odd path from Lemma B.5.5

17: C← C \ Bxy; B← B ∪ Bxy
18: FixExpansion(G,C,A,β)

19: return B
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The Minimum Circuit Size Problem
is Hard for Sum of Squares

Per Austrin and Kilian Risse

Abstract

We prove lower bounds for the Minimum Circuit Size Problem

(MCSP) in the Sum-of-Squares (SoS) proof system. Our main result

is that for every Boolean function f : {0, 1}n → {0, 1}, SoS requires

degreeΩ(s1−ε) to prove that f does not have circuits of size s (for any

s > poly(n)).
We also show that for any 0 < α < 1 there are Boolean functions

with circuit complexity larger than 2
nα

but SoS requires size 2
2
Ω(nα)

to prove this. In addition we prove analogous results on the minimum

monotone circuit size for monotone Boolean slice functions.
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C.1 Introduction

Even before the dawn of complexity theory, there was an interest in the

minimum circuit size problem (MCSP): given the truth table of a Boolean

function f : {0, 1}n → {0, 1} and a parameter s, the MCSP problem asks

whether there is a Boolean circuit of size at most s computing f. Despite

many years of research, we do not know whether this problem is NP-hard.
It clearly is in NP: given a circuit of size at most s (described by O(s log s)
bits) we can easily check in time O(s · 2n) whether this circuit indeed

computes f.

Determining the hardness of MCSP itself turns out to be a difficult

problem. Kabanets and Cai [KC00] showed that NP-hardness of the MCSP

problem implies breakthrough circuit lower bounds. These lower bounds

are not implausible but well out of reach of current techniques. In a similar

vein Murray and Williams [MW15] showed that NP-hardness of MCSP

implies that EXP ≠ ZPP and more recently Hirahara [Hir18] proved that

NP-hardness of MCSP implies a worst-case to average-case reduction for

problems in NP (for an appropriate MCSP version).

On the other hand if one could show that MCSP is in P/poly, this would

imply even stronger (though less realistic) results: Kabanets and Cai [KC00]

also showed that ifMCSP is inP/poly, then crypto-secure oneway functions

can be inverted on a considerable fraction of their range.

To summarize it seems unlikely that MCSP is in P, but showing that it

is NP-hard implies very strong consequences. As these results seem out of

reach for current techniques, it might be a more fruitful avenue to try to at

least rule out that certain (families of) algorithms solve the MCSP problem

efficiently.

This can be achieved very elegantly in proof complexity: show that

some proof system capturing your algorithm requires long proofs to refute

the claim that a complex function has a small circuit. This will then rule

out that the algorithm in question can efficiently solve the MCSP problem.

This will not only show that this specific algorithm requires long running

time but would also show that any algorithm captured by this proof system

requires long running time to solve the MCSP problem. Hence by this line

of reasoning we manage to rule out entire classes of algorithms to solve the

MCSP problem efficiently.

This paper focuses on the Sum of Squares proof system (SoS). This proof

system provides certificates of unsatisfiability of systems of polynomial

equations P = {p1 = 0, . . . ,pm = 0} over R. A key complexity measure is

the degree of a refutation, which is the maximum degree of a monomial

occurring in the refutation of P. All Boolean system P over n variables

have an SoS refutation of degree n and we are interested in the minimum
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degree that SoS requires to refute P. An SoS refutation of degree d has size

O(nd) and can be found in nO(d) time using semidefinite programming

and this is often a useful heuristic bound for the complexity of an SoS

refutation. The actual size complexity of SoS can sometimes be significantly

smaller than nd, but it is in general not believed that the shortest refutation

can be found efficiently. Hence it is in general of interest to understand

both the degree and the size needed to refute any given system.

SoS is a very powerful proof system and captures many state of the

art algorithms that are based on spectral methods. A classic algorithm

captured by SoS is Goemans and Williamson’s Max-Cut algorithm [GW95],

but also approximate graph coloring algorithms [KMS98], and algorithms

solving constraint satisfaction problems [AOW15; RRS17] are captured by

SoS. On the other hand SoS has real difficulty arguing about integers and

in particular parities. Indeed, Grigoriev [Gri01] showed that SoS requires

degreeΩ(n) to refute a random xor constraint satisfaction problem of the

appropriate (constant) density. After this initial lower bound it took a

few years to develop good lower bounds methods for SoS, but in recent

years there has been a flurry of strong SoS degree lower bounds [MPW15;

BHK+16; KMOW17].

In order to rule out that algorithms captured by SoS can solve MCSP

efficiently, we need to encode the claim that a given function has a small

circuit as a propositional formula. Weworkwith the encoding suggested by

Razborov [Raz98], which encodes this claim that the function f : {0, 1}n →
{0, 1} has a circuit of size s by a propositional formula Circuits(f) over
O(s2 + s · 2n) = O(s · 2n) variables as follows. We have Θ(s2) structure
variables to encode all possible size s circuits, and for every assignment

α ∈ {0, 1}nwe then have an additionalΘ(s) evaluation variables that simulate

the evaluation of the circuit on each input, and constraints forcing the circuit

to output the correct value on each input α.

Apart from its intrinsic interest, variants of the MCSP problem are also

(conjectured) sources of hard instances for various proof system. In other

words, it is believed that even strong proof systems cannot refute variants

of the claim that a complex function has a small circuit and hence has been

studied through the lens of proof complexity before: Razborov [Raz98;

Raz04] has shown that the pigeonhole principle reduces to the MCSP

problem and hence there exist functions f such that Circuits(f) require large
refutations inweak proof systems such as resolution or polynomial calculus

which are not able to solve the pigeonhole principle. A slightly different line

of works [ABRW04; Raz15] introduced pseudorandom generators to proof

complexity and show strong lower bounds for such formulas. Razborov

[Raz15] outlines a general connection between pseudo-random generator
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lower bounds and MCSP lower bounds.

To date we have no unconditional degree lower bounds for semi-

algebraic proof systems for the Circuits(f) formula and this has also been

stated [Raz21; Raz22] as an explicit open problem.

C.1.1 Our Results

Our first result gives a lower bound on the degree needed to refute

Circuits(f) in SoS. This lower bound is very general and in fact applies to

every Boolean function f : {0, 1}n → {0, 1}.
Theorem C.1.1. For all ε > 0 there is a d = d(ε) such that the following holds.
For n ∈ N, all s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits,
SoS requires degreeΩε(s1−ε) to refute Circuits(f).

Furthermore, the lower bound ofΩε(s1−ε) on the degree is essentially

tight: if f does not have a circuit of size s then there exists an SoS refutation

of this in degree O(s).
Proposition C.1.2. Let s ∈ N and f : {0, 1}n → {0, 1} be a Boolean function on
n bits that requires circuits of size larger than s to be computed. Then there is a
degree O(s) SoS refutation of Circuits(f).

We also prove a result about the minimum size (number of monomials)

required for SoS to refute Circuits(f). This result holds for all functions

that “almost” have a circuit of size s, in the sense that they have an errorless

heuristic circuit (see the survey [BT06]) of size s/2 and extremely small

error probability with respect to the uniform distribution. Formally, we let

ℱn(s, t) denote the class of Boolean functions that consists of all functions

f : {0, 1}n → {0, 1} for which there is a Boolean circuit Cf : {0, 1}n →
{0, 1,⊥} of size at most s such that

1. if Cf(α) ≠ ⊥, then Cf(α) = f(α), and

2. Cf(α) = ⊥ on at most t inputs.

In other words the circuit Cf computes f correctly on all except t inputs.

Note that technically the output of the circuit Cf is two bits with the first

one indicating whether the output is ⊥ or the value of the second bit. We

believe that above presentation is more intuitive and hope that the slight

abuse of notation causes no confusion. With the class of functions ℱn(s, t)
at hand we can state our main SoS size lower bound.

Theorem C.1.3. For all ε > 0 there is a d = d(ε) such that the following holds.
Let n ∈ N and s ∈ N such that s ≥ nd. If t ≥ s and f ∈ ℱn(s/2, t), then it holds
that SoS requires size exp

(
Ωε(s2−ε/t)

)
to refute Circuits(f).
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This yields non-trivial size lower bounds for t as large as s2−ε/ω(1).
Furthermore, note that once t � s log s there are functions that require

such large circuits. For example setting s = 2
n0.99

and t = s1.5, the theorem

shows that there are functions f that do not have circuits of size s, but SoS

requires size 2
2
Ω(n0.99)

to prove this.

It is natural to wonder whether SoS fares better in the monotone setting.

In other words, whether SoS can refute the claim that a complex monotone

function has a small monotone circuit. The following two theorems show

that this is not the case for the setℳn(`) of monotone `-slice functions.

Recall that ℳn(`) consist of all Boolean functions f on n bits such that

f(α) = 0 for all αwith Hamming weight less than `, and f(α) = 1 for all α

with Hamming weight greater than ` (note that any such f is monotone).

We define a variant Circuit
mon

s (f) of the Circuits(f) formula, which

instead encodes the claim that f has a monotone circuit of size s, and prove

the following theorem.

Theorem C.1.4. For all ε > 0 there is a d = d(ε) such that the following holds.
For all n, ` ∈ N, all s ≥ nd and any monotone slice function f ∈ ℳn(`) SoS
requires degreeΩε(s1−ε) to refute Circuitmon

s (f).

As in the non-monotone case, we can also obtain size lower bounds for

the monotone-MCSP. Akin to the general size lower bound we consider

monotone Boolean slice functions that have good monotone errorless

heuristic circuits. Letℳn(`, s, t) ⊆ ℳn(`) be the class of monotone Boolean

`-slice functions f : {0, 1}n → {0, 1} for which there is a monotone Boolean

circuit Cmon

f
: {0, 1}n → {0, 1,⊥} such that for `-slice inputs α ∈

([n]
`

)
it

holds that

1. if Cmon

f
(α) ≠ ⊥, then Cmon

f
(α) = f(α), and

2. Cmon

f
(α) = ⊥ on at most t inputs.

Theorem C.1.5. For all ε > 0 there is a d = d(ε) such that the following holds.
For n, ` ∈ N, all s ≥ nd and t ≥ s and monotone function f ∈ ℳn(`, s/10, t)
SoS requires size exp

(
Ωε(s2−ε/t)

)
to refute Circuitmon

s (f).

C.1.2 Overview of Proof Techniques

Degree Lower Bound: The main idea that drives our result is a reduction

from an expanding xor constraint satisfaction problem to the Circuits(f)
formula. The reduction is achieved through a careful restriction of the

Circuits(f) formula, such that each input α ∈ {0, 1}n to the circuit specifies

an xor constraint over some new set of variables Y. This will then result in an
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XOR-CSP instance with 2
n
constraints over the variables Y. All that SoS has

to prove is that there is no satisfying assignment to this XOR-CSP instance.

By ensuring that the constraint-variable incidence graph is sufficiently

expanding, SoS requires large degree to refute the restricted formula (see

Theorem C.2.5). At the same time, we need the constraint graph to be very

explicit so that it can be encoded into a small circuit. For this we utilize a

construction of unbalanced expanders by Guruswami et al. [GUV09] (see

Theorem C.2.2). This reduction then immediately yields Theorem C.1.1.

This lower bound may also be viewed as implementing the general

program sketched by Razborov [Raz15] relating pseudorandom generators

in proof complexity to the MCSP problem. However, we prefer to describe

it as a direct reduction to the MCSP problem.

Size Lower Bound: In order to obtain size lower bounds, we would like

to apply the degree-size tradeoff due to Atserias and Hakoniemi [AH19] to

Theorem C.1.1. Unfortunately the formula is over too many variables to be

able to conclude a meaningful size lower bound: it is defined over roughly

Ω(2n · s) variables.
Instead of applying TheoremC.1.1, we restrict our attention to functions

with all except the at most t ⊥-outputs computed by the corresponding

errorrless heuristic circuit. If we choose t small enough, then we are

able to heavily restrict Circuits(f) and significantly reduce the number of

variables to the point where the Atserias-Hakoniemi degree-size tradeoff

is applicable.

Monotone Circuits: We prove these theorems by adapting the proofs

for the non-monotone setting. The idea is to work over the `th slice and

disregard all other inputs. The key feature that makes this work is the fact

that the monotone circuit complexity of a slice function is essentially the

same as the (ordinary) circuit complexity (see Lemma C.2.4). This lets us

convert all subcircuits used in the reduction to small monotone circuits (if

we only work on the slice).

The size lower bound goes along the same lines as the proof of Theo-

rem C.1.3.

C.1.3 Organization

In Section C.2, we provide the necessary background material. In Sec-

tion C.3 we set up the general framework for our lower bounds with some

preliminary definitions and lemmas. Then in Section C.4we prove themain

degree Theorem C.1.1 and size Theorem C.1.3 lower bounds. We prove the

monotone lower bounds Theorem C.1.4 and Theorem C.1.5 in Section C.5.
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In Section C.6 we explain how SoS of degree O(s) can refute Circuits(f)
(provided f does not have a circuit of size s). Finally in Section C.8 we give

some concluding remarks.

C.2 Preliminaries

All logarithms are in base 2. For integers n ≥ 1 we write [n] = {1, 2, . . . ,n}
and for a setUwe denote the power set ofU by 2

U
. Further, for a set V ⊆ U

we let V be the complement of V with respect to U, that is, V = U \ V . We

write

([n]
`

)
⊆ {0, 1}n for the set of binary strings with Hamming weight `.

For a string α ∈ {0, 1}n we let |α| = ∑
i∈[n] αi.

We sometimes want to supress dependencies on constants and write

f(n, ε) ∈ Oε
(
g(n, ε)

)
, respectively f(n, ε) ∈ Ωε

(
g(n, ε)

)
, to mean that there

exists a function c(ε) > 0 such that there is an n0 and for all n ≥ n0 it holds

that f(n, ε) ≤ c(ε) · g(n, ε), respectively f(n, ε) ≥ c(ε) · g(n, ε).

Definition C.2.1. A sequence of bipartite graphs {Gn = (Un,Vn,En)}n∈N
with deg(u) = d for all u ∈ Un is explicit if there is an algorithm that given

(n,u, j), where n ∈ N,u ∈ Un and j ∈ [d], computes the jth neighbor of

vertex u in the graph Gn in time poly(logn + log |U| + logd).

From now on it is understood that whenever we talk about an explicit

graph we actually mean to say that there is a sequence of explicit graphs

with above properties.

A bipartite graph G = (U,V ,E) is an (r,d, c)-expander if every vertex

u ∈ U has degree deg(u) = d and every setW ⊆ U of size |W | ≤ r satisfies
|N(W)| ≥ c · |W |. A key ingredient in our proofs is the following result on

the existence of strong explicit expanders.

Theorem C.2.2 ([GUV09]). For all constants γ > 0, every M ∈ N, r ≤ M,
and ε > 0, there is an N ≤ d2 · r1+γ and an explicit (r,d, (1 − ε)d)-expander
G = (U,V ,E), with |U| =M, |V | = N, and d = O

(
((logM)(log r)/ε)1+1/γ

)
.

For our purposes it is more relevant to compute the neighbor relation

Neigh(u, v) indicating whether (u, v) ∈ E rather than the neighbor function

as in Definition C.2.1, but this is an immediate consequence of being able

to compute the neighbor function.

Claim C.2.3. If G = (U,V ,E) is explicit then the neighbor relation Neigh :

U × V → {0, 1} is computable by a circuit of size d ·
(
poly(logn + log |U| +

logd) + 2 log |V | + 1
)
.

A slice function is a Boolean function f such that there is a ` ∈ [n] with

f(α) = 0 whenever |α| < `, and f(α) = 1 whenever |α| > `. Note that all

slice functions are monotone.
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The circuit complexity Sizecirc(f) of a Boolean function f is the size of

the smallest circuit over the basis ∨,∧, and ¬ (with fan-in 2). Similarly the

monotone circuit complexity Size
mon

circ
(f) of a monotone Boolean function

f is the size of the smallest circuit over the basis ∨, and ∧. We have the

following useful inequality between these measures.

Lemma C.2.4 ([Ber82]). If g is any slice function on n bits, then Size
mon

circ
(g) ≤

2 Sizecirc(g) +O(n2
logn).

C.2.1 Sum of Squares

Let P = {p1 = 0, . . . ,pm = 0} be a system of polynomial equations over the

set of variables X = {x1, . . . , xn, x̄1, . . . , x̄n}. Each pi is called an axiom, and

throughout the paper we always assume that P includes all axioms x2
i
− xi

and x̄2
i
− x̄i, ensuring that the variables are Boolean, as well as the axioms

1 − xi − x̄i, making sure that the “bar” variables are in fact the negation of

the “non-bar” variables.

Sum-of-Squares (SoS) is a static semi-algebraic proof system. An SoS

proof of f ≥ 0 fromP is a sequenceofpolynomialsπ = (t1, . . . , tm; s1, . . . , sa)
such that ∑

i∈[m]
tipi +

∑
i∈[a]

s2i = f . (C.1)

The degree of a proof π is

Deg(π) = max{max

i∈[m]
deg(ti) + deg(pi),max

i∈[a]
2 deg(si)} . (C.2)

An SoS refutation of P is an SoS proof of −1 ≥ 0 from P, and the SoS degree

to refute P is the minimum degree of any SoS refutation of P: if we let π

range over all SoS refutations of P, we can write Deg
SoS
(P) = minπDeg(π).

The size of an SoS refutation π, Size(π), is the sum of the number

of monomials in each polynomial in π and the size of refuting P is the

minimum size over all refutations Size
SoS
(P) = minπ Size(π).

Let us recall some well-known results about SoS. Given a bipartite

graph G = (U,V ,E), and b ∈ {0, 1} |U| we denote by Φ(G,b) the following

XOR-CSP instance defined overG: for each v ∈ V there is a Boolean variable

xv, and for every vertex u ∈ U there is a constraint ⊕v∈N(u)xv = bu. We

endoce this in the obvious way as a system of polynomial equations:{ ∏
v∈N(u)

(1 − 2 · xv) = 1 − 2 · bu | u ∈ U
}

,
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along with the Boolean axioms and the negation axioms for the x variables.

The first theoremwe need to recall is the classic lower bounds for XOR-CSPs

by Grigoriev.

Theorem C.2.5 ([Gri01]). For n ∈ N, all k = k(n) and r = r(n) the following
holds. Let G = (U,V ,E) be an (r,k, 2)-expander with |V | = n. Then for every
b ∈ {0, 1} |U| SoS requires degreeΩ(r) to refute the claim that there is a satisfying
assignment toΦ(G,b).

Wealsoneed to recall the size-degree tradeoffbyAtserias andHakoniemi.

Theorem C.2.6 ([AH19]). Let P be a system of polynomial equations over
n Boolean variables and degree at most k. If d is the minimum degree SoS
requires to refute P, then the minimum size of an SoS refutation of P is at least
exp(Ω((d − k)2/n)).

C.2.2 Restrictions

Let P = {p1 = 0, . . . ,pm = 0} be a system of polynomial equations

over the set of Boolean variables X = {x1, . . . , xn, x̄1, . . . , x̄n}. For a map

ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} denote by Pdρ the system of

polynomial equations P restricted by ρ, i.e.,

Pdρ = {p1(ρ(x1), . . . , ρ(xn)) = 0,

p2(ρ(x1), . . . , ρ(xn)) = 0,

.

.

.

pm(ρ(x1), . . . , ρ(xn)) = 0} ,

where it is understood that ρ(x̄i) = ρ(xi), with the convention ¯̄xi = xi,
¯
0 = 1 and vice versa. Throughout the paper all our restrictions set the bar

variables to the negation of the non-bar variables. As such it makes sense

to treat the pair of variables (xi, x̄i) as one variable and we say that P has

n unset variables.
We say that a system of polynomial equations P′ is an affine restriction of

P if there is a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} such that

P′ = Pdρ, where we ignore polynomial equations of the form 0 = 0. The

following well-known lemma states that a system of polynomial equations

P is at least as hard as any of its affine restrictions.

Lemma C.2.7. Let P,P′ be systems of polynomial equations such that P′ is an
affine restriction of P. Then,

(i) Deg
SoS
(P) ≥ Deg

SoS
(P′), and
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(ii) Size
SoS
(P) ≥ Size

SoS
(P′).

The lemma is easy to verify by considering an SoS refutation of P and

hitting it with the appropriate affine restriction. The restricted proof is now

a refutation of P′ and it can be seen that the degree/size of the restricted

refutation is at most the degree/size of the original refutation.

Wealso considermoregeneral restrictions: restrictionsρ : {x1, . . . , xn} →
R[x]≤k that map variables to polynomials of degree at most k. For bar

variables, we let ρ(x̄i) = 1− ρ(xi). For such general restrictions we have the

following well-known lemma.

Lemma C.2.8. Let P be a system of polynomial equations and let ρ be a restriction
mapping variables to polynomials of degree at most k. Then, Deg

SoS
(P) ≥

Deg
SoS
(Pdρ)/k.

This lemma can again be verified by considering a refutation of P.
Substitute each variable xi in the proof by ρ(xi). This results in a refutation

of Pdρ, whose degree is at most a factor k larger than the degree of the

refutation of P.

C.2.3 The Circuit Size Formula

The formula Circuits(f) encodes the claim that the function f, given as a

truthtable f ∈ {0, 1}2n , can be computed by a circuit of size s over n Boolean

inputs x1, . . . , xn. The encoding is not essential but for concreteness let

us fix one encoding of this claim. We deviate from the encoding used by

Razborov [Raz98; Raz04] and do not present the formula as a propositional

formula but rather as a system of polynomial equations. In order to encode

below constraints as a constant width CNF formula, as done by Razborov,

one needs to introduce extension variables. Despite this difference it is not

difficult to see that our lower bound also works against the CNF encoding.

In Section C.7 we directly show that a low degree SoS refutation of the CNF

encoding gives rise to a low degree SoS refutation of the encoding used in

this paper. Thus a lower bound for our encoding implies a lower bound

for the CNF encoding. As the presentation is simpler in the polynomial

encoding, we present it as follows.

We also need to define the monotone version of Circuits(f) denoted
by Circuit

mon
s (f). The later is a restriction of the former with the isNeg(v)

(see below) variable, for all v ∈ [s], set to 0. This forces the circuit to only

contain ∧ and ∨ gates, i.e., the circuit is monotone.

All variables introduced in the following are Boolean variables and

we implicitly add the Boolean axiom y(1 − y) = 0 for each variable y and

further implicitly introduce the “bar variable” ȳ along with the negation
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axiom y = 1 − ȳ (and the corresponding Boolean axiom) ensuring that ȳ is

always the negation of y.

Let us first describe the structure variables which are used to describe

the circuit that supposedly computes the function f.

We view the s gates as being indexed from 1 to s in topological or-

der with gate s being the output. For each gate v ∈ [s] there are three

variables isNeg(v), isOr(v), isAnd(v) indicating the operation computed at

v. Similarly for a gate v ∈ [s] and a wire a ∈ {1, 2} we have variables

isFromConst(v,a), isFromInput(v,a), isFromGate(v,a) indicating whether

the input wire a of v is connected to a constant, a variable or a gate.

Further, we have the variables constantValue(v,a), isInput(v,a, i) and
isGate(v,a,u), for a ∈ {1, 2}, i ∈ [n] and u < v, specifying the constant

value, input xi or gate u, the input wire a of v is connected to (assuming a

is connected to the corresponding kind).

The second set of variables are the evaluation variables, which describe

what value is computed at each v on input α = α1, . . . ,αn (i.e., we have

xi = αi).

For each gate v ∈ [s] and assignment α ∈ {0, 1}n we have a Boolean

variable outα(v) indicating the value computed at gate v on input α. The

Boolean variable inα(v,a) indicates the value brought to the vertex v ∈ [s]
on wire a ∈ {1, 2} on input α.

Note that there is a total of 3s+6s+2s+2sn+2
(s
2

)
= Θ(s2+sn) structure

variables, and a total of 3s2n evaluation variables, for a total of Θ(s2 + s2n)
variables in Circuits(f).

The formula consists of the following axioms. Let us first describe the

axioms on the structure of the circuit. In the following section we refer to

this set of axioms as the structure axioms. The first axioms ensure that every

wire is connected to a single kind

isFromConst(v,a) + isFromInput(v,a) + isFromGate(v,a) = 1 ∀v ∈ [s] ,
(C.3)

and similarly the next axioms make sure that each gate is of precisely one

kind

isNeg(v) + isOr(v) + isAnd(v) = 1 ∀v ∈ [s] . (C.4)

The final structure axioms ensure that the variables, which indicate to what

input or gate a fixed wire is connected to, always sum to one (except for
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gate 1 which cannot have any inputs from other gates)

n∑
i=1

isInput(v,a, i) = 1 ∀v ∈ [s], and (C.5)

v−1∑
u=1

isGate(v,a,u) = 1 ∀v ∈ [s] \ {1} . (C.6)

We further strengthen our encoding by adding the axioms

isInput(v,a, i)isInput(v,a, j) = 0 ∀v ∈ [s], i < j ∈ [n], and (C.7)

isGate(v,a,u)isGate(v,a,u′) = 0 ∀v ∈ [s] \ {1}, u < u′ < v . (C.8)

Note that Axioms C.8 and C.7 are implied by Axioms C.5. We add these

axioms in order to argue that a short refutation of the CNF encoding of

this principle leads to a short refutation of the present encoding.

The second group of axioms are the evaluation axioms and they ensure

that the evaluation variables indeed compute the intended values. We start

by making sure that the wires carry the value intended by the structure

axioms. If a wire is connected to a constant, then the evaluation variable

associated with that wire should always be equal to the constant

isFromConst(v,a) ·
(
inα(v,a) − constantValue(v,a)

)
= 0 , (C.9)

and similarly in case if a wire is connected to an input or a gate

isFromInput(v,a) · isInput(v,a, i) ·
(
inα(v,a) − αi

)
= 0 , (C.10)

isFromGate(v,a) · isGate(v,a,u) ·
(
inα(v,a) − outα(u)

)
= 0 . (C.11)

The final set of evaluation axioms makes sure that the output evaluation

variable of a gate is correctly related to the input evaluation variables:

isNeg(v) · outα(v) = isNeg(v) · inα(v, 1) , (C.12)

isOr(v) · outα(v) = isOr(v) ·
(
1 − inα(v, 1) · inα(v, 2)

)
, (C.13)

isAnd(v) · outα(v) = isAnd(v) · inα(v, 1) · inα(v, 2) . (C.14)

Last but not least we have the axioms that ensure that the circuit outputs

the function specified by the truthtable

outα(s) = f(α) . (C.15)
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C.3 On Circuits and Restrictions

Let G = (U,V ,E) be a bipartite graph with U = {0, 1}n and V = [m].
As in the XOR-CSP setup (Section C.2.1) we think of vertices in U as

constraints and vertices in V as variables. More specifically, we think of

each vertexα ∈ U as an xor constraint over the variables in the neighborhood

⊕i∈N(α)vi = bα, for a constraint vector b ∈ {0, 1}U. Given an assignment

β ∈ {0, 1}m to the variables V , we let fG,β : U → {0, 1} be the function

defined by fG,β(α) = ⊕i∈N(α)vi. In other words, viewing fG,β as a vector in

{0, 1}U, it is the unique constraint vector such that the XOR-CSP instance,

defined over G, is satisfied by the assignment β. Let us denote the set of all

such constraint vectors that give rise to a satisfiable XOR-CSP instance by

ℱG = {fG,β | β ∈ {0, 1}m} .

In order for SoS to refute an XOR-CSP instance defined over G, it must

prove that the given constraint vector is not in the set ℱG.
On the other hand in order for SoS to refute the formula Circuits(f) it

needs to show that there is no circuit of size at most s computing f. That is,

SoS needs to show that f is not in the set

C∅ = {T : {0, 1}n → {0, 1} such that Circuits(T ) is satisfiable} .

More generally, if we restrict Circuits(f) by a restriction ρ, then the proof

system must prove that f is not a member of the family of truthtables

Cρ = {T : {0, 1}n → {0, 1} such that Circuits(T )dρ is satisfiable} .

In the following we show that there is a well-behaved restriction ρ such

that Cρ = ℱG for some explicit graphs G. In other words, once we consider

the formula Circuits(f)dρ, all that SoS needs to do is to rule out that f is a

valid right hand side of an XOR-CSP instance. But we know that if G is

a moderate expander, then low degree SoS cannot determine wheter the

XOR-CSP instance is satisfiable and hence we obtain our lower bound.

Let us first formalize the properties we require from ρ. We start off

by restricting our attention to a certain natural class of affine restrictions.

Namely, we do not want that the structure of the circuit depends on

evaluation variables.

Definition C.3.1 (natural affine restrictions). An affine restriction ρ to the

variables of Circuits(f) is natural if there is no structure variable y such that

ρ(y) is an evaluation variable.

In order to motivate the following definition, let us informally describe

the natural restriction ρ and explain the properties of ρwe require.
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For now we can think of ρ as a restriction to the structure variables

(though for the size lower bounds we also need to restrict the evaluation

variables). Some set ofm structure variables remains undetermined. Let

us denote these variables by y1, . . . ,ym. We intend to choose ρ such that

on a given input α ∈ {0, 1}n to the circuit, it is forced to compute ⊕i∈N(α)yi.
In other words, given such a restriction ρ, we are essentially left with an

XOR-CSP problem over G, with right hand side f. There is however a

difference in that the encoding is non-standard: the evaluation variables act

like extension variables that correspond to the functions computed at each

gate of the circuit. In order to argue that the known degree lower bound

for the XOR-CSP problem implies a degree lower bound for the problem at

hand, we need to get rid of these extension variables. This can be done if

the functions computed at the gates are of low degree and this is precisely

what we require of such variables.

Recall from Section C.2.2 that a system of polynomial equations P has

n unset variables if there are n tuples of variables (x, x̄) such that at least

one variable of each tuple occurs in P and all variables in these tuples are

unset, i.e., they are not fixed to a constant.

Definition C.3.2 (k-determined). Let ρ be an affine restriction to the

variables of Circuits(f) and suppose that ρ leaves m structural variables

Y = {y1, . . . ,ym} unset. Then ρ is k-determined if for every v ∈ [s] and
α ∈ {0, 1}n there are functions

goutv,α,g
in1

v,α,g
in2

v,α : {0, 1}m → {0, 1}

depending on at most k variables such that the following holds. For all

T ∈ Cρ and all total assignments σ that satisfy Circuits(T )dρ it holds that

outα(v)dρ∪σ = goutv,α(β) ,
inα(v, 1)dρ∪σ = g

in1

v,α(β) , and
inα(v, 2)dρ∪σ = g

in2

v,α(β) ,

where β ⊆ σ is the assignment to Y.

As the Y variables are Boolean variables, we may assume that all

functions g·v,α(Y) are multilinear and thus of degree at most k. We associate

each k-determined restriction ρ with a substitution τ(ρ) that extends ρ
by substituting all evaluation variables by the appropriate polynomials

of degree at most k in the Y variables. Note that the resulting formula

Circuits(f)dτ(ρ) is defined over the variables Y.

However, Definition C.3.2 is not quite sufficient. For example, there is

no guarantee that Cρ is non-empty, i.e., that the restriction ρ describes a
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valid (partial) circuit. More generally, we need the additional guarantee

that there are still many viable circuits that the restricted formula can

describe: if there is just a single setting of the Y variables such that all

structural axioms are satisfied, then the formula may be refuted in constant

degree. Hence we need to ensure that there are many viable assignments

to the Y variables that satisfy all structure axioms. This leads us to the

following definition.

Definition C.3.3 (m-independent). An affine restriction ρ to the variables

of the formula Circuits(f) ism-independent if ρ leaves exactlym structural

variables Y = {y1, . . . ,ym} unset, and for every assignment β ∈ {0, 1}Y it

holds that |Cρ∪β | = 1.

The following claim shows that under a naturalm-independent affine

restriction all structure axioms are satisfied (modulo the negation axioms).

Claim C.3.4. Let ρ be a naturalm-independent affine restriction and let p = 0 be
a structure axiom. Then p under ρ can either be written as a linear combination of
the negation axioms, i.e., pdρ =

∑
i∈[m] γi(yi + ȳi − 1), for γi ∈ R, or it holds

that pdρ = yiȳi.

Proof. Denote by Y the m structural variables that are left unset by ρ.

Consider any structural axiom pdρ = 0. If p is one of the Axioms C.8

and C.7, then it holds that either pdρ is equal to 0 or pdρ = yiȳi for

some structural variable yi – otherwise ρwould not be affine, natural and

m-independent.

As all structure axioms are of degree 1 and ρ is an affine restriction we

have that otherwise pdρ is of degree 1. Furthermore, as ρ is natural pdρ is

in fact a polynomial in the Y variables. Thus, as ρ ism-independent, for all

assignments β ∈ {0, 1}Y , it holds that pdρβ = 0 (where we extend β to the

bar variables as in Section C.2.2).

We conclude that pdρ is a degree 1 polynomial that evaluates to 0 on all

Boolean assignments to Y that respect the negation axioms. Put differently,

the polynomial pdρ is equal to 0 modulo the negation axioms of Y.

What remains to argue is that we can write pdρ as a linear combination
of the negation axioms of Y. To this end we claim that the variables y and

ȳ occur with the same coefficient in pdρ: suppose otherwise and fix an

assignment to all other variables. If the coefficients differ, then either setting

y to 1 or 0 causes the polynomial to evaluate to non-zero, in contradiction

to the assumption that ρ ism-independent.

Thus we can subtract the negation axiom y+ ȳ− 1 appropriately scaled

from pdρ. This results in a polynomial on fewer variables that still evaluates

to 0. We can thus repeat this argument to recoverpdρ as a linear combination

of negation axioms, as required. �
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With these definitions at hand we can prove the lemma that drives all

our lower bounds.

Lemma C.3.5. Let ρ be a naturalm-independent k-determined affine restriction
of Circuits(f), and let Y and goutu,α be as in Definition C.3.2. If there is an SoS
refutation ofCircuits(f)dρ of degree d, then there is a degreeO(d ·k) SoS refutation
of the system of polynomial equations

{gouts,α(Y) = f(α) | α ∈ {0, 1}n} ∪ {y2i = yi, ȳ
2

i = ȳi,yi = 1 − ȳi | i ∈ [m]} .

Proof. The idea is to replace all evaluation variables in a refutation by

the corresponding functions goutv,α(Y), gin1v,α(Y), and gin2v,α(Y). As all these

functions are of degree at most k and ρ is m-independent we get the

desired statement.

More precisely, apply τ(ρ) to a degree d SoS refutation of the formula

Circuits(f)dρ. As noted previously, the resulting formula is over the Y

variables. In the following we argue that all axioms of Circuits(f)dτ(ρ) can
be derived from

P = {gouts,α(Y) = f(α) | α ∈ {0, 1}n} ∪ {y2i = yi, ȳ
2

i = ȳi,yi = 1 − ȳi | i ∈ [m]}
(C.16)

in degree at most O(k). This is enough to conclude the lemma: the

substitution τ(ρ) increases the degree of the refutation by at most a factor

O(k), and all axioms of the restricted formula Circuits(f)dτ(ρ) can be derived

in degree at most O(k) from P. We thus obtain a degree O(d · k) SoS
refutation of P.

As ρ is natural and m-independent, by Claim C.3.4, the structure

axioms are derivable in constant degree from the negation axioms and

Boolean axioms of P. All that remains is to argue that the evalutation

axioms can be derived in degree O(k). By the assumption that ρ is k-

determined and as the evaluation axioms are onO(1) variables, we see that

the axioms are mapped to polynomials that depend on at most O(k)many

variables. Because ρ is natural andm-independent, for any β ∈ {0, 1}Y , the
functions goutv,α(β),gin1v,α(β) and gin2v,α(β) correspond to a proper evaluation of

the variables outα(v), inα(v, 1) and inα(v, 2) in the circuit Cρ∪β under the

input α. A proper evaluation satisfies all evaluation axioms and thus the

substituted evaluation axioms are equal to 0 modulo the Boolean axioms

and the negation axioms of Y. As all the substituted evaluation axioms are

defined over O(k) variables, these derivations can be performed in degree

O(k) as required. �
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C.4 Lower Bounds for General Circuits

We state the following lemma general enough so that we can apply it for

the degree as well as the size lower bound. As explained previously, for

the size lower bounds we rely on functions that almost have circuits of size

s. Recall that we consider the class of functions ℱn(s, t) that consists of all
Boolean functions f : {0, 1}n → {0, 1} for which there is a Boolean circuit

Cf : {0, 1}n → {0, 1,⊥} of size at most s such that

1. if Cf(α) ≠ ⊥, then Cf(α) = f(α), and

2. Cf(α) = ⊥ on at most t inputs.

The following lemma establishes the existence ofm-independent k-deter-

mined affine restrictions that result in XOR-CSP instances over explicit

graphs.

LemmaC.4.1. For all k,m,n, t ∈ N satisfyingm ≤ 2
n, and any explicit bipartite

graph G = (U,V ,E) such that |U| = 2
n, |V | = m and all u ∈ U are of degree

deg(u) ≤ k, the following holds. There is a constant C > 0, depending on the
explicitness of G, such that for all s ≥ C ·m · nC · kC and any Boolean function
f ∈ ℱn(s/2, t) there is a naturalm-independent k-determined affine restriction ρ
for the formula Circuits(f) such that

gouts,α(Y) =
{
f(α), if Cf(α) ≠ ⊥,
⊕i∈N(α)yi, otherwise

for all α ∈ {0, 1}n and gouts,α and Y as in Definition C.3.2.
Furthermore, the formula Circuits(f)dρ is over O

(
t · k +m

)
variables.

For the degree lower bound (Theorem C.1.1) we will set t = 2
n
and

use the trivial Cf which always outputs ⊥, so the reader who wishes a

simplified version of the lemma can focus on this special case.

Proof. We consider the formula Circuits(f) and let the firstm gates of the

formula be denoted by Y. We restrict the formula such that each gate in Y

computes an or of two constants. The first wire to the gate is fixed to the

constant 0, whereas the second wire is only restricted to carry either the

constant 0 or 1. In the end these will be the only structural variables that

are not restricted to a constant. In the following we think of the gates Y as

Boolean variables; asm additional input bits to our circuit.

Further, we restrict another part of the formula such that one part of the

circuit described by the formula computes the circuit Cf. Recall that we

pretend that the output of Cf is in {0, 1,⊥}, but it actually outputs two bits

C1

f
and C2

f
, where the first bit is 1 on an input α if and only if C2

f
(α) = f(α).
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y1Sel′1

∧

y2Sel′2

∧

ymSel′m

∧

· · ·
α α α

⊕

Cf

∧

∨

α

Figure C.1: A schematic depiction of the formula after hitting it with the

described restriction.

Finally we also want to hard code the bipartite graph G({0, 1}n, Y,E)
into our circuit. Since G is very large this requires G to be explicit. That is,

we require small circuits Sel1, . . . , Selm, where each Seli computes, given

any α ∈ {0, 1}n, whether the vertex yi ∈ Y is a neighbor of the vertex α. By

Claim C.2.3 these circuits Seli are each of size

k ·
(
poly(n + logk) + 2 logm + 1

)
≤ poly(n,k) .

The restriction ρ restricts some structural variables such that a part of the

circuit computes Sel1, . . . , Selm. We connect each output of the Seli circuit

by an and gate to the negation of C1

f
. Denote the resulting circuits by

Sel
′
1
, . . . , Sel′m. Observe that the circuits Sel

′
i output 0 whenever C2

f
(α) =

f(α) and otherwise output Seli. We think of these circuits as “selector

circuits” which indicate whether on input α ∈ {0, 1}n (to the original

variables x1, . . . , xn over which the circuit is defined) the variable yi ∈ Y
appears in the constraint for α.

The output of these selector circuits Sel
′
i is connected to the gate yi by

an and gate. All thesem and gates are in turn connect to a circuit computing

the xor of these gates. Finally, to ensure that the circuit computes f(α) on
inputs α such that Cf(α) ≠ ⊥, we connect C1

f
with C2

f
by an and gate which

is then connceted by a or gate to the output of the xor circuit. This completes

the description of the restriction on the structure variables. A depiction of

the resulting circuit can be found in Figure C.1.

Note that this implements the intended semantics: for each input

α ∈ {0, 1}n the selector circuits output 1 on some variables yi which are
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then xor’ed, and the restricted circuit outputs⊕
i∈N(α)

yi , (C.17)

unless Cf(α) ≠ ⊥, in which case the output of the circuit is f(α) and all

selector circuits output 0. We require that s is larger than the size of the

described circuit which is of size O
(
m · poly(n,k)

)
+ s/2.

We have the intended semantics of the circuit and need to ensure the

furthermore property: that the restricted formula is over few variables.

First, since the selector circuits Sel
′
i are fixed, all evaluation variables for

these subcircuits can be fixed to constants. The same holds for the circuit

Cf. Similarly, since the yi gate always carries the value of the yi variable,

all 2
n ·mwire variables corresponding to the Y variables can be substituted

by the corresponding yi variable and are thus restricted away.

After these restrictions the only evaluation variables left are those for

the evaluation of the ⊕ circuit. For α such that Cf(α) ≠ ⊥, the selector

circuits are hard-wired to 0 and in particular the inputs to the ⊕ circuit is

hard-wired to 0, meaning that these evalation variables can be restricted

away.

There remains then only theO(t ·m) evaluation variables corresponding

to the evaluation of the ⊕ circuit for inputs α such that Cf(α) = ⊥. Let

us, without loss of generality, use an xor-circuit which iteratively xors each
variable. Concretely, let it have subcircuits χi where χ1 = Sel

′
1
∧y1 and

χi = χi−1 ⊕ (Sel′i ∧yi) for i > 1, and χm is the overall output of the ⊕ circuit.

The only observation required is that if the circuit Sel
′
i(α) = 0, then

χi gets a 0 as input from index i, independent of the value of yi. Hence

the output wire variable of the circuit χi indexed by the input α can be

substituted by the output of the circuit χi−1. Hence for each α such that

Cf(α) = ⊥, we can reduce the number of free wire variables indexed by

α to O(k), as each ⊕-constraint is over at most k variables. As Cf outputs

⊥ on at most t inputs, we end up with a restriction leaving only a total of

O(t · k +m) remaining variables in the restricted formula.

This completes the description of the restriction. As for a fixed input α

at most k selector circuits output 1, we see that every variable outα(u) can
be computed by a function over the appropriate k variables. Furthermore,

each assignment to the remaining structure variables Y gives a valid circuit

and this restriction is thusm-independent. �

We are ready to prove the degree lower bound, restated here for conve-

nience.
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Theorem C.1.1. For all ε > 0 there is a d = d(ε) such that the following holds.
For n ∈ N, all s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits,
SoS requires degreeΩε(s1−ε) to refute Circuits(f).

Proof. Let G = (U,V ,E) be an explicit bipartite graph as in Theorem C.2.2,

with U = {0, 1}n, k = Oγ
(
(n log r)1+1/γ

)
, and |V | ≤ k2r1+γ for parameters

γ > 0 and r ≤ 2
n
. Apply Lemma C.4.1 with t = 2

n
along with Cf = ⊥

to obtain, for s ≥ m · poly(n,k), a natural m-independent k-determined

affine restriction ρ for Circuits(f) such that gouts,α(Y) = ⊕i∈N(α)yi. In words,

the circuit of the restricted formula on input α computes an xor of the
neighborhood of the vertex α of G.

Apply Lemma C.3.5 to ρ to conclude that if there is an SoS refutation of

Circuits(f)dρ of degree d, then there is a degree O(d · k) SoS refutation of

the system of polynomial equations computing

PG =

{ ⊕
i∈N(α)

yi = f(α) : α ∈ {0, 1}n
}
∪

{y2i = yi, ȳ
2

i = ȳi,yi = 1 − ȳi | i ∈ [m]} . (C.18)

As the graph G is a strong expander, we can apply Theorem C.2.5 to get

an SoS degree lower bound ofΩ(r) for the XOR-CSP instance PG defined

over G, which in turn gives us an Ω(r/k) degree lower bound for the

Circuits(f)dρ formula and hence also for the unrestricted formula.

Let us fix the parameters. We want to choose r as large as possible.

However, the larger we choose r, the larger m may become, since Theo-

rem C.2.2 only guarantees thatm ≤ k2r1+γ. Let us analyze how large r can

be chosen in terms of n and s.

Note that k = polyγ(n), where we use that r ≤ 2
n
, and we write

polyγ(n) to denote some polynomial in n whose degree and coefficients

may depend on γ. Hence we may choose

m =
s

polyγ(n)
, (C.19)

according to the requirement on s in Lemma C.4.1. From the guarantees of

Theorem C.2.2 we know that r ≥ (m/k2)1/(1+γ). Substitutingm according

to the previous equation we get that

r ≥
(

s

k2polyγ(n)

) 1

1+γ

=
s1/(1+γ)

polyγ(n)
. (C.20)

Hence if we choose γ small enough so that
1

1+γ > 1 − ε/2 and then require

s to be large enough such that the final polyγ(n) is at most sε/2, we obtain

the claimed lower bound. �
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In the following we prove the claimed size lower bound.

Theorem C.1.3. For all ε > 0 there is a d = d(ε) such that the following holds.
Let n ∈ N and s ∈ N such that s ≥ nd. If t ≥ s and f ∈ ℱn(s/2, t), then it holds
that SoS requires size exp

(
Ωε(s2−ε/t)

)
to refute Circuits(f).

Proof. Apply Lemma C.4.1 with the graphs from Theorem C.2.2 as in the

proof of Theorem C.1.1. We get a natural m-independent k-determined

affine restriction ρ and the formula Circuits(f)dρ overO(t · k+m) variables.
To this formula we then apply Lemma C.3.5 to obtain a degree lower

bound of Ω(r/k), akin to the proof of Theorem C.1.1. By setting the

parameters as in the aforementioned proof we get the same degree lower

bound of Ωε(s1−ε) for the formula Circuits(f)dρ. As this formula is over

few variables we can apply Theorem C.2.6 to obtain an SoS size lower

bound of exp

(
Ωε

(
(s1−ε − 3k)2/(t · k +m)

) )
for the restricted formula. As

affine restrictions may only decrease the size of a refutation, the same lower

bound also holds for the unrestricted formula. We obtain the desired lower

bound by choosing s large enough such that sε ≥ k = polyε(n) and by

recalling that t ≥ s ≥ m. �

C.5 Lower Bounds for Monotone Circuits

Recall thatℳn(`) denotes all Boolean monotone `-slice functions on n bits:

all Boolean functions f : {0, 1}n → {0, 1} that output 0 on all inputs of

Hamming weight less than ` and 1 on all inputs of Hamming weight larger

than `. There is no restriction on the output for inputs of Hamming weight

` and we hence have that |ℳn(`)| = 2
(n`). Further, recall thatℳn(`, s, t) ⊆

ℳn(`) is the class of monotone Boolean `-slice functions f : {0, 1}n → {0, 1}
for which there is a monotone Boolean circuit Cmon

f
: {0, 1}n → {0, 1,⊥}

such that for `-slice inputs α ∈
([n]
`

)
it holds that

1. if Cmon

f
(α) ≠ ⊥, then Cmon

f
(α) = f(α), and

2. Cmon

f
(α) = ⊥ on at most t inputs.

It is very convenient to work with slice functions as we have a handle

on their monotone circuit complexity: by Lemma C.2.4 their monotone

circuit size is the same as their ordinary circuit size up to a polynomial size

increase. Hence we do not need to worry whether the functions needed

for the reduction have small monotone circuits, as long as we are working

on a slice only.

The proof of the monotone lower bound is an adaption of the argument

used to prove Lemma C.4.1. The idea is to work over the `th slice and
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disregard all other inputs. By Lemma C.2.4 we can implement our selector

circuits by small monotone circuits. We then also need to take care of the

negations in the ⊕-circuit. We push the negations down until they either hit

a gate in Y or a selector circuit. We create a set Y gates, which we can think

of as the negation of the gates in Y and also create negated selector circuits

(on the `th slice). By doing so we can now get rid of the last negations by

appropriately connecting the appropriate circuits. The following corollary

of Lemma C.2.4 will be useful to us.

Claim C.5.1. Let C be a Boolean circuit on n input bits of size s. Then, for
` ∈ [n], there is a monotone Boolean circuit Cmon of size 2s + poly(n) computing
the `-slice function that is equal to C on the `-slice.

Proof. Let T≥` be the threshold function that outputs 1 if and only if the

Hamming weight of an input α ∈ {0, 1}n is at least `. Connect the output

of C by an and gate to a circuit computing T≥`. The output of this circuit is
then connected by an or gate to the output of a circuit computing T>`. Let
us denote this new circuit by C′.

The circuit C′ clearly outputs 1 whenever the input is of Hamming

weight larger than `. Furthermore, on the `-slice it is equal to C because

T≥` outputs 1 while T>` outputs 0. Finally the output is 0 if the Hamming

weight is less than ` because the output of both threshold functions is 0.

Clearly the size of the circuits computing the threshold functions is

poly(n). We apply Lemma C.2.4 to conclude that there is a monotone

circuit Cmon
computing the same function as C′ of size 2s + poly(n). �

Before stating the following lemma we need to adapt some terminology

to the monotone setting. Observe that Circuit
mon

s (f) is a restriction of

Circuits(f). Let τ be such that Circuits(f)dτ = Circuit
mon

s (f). This allows us

to naturally extend k-determined restrictions to the monotone setting: a

restriction ρ is a k-determined restriction for Circuit
mon

s (f) if the restriction
ρτ is a k-determined restriction for Circuits(f). Similarly we can extend

m-independence to the monotone setting. This will later allow us to use

Lemma C.3.5 even though we are working with the monotone formula.

Lemma C.5.2. For all k, `,m,n, t ∈ N satisfying m ≤ 2
n, and any explicit

bipartite graph G = (U,V ,E) such that |U| = 2
n, |V | = m and all u ∈ U are of

degree deg(u) ≤ k, the following holds. There is a constant C > 0, depending on
the explicitness ofG, such that for all s ≥ C·m·nC ·kC and any f ∈ ℳn(`, s/10, t)
there is a naturalm-independent k-determined affine restriction ρ for the formula
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Circuit
mon

s (f) such that

gouts,α(Y) =


1, if |α| > `,
0, if |α| < `,
f(α), if |α| = ` and Cmon

f
(α) ≠ ⊥,

⊕i∈N(α)yi, otherwise,

for gouts,α and Y as in Definition C.3.2.
Furthermore, the formula Circuitmon

s (f)dρ is over O(t · k +m) variables.

Proof. This proof is an adaptation of the argument of the proof LemmaC.4.1.

Let us describe the naturalm-independent k-determined restriction ρ for

the formula Circuit
mon

s (f).
As in the proof of Lemma C.4.1 we have gates that act as Boolean

variables. But instead of having a single set Y of variables we now have two

sets Y and Y, each of sizem. We think of the variables in Y as the negations

of the variables in Y and ensure this by applying the appropriate affine

restriction for all α ∈ {0, 1}n and i ∈ [m].
According to ClaimC.5.1wemay assume that the circuitCmon

f
computes

a monotone `-slice function in both outputs Cmon

f,1
,Cmon

f,2
for a mild increase

in size; |Cmon

f
| ≤ s/5 + poly(n) ≤ s/4 for s large enough. Recall that the

first output of Cmon

f
indicates whether the second output bit is equal to f on

the `-slice. Let C
mon

f,1 be the negation of Cmon

f,1
on the `-slice. In other words,

C
mon

f,1 (α) = ¬Cmon

f,1
(α) if α has Hamming weight `, and C

mon

f,1 (α) = Cmon

f,1
(α)

otherwise.

The monotone circuit Cmon

f
is of size at most s/4 and hence according

to Lemma C.2.4 there is a monotone circuit of size s/2 + poly(n) ≤ 5s/8
computing C

mon

f,1 (α).
We restrict the formula such that a part of the circuit is equivalent to

Cmon

f
and another part is equal to C

mon

f,1 . Note that the size of these two

circuits is at most 7s/8 by above discussion.

Recall that because G({0, 1}n, Y,E) is explicit, there are circuits Sel1,

Sel2, . . . , Selm, each of size poly(n,k), where each Seli computes, given an

input α ∈ {0, 1}n, whether the vertex yi ∈ Y is a neighbor of the vertex

α. Let Seli = ¬ Seli and denote by Sel
mon

i (respectively Sel

mon

i ) the circuit

obtained by applying Claim C.5.1 to Seli (to Seli respectively). By the

guarantees of Claim C.5.1 all these 2m circuits are of size poly(n,k).
We restrict the formula such that a part of the circuit computes the

functions

Sel
mon

1
, . . . , Selmon

m , Sel

mon

1
, . . . , Sel

mon

m . (C.21)
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From these `-slice selector circuits we can then define selector circuits that

take Cmon

f
into account. Namely, we connect Sel

mon

i by an and gate to the

output of C
mon

f,1 to obtain the circuit Sel
′mon

i and similarly connect Sel

mon

i by

an or gate to Cmon

f,1
to obtain the circuit Sel

′mon

i .

Finally, we also put each variable yi and ȳi onto the slice by the same

construction used in the proof of Claim C.5.1: connect the variable yi
(respectively ȳi) by an and to the threshold circuit T≥` and connect this

circuit in turn by an or gate to a T>` threshold circuit to obtain ymon

i

(respectively ȳmon

i
). It is well-known [Val84; BW06; Gol20] that threshold

circuits have montone circuits of size poly(n) and we can thus restrict the

formula such that a part of the circuit computes ymon

i
and ȳmon

i
.

Finally we connect ymon

i
by an and gate to the selector circuit Sel

′mon

i .

Note that this circuit is equal to an `-slice function. As we will see later

this ensures that the whole circuit outputs an `-slice function. We connect

the circuits ȳmon

i
similarly: connect ȳmon

i
by an or gate to the negated

selector circuit Sel

′mon

i . Again, the output of this circuit is equal to an `-slice

function.

Equally inportant is that these circuits behave well on the `-slice. Indeed

it can be checked that the positive circuit, on input α ∈ {0, 1}n, outputs
Sel
′mon

i (α) ∧ yi while the negative circuit outputs Sel

′mon

i (α) ∨ ȳi. On the

`-slice these functions are the negation of eachother, which we are going to

use in the following.

We need to construct a monotone circuit for the xor of Sel′mon

i (α)∧yi for
i from 1 tom, on `-slice inputs α. We take a standard O(m)-size ⊕-circuit
and monotonize it by pushing all negations in it down using De Morgan’s

law until they reach one of the ⊕-circuit’s inputs Sel′mon

i ∧yi. Whenever

the negation of Sel
′mon

i (α) ∧yi is needed, we do one last step of De Morgan

and replace it by Sel

′mon

i (α) ∨ ȳi.
To ensure that the circuit outputs f(α) whenever Cmon

f
(α) ≠ ⊥, we

connect the two outputs of Cmon

f
by an and gate and connect this gate by

an or gate to the output of the xor circuit. This completes the description

of the restriction on the structure variables. A depiction of the resulting

circuit can be found in Figure C.2. We ensure that s is large enough so that

above circuit can be described by the formula.

Note that the constructed circuit always outputs a monotone `-slice

function: as the monotonized ⊕-circuit is non-constant, we see that if all

inputs to the circuit are 0, it outputs 0 and if all inputs are 1, it outputs 1.

This, in particular, implies that the circuit outputs 0 (respectively 1) if the

input is below (respectively, above) the `-slice and hence the entire circuit

computes a monotone `-slice function.
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⊕̃

· · · · · ·∧

Sel′mon
1

α

∧

Sel′mon
m

α

∨

Sel
′mon
m

α

∨

Sel
′mon
1

α

ymon
1 ymon

m ȳmon
1 ȳmon

m

α α α α

Cmon
f

∧

∨

α

Figure C.2: A depiction of the monotone circuit, where ⊕̃ is the ⊕ circuit

with the negations pushed down.

It can be easily checked that the described restriction ism-independent

and k-determined. In order to prove the furthermore part, we need to

reduce the number of evaluation variables. This can be achieved analogous

to the proof of Lemma C.4.1 and we thus omit it here. �

Let us prove our degree lower bound for monotone circuits, restated

here for convenience.

Theorem C.1.4. For all ε > 0 there is a d = d(ε) such that the following holds.
For all n, ` ∈ N, all s ≥ nd and any monotone slice function f ∈ ℳn(`) SoS
requires degreeΩε(s1−ε) to refute Circuitmon

s (f).

Proof of Theorem C.1.4. As in the proof of Theorem C.1.1, we use the graphs

from Theorem C.2.2, with U = {0, 1}n, k = Oγ
(
(n log r)1+1/γ

)
, and |V | ≤

k2r1+γ for parameters γ > 0 and r ≤ 2
n
. We apply LemmaC.5.2 with above

graph and t = 2
n
along with Cmon

f
= ⊥ to obtain, for s ≥ m · poly(n,k), an

appropriate naturalm-independent k-determined affine restriction ρ for

Circuit
mon

s (f). In particular ρ satisfies

gouts,α(Y) =


1, if |α| > `,
0, if |α| < `,
⊕i∈N(α)yi, otherwise,

for gouts,α and Y as in definition Definition C.3.2.

Recall that there is a restriction τ such that Circuit
mon

s (f) = Circuits(f)dτ
and we can thus apply Lemma C.3.5 with τρ to conclude that if there is an
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SoS refutation of Circuit
mon

s (f)dρ in degree d, then there is a degree d · k
SoS refutation of the system of polynomial equations computing

{
⊕
i∈N(α)

yi = f(α) | α ∈
(
[n]
`

)
} . (C.22)

As the graph G is a strong expander, we can apply Theorem C.2.5 to get an

SoS degree lower bound ofΩ(r) for above system of equations. By above

connection this gives anΩ(r/k) degree lower bound for the Circuit
mon

s (f)dρ
formula and hence also for the unrestricted formula.

Regarding the parameters, as in the proof of Theorem C.1.1 we choose

m = s/polyγ(n). Repeating the calculations from the aforementioned

proof we obtain that r ≥ s1/(1+γ)/polyγ(n). Thus by choosing γ small

enough such that
1

1+γ > 1 − ε/2 and s large enough such that the final

polyγ(n) ≤ sε/2 we obtain the claimed degree lower bound ofΩε(s1−ε). �

As in the non-monotone case, we can also obtain size lower bounds for

functions that almost have a circuit of size s.

Theorem C.1.5. For all ε > 0 there is a d = d(ε) such that the following holds.
For n, ` ∈ N, all s ≥ nd and t ≥ s and monotone function f ∈ ℳn(`, s/10, t)
SoS requires size exp

(
Ωε(s2−ε/t)

)
to refute Circuitmon

s (f).

Proof. Analogous to the proof of Theorem C.1.3. �

C.6 Degree Upper Bound

We are given the formula Circuits(f), for a truthtable f that has no circuit

of size s. In the following we describe an SoS refutation of Circuits(f) in
degreeO(s). This shows that our degree lower bounds are essentially tight.

Let us first define a set of monomials, which essentially correspond to

circuits of size s. A multilinear monomialm is a circuit monomial if for every
gate v ∈ [s] it holds that

1. one of the variables isNeg(v), isOr(v) or isAnd(v) occurs inm,

2. fora ∈ {1, 2} oneof thevariables isFromConst(v,a), isFromInput(v,a)
or isFromGate(v,a) occurs inm,

3. again for a ∈ {1, 2} one (unless empty) variable of each of the two

sets of variables

{isInput(v,a, i) | i ∈ [n]} , and {isGate(v,a,u) | u < v} (C.23)

occurs inm, and
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4. no other variables occur inm than the ones described above.

We denote byℳs the set of circuit monomials. We first show that SoS

can derive in degree O(s) the polynomial

∑
m∈ℳsm − 1, and then in a

second step that it can also derive −∑
m∈ℳsm in degree O(s). The sum of

these two derivations is clearly an SoS derivation of −1; a refutation of the

Circuits(f) formula.

Deriving
∑

m∈Ms
m − 1. We proceed by induction on s. Note that

ℳ0 = {1} and hence the base case is trivial. Suppose we have an SoS

derivation of

∑
m∈ℳsm − 1. For every monomial m ∈ ℳs we add the

polynomial

m ·
(
isNeg(v) + isOr(v) + isAnd(v) − 1

)
(C.24)

to the derivation (note that the second term is Axiom C.4). This gives us an

SoS derivation of

∑
m∈ℳ′sm − 1, where

ℳ′s =
{
m × {isNeg(v), isOr(v), isAnd(v)} | m ∈ ℳs

}
.

We can continue in the same manner with Axiom C.3 and Axioms C.5 to

finally obtain an SoS derivation of

∑
m∈ℳs+1 m − 1. Clearly this derivation

requires degree at most O(s), as for each gate there are at most 7 variables

in every monomial fromℳs.

Deriving −
∑

m∈Ms
m. Fix a monomialm ∈ ℳs. We describe a degree

O(s) SoS derivation of −m. Let C be the circuit that corresponds to the

monomialm and let α ∈ {0, 1}n be such that f(α) ≠ C(α). Let us assume

that f(α) = 0 but C(α) = 1.

We construct a degree O(s) SoS proof of the fact that C(α) = 1. That is,

we are going to conctruct a polynomial ps which can be written as

ps = m ·
(
m∑
i=1

ri · qi

)
, (C.25)

for axioms qi and some polynomials ri, such that ps simplifies to the

polynomialm·(outα(s) − 1). We construct this proof by structural induction

over the circuit: for every gate v we are going to construct an SoS proof pv
of the fact that the circuit rooted at v outputs the bit bv on input α. In other

words, pv simplifies to the polynomialm · (outα(v) − bv).
Let us explain how to construct an SoS proof pv. Consider a gate v in

the circuit. Depending on the function computed at v and how the wires

of v are connected we construct pv slightly different. As a first step let
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us construct SoS proofs q1 and q2 of the fact that on input α the bit ba,

a ∈ {1, 2}, is carried on wire a to the gate v. That is, the polynomial qa
should simplify to m ·

(
inα(v,a) − ba

)
. In the following we explain how

to precisely define qa depending on what the wire is connected to. Note

that not a lot is going on – we are mostly just multilinearizing using the

Boolean axioms.

If the wire a is connected to a constant andm = m1 · isFromConst(v,a),
then the polynomial

qa = m · isFromConst(v,a) ·
(
inα(v,a) − constantValue(v,a)

)
+

m1 ·
(
inα(v,a) − constantValue(v,a)

)
·(

isFromConst(v,a) − isFromConst(v,a)2
)

(C.26)

is a valid SoS proof that simplifies to the polynomial m ·
(
inα(v,a) −

constantValue(v,a)
)
. Similarly, if a is connected to an input i and we let

m = m2 · isFromInput(v,a) · isInput(v,a, i), then we can choose

qa = m · isFromInput(v,a) · isInput(v,a, i) ·
(
inα(v,a) − αi

)
+m2 · isFromInput(v,a)2 ·

(
inα(v,a) − αi

)
·(

isInput(v,a, i) − isInput(v,a, i)2
)

+m2 · isInput(v,a, i) ·
(
inα(v,a) − αi

)
·(

isFromInput(v,a) − isFromInput(v,a)2
)
, (C.27)

which simplifies tom ·
(
inα(v,a) −αi

)
. And similarly, if a is connected to a

gate u and we letm = m3 · isFromGate(v,a) · isGate(v,a,u), then

qa = m · isFromGate(v,a) · isGate(v,a,u) ·
(
inα(v,a) − outα(u)

)
+m3 · isFromGate(v,a)2 ·

(
inα(v,a) − outα(u)

)
·(

isGate(v,a,u) − isGate(v,a,u)2
)

+m3 · isGate(v,a,u) ·
(
inα(v,a) − outα(u)

)
·(

isFromGate(v,a) − isFromGate(v,a)2
)

+ pu , (C.28)

where, by induction, we assume that pu has already been derived. Note

that this polynomial simplifies to m ·
(
inα(v,a) − bu

)
, which is what we

would expect.

Given the two SoS proofs q1 and q2 we are ready to construct the SoS

proof pv. As mentioned earlier we do a case distinction over the funtion

computed at v. For the sake of readibility we implicitly multilinearize. In

other words, below polynomials are correct SoS derivations once they are

reduced by the Boolean axioms.
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1. v is a not gate. We choose

pv =m · isNeg(v) ·
(
outα(v) − inα(v, 1)

)
+m ·

(
inα(v, 1) − 1 + inα(v, 1)

)
− q1 , (C.29)

where the first line is Axiom C.12 multiplied by m and the second

line is the axiom relating inα(v, 1) with inα(v, 1), again multiplied by

m. The SoS proof pv simplifies to m ·
(
outα(v) − (1 − b1)

)
, as one

would expected.

2. v is an or gate. Let

pv =m · isOr(v) ·
(
outα(v) −

(
1 − inα(v, 1) · inα(v, 2)

) )
−m · inα(v, 1) ·

(
inα(v, 2) − 1 + inα(v, 2)

)
+m ·

(
inα(v, 2) − 1

)
·
(
inα(v, 1) − 1 + inα(v, 1)

)
+

(
1 − inα(v, 1)

)
· q2

+
(
1 − b2

)
· q1 , (C.30)

where the first line is Axiom C.13 multiplied by m and the fol-

lowing two lines are the axioms relating the non-bar variable with

the corresponding bar variable appropriately multiplied by a poly-

nomial. By inspection it is not hard to see that pv simplifies to

m ·
(
outα(v) + b1b2 − b1 − b2

)
. Note that this polynomial has the in-

tended semantics: bv = 0 if and only if both b1 and b2 are 0; otherwise

bv = 1.

3. v is an and gate. We have

pv =m · isAnd(v) ·
(
outα(v) − inα(v, 1) · inα(v, 2)

)
+ inα(v, 1) · q2
+ b2 · q1 , (C.31)

where the first line is Axiom C.14 multiplied bym. The polynomial

pv simplifies tom ·
(
outα(v) − b1b2

)
.

This completes the description of the SoS derivation of outα(s) = 1. Observe

that the final proof ps is of degreeO(s): in every inductive step we increase

the degree of the proof by at most a constant.

So farwe only have an SoS proof ofm·
(
outα(s)−1

)
. Whatwe reallywant,

though, is a derivation of the term −m. But that is simple to derive: from
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the SoS derivation ofm ·
(
outα(s) − 1

)
we simply subtract the polynomial

m ·
(
outα(s) − f(α)

)
(which is Axiom C.15 multiplied bym) from ps. This

completes the SoS proof of −m.

C.7 On Encodings of the Circuits(f) Tautology

In this section we show that if there is an SoS refutation of degree d of

the Circuits(f) formula encoded as a constant width CNF, then there is

an SoS refutation of degree O(d) of the Circuits(f) formula encoded as in

Section C.2.3. Let us first discuss a possible constant width CNF encoding

of Circuits(f).
The formula is defined over the same variables as introduced in Sec-

tion C.2.3, but in order to keep the fan-in bounded, we further introduce

variables isInput
≤(v,a, i) and isGate

≤(v,a,u) that indicatewhether thewire

a of v is connected to a variable in x1, . . . , xi, a gate 1, . . . ,u respectively.

Let us group the axioms in the same manner as we did in Section C.2.3.

First we have the structure axioms. The first axioms encode that each wire

is connected to a single kind(
isFromConst(v,a) ∨ isFromInput(v,a) ∨ isFromGate(v,a)

)
∧

¬
(
isFromConst(v,a) ∧ isFromInput(v,a)

)
∧

¬
(
isFromInput(v,a) ∧ isFromGate(v,a)

)
∧

¬
(
isFromConst(v,a) ∧ isFromGate(v,a)

)
. (C.32)

The next set of axioms similarly ensure that each gate computes precisely

one function(
isNeg(v) ∨ isOr(v) ∨ isAnd(v)

)
∧

¬
(
isNeg(v) ∧ isOr(v)

)
∧ ¬

(
isOr(v) ∧ isAnd(v)

)
∧ ¬

(
isNeg(v) ∧ isAnd(v)

)
.

(C.33)

Last, we need to make sure that each wire is connected to a single input or

a gate.

isInput
≤(v,a,n) ∧

∧
i≠j

¬
(
isInput(v,a, i) ∧ isInput(v,a, j)

)
∧∧

i∈[n]

(
isInput

≤(v,a, i) ≡
(
isInput

≤(v,a, i − 1) ∨ isInput(v,a, i)
) )

,

where isInput
≤(v,a, 0)def= 0 , (C.34)
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and similarly for v ∈ [s] \ {1} we have that

isGate
≤(v,a, v − 1) ∧

∧
u<u′<v

¬
(
isGate(v,a,u) ∧ isGate(v,a,u′)

)
∧∧

u∈[v−1]

(
isGate

≤(v,a,u) ≡
(
isGate

≤(v,a,u − 1) ∨ isGate(v,a,u)
) )

,

where isGate
≤(v,a, 0)def= 0 . (C.35)

Let us take a look at the evaluation axioms. Again, we have axioms that

ensure that the wires carry the values intended by the structure variables.

If a wire is connected to a constant, then the evaluation variable associated

with that wire should be equal to the constant

isFromConst(v,a) →
(
inα(v,a) ≡ constantValue(v,a)

)
, (C.36)

and similarly if a wire is connected to an input or a gate

isFromInput(v,a) ∧ isInput(v,a, i) → inα(v,a) ≡ αi , (C.37)

isFromGate(v,a) ∧ isGate(v,a,u) → inα(v,a) ≡ outα(u) . (C.38)

Last we need to make sure that the gates propagate the value they are

supposed to compute.

isNeg(v) →
(
outα(v) ≡ ¬inα(v, 1)

)
(C.39)

isOr(v) →
(
outα(v) ≡ inα(v, 1) ∨ inα(v, 2)

)
(C.40)

isAnd(v) →
(
outα(v) ≡ inα(v, 1) ∧ inα(v, 2)

)
. (C.41)

The final axioms ensure that the correct function is computed

outα(s) ≡ f(α) . (C.42)

This formula can be rewritten in the usual manner into a 4-CNF. Let us

denote this formula by Circuit
CNF

s (f). Observe that for each axiom p from

the polynomial encoding Circuits(f), there is a CNF Fp ⊆ Circuit
CNF

s (f)
over the same variables as p (ignoring the added extension variables) such

that p(α) = 0 is satisfied by a Boolean assignment α if and only if Fp is

satisfied by α (where we extend the assignment to the extension variables

in the natural manner).

Recall that SoS operates on polynomials and we thus need to translate

the CNF into a system of polynomials. We translate a clause ∨i∈[w]zi into
the polynomial

∏
i∈[w](1 − zi) = 0.

Observe that almost all axiomspofCircuits(f)dependonly on a constant

number of variables. From such p, using the appropriate Boolean axioms

and negation axioms, we can in constant degree derive Fp.
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Suppose we have a degree d refutation π of Circuit
CNF

s (f). For all v ∈ [s],
a ∈ {1, 2}, i ∈ [n] and u < v, substitute the variable isInput

≤(v,a, i) by∑
j≤i isInput(v,a, j) and isGate

≤(v,a,u) by ∑
w≤u isGate(v,a,w) in π. Also

substitute the corresponding bar variables by one minus the appropriate

sum. This results in a degree d SoS refutation π′ of a formula Circuit

�
CNF

s (f).

We claim that in constant degree the axioms of Circuit

�
CNF

s (f) can be

derived from Circuits(f). As previously noted, this holds for all axioms

but the ones that are over a non-constant number of variables, i.e., what

remains is to show that we can derive the substituted Axioms C.35 and C.34

from Axioms C.8, C.7 and C.5.

Let us consider Axiom C.34. With the extension variables substituted

and translated into a system of polynomials the axiom consists of the

following polynomial equations.

1 −
∑
j∈[n]

isInput(v,a, j) = 0 (C.43)

isInput(v,a, i) · isInput(v,a, j) = 0, for i ≠ j (C.44)(∑
j≤i

isInput(v,a, j)
) (

1 −
∑
j<i

isInput(v,a, j)
)
·

isInput(v,a, i) = 0, for i ∈ [n] (C.45)(
1 −

∑
j≤i

isInput(v,a, j)
) (∑
j<i

isInput(v,a, j)
)
= 0, for i ∈ [n] (C.46)(

1 −
∑
j≤i

isInput(v,a, j)
)
isInput(v,a, i) = 0, for i ∈ [n] . (C.47)

Axiom C.43 is equal to the first Axiom in Axioms C.5 and similarly Ax-

iom C.44 is equal to AxiomC.7. In the following we show that Axioms C.47,

C.46 and C.45 can be derived from Axiom C.7, the Boolean axioms and the

negation axioms in constant degree.

Consider Axiom C.45. Expand and rewrite modulo the Boolean axioms
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and the negation axiom to obtain

isInput(v,a, i)
(∑
j<i

isInput(v,a, j)
)
2

−

2

∑
j<j′<i

isInput(v,a, j) · isInput(v,a, j′) −

isInput(v,a, i)
∑
j<i

isInput(v,a, j) = 0 . (C.48)

Observe that every term t left in this polynomial is of the form t =

t′ · isInput(v,a, j) · isInput(v,a, j′), for some j ≠ j′ ∈ [i] and a term t′

of degree at most 1. But this means that every term is equal to 0 modulo

Axiom C.7 and we thus see that Axiom C.45 can be derived in constant

degree from Circuits(f).
Let us consider Axiom C.46. Rewrite modulo the Boolean axiom to

obtain

isInput(v,a, i)
∑
j<i

isInput(v,a, j)+

2

∑
j<j′<i

isInput(v,a, j) · isInput(v,a, j′) = 0 . (C.49)

All terms are of the form of Axiom C.7 and we can thus derive Axiom C.46

from Circuits(f) in constant degree.

Last, we need to consider Axiom C.47. Note that modulo the Boolean

axiom we obtain the polynomial equation

−isInput(v,a, i)
∑
j<i

isInput(v,a, j) = 0 . (C.50)

Also in this polynomial every term is of the form of Axiom C.7 and thus

also Axiom C.47 can be derived in constant degree.

What remains is to show thatAxiomC.35 canbederived fromCircuits(f)
in constant degree. This can be checked analogous to Axiom C.34 and we

thus omit it here.

We conclude that all axioms of Circuit

�
CNF

s (f) can be derived from

Circuits(f) in constant degree and thus a degree d SoS refutation of

Circuit
CNF

s (f) gives rise to a degreeO(d) SoS refutation of Circuits(f). Equiv-
alently, a degree d lower bound for Circuits(f) implies a degreeΩ(d) lower

bound for Circuit
CNF

s (f) as claimed.
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C.8 Concluding Remarks

We have shown degree and size lower bounds in the Sum-of-Squares proof

system for the minimum circuit size problem. There are a number of

interesting questions left open for further study. Let us name a few.

Better Size Lower Bounds Whereas our degree lower bounds apply for

all Boolean functions f, the corresponding size lower bounds only apply to

an albeit rich but still restricted class of functions.

Monotone Circuit Lower Bounds For monotone circuits, we were only

able to obtain lower bounds for slice functions (essentially because they

behave inmanyways like non-monotone functions). An intriguing question

is whether this limitation can be overcome, or whether it is inherent and

there exist some monotone circuit lower bounds that SoS is able to prove.
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Principle and Perfect Matching
Formulas over Sparse Graphs
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Kilian Risse, and Dmitry Sokolov

Abstract

We show exponential lower bounds on resolution proof length for

pigeonhole principle (PHP) formulas and perfect matching formulas

over highly unbalanced, sparse expander graphs, thus answering the

challenge to establish strong lower bounds in the regime between

balanced constant-degree expanders as in [Ben-Sasson and Wigder-

son ’01] and highly unbalanced, dense graphs as in [Raz ’04] and

[Razborov ’03, ’04]. We obtain our results by revisiting Razborov’s

pseudo-width method for PHP formulas over dense graphs and ex-

tending it to sparse graphs. This further demonstrates the power of the

pseudo-width method, and we believe it could potentially be useful

for attacking also other longstanding open problems for resolution

and other proof systems.
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D.1 Introduction

In one sentence, proof complexity is the study of efficient certificates of

unsatisfiability for formulas in conjunctive normal form (CNF). In its most

general form, this is the question of whether coNP can be separated from

NP or not, and as such appears out of reach for current techniques. However,

if one instead focuses on concrete proof systems, which can be thought of

as restricted models of nondeterministic computation, this opens up the

view to a rich landscape of results.

One line of research in proof complexity has been to prove superpoly-

nomial lower bounds for stronger and stronger proof systems, as a way of

approaching the distant goal of establishing NP ≠ coNP. A perhaps even

more fruitful direction, however, has been to study different combinatorial

principles and investigate what kind of reasoning is needed to efficiently

establish the validity of these principles. In this way, one can quantify the

“depth” of different mathematical truths, measured in terms of how strong

a proof system is required to prove them.

In this paper, we consider the proof system resolution [Bla37], in which

one derives new disjunctive clauses from the formula until an explicit

contradiction is reached. This is arguably the most well-studied proof

system in proof complexity, for which numerous exponential lower bounds

on proof size have been shown (starting with [Hak85; Urq87; CS88]). Yet

many basic questions about resolution remain stubbornly open. One such

set of questions concerns the pigeonhole principle (PHP) stating that there

is no injective mapping ofm pigeons into n holes ifm > n. This is one of

the simplest, and yet most useful, combinatorial principles in mathematics,

and it has been topic of extensive study in proof complexity.

When studying the pigeonhole principle, it is convenient to think of

it in terms of a bipartite graph G = (U
.

∪ V ,E) with pigeons U = [m] and
holes V = [n] for m ≥ n + 1. Every pigeon i can fly to its neighbouring

pigeonholesN(i) as specified byG, which for nowwe fix to be the complete

bipartite graph Km,n withN(i) = [n] for all i ∈ [m]. Since we wish to study

unsatisfiable formulas, we encode the claim that there does in fact exist

an injective mapping of pigeons to holes as a CNF formula consisting of

pigeon axioms

Pi =
∨
j∈N(i)

xij for i ∈ [m] (D.1a)

and hole axioms

H
i,i′

j
= (xij ∨ xi′j) for i ≠ i′ ∈ [m], j ∈ N(i) ∩N(i′) (D.1b)
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(where the intended meaning of the variables is that xi,j is true if pigeon i

flies to hole j). To rule out multi-valued mappings one can also add

functionality axioms

Fij,j′ = (xij ∨ xij′) for i ∈ [m], j ≠ j′ ∈ N(i) , (D.1c)

and a further restriction is to include surjectivity or onto axioms

Sj =
∨
i∈N(j)

xij for j ∈ [n] (D.1d)

requiring that every hole should get a pigeon. Clearly, the “basic” pigeonhole
principle (PHP) formulaswith clauses D.1a andD.1b are the least constrained.

As one adds clauses D.1c to obtain the functional pigeonhole principle (FPHP)
and also clauses D.1d to get the onto functional pigeonhole principle (onto-
FPHP), the formulas become more overconstrained and thus (potentially)

easier to disprove, meaning that establishing lower bounds becomes harder.

A moment of reflection reveals that onto-FPHP formulas are just saying

that complete bipartite graphs with m left vertices and n right vertices

have perfect matchings, and so these formulas are also referred to as perfect
matching formulas.

Another way of varying the hardness of PHP formulas is by letting the

number of pigeonsm grow larger as a function of the number of holes n.

What this means is that it is not necessary to count exactly to refute the

formulas. Instead, it is sufficient to provide a precise enough estimate to

show thatm > nmust hold (where the hardness of this task depends on

howmuch largerm is thann). Studying the hardness of such so-calledweak
PHP formulasgives awayofmeasuringhowgooddifferent proof systems are

at approximate counting. A second application of lower bounds for weak

PHP formulas is that they can be used to show that proof systems cannot

produce efficient proofs of the claim that NP * P/poly [Raz98; Raz04b].

Yet another version of more constrained formulas is obtained by re-

stricting what choices the pigeons have for flying into holes, by defining

the formulas not over Km,n but sparse bipartite graphs with bounded left

degree—such instances are usually called graph PHP formulas. Again, this

makes the formulas easier to disprove in the sense that pigeons are more

constrained, and it also removes the symmetry in the formulas that plays

an essential role in many lower bound proofs.

Our work focuses on the most challenging setting in terms of lower

bounds, when all of these restrictions apply: the PHP formulas contain

both functionality and onto axioms, the number of pigeonsm is very large

compared to the number of holesn, and the choices of holes are restricted by

a sparse graph. But before discussing our contributions, let us review what
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has been known about resolution and pigeonhole principle formulas. We

emphasize that what will follow is a brief and selective overview focusing

on resolution only—see Razborov’s beautiful survey paper [Raz02] for a

discussion of upper and lower bounds on PHP formulas in other proof

systems.

D.1.1 Previous Work

In a breakthrough result, which served as a strong impetus for further

developments in proof complexity, Haken [Hak85] proved a lower bound

exp(Ω(n)) on resolution proof length for m = n + 1 pigeons. Haken’s

proof was for the basic PHP formulas, but easily extends to onto-FPHP

formulas. This result was simplified and improved in a sequence of works

[BT88; BP96; BW01; Urq03] to a lower bound of the form exp

(
n2/m

)
, which,

unfortunately, does not yield anything nontrivial form = Ω
(
n2

)
pigeons.

Buss andPitassi [BP97] showed that the pigeonhole principle does in fact

get easier for resolutionwhenm becomes sufficiently large: namely, form =

exp

(
Ω

(√
n logn

) )
PHP formulas canbe refuted in length exp

(
O

(√
n logn

) )
.

This is in contrast to what holds for the weaker subsystem tree-like resolution,
for which the formulas remain equally hard as the number of pigeons

increases, and where the complexity was even sharpened in [BP97; Dan02;

DR01b; BGL10] to an exp(Ω(n logn)) length lower bound.

Obtaining lower bounds beyond m = n2
pigeons for non-tree-like

resolution turned out to be quite challenging. Haken’s bottleneck count-

ing method fundamentally breaks down when the number of pigeons is

quadratic in the number of holes, and the same holds for the celebrated

length-width lower bound in [BW01]. Some progress was made for re-

stricted forms of resolution in [RWY02] and [PR04], leading up to an

exp

(
nε

)
lower bound for so-called regular resolution. In a technical tour de

force, Raz [Raz04a] finally proved that general, unrestricted resolution re-

quires length exp

(
nε

)
to refute the basic PHP formulas even with arbitrary

many pigeons. Razborov followed up on this in three papers where he first

simplified and slightly strengthened Raz’s result in [Raz01], then extended

it to FPHP formulas in [Raz03] and lastly established an analogous lower

bound for onto-FPHP formulas in [Raz04b].

More precisely, what Razborov showed is that for any version of the PHP

formula withm pigeons and n holes, the minimal proof length required in

resolution is exp

(
Ω

(
n/log2m

) )
. It is easy to see that this implies a lower

bound exp

(
Ω

(
3

√
n
) )

for any number of pigeons—for m = exp

(
O

(
3

√
n
) )

we can appeal directly to the bound above, and if a resolution proof

would use exp

(
Ω

(
3

√
n
) )

pigeons, then just mentioning all these different

pigeons already requires exp

(
Ω

(
3

√
n
) )

distinct clauses. It is also clear
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that considering complexity in terms of the number of holes n is the

right measure. Since any formula contains a basic PHP subformula with

n + 1 pigeons that can be refuted in length exp(O(n)), we can never hope

for exponential lower bounds in terms of formula size as the number of

pigeonsm grows to exponential.

So far we have stated results only for the standard PHP formulas

over Km,n, where any pigeon can fly to any hole. However, the way Ben-

Sasson and Wigderson [BW01] obtained their result was by considering

graph PHP formulas over balanced bipartite expander graphs of constant

left degree, from which the lower bound for Km,n easily follows by a

restriction argument. It was shown in [IOSS16] that an analogous bound

holds for onto-FPHP formulas, i.e., perfect matching formulas, on bipartite

expanders. In this context is is also relevant to mention the exponential

lower bounds in [Ale04; DR01a] on mutilated chessboard formulas, which

can be viewed as perfect matching formulas on balanced, sparse bipartite

graphs with very bad expansion. At the other end of the spectrum,

Razborov’s PHP lower bound in [Raz04b] for highly unbalanced bipartite

graphs also applies in a more general setting than Km,n: namely, for any

graph where the minimal degree of any left vertex is δ, the minimal length

of any resolution proof is exp

(
Ω

(
δ/log2m

) )
. Thus, for graph PHP formulas

we have exponential lower bounds on the one hand [BW01] for m � n2

pigeons, where eachpigeon is adjacent to a constant number of holes, andon

the other hand [Raz04b] for any number of pigeons given that each pigeon

is adjacent to a polynomial nΩ(1) number of holes, but nothing has been

known in between these extremes. In [Raz04b], Razborov asks whether

a “common generalization” of the techniques in [BW01] and [Raz03; Raz04b]

can be found “that would uniformly cover both cases?” Urquhart [Urq07] also

discusses Razborov’s lower bound technique, but notes that “the search for
a yet more general point of view remains a topic for further research.”

D.1.2 Our Results

In thiswork, we give an answer to the questions raised in [Raz04b; Urq07] by

presenting a general technique that applies for any number of pigeonsm all

the way from linear to weakly exponential, and that establishes exponential

lower bounds on resolution proof length for all flavours of graph PHP

formulas (including perfect matching formulas) even over sparse graphs.

Let us state below three examples of the kind of lower bounds we

obtain—the full, formal statements will follow in later sections. Our first

theorem is an average-case lower bound for onto-FPHP formulas with

slightly superpolynomial number of pigeons.
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Theorem D.1.1 (Informal). Let G be a randomly sampled bipartite graph with
n right vertices, m = no(logn) left vertices, and left degree Θ

(
log

2m
)
. Then

refuting the onto-FPHP formula (a.k.a. perfect matching formula) over G in
resolution requires length exp

(
Ω

(
n1−o(1)) ) asymptotically almost surely.

Note that as the number of pigeons grow larger, it is clear that the

left degree also has to grow—otherwise we will get a small number of

pigeons constrained to fly to a small number of holes by a birthday paradox

argument, yielding a small unsatisfiable subformula that can easily be

refuted by brute force.

If the number of pigeons increases further to weakly exponential, then

randomly sampled graphs no longer have good enough expansion for

our technique to work, but there are explicit constructions of unbalanced

expanders for which we can still get lower bounds.

Theorem D.1.2 (Informal). There are explicitly constructible bipartite graphs G
with n right vertices,m = exp

(
O

(
n1/16) ) left vertices, and left degreeΘ(

log
4m

)
such that resolution requires length exp

(
Ω

(
n1/8−ε) ) to refute the perfect matching

formula over G.

Finally, for functional pigeonhole principle formulas we can also prove

an exponential lower bound for constant left degree even if the number of

pigeons is a large polynomial.

Theorem D.1.3 (Informal). Let G be a randomly sampled bipartite graph with
n right vertices,m = nk left vertices, and left degree Θ

(
(k/ε)2

)
. Then refuting

the functional pigeonhole principle formula over G in resolution requires length
exp

(
Ω

(
n1−ε) ) asymptotically almost surely.

D.1.3 Techniques

At a very high level, what we do in terms of techniques is to revisit

the pseudo-width method introduced by Razborov for functional PHP

formulas in [Raz03]. We strengthen this method to work in the setting

of sparse graphs by combining it with the closure operation on expander

graphs in [AR03; ABRW04], which is a way to restore expansion after a

small set of (potentially adversarially chosen) vertices have been removed.

To extend the results further to perfect matching formulas, we apply a

“preprocessing step” on the formulas as in [Raz04b]. In what remains

of this section, we focus on graph FPHP formulas and give an informal

overview of the lower bound proof in this setting, which already contains

most of the interesting ideas (although the extension to onto-FPHP also

raises significant additional challenges).
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Let FPHP(G) denote the functional pigeonhole principle formula over

the graph G consisting of clauses D.1a–D.1c. A first, quite naive (and

incorrect), description of the proof structure is that we start by defining a

pseudo-widthmeasure on clauses C that counts pigeons i that appear in C

in many variables xij for distinct j. We then show that any short resolution

refutation of FPHP(G) can be transformed into a refutation where all

clauses have small pseudo-width. By a separate argument, we establish

that any refutation of FPHP(G) requires large pseudo-width. Hence, no

short refutations can exist, which is precisely what we were aiming to

prove.

To fill in the details (and correct) this argument, let us start by making

clear what we mean by pseudo-width. Suppose that the graph G has

left degree ∆. In what follows, we identify a mapping of pigeon i to a

neighbouring hole j with the partial assignment ρ such that ρ(xi,j) = 1

and ρ(xi,j′) = 0 for all j′ ∈ N(i) \ {j}. We denote by di(C) the number of

mappings of pigeon i that satisfy C. Note that if C contains at least one

negated literal xi,j, then di(C) ≥ ∆ − 1, and otherwise di(C) is the number

of positive literals xi,j for j ∈ N(i). Given a judiciously chosen “filter vector”

d = (d1, . . . ,dm) for di ≈ ∆ and a “slack” δ ≈ ∆/logm, we say that pigeon

i is heavy in C if di(C) ≥ di − δ and super-heavy if di(C) ≥ di. We define the

pseudo-width of a clause C to be the number of heavy pigeons in C.

With these definitions in hand, we can give a description of the actual

proof:

1. Given any resolution refutation π of FPHP(G) in small length L, we

argue that all clauses can be classified as having either low or high

pseudo-width, where an important additional guarantee is that the

high-width clauses not only have many heavy pigeons but actually

many super-heavy pigeons.

2. We replace all clauses Cwith many super-heavy pigeons with “fake

axioms” C′ ⊆ C obtained by throwing away literals from C until

we have nothing left but a medium number of super-heavy pigeons.

By construction, the set A of such fake axioms is of size |A| ≤ L,

and after making the replacement we have a resolution refutation π′

of FPHP(G) ∪A in low pseudo-width.

3. However, since A is not too large, we are able to show that any

resolution refutation of FPHP(G) ∪Amust still require large pseudo-

width. Hence, L cannot be small, and the lower bound follows.

Part 1 is similar to [Raz03], but with a slight twist. We show that if the

length of π is L < 2
w0

and if we choose δ ≤ ε∆ logn/logm, then there exists
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a vector d = (d1, . . . ,dm) such that for all clauses in π either the number

of super-heavy pigeons is at least w0 or else the number of heavy pigeons

is at most O

(
w0 · nε

)
. The proof of this is by sampling the coordinates di

independently from a suitable probability distribution and then applying

a union bound argument. Once this has been established, part 2 follows

easily: we just replace all clauses with at least w0 super-heavy pigeons by

(stronger) fake axioms. Including all fake axiomsA yields a refutation π′ of
FPHP(G) ∪A (since we can add a weakening rule deriving C from C′ ⊆ C
to resolution without loss of generality) and clearly all clauses in π′ have
pseudo-width O

(
w0 · nε

)
.

Part 3 is where most of the hard work is. Suppose that G is an ex-

cellent expander graph, so that for some value r all left vertex sets U′ of
size

��U′�� ≤ r have at least (1 − ε logn/logm)∆|U′ | unique neighbours on

the right-hand side. We show that, under the assumptions above, refut-

ing FPHP(G) ∪ A requires pseudo-width Ω
(
r · logn/logm

)
. Tuning the

parameters appropriately, this yields a contradiction with part 2.

Before outlining how the proof of part 3 goes, we remark that the

requirements we place on the expansion of G are quite severe. Clearly, any

left vertex set U can have at most ∆|U′ | neighbours in total, and we are

asking for all except a vanishingly small fraction of these neighbours to be

unique. This is why we can etablish Theorem D.1.1 but not Theorem D.1.2

for randomly sampled graphs. We see no reason to believe that the

latter theorem would not hold also for random graphs, but the expansion

properties required for our proof are so stringent that they are not satisfied

in this parameter regime. This seems to be a fundamental shortcoming

of our technique, and it appears that new ideas would be required to

circumvent this problem.

In order to argue that refuting FPHP(G) ∪A in resolution requires large

pseudo-width, we want to estimate how much progress the resolution

derivation has made up to the point when it derives some clause C. Fol-

lowing Razborov’s lead, we measure this by looking at what fraction of

partial matchings of all the heavy pigeons in C do not satisfy C (meaning,

intuitively, that the derivation has managed to rule out this part of the

search space). It is immediate by inspection that all pigeons mentioned

in the real axiom clauses D.1a–D.1c are heavy, and any matching of such

pigeons satisfies the clauses. Thus, the original axioms in FPHP(G) do not

rule out any matchings. Also, it is easy to show that fake axioms rule out

only an exponentially small fraction of matchings, since they contain many

super-heavy pigeons and it is hard to match all of these pigeons without

satisfying the clause. However, the contradictory empty clause ⊥ rules out

100% of partial matchings, since it contains no heavy pigeons to match in
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the first place.

What we would like to prove now is that for any derivation in small

pseudo-width it holds that the derived clause cannot rule out anymatching

other than those already eliminated by the clauses used to derive it. This

means that the fake axioms together need to rule out all partial matchings,

but since every fake axiom contributes only an exponentially small frac-

tion they are too few to achieve this. Hence, it is not possible to derive

contradiction in small pseudo-width, which completes part 3 of our proof

outline.

There is one problem, however: the last claim above is not true, and

so what is outlined above is only a fake proof. While we have to defer the

discussion of what the full proof actually looks like in detail, we conclude

this section by attempting to hint at a couple of technical issues and how to

resolve them.

Firstly, it does not hold that a derived clause C eliminates only those

matchings that are also forbidden by one of the predecessor clauses used

to derive C. The issue is that a pigeon i that is heavy in both predecessors

might cease to be heavy in C—for instance, if Cwas derived by a resolution

step over a variable xi,j. If this is so, then we would need to show that any

matching of the heavy pigeons in C can be extended to match also pigeon i

to any of its neighbouring holeswithout satisfying both predecessor clauses.

But this will not be true, because a non-heavy pigeon can still have some

variable xi,j occurring in both predecessors. The solution to this, introduced

in [Raz03], is to do a “lossy counting” of matchings by associating each

partial matching with a linear subspace of some suitable vector space,

and then to consider the span of all matchings ruled out by C. When we

accumulate a “large enough” number of matchings for a pigeon i, then the

whole subspace associated to i is spanned and we can stop counting.

But this leads to a second problem: when studying matchings of the

heavy pigeons in Cwe might already have assigned pigeons i′
1
, . . . , i′w that

occupy holes where pigeon imight want to fly. For standard PHP formulas

over complete bipartite graphs this is not a problem, since at least n −w
holes are still available and this number is “large enough” in the sense

described above. But for a sparse graph it will typically be the case that

w � ∆, and so it might well be the case that pigeons i′
1
, . . . , i′w are already

occupying all the ∆ holes available for pigeon i according toG. Although it

is perhaps hard to see from our (admittedly somewhat informal) discussion,

this turns out to be a very serious problem, and indeed it is one of the main

technical challenges we need to overcome.

To address this problem we consider not only the heavy pigeons in C,

but also any other pigeons in G that risk becoming far too constrained
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when the heavy pigeons of C are matched. Inspired by [AR03; ABRW04],

we define the closure to be a superset S of the heavy pigeons such that when

S and the neighbouring holes of S are removed it holds that the residual

graph is still guaranteed to be a good expander. Provided that G is an

excellent expander to begin with, and that the number of heavy pigeons

in C is not too large, it can then be shown that an analogue of the original

argument outlined above goes through.

D.1.4 Outline of This Paper

We review the necessary preliminaries in Section D.2 and introduce two

crucial technical tools in Section D.3. The lower bounds for weak graph

FPHP formulas are then presented in Section D.4, after which the per-

fect matching lower bounds follow in Section D.5. We conclude with a

discussion of questions for future research in Section D.6.

D.2 Preliminaries

We denote natural logarithms (base e) by ln, and base 2 logarithms by log.

For positive integers n ∈ N+ we write [n] = {1, . . . ,n}.
A literal over a Boolean variable x is either the variable x itself (a positive

literal) or its negation x (a negative literal). A clause C = `1 ∨ · · · ∨ `w is a

disjunction of literals. We write ⊥ to denote the empty clause without any

literals. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We

think of clauses and CNF formulas as sets: order is irrelevant and there are

no repetitions. We let F denote the set of variables of F.

A resolution refutation π of an unsatisfiable CNF formula F, or resolution
proof for (the unsatisfiability of) F, is an ordered sequence of clauses

π = (D1, . . . ,DL) such thatDL = ⊥ and for each i ∈ [L] eitherDi is a clause
in F (an axiom) or there exist j < i and k < i such that Di is derived from

Dj and Dk by the resolution rule

B ∨ x C ∨ x
B ∨ C . (D.2)

We refer to B ∨ C as the resolvent of B ∨ x and C ∨ x over x, and to x as the

resolved variable. For technical reasons it is sometimes convenient to also

allow clauses to be derived by the weakening rule

C
D
[C ⊆ D] (D.3)

(and for two clauses C ⊆ D we will sometimes refer to C as a strengthening
of D).
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The length L(π) of a refutation π = (D1, . . . ,DL) is L. The length

of refuting F is minπ:F `⊥{L(π)}, where the minimum is taken over all

resolution refutations π of F. It is easy to show that removing theweakening

rule D.3 does not increase the refutation length.

A partial assignment or a restriction on a formula F is a partial function

ρ : F → {0, 1}. The clause C restricted by ρ, denoted Cdρ, is the trivial

1-clause if any of the literals in C is satisfied by ρ and otherwise it is Cwith

all falsified literals removed. We extend this definition to CNF formulas in

the obvious way by taking unions. For a variable x ∈ F we write ρ(x) = ∗ if
x ∉ dom(ρ), i.e., if ρ does not assign a value to x.

WewriteG = (V,E) todenote a graphwithverticesV andedgesE, where

G is always undirected and without loops or multiple edges. Moreover,

for bipartite graphs we write G = (U
.

∪ V ,E), where edges in E have one

endpoint in the left vertex set U and the other in the right vertex set V .

A partial matching ϕ in G is a subset of edges that are vertex-disjoint.

Let V(ϕ) = {v | ∃e ∈ ϕ : v ∈ e} be the vertices of ϕ and for v ∈ V(ϕ)
denote by ϕv the unique vertex u such that {u, v} ∈ ϕ. A vertex v is

covered by ϕ if v ∈ V(ϕ). If ϕ is a partial matching in a bipartite graph

G = (U
.

∪ V ,E), we identify it with a partial mapping of U to V . When

referring to the pigeonhole formula, this mapping will also be identified

with an assignment ρϕ to the variables defined by

ρϕ(xi,j) =


∗ if i ∉ Dom(ϕ),
0 if i ∈ Dom(ϕ) and ϕ(i) ≠ j,
1 if i ∈ Dom(ϕ) and ϕ(i) = j.

(D.4)

Given a vertex v ∈ V(G), we write NG(v) to denote the set of neighbours
of v in the graph G and degG(v) = |NG(v)| to denote the degree of v. We

extend this notion to sets and denote byNG(S) = {v | ∃ (u, v) ∈ E for u ∈ S}
the neighbourhood of a set of vertices S ⊆ V . The boundary, or unique
neighbourhood, ∂G(S) = {v ∈ V \ S : |NG(v) ∩ S| = 1} of a set of vertices

S ⊆ V contains all vertices in V \ S that have a single neighbour in S. If

the graph is bipartite, there is of course no need to subtract S from the

neighbour set. We will sometimes drop the subscript G when the graph is

clear from context. For a set U ⊆ V we denote by G \U the subgraph of G

induced by the vertex set V \U.
A graphG = (V ,E) is an (r,∆, c)-expander if all vertives v ∈ V have degree

at most ∆ and for all sets S ⊆ V , |S| ≤ r, it holds that |N(S) \ S| ≥ c · |S|.
Similarly,G = (V ,E) is an (r,∆, c)-boundary expander if all vertices v ∈ V have

degree at most ∆ and for all sets S ⊆ V , |S| ≤ r, it holds that |∂(S)| ≥ c · |S|.
For bipartite graphs, the degree and expansion requirements only apply

to the left vertex set: G = (U
.

∪ V ,E) is an (r,∆, c)-bipartite expander if all
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vertices u ∈ U have degree at most ∆ and for all sets S ⊆ U, |S| ≤ r, it holds
that |N(S)| ≥ c · |S|, and an (r,∆, c)-bipartite boundary expander if for all sets
S ⊆ U, |S| ≤ r, it holds that |∂(S)| ≥ c · |S|. For bipartite graphs we will only

ever be interested in bipartite notions of expansions, and so which kind of

expansion is meant will always be clear from context. A simple but useful

observation is that

|N(S) \ S| ≤ |∂(S)| + ∆|S| − |∂(S)|
2

=
∆|S| + |∂(S)|

2

, (D.5)

since all non-unique neighbours inN(S) \S have at least two incident edges.

This implies that if a graph G is an (r,∆, (1 − ξ)∆)-expander then it is also

an (r,∆, (1 − 2ξ)∆)-boundary expander.

Weoftendenote randomvariables in boldface andwriteX ∼ D todenote

that X is sampled from the distribution D. We will use the following

standard forms of the multiplicative Chernoff bounds: if S is a sum

of independent 0-1 random variables (not necessarily equidistributed)

with expectation µ = E[S], then for δ ≥ 0 we have that Pr

[
µ − S ≥

δ
]
≤ exp

(
− δ2

2µ

)
and Pr

[
S − µ ≥ δ

]
≤ exp

(
− δ2

2µ+δ
)
. Combining these two

inequalities yields the following statement.

Theorem D.2.1. Let S be the sum of independent 0-1 random variables (not
necessarily equidistributed) with expectation µ = E[S]. Then for δ ≥ 0 it holds
that

Pr

[
|S − µ| ≥ δ

]
≤ 2 exp

(
− δ2

2µ + δ

)
.

For n,m,∆ ∈ N, we denote by G(m,n,∆) the distribution over bipartite

graphs with disjoint vertex sets U = {u1, . . . ,um} and V = {v1, . . . , vn}
where the neighbourhood of a vertex u ∈ U is chosen by sampling a

subset of size ∆ uniformly at random from V . A property is said to hold

asymptotically almost surely on G(f(n),n,∆) if it holds with probability that

approaches 1 as n approaches infinity.

For the right parameters, a randomly sampled graph G ∼ G(m,n,∆) is
asymptotically almost surely a good boundary expander as stated next.

Lemma D.2.2. Letm,n and ∆ be large enough integers such thatm > n ≥ ∆.
Let ξ,χ ∈ R+ be such that ξ < 1/2, ξ lnχ ≥ 2 and ξ∆ lnχ ≥ 4 lnm. Then
for r = n/(∆ · χ) and c = (1 − 2ξ)∆ it holds asymptotically almost surely for a
randomly sampled graphG ∼ G(m,n,∆) thatG is an (r,∆, c)-boundary expander.

Proof. Let G = (U
.

∪ V ,E). We first estimate the probability that a set S ⊆ U
of size at most r violates the boundary expansion. For brevity, let us write
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s = |S| and c′ = (1 − ξ)∆. In view of D.5, the probability that S violates the

boundary expansion can be bounded by

Pr

[
|∂(S)| < cs

]
≤ Pr

[
|N(S)| < ∆s + cs

2

]
(D.6a)

= Pr

[
|N(S)| < c′s

]
(D.6b)

≤
(
n

c′s

)
·
( (c′s
∆

)(n
∆

) )s
(D.6c)

≤
(
n

c′s

)
·
(
c′s

n

)∆s
(D.6d)

≤
[( en
c′s

)c′
·
(
c′s

n

)∆]s
(D.6e)

=

[
e(1−ξ)∆ ·

( n
c′s

)−ξ∆]s
(D.6f)

≤ exp

(
∆s

(
1 − ξ ln

( n
c′s

)))
(D.6g)

≤ exp

(
∆s

(
1 − ξ ln

(
χ

1 − ξ

)))
(D.6h)

≤ exp (∆s(1 − ξ lnχ)) (D.6i)

≤ exp (−(∆sξ lnχ)/2) , (D.6j)

where (D.6h) holds since s ≤ r ≤ n/(∆χ) and (D.6j) holds since ξ lnχ ≥ 2.

Hence, the probability that G is not a boundary expander can be bounded

by

Pr

[
G is not an expander

]
≤

∑
s∈[r]

(
m

s

)
exp(−(∆sξ lnχ)/2)

≤
∑
s∈[r]

exp(−s((ξ∆ lnχ)/2 − lnm)) (D.7)

≤
∑
s∈[r]

exp(−s lnm) ≤ 1

m − 1 ,

where the second-to-last inequality holds since ξ∆ lnχ ≥ 4 lnm. �

Wewill also consider someparameter settingswhere randomly sampled

graphs do not have strong enough expansion for our purposes, but where

we can resort to explicit constructions as follows.
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Theorem D.2.3 ([GUV09]). For all positive integersm, r ≤ m, all ξ > 0, and
all constant ν > 0, there is an explicit (r,∆, (1 − ξ)∆)-expander G = (U

.

∪ V ,E),
with |U| = m, |V | = n, ∆ = O

(
((logm)(log r)/ξ)1+1/ν

)
and n ≤ ∆2 · r1+ν.

Corollary D.2.4. Let κ, ε,ν be positive constants, κ < 1

8
, and let n be a

large enough integer. Then there is an explicit graph G = (U
.

∪ V ,E), with
|U| = m = 2

Ω(nκ) and |V | ≤ n, that is an (n 1

1+ν−
4κ
ν ,∆, (1 − 2ξ)∆)-boundary

expander for ξ =
ε logn

logm
and ∆ = O(log2(1+1/ν)m).

Proof. Let G be the expander from Theorem D.2.3 for the parameters

m = 2
ε′nκ

, r = n
1

1+ν−
4κ
ν , and ξ =

ε logn

logm
, where ε′ is chosen to be a

small enough constant so that ∆2 · r1+ν ≤ n. Such a graph G is an

(r,∆, (1 − ξ)∆)-expander for ∆ as in the Corollary. By D.5 it follows that an

(r,∆, c)-expander is an (r,∆, 2c−∆)-boundary expander, and henceG is an(
r,∆, (1 − 2ξ)∆

)
-boundary expander. Note that Theorem D.2.3 guarantees

that the right side of G has size at most ∆2 · r1+ν ≤ n. �

D.3 Two Key Technical Tools

In this section we review two crucial technical ingredients of the resolution

lower bound proofs.

D.3.1 Pigeon Filtering

The following lemma is ageneralizationof [Raz03, Lemma6]. Thedifference

is that we have an additional parameter α (which is implicitly fixed to α = 2

in [Raz03]) that allows us to get a better upper bound on the numbers ri.

This turns out to be crucial for us—we discuss this in more detail in

Section D.4.

Lemma D.3.1 (Filter lemma). Let m,L ∈ N+ and suppose that w0,α ∈ [m]
are such that w0 > lnL and w0 ≥ α2 ≥ 4. Further, let r(1), . . . , r(L) be integer
vectors, each of the form r(`) = (r1(`), . . . , rm(`)). Then there exists a vector
r = (r1, . . . , rm) of positive integers ri ≤

⌊
logm

logα

⌋
− 1 such that for all ` ∈ [L] at

least one of the following holds:
1.

��{i ∈ [m] : ri(`) ≤ ri}�� ≥ w0 ,
2.

��{i ∈ [m] : ri(`) ≤ ri + 1}�� ≤ O(α ·w0) .

Proof. We first define a weight functionW(r) for vectors r = (r1, . . . , rm) as

W(r) =
∑
i∈[m]

α−ri . (D.8)

226



D.3. Two Key Technical Tools

In order to establish the lemma, it is sufficient to show that there exist

constants γ and γ′ and a vector r = (r1, . . . , rm) such that for all ` ∈ [L] the
implications

W(r(`)) ≥ γ
′w0

α
⇒ |{i ∈ [m] | ri(`) ≤ ri}| ≥ w0 , (D.9a)

W(r(`)) ≤ γ
′w0

α
⇒ |{i ∈ [m] | ri(`) ≤ ri + 1}| ≤ γαw0 (D.9b)

hold. Let t =
⌊
logm

logα

⌋
− 1 and let µ be a probability distribution on [t] given

by Pr[r = i] = β · α−i for all i ∈ [t], where β = α−1
1−α−t . Note that

β
∑
i∈[t]

α−i =
α − 1
1 − α−t

(
1 − α−t
α − 1

)
= 1 (D.10)

and thus µ is a valid distribution. Let us write r = (r1, . . . , rm) to denote

a random vector with coordinates sampled independently according to µ.

We claim that for every ` ∈ [L] the implications D.9a and D.9b are true

asymptotically almost surely. Let us proceed to verify this.

1. Suppose thatW(r(`)) ≥ γ′w0

α . We wish to show that |{i ∈ [m] : ri ≥
ri(`)}| ≥ w0. Observe that coordinates larger than t contribute only∑

ri(`)>t
α−ri(`) ≤ m · α−t−1 < α (D.11)

toW(r(`)), and hence the weight function truncated at t is∑
ri(`)≤t

α−ri(`) ≥ γ
′w0

α
− α ≥ (γ′ − 1)w0

α
, (D.12)

since w0 ≥ α2
. Note that for every coordinate i with ri(`) ≤ t we

have that Pr[ri ≥ ri(`)] ≥ β · α−ri(`). Consider the random set

Pr(`) = {i ∈ [m] | ri(`) ≤ t and ri ≥ ri(`)}. We can appeal to D.12 to

derive that

E
[
|Pr(`)|

]
=

∑
ri(`)≤t

Pr[ri ≥ ri(`)]

≥
∑
ri(`)≤t

βα−ri(`)

≥ β(γ′ − 1)w0

α
≥ γ

′ − 1
2

w0 (D.13)
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is a lower bound on the expected size of Pr(`). As the events

ri ≥ ri(`) are independent, by the multiplicative Chernoff bound we

get that

Pr

[
|Pr(`)| < w0

]
≤ Pr

[
|Pr(`)| − E

[
|Pr(`)|

]
≤ w0 − E

[
|Pr(`)|

] ]
(D.14a)

= Pr

[
E

[
|Pr(`)|

]
− |Pr(`)| ≥ E

[
|Pr(`)|

]
−w0

]
(D.14b)

≤ exp

(
−

(
E

[
|Pr(`)|

]
−w0

)
2

2E
[
|Pr(`)|

] )
(D.14c)

= exp

(
−
E

[
|Pr(`)|

]
2 − 2E

[
|Pr(`)|

]
w0 +w2

0

2E
[
|Pr(`)|

] )
(D.14d)

≤ exp

(
−
E

[
|Pr(`)|

]
− 2w0

2

)
(D.14e)

≤ exp

(
−(γ

′ − 5)
4

w0

)
(D.14f)

≤ exp(−2w0) (D.14g)

≤ L−2 , (D.14h)

where the second to last inequality holds for γ′ ≥ 13.

2. Suppose thatW(r(`)) ≤ γ′w0

α . Now we need to show that |{i ∈ [m] :
ri ≥ ri(`) − 1}| ≤ γαw0 holds asymptotically almost surely. Note that

Pr[ri ≥ ri(`) − 1] = β
t∑

j=ri(`)−1
α−j (D.15a)

=
α − 1
1 − α−t

(
α−ri(`)+2 − α−t

α − 1

)
(D.15b)

=
α−ri(`)+2 − α−t

1 − α−t (D.15c)

=
αt−ri(`)+2 − 1
αt − 1 (D.15d)

≤ α
t−ri(`)+2

αt/2 = 2α2−ri(`)
. (D.15e)
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Similar to the previous case, letQr(`) = {i ∈ [m] | ri ≥ ri(`) − 1}. We

can upper-bound the expected cardinality of Qr(`) by

E
[
|Qr(`)|

]
=

∑
i∈[m]

Pr[ri ≥ ri(`) − 1] ≤ 2α2W(r(`)) ≤ 2γ′αw0 .

(D.16)

Again, we apply the Chernoff bound in Theorem D.2.1 and conclude

that

Pr

[
|Qr(`)| ≥ γαw0

]
≤ Pr

[
|Qr(`)| − E

[
|Qr(`)|

]
≥ γαw0 − 2γ′αw0

]
≤ exp

(
− (γ − 2γ′)2(αw0)2
4γ′αw0 + (γ − 2γ′)αw0

)
(D.17)

≤ exp(−αw0)
≤ L−2

where the second to last inequality holds for γ sufficiently larger than

γ′, say γ ≥ 5γ′.

A union bound argument over all vectors in {r(`) : ` ∈ [L]} for both cases

shows that for γ′ ≥ 13 and γ ≥ 5γ′ there exists a choice of r = (r1, . . . , rm)
such that both implications D.9a and D.9b hold. �

D.3.2 Graph Closure

A key concept in our work will be that of a closure of a vertex set, which

seems to have originated in [AR03; ABRW04]. Intuitively, for an expander

graph G, the closure of T ⊆ V(G) is a suitably small set S that contains T

such that G \ S is an expander. In order to have a definition that makes

sense for both expanders and bipartite expanders, we define Vexp(G) to be

the set of vertices ofG that expand, that is, ifG = (V ,E) is an expander then

Vexp(G) = V , and if G = (U
.

∪ V ,E) is a bipartite expander then Vexp(G) = U.

Definition D.3.2 (Closure). For an expander graph G and vertex sets

S ⊆ Vexp(G) and U ⊆ V(G), we say that the set S is (U, r,ν)-contained if

|S| ≤ r and
��∂(S) \U�� < ν · |S|.

For any expander graph G and any set T ⊆ Vexp(G) of size |T | ≤ r, we

will let closurer,ν(T ) denote an arbitrary but fixed maximal set such that

T ⊆ closurer,ν(T ) ⊆ Vexp(G) and closurer,ν(T ) is (N(T ), r,ν)-contained.

Note that the closure of any set T of size |T | ≤ r as defined above does

indeed exist, since T itself is (N(T ), r,ν)-contained.
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Lemma D.3.3. Suppose that G is an (r,∆, c)-boundary expander and that
T ⊆ Vexp(G) has size |T | ≤ k ≤ r. Then |closurer,ν(T )| < k∆

c−ν .

Proof. Bydefinitionwehave that

��∂(closurer,ν(T ))\N(T )�� < ν·|closurer,ν(T )|.
Furthermore, since |closurer,ν(T )| ≤ r by definition, we can use the expan-

sionproperty of the graph toderive the inequality

��∂(closurer,ν(T ))\N(T )�� ≥
|∂(closurer,ν(T ))| − |N(T )| ≥ c · |closurer,ν(T )| − k∆. Note that we also use

the fact that the neighbourhood of T is of size at most k∆. The conclusion

follows by combining both statements. �

Suppose G is an excellent boundary expander and that T ⊆ Vexp(G)
is not too large. Then Lemma D.3.3 shows that the closure of T is not

much larger. And if the closure is not too large, then after removing the

closure and its neighbourhood from the graph we are still left with a decent

expander, a fact which will play a key role in the technical arguments in

later sections. The following lemma makes this intuition precise.

Lemma D.3.4. For G an (r,∆, c)-boundary expander, let T ⊆ Vexp(G) be
such that |T | ≤ r and |closurer,ν(T )| ≤ r/2, let G′ = G \

(
closurer,ν(T ) ∪

N(closurer,ν(T ))
)
and Vexp(G′) = Vexp(G) ∩ V(G′). Then any set S ⊆ Vexp(G′)

of size |S| ≤ r/2 satisfies |∂G′(S)| ≥ ν|S|.

Proof. Suppose the set S ⊆ Vexp(G′) is of size |S| ≤ r/2 and does not satisfy

|∂G′(S)| ≥ ν|S|. Since closurer,ν(T ) is also of size at most r/2, we have that

the set (closurer,ν(T ) ∪ S) is (N(T ), r,ν)-contained in the graph G. But this

contradicts the maximality of closurer,ν(T ). �

D.4 Lower Bounds for Weak Graph FPHP Formulas

We now proceed to establish lower bounds on the length of resolution refu-

tations of functional pigeonhole principle formulas defined over bipartite

graphs. We write G = (VP
.

∪VH,E) to denote the graph over which the

formulas are defined andℳ to denote the set of partial matchings on G

(also viewed as partial mappings of VP to VH). Let us start by making

more precise some of the technical notions discussed in the introduction

(which were originally defined in [Raz01]).

For a clause C and a pigeon i we denote the set of holes j with the

property that C is satisfied if i is matched to j by

NC(i) = {j ∈ V
H
| e = {i, j} ∈ E and ρ{e}(C) = 1} (D.18)

and we define the ith pigeon degree degC(i) of C as

degC(i) = |NC(i)| . (D.19)
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We think of a pigeon iwith largedegC(i) as a pigeononwhich thederivation

has not made any significant progress up to the point of deriving C, since

the clause rules out very few holes. The pigeons with high enough pigeon

degree in a clause are the heavy pigeons of the clause as defined next.

Definition D.4.1 (Pigeon weight, pseudo-width and

(
w0,d

)
-axioms). Let

C be a clause and let d = (d1, . . . ,dm) and δ = (δ1, . . . , δm) be two vectors

of positive integers such that d is elementwise greater than δ. We say

that pigeon i is d-super-heavy for C if degC(i) ≥ di and that pigeon i is

(d, δ)-heavy for C if degC(i) ≥ di − δi. When d and δ are understood from

context, which is most often the case, we omit the parameters and just refer

to super-heavy and heavy pigeons. Pigeons that are not heavy are referred to

as light pigeons. The set of pigeons that are super-heavy for C is denoted by

Pd(C) = {i ∈ [m] | degC(i) ≥ di}

and the set of pigeons that are heavy for C is denoted by

Pd,δ(C) = {i ∈ [m] | degC(i) ≥ di − δi} .

The pseudo-width of C is the number of heavy pigeons in C and the pseudo-

width of a resolution refutation π, denoted by wd,δ(π), is maxC∈πwd,δ(C).
Finally, we will refer to clauses Cwith precisely w0 super-heavy pigeons,

i.e., such that |Pd(C)| = w0, as

(
w0,d

)
-axioms.

Note that according to Definition D.4.1 super-heavy pigeons are also

heavy. Making the connection back to our informal discussion in the

introduction, the “fake axioms” mentioned there are nothing other than(
w0,d

)
-axioms.

Now that we have all the notions needed, let us give a detailed proof

outline. Given a short resolution refutation π of the formula FPHP(G), we

use the Filter lemma (Lemma D.3.1) to get a filter vector d = (d1, . . . ,dm)
such that each clause either has many super-heavy pigeons or there are not

too many heavy pigeons (for an appropriately chosen vector δ). Clearly,

clauses that fall into the second case of the filter lemma have bounded

pseudo-width. On the other hand, clauses in the first case may have very

large pseudo-width. In order to obtain a proof of low pseudo-width, these

clauses are strengthened to

(
w0,d

)
-axioms and added to a special set A.

This then gives a refutation π′ that refutes the formula FPHP(G) ∪ A in

bounded pseudo-width. The following lemma summarizes the upper

bound on pseudo-width that we obtain.

Lemma D.4.2. Let G = (VP
.

∪VH,E) be a bipartite graph with |VP | = m and
|VH | = n; let π be a resolution refutation of FPHP(G); let w0,α ∈ [m] be such

231



Paper D. The Sparse Weak Pigeonhole Principle is Hard for Resolution

that w0 > log L(π) and w0 ≥ α2 ≥ 4, and let δ = (δ1, . . . , δm) be defined by
δi =

degG(i) logα
logm

. Then there exists an integer vector d = (d1, . . . ,dm), with
δi < di ≤ degG(i) for all i ∈ VP, a set of

(
w0,d

)
-axioms A with |A| ≤ L(π),

and a resolution refutation π′ of FPHP(G) ∪A such that wd,δ(π′) = O(α ·w0).

As mentioned above, this upper bound is a straightforward application

of Lemma D.3.1. We defer the formal proof to Section D.4.2. What we

will need from Lemma D.4.2 is that a resolution refutation of FPHP(G) in
length less than 2

w0
can be transformed into a refutation of FPHP(G) ∪A

in pseudo-width at most O(α ·w0).
The second step in the proof is to show that any resolution refutation

π of FPHP(G) ∪A requires large pseudo-width. The high-level idea is to

define a progress measure on clauses C ∈ π by counting the number of

matchings on Pd,δ(C) that do not satisfy C. We then show that in order to

increase this progress measure we need large pseudo-width. The following

lemma states the pseudo-width lower bound.

Lemma D.4.3. Let ξ ≤ 1/4 and m,n, r,∆ ∈ N; let G = (VP
.

∪VH,E) with
|VP | = m and |VH | = n be an (r,∆, (1 − 2ξ)∆)-boundary expander, and let
δ = (δ1, . . . , δm) be defined by δi = 4 degG(i)ξ. Suppose that d = (d1, . . . ,dm)
is an integer vector such that δi < di ≤ degG(i) for all i ∈ VP. Let w0

be an arbitrary parameter and A be an arbitrary set of
(
w0,d

)
-axioms with

|A| ≤ (1 + ξ)w0 . Then every resolution refutation π of FPHP(G) ∪ A must
satisfy wd,δ(π) ≥ rξ/4.

In one sentence, the lemma states that if the set of “fake axioms” A

is not too large, then resolution requires large pseudo-width to refute

FPHP(G) ∪A. Note that this lemma holds for any filter vector and not just

for the one obtained from Lemma D.4.2.

In order to prove Lemma D.4.3, we wish to define a progress measure

on clauses that indicates how close the derivation is to refuting the formula

(i.e., it should be small for axiom clauses but large for contradiction). A

first attempt would be to define the progress of a clause C as the number of

ruled-out matchings (i.e., matchings that do not satisfy C) on the pigeons

mentioned by C. This definition does not quite work, but we can refine it

by counting matchings less carefully. Namely, if for a pigeon i there are

more than degG(i) − di + δi/4 holes to which it can be mapped without

satisfying C, then we think of C as ruling out all holes for this pigeon. Since
the pigeon degree of a light pigeon i is at most di − δi, such a pigeon will

certainly have at least degG(i)−di+δi ≥ degG(i)−di+δi/4 holes to which

it can be mapped, and the “lossy counting” will ensure that all holes are

considered as ruled out.
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We realize this “lossy counting” through a linear space Λ, in which

each partial matching ϕ is associated with a subspace λ(ϕ). Roughly

speaking, the progress λ(C) of a clause C is then defined to be the span of

all partial matchings that are ruled out by C. We design the association

betweenmatchings and subspaces so that the contradictory empty clause⊥
has λ(⊥) = Λ but so that the span of all the axioms span({λ(A) | A ∈
FPHP(G)∪A}) is a proper subspace ofΛ. This implies that in a refutation π

of FPHP(G) ∪A there must exist a resolution step deriving a clause C from

clauses C0 and C1 such that the linear space of the resolvent λ(C) is not
contained in span(λ(C0), λ(C1)). But the main technical lemma of this

section (Lemma D.4.10) says that for any derivation in low pseudo-width

the linear space of the resolvent is contained in the span of the linear spaces

of the clauses being resolved. Hence, in order for π to be a refutation

it must contain a clause with large pseudo-width, and this establishes

Lemma D.4.3.

So far our argument follows that of Razborov very closely, but it turns

out we cannot realize this proof idea if we only keep track of heavy and

light pigeons. Let us attempt a proof of the claim in Lemma D.4.10 that

low-width resolution steps cannot increase the span to illustrate what the

problem is. The interesting case is when there is a pigeon i that is heavy

for C0 or C1 but not for their resolvent C. Then, following Razborov, for

any matching ϕ on the heavy pigeons of C that fails to satisfy C, we need

to be able to extend ϕ in at least degG(i) − di + δi/4 different ways to a

matching including also pigeon i that falsifies either C0 or C1. If this can

be done, then we think of C0 and C1 as together ruling out (essentially)

all holes for i, and the linear space associated with C will be contained

in the span of the spaces for C0 and C1. The problem, though, is that ϕ

may send all heavy pigeons to the neighbourhood of pigeon i. In this

scenario, there might be very few holes, or even no holes, to which i can

be mapped when extending ϕ, and even our lossy counting will not be

able to pick up enough holes for the argument to go through. We resolve

this problem by not only considering the heavy pigeons but a larger set of

relevant pigeons including all pigeons i′ that can become overly constrained

when some matching on the heavy pigeons shrinks the neighbourhood

of i′ too much. Formally, the closure of the set of heavy pigeons, as defined

in Definition D.3.2, is the notion that we need.

D.4.1 Formal Statements of Graph FPHP Formula Lower Bounds

Deferring the proofs of all technical lemmas for now, let us state our

lower bounds for graph FPHP formulas and see how they follow from

Lemmas D.4.3 and D.4.2 above.
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Theorem D.4.4. Letm = |U| and n = |V | and suppose that G = (U
.

∪ V ,E) is
an

(
r,∆,

(
1 − logα

2 logm

)
∆
)
-boundary expander for α ∈ [m] such that 8 ≤ α3

logα
=

o

(
r

logm

)
. Then resolution requires length exp

(
Ω

(
r log2α

α log
2m

))
to refute FPHP(G).

As promised in Section D.3, let us briefly discuss the parameter α. Note

that, on the one hand, the larger α is, the more relaxed we can be with

respect to the expansion requirements, and hence the set of formulas to

which the lower bound applies becomes larger. On the other hand, the

strength of the lower bound deteriorates quickly with α. Hence, we need to

choose α carefully to find a good compromise between these two concerns.

Proof of Theorem D.4.4. Let ξ =
logα

4 logm
and let w0 =

ε0rξ
α for some small

enough ε0 > 0. We note that the choice of parameters and the condition

on α ensure that 4 ≤ α2 ≤ w0. Furthermore, in terms of ξ, the graph G is

an (r,∆, (1 − 2ξ)∆)-boundary expander.

We proceed by contradiction. Suppose π is a resolution refutation with

L(π) < 2
ε′w0ξ

for a small enough constant ε′ > 0. Applying Lemma D.4.2

we get a set of

(
w0,d

)
-axioms A with |A| ≤ L(π) and a resolution refuta-

tion π′ of FPHP(G) ∪A such that wd,δ(π′) ≤ Kαw0 for some large enough

constant K.

Note that |A| ≤ L(π) < 2
ε′w0ξ ≤ (1 + ξ)w0

for ε′ < 1/2. Applying

Lemma D.4.3 to π′ yields a pseudo-width lower bound of rξ/4. We

conclude that

rξ/4 ≤ wd,δ(π′) ≤ Kαw0 = ε0Krξ . (D.20)

Choosing ε0 <
1

4K yields a contradiction. �

The following corollary summarizes our claims for random graphs.

Corollary D.4.5. Let m and n be positive integers and let ∆ : N+ → N+ and
ε : N+ → [0, 1] be any monotone functions of n such that n < m ≤ n(ε/16)2 logn

and n ≥ ∆ ≥
(
16 logm

ε logn

)
2

. Then asymptotically almost surely resolution requires
length exp

(
Ω

(
n1−ε) ) to refute FPHP(G) for G ∼ G

(
m,n,∆

)
.

Proof. Let us assume that n(ε/16)
2

logn
and

(
(16 logm)/(ε logn)

)
2

are inte-

gers. Observe that if G ∼ G (m,n,∆) for ∆ >
(
(16 logm)/(ε logn)

)
2

, then

we can sample a random subgraph G′ ∼ G
(
m,n, ((16 logm)/(ε logn))2

)
by

choosing a random subset of appropriate size of each neighbourhood of a

left vertex (and applying a restriction zeroing out the other edges). Hence,

we can restrict our attention to the case where ∆ =
(
(16 logm)/(ε logn)

)
2

.

Also, it is sufficient to prove the claim form = n(ε/16)
2

logn
, since choosing
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m smaller can only make the formula less constrained and hence makes

the lower bound easier to obtain.

We want to apply Lemma D.2.2 for χ = α = nε/4 and ξ =
logα

4 logm
. In

order to do so, we need to verify the inequalities

ξ < 1/2 , (D.21a)

ξ lnχ ≥ 2 , (D.21b)

ξ∆ lnχ ≥ 4 lnm . (D.21c)

For D.21a we observe that ξ = 16

ε logn
and since n < n(ε/16)

2

logn
we see that

1

logn
<

(
ε
16

)
2

. Hence, the first condition holds for n large enough. To check

D.21b, we compute

ξ lnχ =
16

ε logn

ε lnn

4

≥ 2 . (D.22)

For (D.21c), we observe that ∆ = logm and hence

ξ∆ lnχ =
4

log e
logm = 4 lnm . (D.23)

We conclude that asymptotically almost surely, G ∼ G (m,n,∆) is an(
n1−ε/2

,∆, (1 − 2ξ)∆
)
-boundary expander. Theorem D.4.4 then gives a

length lower bound of exp

(
Ω

(
n1−ε) )

, as required. �

The following twocorollaries are simple consequences ofCorollaryD.4.5,

optimizing for different parameters. The first corollary gives the strongest

lower bounds, while the second minimizes the degree.

Corollary D.4.6. Let m,n be such that m ≤ no(logn). Then asymptotically
almost surely resolution requires length exp

(
Ω

(
n1−o(1)) ) to refute FPHP(G) for

G ∼ G
(
m,n, logm

)
.

Proof. Letm = nf(n), where f(n) = o(logn). Applying Corollary D.4.5 for

ε = 16

√
f(n)
logn

= o(1)we get the desired statement. �

Corollary D.4.7 (Restatement of Theorem D.1.3). Let k and n be positive
integers and letm = nk and ε ∈ R+. Then asymptotically almost surely resolution
requires length exp

(
Ω

(
n1−ε) ) to refute FPHP(G) for G ∼ G

(
m,n,

(
16k
ε

)
2

)
.

Proof. Weappeal to CorollaryD.4.5with∆ =
(
16k
ε

)
2

,m = nk and ε constant.

A short calculation shows that all conditions are met. �
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Our final corollary shows thatwe can getmeaningful lower bounds even

for a weakly exponential number of pigeons. Unfortunately, the statement

does not hold for random graphs.

Corollary D.4.8. Let κ < 3/2 −
√
2 and ε > 0 be constant and n be in-

teger. Then there is a family of explicitly constructible graphs G with m =

2
Ω(nκ) and left degree O

(
log

1/
√
κ(m)

)
such that resolution requires length

exp

(
Ω

(
n1−2

√
κ(2−

√
κ)−ε) ) to refute FPHP(G).

Proof. Let G be the graph from Corollary D.2.4 with ν =
2

√
κ

1−2
√
κ
. An appeal

to Theorem D.4.4 using the graph G yields the desired lower bound. �

D.4.2 A Pseudo-Width Upper Bound for Graph FPHP Formulas
with Extra Axioms

Let us now prove Lemma D.4.2. For this proof, let us identify VP with [m].
For every clause C in the refutation π, let r(C) = (r1(C), . . . , rm(C)) be the
vector where each coordinate is given by

ri(C) =
⌊
degG(i) − degC(i)

δi

⌋
+ 1 . (D.24)

We apply the filter lemma (LemmaD.3.1) to the set of vectors {r(C) | C ∈ π}.
Denote by r = (r1, . . . , rm) a vector as guaranteed to exist by Lemma D.3.1.

Let

di = degG(i) − dδirie + 1 . (D.25)

A short calculation establishes that di is the smallest integer such that⌊
degG(i)−di

δi

⌋
+ 1 ≤ ri.

Note that every pigeon i ∈ [m] such that ri(C) ≤ ri is super-heavy for

C. Also, every heavy pigeon of a clause C satisfies that ri(C) ≤ ri + 1.
To obtain a refutation π′ that satisfies the conclusions of the lemma,

we consider every clause C ∈ π and either add a strengthening of C to

the

(
w0,d

)
-axiom set A or conclude that the pseudo-width of C is small

enough that the clause can stay in π′. More concretely, we make a case

distinction whether r(C) satisfies case 1 of Lemma D.3.1 or only case 2. In

one case C can be strengthened to a

(
w0,d

)
-axiom, while in the other the

pseudo-width of C is bounded:

1. C satisfies

��{i ∈ [m] | ri(C) ≤ ri}�� ≥ w0: As every pigeon i ∈ [m]with

ri(C) ≤ ri also satisfies degC(i) ≥ di, we can strengthen this clause

to a

(
w0,d

)
-axiom and add it to A. This reduces the pseudo-width of

this clause to w0.
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2. C satisfies

��{i ∈ [m] | ri(C) ≤ ri + 1}
�� ≤ O(α · w0): As every heavy

pigeon always satisfies ri(C) ≤ ri + 1, the pseudo-width of C is

O(α ·w0).

This concludes the proof as |A| ≤ L(π) and the pseudo-width of π′ is
O(α ·w0) by construction.

D.4.3 A Pseudo-Width Lower Bound for Graph FPHP Formulas
with Extra Axioms

We continue to the proof of LemmaD.4.3. Using Definition D.3.2, we define

the set of relevant pigeons of a clause C as

closure(C) = closurer,(1−3ξ)∆(Pd,δ(C)) , (D.26)

where Pd,δ(C) denotes the set of (d, δ)-heavy pigeons for C as defined in

Definition D.4.1. By definition, the closure of a set T contains T itself but is

only defined if |T | ≤ r. However, if

��Pd,δ(C)�� ≥ r ≥ rξ/4 then we already

have the lower bound claimed in the lemma, and so we may assume that

the closure is well defined for all clauses in the refutation π. This implies,

in particular, that for every clause C ∈ πwe have Pd,δ(C) ⊆ closure(C).
Let us next construct the linear space Λ and describe how matchings

are mapped into it. Fix a field F of characteristic 0 and for each pigeon

i ∈ VP let Λi be a linear space over F of dimension degG(i) − di + δi/4.
Let Λ be the tensor product Λ =

⊗
i∈VP Λi and denote by λi : VH ↦→ Λi

a function with the property that any subset of holes J ⊆ VH of size

at least dim(Λi) spans Λi. In other words, for J as above we have that

Λi = span(λi(j) : j ∈ J). This is how we will realize the idea of “lossy

counting.” For J ⊆ VH such that |J| ≤ dim(Λi) we have exact counting

dim(span({λi(j) | j ∈ J})) = |J|, but when |J| > dim(Λi) gets large enough
we have dim(span({λi(j) | j ∈ J})) = dim(Λi).

In order to map functions VP ↦→ VH into Λ, we define λ : V
VP

H
↦→ Λ by

λ(j1, . . . , jm) =
⊗
i∈VP λi(ji), where will we abuse notions slightly in that

we identify a vector with the 1-dimensional space spanned by this vector.

For a partial function ϕ : VP ↦→ VH, we let λ(ϕ) be the span of all total

extensions of ϕ (not necessarily matchings), or equivalently

λ(ϕ) =
⊗

i∈dom(ϕ)
λi(ϕi) ⊗

⊗
i∉dom(ϕ)

Λi . (D.27)

Recall that ℳ is the set of all partial matchings on the graph G and

that we interchangeably think of partial matchings as partial functions

ϕ : VP → VH or as Boolean assignments ρϕ as defined in D.4. For each
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clause C, we are interested in the partial matchings ϕ ∈ ℳ with domain

dom(ϕ) = closure(C) such that ρϕ does not satisfy C. We refer to the set

of such matchings as the zero space of C and denote it by

Z(C) = {ϕ ∈ ℳ | dom(ϕ) = closure(C) ∧ ρϕ(C) ≠ 1} . (D.28)

We associate C with the linear space

λ(C) = span({λ(ϕ) | ϕ ∈ Z(C)}) . (D.29)

Note that contradiction is mapped to Λ, i.e., λ(⊥) = Λ.

We assert that the span of the axioms span({λ(A) | A ∈ FPHP(G) ∪A})
is a proper subspace of Λ.

LemmaD.4.9. If |A| ≤ (1+ξ)w0 , then span({λ(A) | A ∈ FPHP(G)∪A}) ( Λ.

Accepting this claim without proof for now, this implies that in π there

is some resolution step deriving C from C0 and C1 where the subspace of

the resolvent is not contained in the span of the subspaces of the premises,

or in other words λ(C) * span(λ(C0), λ(C1)). Our next lemma, which is the

heart of the argument, says that this cannot happen as long as the closures

of the clauses are small.

Lemma D.4.10. Let C be derived from C0 and C1. If

max{|closure(C0)|, |closure(C1)|, |closure(C)|} ≤ r/4 ,

then λ(C) ⊆ span(λ(C0), λ(C1)).
Since contradiction cannot be derived while the closure is of size at

most r/4, any refutation πmust contain a clause C with |closure(C)| > r/4.
But then Lemma D.3.3 implies that C has pseudo-width at least rξ/4, and
Lemma D.4.3 follows. All that remains for us is to establish Lemmas D.4.10

and D.4.9.

Proof of Lemma D.4.9. We need to show that the axioms FPHP(G) ∪ A do

not span all of Λ. We start with the axioms in FPHP(G).
Let A be pigeon axiom Pi as in (D.1a) or a functionality axiom Fi

j,j′

as in (D.1c). Note that i is a heavy pigeon for A. Clearly, there are no

pigeon-to-hole assignments for pigeon i that do not satisfy A. Thus there

are no matchings on closure(A) that do not satisfy A. We conclude that

λ(A) = ∅. If insteadA is a hole axiomH
i,i′

j
as in (D.1b), then we can observe

that degG(i) − 1 ≥ di − δi since δi = 4ξdegG(i) ≥ 2ξ∆ ≥ 1 (by boundary

expansion). This implies that A has two heavy pigeons. Observe that there

are nomatchings on these two pigeons that do not satisfyA. Thus Z(A) = ∅
and we conclude that λ(A) = ∅.
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closure(C)

closure(C1)

closure(C0)

D
dom(ϕ′)

Figure D.1: Depiction of relations between closure(C), closure(Ci), i =

1, 2, dom(ϕ′) andD in proof of Lemma D.4.10.

Now consider the

(
w0,d

)
-axioms inA. We wish to show that anyA ∈ A

can only span a very small fraction of Λ. We can estimate the the number

of dimensions λ(A) spans by

dim λ(A) ≤
∏

i∉Pd(A)
dimΛi ·

∏
i∈Pd(A)

(degG(i) − di) . (D.30)

Hence the fraction of the space Λ that Amay span is bounded by

dim λ(A)
dimΛ

≤
∏

i∈Pd(A)

degG(i) − di
degG(i) − di + δi/4

≤ (1 − ξ)w0

. (D.31)

As |A| ≤ (1 + ξ)w0

we can conclude that not all of Λ is spanned by the

axioms. �

Proof of Lemma D.4.10. For conciseness of notation, let us write S01 =

closure(C0) ∪ closure(C1) and S = closure(C). In order to establish the

lemma, we need to show for all ϕ ∈ Z(C) that

λ(ϕ) ⊆ span(λ(C0), λ(C1)) . (D.32)

To comprehend the argument that will follow below, it might be helpful to

refer to the illustration in Figure D.1.

Denote by ϕ′ the restriction of ϕ to the domain S ∩ S01 and note that

C is not satisfied under ρϕ′ . Also, observe that if a matching η extends
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a matching η′, then λ(η) is contained in λ(η′). This is so since for any

pigeon i ∈ dom(η) \ dom(η′)we have from D.27 that η′ picks up the whole

subspace Λi while η only gets a single vector. Thus, if we can show that

λ(ϕ′) ⊆ span(λ(C0), λ(C1)), then we are done as ϕ extends ϕ′ and hence

λ(ϕ) ⊆ λ(ϕ′).
LetD = S01 \ S and denote byℳD the set of matchings that extend ϕ′

to the domainD and do not satisfyC. Since eachmatchingψ ∈ ℳD fails to

satisfyC, by the soundness of the resolution rule we have that it also fails to

satisfy either C0 or C1. Assume without loss of generality that ψ does not

satisfyC0 and denote byψ′ the restriction ofψ to the domain of closure(C0).
From D.28 we see that ψ′ ∈ Z(C0) and therefore λ(ψ) ⊆ λ(ψ′) ⊆ λ(C0).

So far we have argued that for all matchings ψ ∈ ℳD it holds that

λ(ψ) ⊆ span(λ(C0), λ(C1)). Let λ(ℳD) = span(λ(ψ) | ψ ∈ ℳD). If we can

show that the set of matchingsℳD is large enough for λ(ℳD) = λ(ϕ′)
to hold, then the lemma follows. In other words, we want to show that

λ(ℳD) projected to ΛD =
⊗
i∈D Λi spans all of the space ΛD .

To argue this, note first that D is completely outside the closure(C).
Furthermore, by assumption we have |closure(C)| ≤ r/4 and |D| ≤ |S01 | ≤
r/2. An application of Lemma D.3.4 now tells us that

|∂G\(closure(C)∪N(closure(C)))(D)| ≥ (1 − 3ξ)∆|D| . (D.33)

By an averaging argument, there must exist a pigeon i1 ∈ D that has more

than (1 − 3ξ)∆ unique neighbours in ∂G\(closure(C)∪N(closure(C)))(D). The

same argument applied to D \ {i1} show that some pigeon i2 has more

than (1 − 3ξ)∆ unique neighbours on top of the neighbours reserved for

pigeon i1. Iterating this argument, we derive by induction that for each

pigeon i ∈ D we can find (1−3ξ)∆ distinct holes inN(D). Since all pigeons
inD are light in C, it follows that at most di − δi mappings of pigeon i can

satisfy the clause C. Hence, there are at least

(1 − 3ξ)∆ − (di − δi) ≥ (1 − 3ξ)degG(i) − di + 4ξdegG(i)
≥ degG(i) − di + δi/4 (D.34)

many holes to which each pigeon in D can be sent, independently of all

other pigeons in D, without satisfying C. As we have that dim(Λi) =
degG(i) − di + δi/4, we conclude that λ(ℳD) projected to ΛD spans the

whole space. This concludes the proof of the lemma. �

D.5 Lower Bounds for Perfect Matching Principle Formulas

In this section,we show that theperfectmatchingprinciple formulasdefined

over even highly unbalanced bipartite graphs require exponentially long

resolution refutations if the graphs are expanding enough.
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Just as in [Raz04b], our proof is by an indirect reduction to the FPHP

lower bound, and therefore there is a significant overlap in concepts and

notation with Section D.4. However, since there are also quite a few subtle

shifts in meaning, we restate all definitions in full below to make the

exposition in this section self-contained and unambiguous.

We first review some useful notions from [Raz01]. LetG = (V,E) denote
the graph over which the formulas are defined. For a clause C and a vertex

v ∈ V(G), let the clause-neighbourhood of v in C, denoted by NC(v), be the

vertices u ∈ V(G)with the property that C is satisfied if v is matched to u,

that is,

NC(v) = {u ∈ V | e = {u, v} ∈ E and ρ{e}(C) = 1} . (D.35)

For a set V ⊆ V(G) let NC(V) be the union of the clause-neighbourhoods

of the vertices in V , i.e., NC(V) =
⋃
v∈V NC(v) and let the vth vertex degree

of C be

degC(v) = |NC(v)| . (D.36)

We think of a vertex vwith large degree degC(v) as a vertex on which the

derivation has not made any progress up to the point of deriving C, since

the clause rules out very few neighbours. The vertices with high enough

vertex degree in a clause are the heavy vertices of the clause as defined next.

Definition D.5.1 (Vertex weight, pseudo-width and

(
w0,d

)
-axioms). Let

d = (d1, . . . ,dm+n) and δ = (δ1, . . . , δm+n) be two vectors such that d is

elementwise greater than δ. We say that a vertex v is d-super-heavy for C
if degC(v) ≥ dv and that vertex v is (d, δ)-heavy for C if degC(v) ≥ dv − δv.
When d and δ are understood from context we omit the parameters and

just refer to super-heavy and heavy vertices. Vertices that are not heavy are

referred to as light vertices. The set of vertices that are super-heavy for C is

denoted by

Vd(C) = {v ∈ V | degC(v) ≥ dv} (D.37)

and the set of heavy vertices for C is denoted by

Vd,δ(C) = {v ∈ V | degC(v) ≥ dv − δv} . (D.38)

The pseudo-width wd,δ(C) = |Vd,δ(C)| of a clause C is the number of heavy

vertices in it, and the pseudo-width of a resolution refutation π iswd,δ(π) =
maxC∈πwd,δ(C). We refer to clauses C with precisely w0 super-heavy

vertices as

(
w0,d

)
-axioms.

To a large extent, the proof of the lower bounds for perfect matching

formulas follows the general idea of the proof of Theorem D.4.4: given a
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short refutationwe first apply the filter lemma to obtain a refutation of small

pseudo-width; we then prove that in small pseudo-width contradiction

cannot be derived and can thus conclude that no short refutation exists. In

more detail, given a short resolution refutation π, we use the filter lemma

(LemmaD.3.1) to get a filter vector d = (d1, . . . ,dm+n) such that each clause

either has many super-heavy vertices or not too many heavy vertices (for an

appropriately chosen vector δ). Clearly, clauses that fall into the second case

of the filter lemma have bounded pseudo-width. Clauses in the first case,

however, may have very large pseudo-width. In order to obtain a proof of

low pseudo-width, these latter clauses are strengthened to

(
w0,d

)
-axioms

and added to a special setA. This then gives a refutation π′ that refutes the
formula PM(G) ∪A in bounded pseudo-width as stated in the next lemma.

Lemma D.5.2. Let G = (VL
.

∪VR,E) be a bipartite graph with |VL | = m and
|VR | = n; let π be a resolution refutation of PM(G); let w0,α ∈ [m + n] be
such that w0 > log L(π) and w0 ≥ α2 ≥ 4, and let δ = (δ1, . . . , δm+n) be
defined by δv =

degG(v) logα
log(m+n) for v ∈ V(G). Then there exists an integer vector

d = (d1, . . . ,dm+n), with δv < dv ≤ degG(v) for all v ∈ V(G), a set of
(
w0,d

)
-

axiomsA with |A| ≤ L(π), and a resolution refutation π′ of PM(G) ∪A such that
L(π′) ≤ L(π) and wd,δ(π′) ≤ O(α ·w0).

The proof of the above lemma is omitted as it is syntactically equivalent

to the proof of Lemma D.4.2. Until this point, we have almost mimicked

the proof of Theorem D.4.4. The main differences will appear in the proof

of the counterpart to Lemma D.5.2, which states a pseudo-width lower

bound.

Lemma D.5.3. Assume for ξ ≤ 1/64 andm,n, r,∆ ∈ N that G = (VL
.

∪VR,E)
is an (r,∆, (1 − 2ξ)∆)-boundary expander with |VL | = m, |VR | = n, ∆ ≥
logm/ξ2, and min{degG(v) : v ∈ VR} ≥ r/ξ. Let δ = (δv | v ∈ V(G))
be defined by δv = 64degG(v)ξ and suppose that d = (dv | v ∈ V(G)) is an
integer vector such that δv < dv ≤ degG(v) for all v ∈ V(G). Fix w0 such
that 64 ≤ w0 ≤ rξ − logn and let A be an arbitrary set of

(
w0,d

)
-axioms with

|A| ≤ (1+ 16ξ)w0/8. Then every resolution refutation π of PM(G) ∪A has either
length L(π) ≥ 2

w0/32 or pseudo-width wd,δ(π) ≥ rξ.

The proof of the above lemma is based on a sort of reduction to the

FPHP(G) case. The idea, due toRazborov [Raz04b], is to first pick a partition
of the vertices of G that looks random to every clause in the refutation

and then simulate the FPHP(G) lower bound on this partition. In our

setting, however, this process gets quite involved. Already implementing

the partition idea of Razborov is non-trivial: for a fixed clause C some

vertices that are light may be super-heavy with respect to the partition,
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and we do not have an upper bound on the pseudo-width any longer. The

insight needed to solve this issue is to show that by expansion there are not

too many such vertices per clause, and then adapt the closure definition to

take these vertices into account.

Another issue we run into is that the span argument from Section D.4

cannot be applied to all the vertices in the graph. Instead, for the vertices in

VR, we need to resort to the span argument from [Raz03]. Moreover, vertices

in the neighbourhood ofD (as defined in the proof of Lemma D.4.10) may

already be matched and we are hence unable to attain enough matchings.

Our solution is to consider a “lazy” edge removal procedure from the

originalmatching, whichwith a careful analysis can be shown to circumvent

the problem—see Section D.5.3 for details.

D.5.1 Formal Statements of Perfect Matching Formula Lower
Bounds

Let us state our lower bounds for the perfect matching formulas and defer

the proof of Lemma D.5.3 to Section D.5.3.

Theorem D.5.4. Let G = (U
.

∪ V ,E) be a bipartite graph with m = |U| and
n = |V |. Suppose that G is an (r,∆, (1 − 2ξ)∆)-boundary expander for ∆ ≥
log(m+n)
ξ2

and ξ =
logα

64 log(m+n) where α ≥ 2 and α3

logα
= o

(
r

log(m+n)

)
, which

furthermore satisfies the degree requirement min{degG(v) : v ∈ V} ≥ r/ξ. Then
resolution requires length exp

(
Ω

(
r log2α

α log
2(m+n)

))
to refute the perfect matching

formula PM(G) defined over G.

We remark that this theorem also holds if we replace the minimum

degree constraint of V with an expansion guarantee from V to U. We

state the theorem in the above form as we want to apply it to the graphs

from [GUV09] for which we have no expansion guarantee from V to U.

Proof of Theorem D.5.4. Let w0 =
ε0rξ
α , for some small enough ε0 > 0

. Suppose for the sake of contradiction that π is a resolution refuta-

tion of PM(G) such that L(π) < (1 + 16ξ)w0/8
. Since w0 > log L(π), by

Lemma D.5.2 we have that there exists an integer vector d = (d1, . . . ,dm+n),
with δv < dv ≤ degG(v), a set of

(
w0,d

)
-axioms A with |A| ≤ L(π) <

(1 + 16ξ)w0/8
, and a resolution refutation π′ of PM(G) ∪ A such that

L(π′) ≤ L(π) and wd,δ(π′) ≤ Kαw0 for some large enough constant K.

Since L(π′) < (1 + 16ξ)w0/8 ≤ 2
w0/32

, by Lemma D.5.3, we have that

wd,δ(π′) ≥ rξ ≥ αw0/ε0. Choosing ε0 < 1/K, we get a contradiction and,

thus, L(π) ≥ (1 + 16ξ)w0/8 = exp

(
Ω

(
rξ2

α

))
. �
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As in Section D.4, we have a general statement for random graphs.

Corollary D.5.5. Let m and n be positive integers, let ∆ : N+ → N+ and
ε : N+ → [0, 1] be anymonotone functions ofn such thatn3 < m ≤ n(ε/128)2 logn

and n ≥ ∆ ≥ log(m + n)
(
128 log(m+n)
ε logn

)
2

. Then asymptotically almost surely
resolution requires length exp

(
Ω

(
n1−ε) ) to refute PM(G) for G ∼ G

(
m,n,∆

)
.

Proof. For simplicity, let us assume that m+ = n(ε/128)
2

logn
and ∆− =

log(m + n) ·
(
(128 log(m + n))/(ε logn)

)
2

are integers. It suffices to prove

the claim form = m+ and ∆ = ∆−. Indeed, if G ∼ G (m,n,∆), for ∆ > ∆−,
we can sample a random subgraph G′ ∼ G

(
m,n,∆−

)
of G by choosing a

random subset of appropriate size of each neighbourhood of a left vertex

and applying a restriction zeroing out the other edges. Furthermore, as for

smallerm the formula gets less constrained and hence the lower bound is

easier to obtain, it suffices to prove it form = m+.

We want to apply Lemma D.2.2 for χ = α = nε/4 and ξ =
logα

64 logm
, and

towards this end we argue that the inequalities

ξ < 1/2 , (D.39a)

ξ lnχ ≥ 2 , (D.39b)

ξ∆ lnχ ≥ 4 lnm (D.39c)

all hold. First observe that ξ = 32

ε logn
and n < n(ε/128)

2

logn
, from which we

conclude that
1

logn
<

(
ε
128

)
2

. Hence, the first inequality D.39a holds for n

large enough. A simple calculation

ξ lnχ =
32

ε logn

ε lnn

4

≥ 2 (D.40)

shows that D.39b is also true. Finally, for (D.39c), we observe that ∆ ≥
log

2m and hence

ξ∆ lnχ ≥ 8

log e
log

2m ≥ 4 lnm . (D.41)

We conclude that asymptotically almost surely G ∼ G (m,n,∆) is an(
n1−ε/2

,∆, (1 − 2ξ)∆
)
-boundary expander. Furthermore, by the Chernoff

inequality asymptotically almost surely all right vertices have degree at

least n · 64 log(m+n)
ε logn

. Thus, Theorem D.5.4 gives a length lower bound of

exp

(
Ω

(
n1−ε) )

as claimed. �

The following corollary is a simple consequence of Corollary D.5.5,

optimizing for the strongest lower bounds.
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Corollary D.5.6 (Restatement of Theorem D.1.1). Let m,n be such that
m ≤ no(logn). Then asymptotically almost surely resolution requires length
exp

(
Ω

(
n1−o(1)) ) to refute PM(G) for G ∼ G

(
m,n, 8 log2m

)
.

Proof. Letm = nf(n), where f(n) = o(logn). Applying Corollary D.5.5 for

ε = 128

√
f(n)
logn

= o(1), we get the desired statement. �

Our final corollary shows that we even get meaningful lower bounds

for highly unbalanced bipartite graphs. As was the case for FPHP(G), the
required expansion is too strong to hold for random graphs with such large

imbalance, but does hold for explicitly constructed graphs from [GUV09].

Corollary D.5.7 (Restatement of Theorem D.1.2). Let κ < 3/2 −
√
2 and

ε > 0 be constants, and let n be an integer. Then there is a family of (explicitly
constructible) graphs G withm = 2

Ω(nκ) and left degree O(log1/
√
κ(m)), such

that resolution requires length exp(Ω(n1−2
√
κ(2−

√
κ)−ε)) to refute PM(G).

Proof. Let G be the graph from Corollary D.2.4 with ν =
2

√
κ

1−2
√
κ
. In order

to apply Theorem D.5.4 we need to satisfy the minimum right degree

constraint. A simple way of doing this is by adding n2
edges to G such

that each vertex on the right has exactly n incident edges added while

each vertex on the left has at most one incident edge added. This will

leave us with a graph which has large enough right degree while each left

degree increased by at most one. The additional edges may reduce the

boundary expansion a bit, but a short calculation shows that by choosing

ξ =
logα

128 log(m+n) in Corollary D.2.4, we can still guarantee the needed

boundary expansion for Theorem D.5.4. The corollary bound follows. �

D.5.2 Defining Pigeons and Holes

As stated earlier, we prove the PM(G) lower bound by simulating the

FPHP(G) lower bound from Section D.4 on a partition VP

.

∪VH of the

vertices of G. As the notation suggests, we think of the vertices in VP as

pigeons and of the vertices in VH as holes.

Let us first motivate the properties—captured in Lemma D.5.8—that

such a partition must satisfy in order for the FPHP(G) simulation to go

through. To begin with, recall that in the proof of Lemma D.4.9 we show

that a

(
w0,d

)
-axiom only spans an exponentially small fraction of the linear

spaceΛ. The argument crucially relies on the fact that there aremany super-

heavy pigeons in every

(
w0,d

)
-axiom. To make this work over the partition

VP

.

∪VH, we require that a constant fraction of the super-heavy vertices
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of every

(
w0,d

)
-axiom are in VP and that super-heavy vertices remain

super-heavy with respect to this partition. This first issue is addressed

by property 1 of Lemma D.5.8 whereas the second issue is guaranteed

by the other properties: property 2 ensures that for every vertex roughly

half of its neighbours are in VH while properties 3 and 4 ensure that most

clause-neighbourhoods behave in the same manner, i.e., up to a small set

of vertices per clause every clause-neighbourhood of a vertex has roughly

half of its vertices in VH. Combining these arguments, we can bound the

fraction of the space spanned by a

(
w0,d

)
-axiom.

The other main step of the FPHP(G) lower bounds is Lemma D.4.10

which state that in low pseudo-width the linear space associated with a

resolvent never leaves the span of the premises. This argument relies on the

expansion guarantee of the underlying graph and the fact that light pigeons

are unconstrained. The required graph expansion (see Lemma D.5.10) will

follow from property 2 and properties 2–4 are used to argue that light

pigeons are also unconstrained with repect to the partition.

LemmaD.5.8. LetG = (VL
.

∪VR,E) be an (r,∆, (1 − 2ξ)∆)-boundary expander
for ξ ≤ 1/4 and |VL | ≥ 4. Fix w0 such that 64 ≤ w0 ≤ r and let A be
a set of

(
w0,d

)
-axioms of size |A| ≤ exp(w0/32). Moreover, suppose that

∆ ≥ log|VL |/ξ2 and min{degG(v) : v ∈ VR} ≥ (log|VR | + w0)/ξ2. If π is a
resolution refutation of PM(G) ∪A with L(π) ≤ exp(w0/32), then there exists a
vertex partition V(G) = VP ∪̇ VH such that

1. for every A ∈ A:

|Vd(A) ∩ V

P
| ≥ w0/4 ,

2. for every v ∈ V:��|NG(v) ∩ V

H
| − 1/2|NG(v)|

�� ≤ 4ξ
��NG(v)�� ,

3. for every C ∈ π and for every v ∈ VR:��|NC(v) ∩ V

H
| − 1/2|NC(v)|

�� ≤ 4ξ|NG(v)| ,

4. for every C ∈ π there is a set of vertices Ṽ (C) ⊆ VL, satisfying |Ṽ (C)| ≤
w0/8, such that for every v ∈ VL \Ṽ (C):��|NC(v) ∩ V

H
| − 1/2|NC(v)|

�� ≤ 4ξ∆ .
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The analogue of above lemma in [Raz04b] is Claim 19. The main

difference is that in our setting property 4 does not always hold for all

vertices in the graphwhile in Razborov’s setting the corresponding property

always holds.

In order to argue that this error set Ṽ (C) is small, we needG to be a good

expander. To this end we use the following claim which states that if for a

fixed clause C there are many vertices v ∈ VL such that |NC(v) ∩ VH | does
not behave as expected, then, by expansion, we canfind a large set of vertices

Ṽ?(C) whose clause-neighbourhood in VH (i.e., the set NC(Ṽ?(C)) ∩ VH)

deviates from its expected size.

Claim D.5.9. Let G = (VL
.

∪VR,E) be an (r,∆, (1 − 2ξ)∆)-boundary expander.
Fix any partition V(G) = VP

.

∪VH and any clause C. Let

Ṽ (C) = {v ∈ V
L
:

��|NC(v) ∩ V

H
| − 1/2|NC(v)|

�� > 4ξ∆} .

If |Ṽ (C)| > w0/8, then there is a set of vertices Ṽ?(C) ⊆ Ṽ (C), with |Ṽ?(C)| =
w0/16, such that��|NC(Ṽ?(C)) ∩ V

H
| − 1/2|NC(Ṽ?(C))|

�� > 2ξ∆|Ṽ?(C)| .

Proof. Denote by Ṽ+(C) (Ṽ−(C) respectively) the vertices in Ṽ (C) that have
more neighbours (less neighbours respectively) in VH than the expected

1/2
��NC(v)��. As |Ṽ (C)| > w0/8, one of the sets Ṽ+(C) or Ṽ−(C) is of cardinal-

ity at least w0/16.

Case 1: Suppose Ṽ+(C) ≥ w0/16 and let Ṽ?(C) be any subset of Ṽ+(C)
of sizew0/16. As boundary expansion ofG guarantees that Ṽ?(C) has
at most 2ξ∆|Ṽ?(C)| edges to non-unique neighbours in Gwe derive

|NC(Ṽ?(C)) ∩ V

H
| ≥

∑
v∈Ṽ?(C)

|NC(v) ∩ ∂(Ṽ?(C)) ∩ V

H
| (D.42)

≥
∑

v∈Ṽ?(C)

|NC(v) ∩ V

H
| − 2ξ∆|Ṽ?(C)| (D.43)

>
∑

v∈Ṽ?(C)

(
1/2|NC(v)| + 4ξ∆

)
− 2ξ∆|Ṽ?(C)|

(D.44)

≥ 1/2|NC(Ṽ?(C))| + 2ξ∆|Ṽ?(C)| , (D.45)

where the strict inequality follows by definition of Ṽ+(C).

247



Paper D. The Sparse Weak Pigeonhole Principle is Hard for Resolution

Case 2: Suppose Ṽ−(C) ≥ w0/16 and let Ṽ?(C) be any subset of Ṽ−(C)
of size w0/16. Similar to the previous case we can conclude that

|NC(Ṽ?(C)) ∩ V

H
| ≤

∑
v∈Ṽ?(C)

|NC(v) ∩ V

H
| (D.46)

<
∑

v∈Ṽ?(C)

(
1/2|NC(v)| − 4ξ∆

)
(D.47)

≤ 1/2|NC(Ṽ?(C))| − 2ξ∆|Ṽ?(C)| , (D.48)

where the last inequality uses that Ṽ?(C) has at most 2ξ∆|Ṽ?(C)|
edges incident to non-unique neighbours in G.

Combining both cases yields the claim. �

Proof of Lemma D.5.8. Pick a partition V = VP
.

∪ VH uniformly at random.

In what follows we show that property 1 holds with probability at least 3/4
and properties 2, 3 and 4 each hold with probability at least 7/8. Hence

there exists a partition that satisfies all four properties simultaneously.

For the first property, since E
[
|Vd(A) ∩ VP |

]
= w0/2, by the multiplica-

tive Chernoff bound we have that

Pr

[
|Vd(A) ∩ V

P
| ≤ w0/4

]
≤ exp (−w0/16) . (D.49)

Since |A| ≤ exp(w0/32) and w0 ≥ 64, a union bound over A gives us that

property 1 holds except with probability exp(−w0/32) ≤ 1/4.
To analyse properties 2 and 3, let C either be a clause in π or be the

graph G (i.e., the clause that contains all variables) and fix an arbitrary

v ∈ V(G). By Chernoff bound (Theorem D.2.1) we get that

Pr

[��|NC(v) ∩ V

H
| − 1/2|NC(v)|

�� ≥ 4ξ|NG(v)|
]

≤ 2 exp

(
− (4ξ|NG(v)|)2
|NC(v)| + 4ξ|NG(v)|

)
≤ exp

(
−8ξ2 |NG(v)| + 1

)
, (D.50)

where the last inequality holds as |NC(v)| ≤ |NG(v)| and ξ ≤ 1/4.
By a union bound argument over the clauses in π and v ∈ VR, we

have that Property 3 holds except with probability 1/8. For property 2,

we need to analyse vertices in VL and in VR separately. On the one

hand, since min{degG(v) : v ∈ VL} ≥ (1 − 2ξ)∆ ≥ log|VL |
2ξ2

and |VL | ≥ 4, a

union bound over v ∈ VL shows that property 2 holds for all vertices VL

except with probability 1/16. On the other, as min{degG(v) : v ∈ VR} ≥
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(log|VR | +w0)/ξ2, a union bound yields that property 2 holds for all v ∈ VR
except with probability 1/16.

To obtain property 4, fix a clause C and consider the set Ṽ(C) that
contains all vertices v ∈ VL satisfying��|NC(v) ∩ V

H
| − 1/2|NC(v)|

�� > 4ξ∆ . (D.51)

We want to show that it is unlikely that |Ṽ(C)| ≥ w0/8. Note that such a

large Ṽ(C) implies by Claim D.5.9 that there is a set S ⊆ VL of size w0/16
such that

��|NC(S) ∩VH | − 1/2|NC(S)|
�� ≥ 2ξ∆|S|. By a union bound over all

such sets S and applying Chernoff bound (Theorem D.2.1) we have that

Pr

[
|Ṽ(C)| ≥ w0/8

]
≤

(
|VL |
w0/16

)
max

S⊆VL:
|S|=w0/16

Pr

[��|NC(S) ∩ V

H
| − 1/2|NC(S)|

�� ≥ ξ∆w0/8
]

(D.52)

≤ |V
L
|w0/16 · 2 exp

(
− (ξ∆w0/8)2
∆w0/16 + ξ∆w0/8

)
(D.53)

≤ exp

(
−ξ2∆w0/8 + 1 + log|V

L
| ·w0/16

)
(D.54)

≤ exp

(
− log|V

L
| ·w0/16 + 1

)
, (D.55)

where for D.53 we observe that |NC(S)| ≤ ∆|S|, for D.54 we need that

ξ ≤ 1/4 and for D.55 that ∆ ≥ log|VL |/ξ2. By a union bound over all

clauses in πwe see that property 4 holds except with probability 1/8. �

LetVP

.

∪VH be apartitionofV(G) as guaranteed to exist byLemmaD.5.8.

For an overview of the vertex sets and how they relate we refer to Figure D.2.

The following lemma shows that the vertices in VL expand into the set

VR ∩VH. Let G′ = G \ (VR ∩VP)with vertex partition (VL
.

∪(VR \VP)).
Lemma D.5.10. The graph G′ is an (r, (1 + 8ξ)∆/2, (1 − 12ξ)∆/2)-boundary
expander.

Proof. By Lemma D.5.8, property 2, every vertex in VP ∩VL has degree at

most (1 + 8ξ)|NG(v)|/2 and at least (1 − 8ξ)|NG(v)|/2. By the expansion

guarantee of G, we know that |NG(v)| ≥ (1 − 2ξ)∆. Therefore all sets of

size 1 are good enough boundary expanders. We continue by induction on

the size of the set. Let S be a set of vertices of size at most r. In the original

graph G, this set S has at least (1 − 2ξ)∆|S| many unique neighbours. Thus
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there is a vertex v in S that has at least (1−2ξ)∆many unique neighbours in

G. Further, by LemmaD.5.8, property 2, the vertex v has at least (1−8ξ)∆/2
many neighbours in VR ∩VH. Hence v has at least (1 − 12ξ)∆/2 many

unique neighbours in VH. From the induction hypothesis on S \ {v}, it
follows that S has the required number of unique neighbours in VH. �

D.5.3 Pseudo-Width Lower Bound

We start by setting up the notation we will need to prove Lemma D.5.3.

LetC be a clause in π, let Ṽ (C) = {v ∈ VL :

��|NC(v)∩VH |−1/2|NC(v)|�� >
4ξ∆} and V(C) = (Vd,δ(C) ∩VL) ∪ Ṽ (C). The closure of C is a subset of VL

in the graph G′, defined by

closure(C) = closurer,(1−20ξ)∆/2(V(C)) . (D.56)

We define the closure only on VL as we only have an expansion guarantee

from VL into VR ∩VH. As the concept of closure only makes sense on

vertex sets which are expanding, we do not define it on VR. The set of

relevant vertices of a clause C are the vertices in closure(C) ∪Vd,δ(C). With

this definition at hand we proceed to set up the linear spaces that realize

the lossy counting (see Section D.4). Let us stress the fact that only vertices

in VP are associated with a linear space.

Fix a field F of characteristic 0 and for each vertex v ∈ VP let Λv
be a linear space over F of dimension 1/2(degG(v) − dv + δv/2). Let

Λ =
⊗
v∈VP Λv and denote by λv : VH ↦→ Λv a function with the property

that any image of a subset S ⊆ VH of size |S| ≥ dim(Λv) spans Λv, i.e.,
span(λv(u) : u ∈ S) = Λv.

Letℳ be the set of partial matchings in G that contain no edges from

VP ×VP. To map partial matchings ϕ ∈ ℳ into Λ, we define λ :ℳ ↦→ Λ

by

λ(ϕ) =
⊗

v∈V(ϕ)∩VP

λv(ϕv) ⊗
⊗

v∈VP \V(ϕ)
Λv . (D.57)

Recall that each partial matching ϕ ∈ ℳ has an associated partial boolean

assignment ρϕ as defined in D.4. For each clause C, we are interested in

the partial matchings ϕ ∈ ℳ that match all of closure(C) ∪ Vd,δ(C) such
that ρϕ does not satisfy C. We refer to the set of such matchings as the zero
space of C and denote it by

Z(C) = {ϕ ∈ ℳ | V(ϕ) ⊇ (closure(C) ∪ Vd,δ(C)) ∧ C(ρϕ) ≠ 1} . (D.58)

We associate C with the linear space

λ(C) = span(λ(ϕ) | ϕ ∈ Z(C)) . (D.59)
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Note that contradiction is mapped to Λ, i.e., λ(⊥) = Λ.

The following lemma asserts that the span of the axioms span({λ(A) |
A ∈ PM(G) ∪A}) is a proper subspace of Λ.

LemmaD.5.11. If |A| ≤ (1+16ξ)w0/8, then span({λ(A) | A ∈ PM(G)∪A}) (
Λ.

Deferring the proof of this lemma for now, note this implies that in the

refutation π there is a resolution step deriving C from C0 and C1 where the

subspace of the resolvent is not contained in the span of the subspaces of

the premises, or in other words λ(C) * span(λ(C0), λ(C1)). The following

lemma, which is the heart of the argument, says that this cannot happen

while the sets of relevant vertices of the clauses are small.

Lemma D.5.12. Let C be derived from C0 and C1. If max{|closure(C0) ∪
Vd,δ(C0)|, |closure(C1)∪Vd,δ(C1)|, |closure(C)∪Vd,δ(C)|} ≤ r/4, thenλ(C) ⊆
span(λ(C0), λ(C1)).

Deferring the proof of Lemma D.5.12 to Section D.5.4, we proceed to

show how Lemma D.5.3 follows from what we have established so far.

Proof of Lemma D.5.3. Lemma D.5.11 and Lemma D.5.12 imply that contra-

diction cannot be derived while the set of relevant vertices is of size at most

r/4 and hence any refutation πmust contain a clause C with |closure(C) ∪
Vd,δ(C)| ≥ r/4. If for such a clauses C it holds that |Vd,δ(C)| ≥ rξ, then
Lemma D.5.3 follows. Otherwise, recall that closure(C) = closurer,ν(V(C)),
for ν = (1 − 20ξ)∆/2, and that G′ is an (r,∆′, c)-boundary expander by

LemmaD.5.10, where∆′ = (1+8ξ)∆/2 and c = (1−12ξ)∆/2. Thuswe can ap-

ply LemmaD.3.3 toG′ and get that |V(C)| ≥ min{r, (r/4−rξ)·(c − ν) /∆′} ≥
3rξ/2. As by definition V(C) = (Vd,δ(C) ∩VL) ∪ Ṽ (C) and by property 4 of

Lemma D.5.8 we have that |Ṽ (C)| ≤ w0/8, we conclude that

wd,δ(π) ≥ |Vd,δ(C)| ≥ |Vd,δ(C)∩V
L
| ≥ |V(C)|−|Ṽ (C)| ≥ 3rξ/2−w0/8 ≥ rξ .

(D.60)

This completes the proof of Lemma D.5.3. �

Proof of Lemma D.5.11. Suppose A is a vertex axiom Pv or a functionality

axiom Fvw,w′ as in D.1a and D.1c. Observe that v is a heavy vertex for A.

Clearly, there are no matchings on v that do not satisfy A. We conclude

that λ(A) = ∅.
Let us consider A ∈ A. These axioms may span a part of the space

Λ but the fraction of the space Λ they span is sufficiently small. We first

estimate the dimension of λ(A). By definition Ṽ (A) = {v ∈ VL :

��|NA(v) ∩
VH | − 1/2|NA(v)|

�� > 4ξ∆} and by property 4 of Lemma D.5.8 it holds that
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|Ṽ (A)| ≤ w0/8. We partition VP into two sets U = VP \
(
Vd,δ(A) \ Ṽ (A)

)
andW = VP ∩

(
Vd,δ(A) \ Ṽ (A)

)
. Note that all vertices v ∈ W satisfy that��|NA(v) ∩ VH | − 1/2|NA(v)|

�� ≤ 4ξ∆. Using property 2 of Lemma D.5.8 we

get that

dim λ(A) ≤
∏
v∈U

dimΛv ·
∏
v∈W

(
|NG(v) ∩ V

H
| − |NA(v) ∩ V

H
|
)

(D.61)

≤
∏
v∈U

dimΛv ·
∏
v∈W

(
1/2|NG(v)| + 4ξ|NG(v)| −

1/2|NA(v)| + 4ξ|NG(v)|
)

(D.62)

=
∏
v∈U

dimΛv ·
∏
v∈W

(
1/2

(
|NG(v)| − |NA(v)|

)
+ 8ξ|NG(v)|

)
(D.63)

≤
∏
v∈U

dimΛv ·
∏
v∈W

(
1/2(degG(v) − dv) + δv/8

)
(D.64)

≤
∏
v∈U

dimΛv ·
∏
v∈W

(
dimΛv − δv/8

)
, (D.65)

where the second to last inequality follows from the fact thatδv = 64ξ|NG(v)|
and the last inequality from the definition of dimΛv.

Note that by property 1 of Lemma D.5.8, |VP ∩Vd,δ(A)| ≥ w0/4 and

hence |W | ≥ w0/8. We conclude that the fraction of the space Λ that A

spans is bounded by

dim λ(A)
dimΛ

≤
∏
v∈W

dimΛv − δv/8
dimΛv

≤ (1 − 16ξ)w0/8
. (D.66)

Along with the assumption on |A|, this shows that not all of Λ is spanned

by the axioms. �

D.5.4 Proof of Lemma D.5.12

For conciseness of notation, let us write

S01 = (closure(C0) ∪ closure(C1)) ∪ (Vd,δ(C0) ∪ Vd,δ(C1)) (D.67)

and S = closure(C) ∪Vd,δ(C). In order to establish Lemma D.5.12, we need

to show for all ϕ ∈ Z(C) that

λ(ϕ) ⊆ span(λ(C0), λ(C1)) . (D.68)

Denote by ϕ′ the restriction of ϕ to the edges with at least one vertex in

S ∩ S01 and note that C is not satisfied under ρϕ′ . Also, observe that if a
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VL VR

VP

VH

Partition of V into VP and VH

D
V (ϕ′)

Figure D.2: Depiction of relations between VL, VR, VP, VH and the vertex

sets in the proof of Lemma D.5.12

matching η extends a matching η′, then λ(η) is a subspace of λ(η′). This is
so since for any vertex v ∈ VP ∩

(
V(η) \ V(η′)

)
we have from D.57 that η′

picks up the whole subspace Λv while η only gets a single vector. Thus, if

we can show that λ(ϕ′) ⊆ span(λ(C0), λ(C1)), the statement follows since

ϕ extends ϕ′ and hence λ(ϕ) ⊆ λ(ϕ′).
Let D = S01 \ S and for a set of matchings N ⊆ ℳ let λ(N) =

span({λ(ψ) | ψ ∈ N}). In the following we show that there exists a

set of matchingsℳD ⊆ ℳ that do not satisfy C, that cover S01 and such

that

λ(ϕ′) ⊆ λ(ℳD) . (D.69)

Before arguing the existence of such a setℳD let us argue that this

would imply the lemma. Observe that by soundness of resolution, no

matching inℳD can satisfy both C0 and C1 simultaneously. Fix ψ ∈ ℳD .
Without loss of generality, assume thatC0 is not satisfied. Denote byψ′ ⊆ ψ
all edges in ψ with at least one vertex in closure(C0) ∪ Vd,δ(C0). Clearly,
ψ′ ∈ Z(C0) and hence λ(ψ) ⊆ λ(ψ′) ⊆ λ(C0). Thus, for all matchings

ψ ∈ ℳD we have that λ(ψ) ⊆ span(λ(C0), λ(C1)). Combining with D.69,

we get that

λ(ϕ′) ⊆ λ(ℳD) ⊆ span(λ(C0), λ(C1)) (D.70)

and hence the lemma follows.

In the remainder, we show how to construct the set ℳD . Observe

that all vertices v ∈ D are light vertices of C. Using property 3 from

Lemma D.5.8 we get that for all vr ∈ D ∩ VR there are at most��NC(vr) ∩ V

H

�� ≤ 1/2
��NC(vr)�� + 4ξ��NG(vr)�� ≤ 1/2

(
dvr − δvr + 8ξ

��NG(vr)��)
(D.71)
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mappings of vr to a vertex inNG(vr)∩VH that satisfy the clauseC. Similarly,

using property 4 from Lemma D.5.8 and the fact thatD ∩ Ṽ (C) = ∅ we see

that for all v` ∈ D ∩ VL there are at most��NC(v`) ∩ V

H

�� ≤ 1/2
��NC(v`)�� + 4ξ��NG(v`)�� ≤ 1/2 (dv` − δv` + 8ξ∆) (D.72)

mappings of v` to a vertex in NG(v`) ∩ VH that satisfy the clause C.

For a set of verticesW ⊆ VP ∪VH, let ΛW =
⊗
w∈W∩VP Λw and for a

setU ⊆ V(G) let λU be the projection of λ to the spaceΛU or in other words

λU(η) =
⊗

v∈V(η)∩VP ∩U
λv(ηv) ⊗

⊗
v∈(VP ∩U)\V(η)

Λv . (D.73)

We extend the notation to sets of matchings as previously for λ. In order

to establish D.69, we have to argue that λD\V(ϕ
′)(ℳD) spans the space

ΛD\V(ϕ′). At this point, we deviate from the FPHP(G) proof. Note that we

only have expansion for the vertices VL into VH but D may also contain

vertices from VR. Thus we cannot apply the argument from Section D.4 to

all vertices.

Instead, we split the argument into 2 seperate parts. First, by an

argument similar to the lower bound proof of the FPHP(G) formulas, we

show that vertices in D ∩ VL can be matched in many ways. This will in

particular imply that λ(D∩VL)\V(ϕ
′)(ℳD) spans all of Λ(D∩VL)\V(ϕ′). After

that we consider the vertices inD ∩ VR. As these vertices have very high

degree, there are always enough neighbours they can be matched to and

therefore λ(D∩VR)\V(ϕ
′)(ℳD) spans all of Λ(D∩VR)\V(ϕ′). Note that this

second argument is essentially the span argument from [Raz03].

Consider the vertex setD∩VL. Note thatD∩VL is completely outside

the closure(C). Since, by assumption, the cardinality of closure(C) is upper
bounded by r/4 and |D ∩ VL | ≤ |S01 | ≤ r/2, by Lemma D.3.4 we get that

|∂G′\(closure(C)∪NG′ (closure(C)))(D ∩ V

L
)| ≥ 1/2(1 − 20ξ)∆|D ∩ V

L
| .

(D.74)

By an averaging argument, there is a v ∈ D∩VL that has at least (1−20ξ)∆/2
unique neighbours in ∂G′\(closure(C)∪NG′ (closure(C)))(D ∩ VL). By iterating

this argument on (D ∩ VL) \ {v} we get a partition Vv1
.

∪ Vv2 . . .
.

∪ Vv|D∩VL |
of the neighbourhoodD ∩VL. The key properties of this partition are that

every vertex v` ∈ D ∩ VL can independently be matched to any vertex in

Vv` and each set is of size at least |Vv` | ≥ (1 − 20ξ)∆/2. Using D.72, we

have that each vertex v` ∈ D ∩ VL can be matched to at least

1/2(1 − 20ξ)∆ − 1/2(dv` − δv` + 8ξ∆) = 1/2 (∆ − dv` + δv` − 28ξ∆)
≥ 1/2

(
degG(v`) − dv` + δv`/2

)
(D.75)
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Algorithm 5 Extend Matching

1: procedure ExtendMatching(T ,ψ,Vv1 ,Vv2 , . . . ,Vv|T | ) . extend ψ to

domain T
2: if T \ V(ψ) ≠ ∅ then . still need to extend ψ
3: ℳ ← ∅
4: v` ←any T \ V(ψ)
5: for w ∈ Vv` do . v` can be matched to w
6: ψ′← ψ
7: if ∃w′ such that {w,w′} ∈ ψ then
8: ψ′← ψ′ \ {w,w′} . remove w from the matching

9: ψ′← ψ′ ∪ {v`,w} . match v` to w
10: ℳ =ℳ∪ ExtendedMatching(T ,ψ′,Vv1 ,Vv2 , . . . ,Vv|T | )

11: returnℳ
12: else
13: return ψ

many vertices in Vv` without satisfying C. Denote these vertices by V′v` .
As in section Section D.4, we would like to conclude that every vertex has

many choices of vertices it can independently be mapped to and therefore

there are enough matchings to span the space ΛD∩VL . Unfortunately this

argument does not work since vertices in V′v` can be matched in ϕ′ and
are hence not available to be matched to v`, so there might be too few

matchings of v` to span the whole space Λv` .

We could attempt to overcome this problem by removing all edges inϕ′

with a vertex in one of the sets V′v` . This allows us to independently match

all the vertices inD∩VL to sufficiently many neighbours. Regrettably, this

edge removal strategy turns out to be too aggressive: it can occur that a

vertex from S01 ∩ VR, previously matched by ϕ′, now has no neighbour

available to be matched to. Fortunately, this only happens to vertices that

were matched in ϕ′. The solution that suggests itself is to remove edges

from ϕ′ in a “lazy” manner: only remove an edge {u, v} from ϕ′ when one

of the vertices should be matched to some v` ∈ VL. This ensures that no
vertex in VR that was previously matched by ϕ′ is suddenly unmatched.

This is the main idea of Algorithm 5 which takes care of the necessary edge

removals.

LetℳD∩VL = ExtendMatching(D ∩ VL,ϕ
′
,V′v1 , . . . ,V

′
v|D∩VL |

). Note

that the algorithm terminates on this input as the sets V′v1 ,V
′
v2
, . . . ,V′v|D∩VL |

are disjoint. Let us establish some claims regardingℳD∩VL .
The first claim states that the algorithm cannot remove edges from ϕ′

with a vertex in S∩S01 ∩VL. This is important as we want to get matchings
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that are defined on all of S01 ∩ VL. As the algorithm only tries to match

vertices in D ∩ VL = (S \ S01) ∩ VL, we must ensure that the edges in ϕ′

with an endpoint in S ∩ S01 ∩ VL are not erased. Note that all edges that

are removed by the algorithm have an endpoint in the neighbourhood of

D ∩ VL. Hence it suffices to show that the vertices from S ∩ S01 ∩ VL are

not matched to a vertex in the neighbourhood ofD ∩ VL.

Claim D.5.13. The matching ϕ′ contains no edge {w,w′} such that

w ∈ NG′\(closure(C)∪NG′ (closure(C)))(D ∩ V

L
)

and w′ ∈ S ∩ S01 ∩ VL.

Proof. Suppose there is an edge {w,w′} ∈ ϕ for w,w′ as in the lemma

statement. As S ∩ S01 ∩ VL ⊆ closure(C), we see that w ∈ NG′(closure(C)).
But this is a contradiction since w is not in the graph G′ \ (closure(C) ∪
NG′(closure(C))). �

Next, we consider edges inϕ′ with a vertex in the set VP ∩VR. Observe

that if the algorithm removed such an edge, then the linear space associated

with the newmatching would differ from the original space in a non-trivial

way. Fortunately, this cannot happen.

Claim D.5.14. All matchings ψ ∈ ℳD∩VL cover the set S01 ∩ VL and an
edge e ∈ VL ×(VP ∩VR) is contained in ψ if and only if it is contained in ϕ′.
Furthermore, if a vertex v ∈ VR is matched in ϕ′, then it is matched in every
ψ ∈ ℳD∩VL .

Proof. By Claim D.5.13, Algorithm 5 never removes edges from ϕ′ that are
incident to a vertex in S01 ∩ S ∩ VL. As ϕ′ covers all of S01 ∩ S ∩ VL, it

follows that everyψ ∈ ℳD∩VL also covers the set S∩S01∩VL. Furthermore,

the algorithm ensures that every ψ ∈ ℳD∩VL covers the set D ∩ VL =

(S01 \ S) ∩ VL. Combining these statements we see that every matching

ψ ∈ ℳD∩VL covers S01 ∩ VL.

We observe that all edges in ϕ′ that may be deleted by the algorithm

must have an endpoint in one of the sets V′v` and all these sets are contained

in VH ∩VR. As the graph is bipartite (with bipartition VL

.

∪VR) and

the setℳ does not contain matchings with edges from VP ×VP, we see

that vertices from VP ∩VR can only be matched to vertices in VH ∩VL.
Therefore the algorithm cannot change edges in ϕ′ with an endpoint in

VP ∩VR. This implies that if an edge e ∈ VL ×(VP ∩VR) is in ϕ′, then it

is also in ψ. For the other direction, observe that since the algorithm can

only add edges to ψwith an endpoint in VH ∩VR, and since the graph is

bipartite, no edge from VL ×(VP ∩VR) gets added by the algorithm.
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Finally, the fact that all matched vertices v ∈ VR in ϕ′ are also matched

in everyψ ∈ ℳD∩VL follows from the “lazy” removal of edges fromϕ′. �

We can now show that our set of matchings spans the appropriate

space when projected to VL. Note that for a matching η it holds that

λ(η) = λU(η) ⊗ λVP \U(η), for any set U but the same does not hold for sets

of matchings: span does not commute with tensor.

Claim D.5.15. λVL(ϕ′) ⊆ λVL(ℳD∩VL)

Proof. Let us write

λVL(ϕ′) = λV(ϕ′)∩VL(ϕ′) ⊗ Λ
VL \V(ϕ′) (D.76)

= λV(ϕ
′)∩D∩VL(ϕ′) ⊗ λ(V(ϕ′)∩VL)\D(ϕ′)⊗

Λ(D∩VL)\V(ϕ′) ⊗ ΛVL \(D∪V(ϕ′)) . (D.77)

Note that no matching ψ ∈ ℳD∩VL covers any of the vertices in VL \(D ∪
V(ϕ′)). This holds as the algorithm can only add edges from the set

(D ∩ VL) × (VH ∩VR). Hence we can write

λVL(ℳD∩VL) = λVL ∩(D∪V(ϕ
′))(ℳD∩VL) ⊗ ΛVL \(D∪V(ϕ′)) . (D.78)

Thus we can ignore the space Λ
VL \(D∪V(ϕ′)) for the remainder of this

argument. From the algorithm it should be evident that

λ(D∩VL)\V(ϕ
′)(ℳD∩VL) = Λ(D∩VL)\V(ϕ′) (D.79)

as every vertex in v ∈ (D ∩ VL) \ V(ϕ′) is independently matched to every

vertex in V′v of size |V′v | ≥ 1/2(degG(v) − dv + δv/2). As the dimension

of dim(Λv) = 1/2(degG(v) − dv + δv/2), we conclude that Λ(VL ∩D)\V(ϕ′) is
spanned.

To continue the argument, we need the following equivalence relation

on matchings. Two matchings ψ,ψ′ ∈ ℳD∩VL are equivalent on a vertex

set V if they match the vertices in V in the same way, that is, for v ∈ V we

have that ψv = ψ′v. We denote the equivalence class with respect to the

vertex set V overℳD∩VL of a matching ψ ∈ ℳD∩VL by {ψ}V .
We want to show that for every ψ ∈ ℳD∩VL it holds that

λV(ϕ
′)∩D∩VL(ϕ′) ⊆ span(λV(ϕ′)∩D∩VL(ψ′) | ψ′ ∈ {ψ}(D∩VL)\V(ϕ′)) .

(D.80)

Note that in combination with D.79 we get that

λD∩VL(ϕ′) = λ(D∩VL)\V(ϕ′)(ϕ′) ⊗ λV(ϕ′)∩D∩VL(ϕ′) (D.81)

= Λ(D∩VL)\V(ϕ′) ⊗ λV(ϕ
′)∩D∩VL(ϕ′) (D.82)

⊆ λD∩VL(ℳD∩VL) . (D.83)

257



Paper D. The Sparse Weak Pigeonhole Principle is Hard for Resolution

WeproveD.80 by induction on subsets ofV(ϕ′)∩D∩VL. The statement

clearly holds for the empty set. FixU ⊆ V(ϕ′) ∩D ∩VL and a vertex u ∈ U.
By induction, we may assume that

λU\{u}(ϕ′) ⊆ span(λU\{u}(ψ′) | ψ′ ∈ {ψ}(D∩VL)\V(ϕ′)) . (D.84)

We want to show that the statement also holds for the set U. Note that

λU(ϕ′) = λU\{u}(ϕ′) ⊗ λu(ϕ′u). Further,

span(λU(ψ′) | ψ′ ∈ {ψ}(D∩VL)\V(ϕ′)) = (D.85)

span(λU\{u}(ψ′) ⊗
span(λu(η) | η ∈ {ψ′}((D∩VL)\V(ϕ′))∪(U\{u})) | ψ′ ∈ {ψ}(D∩VL)\V(ϕ′)) .

(D.86)

Suppose that for every ψ′ ∈ {ψ}(VL ∩D)\V(ϕ′) it holds that

λu(ϕ′u) ⊆ span(λu(ηu) | η ∈ {ψ′}((D∩VL)\V(ϕ′))∪(U\{u})) . (D.87)

Then, continuing from above, we see that

span(λU(ψ′) |ψ′ ∈ {ψ}(D∩VL)\V(ϕ′)) (D.88)

⊇ span(λU\{u}(ψ′) | ψ′ ∈ {ψ}(D∩VL)\V(ϕ′)) ⊗ λu(ϕ′u)
(D.89)

⊇ λU\{u}(ϕ′) ⊗ λu(ϕ′u) (D.90)

= λU(ϕ′) , (D.91)

where the second inclusion holds by the induction hypothesis D.84. Thus,

to show the statement for U we just need to show D.87. To this end, fix

a matching ψ′ ∈ {ψ}(D∩VL)\V(ϕ′). Note that if there is a matching η ∈
{ψ′}((D∩VL)\V(ϕ′))∪(U\{u}) such that ηu = ϕ′u, then we are done. Otherwise,

Algorithm 5 removed the edge that mached the vertex u in ϕ′. Hence the

vertex u is matched by the procedure to at least |V′u | ≥ 1/2(degG(v) − dv +
δv/2) different vertices. As the dimension ofΛu = 1/2(degG(v)−dv+δv/2),
we see that all of the space is spanned. We conclude that D.87 holds.

What remains is to argue that for every ψ ∈ ℳD∩VL it holds that

λ(V(ϕ
′)∩VL)\D(ϕ′) ⊆ span(λ(V(ϕ′)∩VL)\D(ψ′) | ψ′ ∈ {ψ}D∩VL) . (D.92)

The argument goes along the same lines as for the vertices inV(ϕ′)∩D∩VL
and we thus omit it.

We can then combine D.81 and D.92 to conclude the claim. �
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Observe that the matchings inℳD∩VL are not necessarily extensions

of ϕ′. This is not a problem, however, since the matchings only differ in

edges that contain vertices which either do not show up in the linear space

or for which the whole linear space associated to the vertex is spanned.

Furthermore, vertices from D ∩ VH ∩VL are matched to many vertices

even though a single vertex would have been sufficient.

It remains only to show that every matching ψ ∈ ℳD∩VL can be

extended in many ways to the set D ∩ VR. Fix a matching ψ ∈ ℳD∩VL
and recall that these are defined on S01 ∩ VL. Note that by Lemma D.5.8,

property 2, each v ∈ D ∩ VR has at least��NG(v) ∩ V

H

�� ≥ 1/2
��NG(v)�� − 4ξ��NG(v)�� (D.93)

many neighbours in VH. Using D.71 we can now bound the number of

matchings that do not satisfy C.

Note that the matching ψ contains at most |S01 | ≤ r/2 many edges.

Since G is bipartite, this implies that for any v ∈ VR at most r/2 neighbours
are already matched. Observe that some vertex v ∈ D∩VH ∩VR may have

been matched by Algorithm 5. As these vertices are not associated with a

linear space, we only need to match these vertices with a single vertex and

hence we can just leave them matched as in ψ. Further, by Claim D.5.14,

we see that the vertices inD ∩ VP ∩VR were not matched by Algorithm 5.

All these will be matched in many ways as needed: If v ∈ D ∩ VR is not

matched by ψ, then by D.93 and D.71 it can be matched to at least

1/2
(��NG(v)��−8ξ��NG(v)�� − dv + δv − 8ξ��NG(v)�� − r)

= 1/2
(
degG(v) − dv + δv − 16ξdegG(v) − r

)
≥ 1/2

(
degG(v) − dv + δv − 17ξdegG(v)

)
(D.94)

≥ 1/2
(
degG(v) − dv + δv/2

)
many vertices without satisfying the clause C. Note that in D.94 we

used the assumption that degG(v) ≥ rξ for v ∈ VR. As we have that

dim(Λv) = 1/2(degG(v) − dv + δv/2), we conclude that the extensions

of ψ can span the linear space Λ(D∩VR)\V(ϕ′). Hence, by extending each

ψ ∈ ℳD∩VL , we get a set of matchingsℳD , which do not satisfy the clause

C, are defined on S01 and λ(ϕ′) ⊆ λ(ℳD). This establishes the lemma.

D.6 Concluding Remarks

In this work, we extend the pseudo-width method developed by Razborov

[Raz03; Raz04b] for proving lower bounds on severely overconstrained

CNF formulas in resolution. In particular, we establish that pigeonhole
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principle formulas and perfect matching formulas over highly unbalanced

bipartite graphs remain exponentially hard for resolution even when these

graphs are sparse. This resolves an open problem in [Raz04b].

The main technical difference in our work compared to [Raz03; Raz04b]

goes right to the heart of the proof, where one wants to argue that reso-

lution in small pseudo-width cannot make progress towards a derivation

of contradiction. Here Razborov uses the global symmetry properties of

the formula, whereas we resort to a local argument based on graph expan-

sion. This argument needs to be carefully combined with a graph closure

operation as in [AR03; ABRW04] to ensure that the residual graph always

remains expanding as matched pigeons and their neighbouring holes are

removed. It is this change of perspective that allows us to prove lower

bounds for sparse bipartite graphs with the size m of the left-hand side

(i.e., the number of pigeons) varying all the way from linear to exponential

in the size n of the right-hand size (i.e., the number of pigeonholes), thus

covering the full range between [BW01] on the one hand and [Raz04a;

Raz03; Raz04b] on the other.

One shortcoming of our approach is that the sparse expander graphs

are required to have very good expansion—for graphs of left degree ∆, the

size of the set of unique neighbours of any not too large left vertex set has

to scale like (1 − o(1))∆. We would like to prove that graph PHP formulas

are hard also for graphs with constant expansion (1 − ε)∆ for some ε > 0,

but there appear to be fundamental barriers to extending our lower bound

proof to this setting.

Another intriguing problem left over from [Raz04b] is to determine the

true resolution complexity of weak PHP formulas over complete bipartite

graphs Km,n as m → ∞. The best known upper bound from [BP97]

is exp

(
O

(√
n logn

) )
, whereas the lower bound in [Raz03; Raz04b] is

exp

(
Ω

(
3

√
n
) )
. It doesnot seemunreasonable tohypothesize that exp

(
Ω

(
2

√
n
) )

should be the correct lower bound (ignoring lower-order terms), but es-

tablishing such a lower bound again appears to require substantial new

ideas.

We believe that one of the main contributions of our work is that it again

demonstrates the power of Razborov’s pseudo-width method, and we are

currently optimistic that it could be useful for solving other open problems

for resolution and other proof systems.

For resolution, an interesting questionmentioned in [Raz04b] iswhether

pseudo-width can be useful to prove lower bounds for formulas that encode

the Nisan–Wigderson generator [ABRW04; Raz15]. Since the clauses in

such formulas encode local constraints, we hope that techniques from our

paper could be helpful. Another long-standing open problem is to prove
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lower bounds on proofs in resolution that k-clique free sparse graph do not

contain k-cliques, where the expected length lower bound would be nΩ(k).
Here we only know weakly exponential lower bounds for quite dense

random graphs [BIS07; Pan19], although an asymptotically optimal nΩ(k)

lower bound has been established in the sparse regime for the restricted

subsystem of regular resolution [ABdR+18].

Finally, wewant to highlight that for the stronger proof system polynomial
calculus [ABRW02; CEI96] no lower bounds on proof size are known for

PHP formulas withm ≥ n2
pigeons. It would be very interesting if some

kind of “pseudo-degree” method could be developed that would finally

lead to progress on this problem.
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