
Space in Proof Complexity

MARC VINYALS

Doctoral Thesis
Stockholm, Sweden 2017

TRITA CSC-A-2017:15
ISSN 1653-5723
ISRN KTH/CSC/A--17/15--SE
ISBN 978-91-7729-422-1

KTH School of Computer Science and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till
offentlig granskning för avläggande av teknologie doktorsexamen i datalogi fredagen
den 9 juni 2017 klockan 14.00 i E2, Kungl Tekniska högskolan, Lindstedtsvägen 3,
Stockholm.

© Marc Vinyals, May 8, 2017

Tryck: Universitetsservice US AB

iii

Abstract

Propositional proof complexity is the study of the resources that are needed to
prove formulas in propositional logic. In this thesis we are concerned with the size
and space of proofs, and in particular with the latter.

There are different approaches to reasoning that are captured by corresponding
proof systems, each with its own strengths and weaknesses and need for resources.
The simplest and most well studied proof system is resolution, and we try to get our
understanding of other proof systems closer to that of resolution. In particular we
look at polynomial calculus, which captures reasoning with polynomials, and cutting
planes, which captures reasoning with linear inequalities.

In resolution we can prove a space lower bound just by proving a lower bound on
the widest clause in the proof, that is showing that any proof must have a large clause.
We prove a similar relation between resolution width and polynomial calculus space
that let us derive space lower bounds, and we use it to separate degree and space.

For cutting planes we show length-space trade-offs. This is, there are formulas
that have a proof in small space and a proof in small length, but there is no proof
that can optimize both measures at the same time.

We introduce a new measure of space, cumulative space, that accounts for
the space used throughout a proof rather than only its maximum. This is mostly
exploratory work, but we can also prove new results for the usual space measure, for
instance that there are trade-off results for resolution where every short proof not
only needs to use large space, but it needs to do so most of the time.

We define a new proof system that aims to capture the power of current SAT
solvers based on conflict-driven clause learning (CDCL), and we show a rich landscape
of length-space trade-offs comparable to those in resolution.

To prove these results we build and use tools from other areas of computational
complexity. One area is pebble games, which are very simple computational models
that are useful for modelling space. In addition to results with direct applications to
proof complexity, we show that pebble game cost is PSPACE-hard to approximate.

Another area is communication complexity, which is the study of the amount of
communication that is needed to solve a problem when its description is shared by
multiple parties. We prove a simulation theorem that relates the query complexity
of a function with the communication complexity of a composed function.

iv

Sammanfattning

Satsbeviskomplexitet studerar vilka resurser som behövs för att bevisa satslogiska
formler. I denna avhandling är vi intresserad med längden och minnet av bevis, och
i synnerhet det senare.

Det finns olika metoder för logiska resonemang, och dessa har motsvarande
bevissystem, vart och ett med egna styrkor och svagheter och behov av resurser. Det
enklaste och mest välstuderade bevissystemet är resolution, och vi försöker förstå
andra bevissystem lika väl. I synnerhet undersöker vi polynomkalkyl, som uttrycker
resonemang med polynom, och på skärande plan, som uttrycker resonemang med
linjära olikheter.

I resolution kan vi bevisa en undre gräns för minne genom att bevisa en undre
gräns på den bredaste klausulen i beviset, det vill säga genom att visa att varje bevis
måste ha en stor klausul. Vi visar ett liknande förhållande mellan resolutionbredd
och polynomkalkylminne som låter oss härleda undre gränser för minne, och vi
använder det för att skilja gradtal från minne.

För snittplan visar vi avvägningar mellan längd och minne. Det finns formler som
har ett bevis i litet minne och ett bevis i liten längd, men inget bevis som optimerar
båda måtten samtidigt.

Vi introducerar ett nytt mått på minne, kumulativt minne, som bokför det totala
minne som används genom hela beviset, istället för endast det maximala. Det här är
främst förundersökningsarbete, men vi kan också bevisa nya resultat för den vanliga
minnemåttet, till exempel att det finns avvägningsresultat för resolution där varje
kort bevis inte bara behöver använda stort minne, men måste göra det under den
mesta delen av tiden.

Vi definierar ett nytt bevissystem som syftar till att uttrycka kraften av de nuvaran-
de SAT-lösare, och vi visar ett rikt landskap av längdminne-avvägningar jämförbara
med dem i resolution.

För att bevisa dessa resultat bygger vi och använder verktyg från andra områden
av beräkningskomplexitet. Ett område är stenspel, som är mycket enkla beräknings-
modeller som är användbara för att modellera minne. Förutom resultat med direkta
tillämpningar på beviskomplexitet visar vi att stenspelskostnad är PSPACE-svårt att
approximera.

Ett annat område är kommunikationskomplexitet, vilket är studien av den mängd
kommunikation som behövs för att lösa ett problem när dess beskrivning delas av
flera parter. Vi visar en simuleringssats som relaterar beslutsträdkomplexiteten av en
funktion med kommunikationskomplexiteten av en sammansatt funktion.

v

Acknowledgements

I would like to thank all who helped me completing this thesis. Jakob, my advisor, had
a big role. Jakob, you introduced me to some fascinating research topics, we had long
discussions about them, and you pushed me to write results properly. You also managed
to give a positive spin to some research approaches when they most seemed doomed.
Thank you for that. Thanks to Johan as well, who helped with my supervision and kept
his door open for discussions.

Mladen, Susanna, Massimo, Ilario, it is always fun to sit in front of a whiteboard with
you. Thanks for contributing good ideas, shooting down my stupid ones, and making
research enjoyable. After spending a few years with you, I learned quite a bit when our
discussions got derailed into consciousness, idioms, progressive rock, or photography.

Christoph, Jan, Jesús, Yuval, Siu Man, Jan, Joël, Li-Yang, Nicola, Navid, Arkadev,
Sagnik, the same applies to you: it was nice to stare at a wall together, and I can also
remember some interesting moments that were not strictly research-related.

Adam, Andreas, Benny, Björn, Cenny, Emma, Freyr, Guillermo, Gunnar, Hamed,
Hojat, Jan, Jana, Joseph, Karl, Mateus, Musard, Oliver, Pedro, Raj, Sangxia, Siavash,
Thatchapol, Torbjörn, Xin, thanks for making the TCS kitchen a weird place. And Lukáš,
thanks for making the outdoors a weird place.

Per, thanks for reading the thesis, providing good suggestions, and helping with
debugging it.

Thanks to my family and to my friends for your support and for preventing me from
going completely insane.

Contents

Contents vii

I Thesis 1

1 Introduction 3

2 Background 9
2.1 Pebbling . 9
2.2 Proof Systems . 11
2.3 Formula Reference . 12
2.4 Resolution . 14
2.5 Polynomial Calculus . 16
2.6 Cutting Planes . 18
2.7 Conflict Driven Clause Learning . 21
2.8 Communication Complexity . 23

3 Contributions 25
3.1 Space in Polynomial Calculus . 25
3.2 Trade-offs in Cutting Planes . 26
3.3 Cumulative Space . 28
3.4 Trade-offs in CDCL . 30
3.5 Inapproximability of Pebbling . 32

4 Conclusion 35

II Included Papers 37

A Towards an Understanding of Polynomial Calculus 39
A.1 Introduction . 40
A.2 Preliminaries . 44

vii

viii CONTENTS

A.3 Overview of Results and Sketches of Some Proofs 47
A.4 PCR Space Lower Bounds From Resolution Width 51
A.5 Formulas With Small Proofs May Require Large Space 54
A.6 PCR Space Lower Bounds for Tseitin Formulas 57
A.7 Cycle Partitions of Random Regular Graphs 63
A.8 Current Techniques and the Functional Pigeonhole Principle 71
A.9 Concluding Remarks . 75
A.10 PCR Space Lower Bounds from Extendible Families 76

B How Limited Interaction Hinders Real Communication 83
B.1 Introduction . 84
B.2 Preliminaries and Proof Overview . 90
B.3 From Proofs to Communication Protocols 100
B.4 From Real Communication to Parallel Decision Trees 102
B.5 From Parallel Decision Trees to Dymond–Tompa Games 120
B.6 Dymond–Tompa Trade-offs . 122
B.7 Upper Bounds for Size and Space . 130
B.8 Putting the Pieces Together . 133
B.9 Exponential Separation of the Monotone AC Hierarchy 135
B.10 Concluding Remarks . 137

C Cumulative Space in Black-White Pebbling and Resolution 139
C.1 Introduction . 139
C.2 Pebbling Results Overview . 145
C.3 Cumulative Space for the Resolution Proof System 152
C.4 Pebbling Cumulative Space Lower Bounds and Trade-offs 158
C.5 Reduction from Pebbling to Resolution . 172
C.6 Concluding Remarks . 172

D Trade-offs Between Time and Memory in CDCL 175
D.1 Introduction . 176
D.2 Modelling CDCL as a Proof System . 180
D.3 Overview of Time-Space Trade-off Results 186
D.4 Worst-case Upper Bound . 193
D.5 Trade-offs for Pebbling Formulas . 196
D.6 Trade-offs for Tseitin formulas . 222
D.7 Concluding Remarks . 229

E Hardness of Approximation in PSPACE for Pebble Games 231
E.1 Introduction . 232
E.2 Preliminaries . 236
E.3 Overview of Results and Sketches of Proofs 240
E.4 Separation between Standard and Reversible Pebbling 254

CONTENTS ix

E.5 Tight Bounds for Trees and Pyramids . 258
E.6 Technical Constructions . 262
E.7 PSPACE-Completeness . 268
E.8 Product Construction for Reversible Pebbling 289
E.9 Product Construction for Standard Pebbling 298
E.10 Concluding Remarks . 301

Part I

Thesis

1

Chapter 1

Introduction

One day last winter I was sitting with some lifelong friends at a lifelong friend’s wine bar.
Since some of them are fond of riddles, I posed them the following question. “Picture
seven spots, one after another, and three pebbles. You may place or remove a pebble
from a spot if there is already a pebble in the spot before it. Since there is no spot before
the first one, you may always place or remove a pebble from it. Can you place a pebble
in the seventh spot?” (see Figure 1.1)

When they came back with the solution the following day, I had to confess that I had
dedicated quite some more time to this and related questions. In fact, one could say
that I spent the last five years playing the pebble game, and trying to become better at it.
While this is a simplistic view, it is true that at the core of a theorem involving the space
complexity of computations one can often find the pebble game.

This is not so surprising if we look at how we perform computations. Let us start
with a small example and say that we want to compute x + yz. The most obvious way
to perform the computation is to load x , y, and z into three registers, then compute
yz into a new register, and finally compute x+yz into another new register, for a total
of five registers used. But we could easily do better by placing the final result of the

Figure 1.1: Some valid moves in the pebble riddle

3

4 CHAPTER 1. INTRODUCTION

x y

·

z

+

Figure 1.2: Computation x + yz laid down as a graph

computation into the register that used to contain y , since we do not need to know the
value of y anymore after we finished computing yz, so four registers are enough. Or
we could do even better by loading only y and z, computing yz into a new register,
loading x into the register that used to contain y, and placing the final result of the
computation into the register that used to contain z, using only three registers. It is not
hard to convince ourselves that this is the best we can do, but if we were to optimize a
computation with a hundred operations we would have a harder time.

Observe that in the previous reasoning we did not care about which operations we
were performing but only about whether we had the operands in memory. If we represent
the computation as a graph as in Figure 1.2, then we can use the language of pebbling to
say place a pebble instead of compute and remove a pebble instead of forget. In a regular
computation we can always forget results, so the rules of the pebble game that models
usual computations are instead “You may place a pebble on a spot if there are already
pebbles in the spots before it and remove a pebble at will”.

Minimizing the amount of registers needed for a computation was among the first
applications of the pebble game we described [171], and many more have been found
since then, but in this thesis we are going to use it to study space in proof complexity.

Proof complexity is the study of the resources that proofs need. By resources we
mean the richness of the logic system in which the proof is expressed, the length of the
proof, the memory needed to verify it, or the runtime of an algorithm that can generate
it, among others. It is a subfield of both mathematical logic, since we answer questions
about which axioms are needed to efficiently prove a statement, and of computational
complexity, where we are interested in computational resources such as time and space.

In this thesis we focus at the second type of questions, and we only look at the most
simple kind of statements to prove: propositional Boolean formulas. These are expres-
sions formed by Boolean variables joined by negations, conjunctions, and disjunctions,
but without any quantifiers.

For example, let us try to prove a very particular case of the pigeonhole principle:
that 3 pigeons do not fit into 2 pigeon-sized holes. Let us have a variable x i j that is true
if and only if pigeon number i is assigned into hole number j. Then we want to prove
that either

5

1. some pigeon is not assigned to any hole

(x11 ∧ x12)∨ (x21 ∧ x22)∨ (x31 ∧ x32) , or

2. some hole is assigned more than one pigeon

(x11 ∧ x21)∨ (x11 ∧ x31)∨ (x21 ∧ x31)

(x12 ∧ x22)∨ (x12 ∧ x32)∨ (x21 ∧ x31) .

This is, we want to show that the previous formula is a tautology. We could do that
by directly using the definition of tautology: the formula evaluates to true under each
truth value assignment to variables. So, for the assignment x11 7→ false, x12 7→ false,
x21 7→ false, x22 7→ false, x31 7→ false, x32 7→ false we can verify that the formula
evaluates to

(false∧ false)∨ · · ·= (true∧ true)∨ · · ·= true∨ · · ·= true

and we can actually verify that this is the case with each of the 26 truth value assignments.
Now, this may only seem to be a tedious process, but if we had 10 pigeons and 9

holes (so 90 variables) then even if we could evaluate one assignment per nanosecond
it would take us more time than the expected life of the sun to evaluate all of the 290

assignments.
Clearly we need a more efficient way of reasoning. It is more convenient to argue

by contradiction, since then we have something to start working with, so we can also
try to prove that the following formula, which we obtain by negating and applying De
Morgan’s rules, is a contradiction.

1. Every pigeon is assigned to some hole

(x11 ∨ x12)∧ (x21 ∨ x22)∧ (x31 ∨ x32) , and

2. no hole is assigned more than one pigeon

(x11 ∨ x21)∧ (x11 ∨ x31)∧ (x21 ∨ x31)

(x12 ∨ x22)∧ (x12 ∨ x32)∧ (x22 ∨ x32) .

Let us, for the sake of contradiction, assume that there is some assignment that
satisfies the formula. In particular, since the formula is a conjunction of subformulas,
that assignment satisfies each subformula. Nowwe can pick the two subformulas x22∨x32

and x31 ∨ x32 and do some case analysis. If the assignment sets x32 7→ true, then the
first subformula becomes x22∨true= x22. Otherwise the assignment sets x32 7→ false,
in which case the second subformula becomes x31∨false= x31. So we deduced that the
assignment satisfies either x22 or x31, and hence it satisfies the new formula x22 ∨ x31.

6 CHAPTER 1. INTRODUCTION

x12

x12 ∨ x22

x12 ∨ x22

x12 ∨ x32

x22 ∨ x32

x21 ∨ x32

x21 ∨ x31

⊥

x12

x11 ∨ x12

x11

x11 ∨ x21

x11 ∨ x21

x11 ∨ x31

x21 ∨ x31

x21 ∨ x22

x22 ∨ x31

x31 ∨ x32 x22 ∨ x32

Figure 1.3: Proof that 3 pigeons do not fit into 2 holes

Now we can apply the same case analysis with the new formula x22 ∨ x31 and the
original subformula x21 ∨ x22 to obtain x21 ∨ x31, which means that the first hole is
occupied by either the second or third pigeons. Some more case analysis leads to proving
that the first pigeon must occupy the second hole, and that the first pigeon does not
occupy the second hole, which is a contradiction (see Figure 1.3).

We can see that the proof in Figure 1.3 takes 10 steps, but how many of these do we
need to keep in memory? In order to verify that a new formula is valid, we just need
to know that its two predecessors are valid. But if we identify valid subformulas with
pebbles, these are exactly the rules of the pebble game! Hence the space that we need is
the cost of the pebble game on the proof viewed as graph, which in this case is 4.

Let us stop for a moment and reflect on what we have seen so far. We discussed how
by using a different kind of reasoning we were able to come up with a shorter proof. Is
this a small difference or will it keep increasing as we increase the number of pigeons
and holes? Are there ways of reasoning that are more efficient than others?

We also saw that the proof by case analysis is easy to verify, but we did not discuss
at all how did we find it. In contrast, the brute-force proof just required enumerating all

7

assignments in some order. So, even if there is a better proof, will we be able to find it?
For all we know, coming up with the proof might require much more work than verifying
it. Could we even automate the proof finding process?1

Going back to discussing the scale of case-analysis proofs, it turns out that these
proofs can be made exponentially smaller than listing all assignments, but they still need
to be of exponential size [98]. Hence we are left again with the need for another kind of
reasoning. Let us try an algebraic approach, where instead of variables taking values
over {true,false} they take values over {0,1}. The meaning of a variable x i j can be
interpreted as the number of pigeons labelled i that are assigned into hole j. We can
express our constraints more succinctly as

1. every pigeon is assigned to some hole

(x11 + x12 ≥ 1)∧ (x21 + x22 ≥ 1)∧ (x31 + x32 ≥ 1) , and

2. no hole is assigned more than one pigeon

(x11 + x21 + x31 ≤ 1)∧ (x12 + x22 + x32 ≤ 1) .

Now we just need to add up all inequalities together to obtain

x11 + x12 + x21 + x22 + x31 + x32 + 2≥ x11 + x12 + x21 + x22 + x31 + x32 + 3

which simplifies into the contradiction 2 ≥ 3. This approach generalizes to larger
numbers of pigeons and we obtain proofs of size comparable to the formula we want to
prove.

Hopefully we have a better idea of what proof complexity is, but we did not discuss
why we want to study these questions. The main reason is to better understand the
nature of computation. The goal seems to be far away, but we still have two approaches to
gain some knowledge. One is to assume some conjectures and prove results conditioned
on them and the other, in which proof complexity falls, is to limit what we allow
computations to do and to prove results in restricted models.

Proof complexity has practical applications in analyzing the running time of al-
gorithms that look for satisfying assignments to propositional Boolean formulas (SAT
solvers). Furthermore, during the 2016 SAT competition, where SAT solvers are tested
on a variety of formulas, some parallel solvers were found to perform worse than their
sequential counterparts. The reason? Parallel solvers were using too much memory [17].
Hopefully a better understanding of space in proof complexity will help us understand
memory usage and build better solvers.

1In fact Figure 1.3 was automatically generated, but we are getting ahead of ourselves.

Chapter 2

Background

2.1 Pebbling

Since we will be using pebbling an awful lot, let us start by properly defining some
pebble games. The black-white pebble game on a directed acyclic graph (DAG) G with
fan-in 2 and a single sink z is a single player game where the player has to leave a black
pebble on the sink and no pebbles elsewhere. To do that at every move they can

1. place a black pebble on a vertex if its immediate predecessors have pebbles,

2. remove a black pebble at any time,

3. place a white pebble at any time, or

4. remove a white pebble from a vertex if its immediate predecessors have pebbles.

In the black version of the game the player only uses black pebbles, so only rules 1
and 2 apply. In the reversible version a pebble can only be placed or removed if its
immediate predecessors have pebbles, so the player can

1. place a black pebble on a vertex if its immediate predecessors have pebbles, or

2. remove a black pebble on a vertex if its immediate predecessors have pebbles.

This is equivalent of asking for a black pebbling to be valid when we run it in reverse,
hence the name. When we play on a path graph, the rules specialize to the riddle
of Figure 1.1.

The time of a pebbling is the number of moves, and the space is the maximum number
of pebbles over the graph at the same time. The time and space of a graph are defined
by taking the minimum over all valid pebblings. Observe that reversible pebblings are a
particular class of black pebblings, which are a particular class of black-white pebblings,
so any upper bounds on these measures that we prove for reversible pebbling are valid

9

10 CHAPTER 2. BACKGROUND

Space

Ti
m
e

(a) A continuous trade-off

Space

Ti
m
e

(b) A discrete trade-off

Figure 2.1: Generic trade-offs

for black and black-white, and any lower bounds that we prove for black-white pebbling
are valid for the other two.

There is a trivial O(n) upper bound on the space of a graph. More interestingly, there
is also a O(n/ log n) reversible pebbling space upper bound for any graph [74, 54] that
generalizes an earlier upper bound for black pebbling [104], with a matching Ω(n/ log n)
black-white pebbling lower bound for a family of hard graphs [130].

A pebbling in space n can always be done in time n, but if we are optimizing space
we may be forced to pebble the same part of the graph again and again, leaving us with
a choice between time and space efficiency. Let us give some examples of trade-offs
with different ranges of parameters. On the constant space side we have that the bit
reversal graphs of [130] can be black-white pebbled in either of time n, space 3, or
any combination of space s = O(

p
n) and time O(n2/s2), but any black-white pebbling

must satisfy that t = Ω(n2/s2). This is a continuous trade-off, in the sense that we can
choose an upper bound in a curve as in Figure 2.1a, where we draw upper bounds
in blue and the lower bound region in red. On the other extreme we have stacks of
superconcentrators of carefully chosen sizes [130], which can be black-white pebbled in
either time n or space O(8

p
n), but any black-white pebbling in space O(n1/4−ε) requires

time exp(nΩ(1)). This is a discrete trade-off where once we cross a threshold pebblings
become substantially different, as in Figure 2.1b.

Black pebbling space is at most quadratic on the black-white space [137], with a
matching separation in [117]—albeit for graphs where the space is only logarithmic.
Reversible pebbling space is at most s2 log n [126], where s is the black pebbling space
and n is the order of the graph, and the best separation we know is a factor log n, which
we show in Paper E.

The reversible pebble game is related to an apparently different game of Dymond
and Tompa [74]. This is a two-player pebble game where we call the players Pebbler
and Challenger. One of the pebbles is always challenged (initially we assume that a
virtual successor of the sink is challenged). On each round of the game Pebbler adds

2.2. PROOF SYSTEMS 11

u v

w

x y

z

Figure 2.2: Example moves in the Dymond–Tompa game

some pebbles to the graph (but does not remove any), and Challenger may jump the
challenge to one of the newly placed pebbles (but not older pebbles) or let the challenge
stay in the currently challenged pebble. The game ends when, after a Challenger move,
all the immediate predecessors of the challenged pebble are pebbled.

For instance, in Figure 2.2 the challenged pebble is on vertex z. Pebbler just added
pebbles on u and y , and there are old pebbles over x , w, and v. Challenger is allowed to
stay in z, in which case the game ends because x and y have pebbles, to jump to u, in
which case the game ends because u has no predecessors, or to jump to y , in which case
the game continues.

The cost of a Pebbler strategy is the maximum number of pebbles in the graph against
any Challenger strategy, and the cost of a graph is the cost of an optimal Pebbler strategy.

The relation to one-player pebbling is that the reversible pebbling space of a graph is
equal to its Dymond–Tompa cost [54]. The Dymond–Tompa cost—and hence reversible
pebbling space—is also equivalent to the query complexity of the problem where each
vertex in a graph is assigned a truth value and we have to find a false vertex whose
predecessors are all true.

2.2 Proof Systems

Let us continue by laying down the formal, low level foundations of proof complexity;
even if our later discussion is at a higher level, they can help clarify some statements.

A proof system P is a language consisting of tuples (F,π) of a formula and a proof.
A propositional proof system is such that F is a propositional formula. We assume that
formulas are given in Conjunctive Normal Form (CNF), that is F =

∧∨

x bi
i , where we

define x0
i = x i and x1

i = x i . It is convenient to identify true with 1 and false with 0,
so that x b is satisfied by the assignment x 7→ b. We refer to a possibly negated variable
as a literal, a disjunction of at most k literals as a k-clause, and a conjunction of k-clauses
as a k-CNF.

A propositional proof system P is sound if it can only refute unsatisfiable formulas,
i.e., (F,π) ∈ P implies that F ∈ Unsat, and it is complete if every unsatisfiable formula
has a proof, i.e., F ∈ Unsat implies that ∃π : (F,π) ∈ P. From now on we assume that
all proof systems are propositional, sound, and complete, and we use prove and refute
interchangeably.

12 CHAPTER 2. BACKGROUND

A proof system is polynomially verifiable if it is in P. It is polynomially bounded if
every unsatisfiable formula has a proof of polynomial size, i.e., F ∈ Unsat implies that
∃π : (F,π) ∈ P ∧ |π|= poly(|F |). Observe that if there existed a polynomially verifiable,
polynomially bounded proof system then coNP = NP, since we could take π as an NP
witness for F ∈ Unsat.

A proof system P polynomially simulates a proof system R if (F,ρ) ∈ R implies
that ∃π : (F,π) ∈ P ∧ |π| = poly(|ρ|). We say that P is (strictly) stronger than R if P
polynomially simulates R but the converse is not true, and that the proof systems are
incomparable if neither holds.

For us, back to a higher level, a proof system is just a set of rules to construct proofs
with. All of our proofs fit in the line configurations framework of [2]. A proof is a
sequence of configurations C1, . . . ,CL , and a configuration is a set of lines. The proof
system determines what is a valid line. A configuration can be obtained from the previous
one by either of:

Axiom download Add (the translation of) a clause in F as a new line.

Inference Add a line that follows from applying one inference rule of the proof system
to (a subset of) the previous configuration.

Erasure Remove a line from the previous configuration.

This framework is enough to define the length of a proof, which is the number of
configurations, the size, which is the sum of line sizes over all downloaded and inferred
lines, the (line) space, which is the number of lines in the largest configuration, the total
space, which is the largest sum of line sizes in a single configuration, and the variable
space, which is the largest number of distinct variables in a single configuration.

The same measures are defined for a formula by taking the minimum over all proofs.
The inference graph of a proof is a graph where vertices are all downloaded and

inferred lines, and there is an edge from vertex u to v if u was used as a premise in the
inference rule used to derive v. It is not hard to see that a sequence of configurations is
equivalent to a pebbling strategy for the inference graph. In fact, proofs are sometimes
defined as the inference graph alone, in which case the line space is the space of an
optimal pebbling strategy. The depth of a proof is the depth of its inference graph.

2.3 Formula Reference

In the following discussion we need to refer to some formulas that are well-known in
proof complexity, so we list them together for convenience. It is not necessary to become
familiar with the symbolic expressions, which at this point can be viewed as illustrations.

Pebbling Formulas The pebbling formula PebG of a graph G [29] has constraints
claiming that the sources of the graph are true, that if all the predecessors of a vertex

2.3. FORMULA REFERENCE 13

are true, then the vertex itself is true, and that the sink is false.

∨

u∈pred(v)

u∨ v v ∈ V (G) (Pebbling axioms)

z (Sink axiom)

This formula is the connection between pebble games and proof complexity, and it will
make recurrent appearances throughout this thesis. We will most often use substituted
pebbling formulas, in which we replace each variable by a gadget.

Pigeonhole Principle The pigeonhole principle claims that there is an injective total
mapping from [n+1] into [n] (or that n+1 pigeons fit into n holes). Variable x i j stands
for pigeon i being mapped to hole j.

∨

j∈[n]
x i j i ∈ [n+ 1] (Pigeon axioms)

x i j ∨ x i′ j i 6= i′, j ∈ [n] (Hole axioms)

We can optionally require the mapping to be a function or for it to be surjective, leading
to four variants of the principle.

x i j ∨ x i j′ i ∈ [n+ 1], j 6= j′ (Functionality axioms)
∨

i∈[n+1]

x i j j ∈ [n] (Onto axioms)

This formula is a source for many lower bounds.

Tseitin Formulas The Tseitin Formula of a graph G encodes the (negated) handshaking
lemma: that the sum of vertex degrees is an even number. It is a particular form of a
linear system over F2.

⊕

e3v∗
xe 6≡ deg(v∗) (mod 2) (2.3.1)

⊕

e3v
xe ≡ deg(v) (mod 2) v 6= v∗ (2.3.2)

where v∗ is any vertex and each parity constraint is expanded into 2deg(v)−1 clauses.
These formulas are a source for either lower bounds or trade-offs, depending on the
graph.

14 CHAPTER 2. BACKGROUND

Ordering Principle The ordering principle claims that there is a (partial) ordering of
[n] that has no minimal element. Variable x i j stands for i being ordered before j.

x i j ∨ x ji i, j ∈ [n] (Antisymmetry)

x i j ∨ x jk ∨ x ik i, j, k ∈ [n] (Transitivity)
∨

j∈[n]
x ji i ∈ [n] (Non-minimality)

This formula is used to separate proof systems.

Complete Tautology The complete tautology explicitly forbids all 2n assignments.
∨

i∈[n]
x bi

i b ∈ {0,1}n (2.3.3)

Note that the number of clauses is exponential in the number of variables. A proof for
the complete tautology can be translated into a proof of any other formula with the
same number of variables, hence it is useful to prove upper bounds.

With these basic definitions in hand, let us go on a tour of proof systems. We only
discuss the proof systems that we refer to in Chapter 3 and we skip stronger proof
systems such as k-DNF resolution, bounded depth Frege, or sums of squares for which
there has been recent progress. The interested reader can find more information in the
surveys [170, 145, 163].

2.4 Resolution

Resolution is the simplest, most studied, and well-understood proof system. As such, we
present some of the results and techniques that hold for resolution and would also be
interesting to know for other proof systems.

Lines in resolution are disjunctive clauses and there is one inference rule, the resolu-
tion rule.

Resolution
C ∨ x D ∨ x

C ∨ D
(2.4.1)

This is a sound rule as we argued in the introduction. To prove completeness, let us
present a problem in query complexity. In the falsified clause search problem a decision
tree knows an unsatisfiable formula and it can query the values of a truth assignment in
order to find a clause which that assignment falsifies.

A decision tree for the falsified clause search problem of depth d and size s induces a
resolution proof of length s, space d + 1, and clauses of size at most d—the proof starts
at the leaves and to each internal node we add the result of resolving the clauses of its

2.4. RESOLUTION 15

two children. In particular resolution is complete and every formula with n variables
has a proof in length at most 2n, space n+ 1, and total space n2 simultaneously.

We have matching lower bounds for all of these measures up to constant factors in
the number of variables. The first superpolynomial lower bound on length was on the
pigeonhole principle [1], later improved to exponential [98], and the first lower bound
of the form 2Ω(n) was on Tseitin formulas [177]. The first linear lower bound on space is
by [77], and the first quadratic lower bound on total space for a formula of polynomial
size is by [41].

There are a few techniques to prove resolution lower bounds, but the most convenient
is to go through an auxiliary complexity measure: the width of a proof, which is the
maximum size of a clause in the proof.

All of these lower bounds can be obtained from lower bounds on width. First of all,
we can translate width lower bounds into length lower bounds.

Theorem 2.4.1 ([29]). If a k-CNF has a resolution proof in length L, then it has a proof
in width O(k+

p

n log L).

Or, in other words, the length of a proof must be at least 2Ω((w−k)2/n). Theorem 2.4.1
is tight in the sense that it cannot say anything for formulas of width less than

p
n, as

the ordering principle has proofs of polynomial length but requires width Ω(
p

n) [44].
Furthermore, just by counting we see that a formula that can be proved in width w

can also be proved in length 2w
� n
≤w

�

= O(nw), as there are only so many different clauses
of width w. This observation is also tight, as there is a family of formulas inspired on the
pigeonhole principle that have proofs of width w but require length nΩ(w) [15].

A result similar to Theorem 2.4.1 allows us to prove space lower bounds from width
lower bounds.

Theorem 2.4.2 ([12]). If a k-CNF has a resolution proof in space s, then it has a proof in
width O(k+ s).

The converse of Theorem 2.4.2 is not true, as there is a family of pebbling formulas
that have proofs of constant width but require space Ω(n/ log n) [27].

Finally we have the counterpart to Theorem 2.4.2 for total space.

Theorem 2.4.3 ([38]). If a k-CNF has a proof in total space s, then it has a proof in width
O(
p

k+ s).

To sum up, width does not tell us everything about the complexity of a formula, but
it can be very informative.

Like in pebble games, there are also length-space trade-offs in resolution. That is,
it can be the case that a proof has a proof in small length and another proof in small
space, but not both at the same time.

Theorem 2.4.4 ([28]). There is a family of formulas that have

16 CHAPTER 2. BACKGROUND

• a resolution proof in length O(n) and

• a proof in space O(n1/11), but

• every proof with space less than n2/11 requires length exp(nΩ(1)).

There are even formulas where, in order to have proofs of polynomial length, space
needs to be larger than linear, surpassing even the worst case upper bound on space.

Theorem 2.4.5 ([19]). There is a family of formulas that have

• a resolution proof in length nO(log n) and

• a proof in space n, but

• every proof with space less than nlog n/18 requires length nΩ(log n log log n/ log log log n).

Even though we will not discuss them at all, it is also worth mentioning that there are
also trade-offs between length and width [175, 161] and between space and width [24,
33].

2.5 Polynomial Calculus

In polynomial calculus over a field F, lines are multilinear polynomials over the ring
F[x1, . . . , xn, x1, . . . , xn]. We add axioms {x2

i = x i} that enforce any roots to be over
{0,1}n, and even though variables x i are formally independent, we add axioms {x i+x i =
1} so that we can interpret them as the negation of x i .

Observe that a clause
∨

x bi
i is falsified exactly by the assignment x i 7→ 1− bi , and a

monomial
∏

x bi
i (where we keep using the notation x0

i = x i) is set to 1 exactly by the
assignment x i 7→ bi . Hence there is a bijection between the set of assignments satisfying
a CNF F =

∧∨

x bi
i and the roots of the set of polynomials

�∏

x bi
i

	

.

With this bijection in mind, we can download a clause
∨

x bi
i as

∏

x bi
i ; for instance if

a CNF contains the clause x∨ y∨z, then we download the monomial x yz. The inference
rules are sound as long as they do not eliminate roots—equivalently, the consequences
stay within the ideal generated by the premises, hence we add rules to construct an
ideal.

Linear Combination p q
αp+ βq

(2.5.1)

where α,β ∈ F.

Product
p

mp (2.5.2)

where m is any monomial.

2.5. POLYNOMIAL CALCULUS 17

Quotient Axioms

x + x − 1 x2 − x (2.5.3)

where x is a variable.

These rules are enough to simulate resolution. Indeed, from the monomials px and
qx we obtain the monomial pq.

px
pqx

qx
pqx

pqx + pqx
x + x − 1

−pqx − pqx + pq
pq

(2.5.4)

We note that we gave the definition of polynomial calculus of [2], also known as
polynomial calculus augmented with resolution, to distinguish it from the original version
of polynomial calculus of [62]. Both proof systems are equivalent with respect to degree,
but the original version needs exponential space to express a large disjunction of negative
literals, making it incomparable with resolution. Since in practice one would represent
a polynomial with a zero-suppressed decision diagram (ZDD) [47], which does not
suffer from this blow-up, this seems to be an artificial restriction, and hence we use the
definition of [2].

It is always possible to prove a formula in polynomial calculus using only constant
line space (the complete tautology can be proven by adding up all monomials), hence we
cannot say anything interesting about it. But such a proof would use exponentially large
polynomials, which suggests measuring the monomial space as the maximum number of
monomials in a configuration.

If line space is too optimistic a measure, then monomial space may be too pessimistic,
since we could avoid storing all monomials by using an appropriate data structure.
However, while there are indeed proof systems that reason directly with these data
structures [14], their inference rules are too strong in comparison to polynomial calculus,
so they would not capture polynomial calculus space either.

Observe that we can simulate resolution with at most a constant multiplicative
overhead in length and size and at most a constant additive overhead in monomial space
with respect to clause space, so for a given formula the size and space in polynomial
calculus are at most as large as in resolution.

Polynomial calculus size can be much smaller than resolution size. Some examples
are the onto functional pigeonhole principle, which has polynomial size polynomial
calculus proofs [164] but requires exponentially large resolution proofs [98], and Tseitin
formulas, which have polynomial size proofs over F2 but require exponentially large
resolution proofs[177]. Nevertheless there are exponential size lower bounds, the first
of which were for the pigeonhole principle [160].

There are also linear space lower bounds for (a version of) the pigeonhole prin-
ciple [79]. Annoyingly, though, we do not know of any separation between resolution
space and monomial space that is better than a constant factor.

18 CHAPTER 2. BACKGROUND

About total space, we only know of aΩ(n2) lower bound for complete tautologies [2]—
where total space is referred to as variable space—but no superlinear lower bound is
known for a formula of polynomial size.

The equivalent of width for polynomial calculus is the degree of the largest polynomial
in the proof, for we also have a relation between degree and size similar to Theorem 2.4.1.

Theorem 2.5.1 ([111]). If a k-CNF has a polynomial calculus proof in size L, then it has
a proof in degree O(k+

p

n log L).

Theorem 2.5.1 is tight as well, and the ordering principle provides an example
here too, since it requires degree Ω(

p
n) [86] and the resolution length upper bound is

enough for a polynomial size upper bound. Even though it is not immediate, a formula
that can be proved in degree d can also be proved in size O(nd) [62], and there are
formulas for which this is tight [15].

There are also length-space trade-offs in polynomial calculus; in fact the equivalent
to Theorems 2.4.4 and 2.4.5 also holds.

Theorem 2.5.2 ([23]). There is a family of formulas that have

• a polynomial calculus proof in size O(n) and

• a proof in monomial space O(n1/11), but

• every proof with monomial space less than n2/11 requires size exp(nΩ(1)).

Theorem 2.5.3 ([23]). There is a family of formulas that have

• a polynomial calculus proof in size nO(log n) and

• a proof in monomial space n, but

• every proof withmonomial space less than nlog n/18 requires size nΩ(log n log log n/ log log log n).

If space is so similar in resolution and polynomial calculus, and we have a degree
measure that plays the role of width, is there also a relation between degree and space?
Recall that in resolution large width implies large space (Theorem 2.4.2) but the converse
is not true, so we can ask whether there are analogues of these results. We give a partial
answer in Paper A, where we prove that under certain conditions large degree does
imply large space, and we show that the converse is not true either, that is large space
does not imply large degree.

2.6 Cutting Planes

In cutting planes lines are linear inequalities with integer coefficients and variables
ranging over {0, 1}.

2.6. CUTTING PLANES 19

For convenience wework only with inequalities in the normal form c>+x+c>−(1−x)≥ a,
where c+ and c− are vectors in Nn with nonnegative coefficients and disjoint supports.
We define c = (c+,c−) ∈ N2n and x̂ = (x,1− x) so that we can use the shorthand c>x̂
to represent c>+x + c>−(1 − x). Hence we translate a clause

∨

x bi
i into the inequality

∑

(1−bi)+(−1)1−bi x i ≥ 1, or equivalently the vector c+ has a coefficient 1 on coordinate
i whenever x i is present in the clause and zeroes elsewhere and the vector c− has a
coefficient 1 on coordinate i whenever x i is present in the clause and zeroes elsewhere.
For example, the clause x ∨ y ∨ z gets translated into x + y + (1− z)≥ 1, that is to say
(1, 1,0)(x , y, z)> + (0, 0,1)(1− x , 1− y, 1− z)> ≥ 1, so c= (1, 1,0,0, 0,1)>.

A set of inequalities determines a feasibility polytope in Rn, so adding any half-space
that contains the polytope is sound. In particular, the sum of two inequalities contains
their intersection, so we add that as a rule. But since we are restricting solutions to lie
in the hypercube {0,1}n, we can shrink a half space to the nearest integer point, which
is the division rule, and we can add the boundaries of the cube as new inequalities.

Addition
c>x̂≥ a d>x̂≥ b
(c+ d)>x̂≥ a+ b

(2.6.1)

where the resulting inequality might not be in normal form if the supports of
(c+ + d+) and (c− + d−) are not disjoint, so in order to restore the normal form
we replace each instance of x + (1− x) on the LHS by −1 on the RHS.

Division
c>x̂≥ a

dc/ke>x̂≥ da/ke
(2.6.2)

where k is an integer.

Boundary

x ≥ 0 1− x ≥ 0 (2.6.3)

where x is any variable.

The first two rules are enough to simulate resolution. Indeed, from the inequalities
c>x̂+ x ≥ 1 and d>x̂+(1− x)≥ 1 we obtain (c+d)>x≥ 1+1−1, and then we ensure
that all coefficients on the LHS are at most 1 by dividing by 2.

We used a definition of cutting planes that is closer to how it is implemented in
practice, and as such is slightly nonstandard. The usual normal form is

∑

i∈[n] ci x i ≥ a,
where ci and a are arbitrary integers, but in that case the division rule as we stated it
behaves slightly differently and it becomes more cumbersome to simulate resolution.
In any case, both definitions are equivalent except for a linear factor in length and an
additive constant in space.

Cutting planes is strictly stronger than resolution since there are cutting planes proofs
of the pigeonhole principle of polynomial size, and this also implies that cutting planes is

20 CHAPTER 2. BACKGROUND

stronger than polynomial calculus, but we do not know of any simulation or separation
in the opposite direction. Tseitin formulas are the natural candidate for a separation, but
we do not know of any technique that would yield superpolynomial lower bounds for
Tseitin formulas in cutting planes. In fact, for 20 years we only knew of one exponential
length lower bound for cutting planes [156] (and the equivalent [99]), and it was only
very recently we saw progress with lower bounds for random formulas [105, 83].

Line space in cutting planes is, as in polynomial calculus, a very strong measure, since
the complete tautology—and hence every formula—has a proof in line space 5 [87].
These constant space proofs use exponential coefficients and quadratic total space, so
we can interpret that result as either that we should focus on total space, or limit the
size of coefficients.

The space upper bound is less obvious than in polynomial calculus; after all a
polynomial can represent any Boolean function, but a linear threshold cannot. This
suggests we might still say something meaningful of line space; and indeed there are
trade-offs.

Theorem 2.6.1 ([106, 95]). There is a family of formulas that have a proof in length
O(n), but every proof with line space less than n1/2 requires length exp(nΩ(1)).

We do not know any non-trivial bounds on total space: the best lower bound follows
from a Ω(n) lower bound on variable space that holds for every proof system, and the
best upper bound follows from the O(n2) resolution upper bound.

One of the reasons resolution is very well understood—and, to a similar degree,
polynomial calculus—is that we have the technology to obtain length lower bounds from
width/degree respectively. To really understand cutting planes we would like to have
the equivalent to Theorems 2.4.1 and 2.5.1. Defining an auxiliary measure so that lower
bounds for this measure would yield lower bounds for length has been an elusive task so
far, with one potential candidate proposed in [162].

The only tool we have so far is feasible interpolation [124]. This technique reduces
proving cutting planes lower bounds for formulas of the form F = A(p,q)∧ B(p, r) to
proving circuit lower bounds. But since we are so terrible at the latter—the best lower
bound we have for an explicit function is (3 + 1/86)n − o(n) [82], and that was an
improvement over a 30-year-old 3n− o(n) lower bound—the technique is only useful
when the p variables only appear in A positively or in B negatively, in which case we
only need to prove monotone circuit lower bounds. This is enough for the technique to
work for resolution or cutting planes with small coefficients, but for cutting planes we
need one last tweak, and that is to use real circuits, which can compute with arbitrary
real values.

Theorem 2.6.2 ([156]). If F = A(p,q) ∧ B(p, r) has a cutting planes proof of length
L, then there is a real circuit of size O(L) that, on input p = a, can distinguish between
whether A(a,q) or B(a, r) is unsatisfiable. If furthermore the p variables only appear in A
positively or they only appear in B negatively, then the circuit is monotone.

2.7. CONFLICT DRIVEN CLAUSE LEARNING 21

1 while not solved do
2 unit propagate
3 if conflict then
4 backtrack
5 else
6 decide variable assignment

Figure 2.3: DPLL algorithm

How important is it that we should allow large coefficients in cutting planes, then?
Since cutting planes can simulate resolution with coefficients at most 2, that is enough
to prove any formula, but possibly at a loss of efficiency. Coefficients exponentially large
in the size of the proof are always enough without loss of generality [49]. However, we
do not know of any formula where having superpolynomial coefficients is of any help.

Indeed, for the pigeonhole principle formulas where cutting planes is more efficient
than resolution and polynomial calculus, coefficients of constant size are enough. As
for lower bounds, the first lower bounds for tree-like cutting planes [110] already apply
to unrestricted coefficients, and the lower bounds for cutting planes with coefficients
bounded by a polynomial of [42] were extended to unrestricted coefficients in [156].

One reason we do not understand the size of coefficients is that we do not understand
the relation between Boolean and real circuits well enough either. While we know that
Boolean circuits may be exponentially larger than real circuits for some function in the
class of slice functions [165], we do not know of any separation for explicit functions.
We remark that a separation of explicit functions within the class of slice functions would
imply superpolynomial lower bounds for general, nonmonotone circuits.

We do know of a few limitations of proofs with very restricted coefficients. If we
limit the size of the RHS coefficient (degree of falsity in [90]) to be linear, then there
are exponential lower bounds for the pigeonhole principle [103]—here it is important
that we are using the normal form we defined. There is also a very weak Ω(log log log n)
line space lower bound for complete tautologies if coefficients are constant [87].

2.7 Conflict Driven Clause Learning

This is all so well, but how do we find proofs? Most often by looking at the intermediate
steps of a SAT solver that failed to find an assignment. The first successful algorithm
for SAT was that of Davis, Putnam, Logemann, and Loveland (DPLL) [70, 69], an
improvement over backtracking that avoids branching when there are forced choices
(see Figure 2.3).

If we look at the execution trace of the DPLL algorithm on an unsatisfiable formula we
see that it produces a decision tree for the falsified clause search problem on that formula,

22 CHAPTER 2. BACKGROUND

1 while not solved do
2 unit propagate
3 if conflict then
4 learn
5 maybe restart backtracking
6 backtrack
7 else
8 decide variable assignment

Figure 2.4: CDCL algorithm

and we argued in Section 2.4 that such a decision tree is equivalent to a resolution proof.
Unfortunately, proofs that come from decision trees all have a tree-like structure,

that is, their inference graph is a tree. And it turns out that tree-like resolution proofs
can be exponentially longer than DAG-like proofs, as witnessed by the pebbling formulas
of [43] or the ordering principle [44].

Why is that? In a tree-like proof we can only use each clause once, and if we want to
use it again then we have to rederive it. This is what happens with the DPLL algorithm:
we may find a conflict, then flip the value of some variable up on the backtracking stack,
and find the same conflict again. Would it not be great if we could learn from these
conflicts and avoid repeating them?

This is precisely what the Conflict Driven Clause Learning (CDCL) [136, 18] algorithm
does: it adds a new clause to its state after each conflict (see Figure 2.4). The CDCL
implementation of [139] was a breakthrough in that it allowed routinely solving industrial
instances with millions of variables, and to this day implementations of CDCL remain
the uncontested winners of the SAT competition.1

The execution trace of the CDCL algorithm also produces a resolution proof (see
Section D.1 for details), and these proofs are DAG-like in general. Are they as powerful
as general resolution proofs? If the solver is allowed to make best choices nondetermin-
istically, then the answer is yes, since given a resolution proof in length L, there is an
execution trace of a CDCL algorithm running in time poly(L) [152, 13].

Yet, unless some parameterized complexity classes collapse, no algorithm can gener-
ate resolution proofs of a formula in time polynomial in the smallest resolution proof [4].
Since all heuristics used in practice run in time polynomial in the proof they produce, this
is strong evidence that, once equipped with actual heuristics, CDCL cannot polynomially
simulate resolution. So far we do not know of any formula and any reasonable set of
heuristics that must produce proofs superpolynomially larger than the best resolution
proof.

1http://www.satcompetition.org/

http://www.satcompetition.org/

2.8. COMMUNICATION COMPLEXITY 23

While for DPLL we only need one heuristic, to decide which variable to assign next,
in CDCL we also need to choose which clauses to learn and for how long to keep them in
memory. Also, since the state is now larger than the backtracking stack, it makes sense
to restart the backtracking while keeping previous learned clauses, and when to do that
is yet another heuristic.

2.8 Communication Complexity

Besides pebbling, we use tools from yet another area of complexity: communication
complexity.

In a communication problem two players, Alice and Bob, each have an input x ∈ X
and y ∈ Y respectively, and they compute a function f (x , y) over the joint input. We
can imagine the players being in different planets but having a network link between
them, so they can only see their own input and any messages they exchange. In this
setting communication is very expensive and the round trip times can be appalling, so
the players try to minimize the length and amount of transmissions. We do not assume
any computational restrictions on the players, but for our discussion we impose that
their messages are deterministic.

Formally, a deterministic communication protocol is a binary tree where every internal
node is labelled by either a function av : X → {0,1} or a function bv : Y → {0,1}. A
pair of inputs (x , y) ∈ X × Y defines a path by starting at the root and taking the child
determined by evaluating the label of each node with either x or y. The output of
the protocol on inputs (x , y) is the label of the leaf of the path defined by (x , y). The
communication cost of the protocol is the depth of the tree, and the number of rounds is
the maximum number of alternations between a- and b-labelled nodes.

Any function can be computed in n = min{log|X |, log|Y |} bits of communication,
simply by one player revealing their input. Hence we consider a function that requires
communication linear in n as hard, and a function that can be computed with an amount
of communication polylogarithmic in n as easy. Among the easy functions we find parity
and the clique–independent set problem—given a common graph Alice gets a clique,
Bob gets an independent set, and they have to find whether their sets intersect. On the
other hand, testing for equality of two strings, disjointness of two sets, or computing
the inner product of two vectors are all hard problems.

Communication complexity is an exciting research topic on its own, but also useful
for its many applications in other areas of theoretical computer science, among others
streaming algorithms, data structures, distributed algorithms, circuit complexity, and
as we shall see even proof complexity. A good overview can be found in the classical
book [128] and the upcoming [157].

We may wonder whether we can do something akin to proof complexity and pebbling
and use the hardness of a simple computational model to prove hardness in communic-
ation complexity. We call a result of this kind a simulation theorem, as it allows us to

24 CHAPTER 2. BACKGROUND

Communication Queries Gadget Source

Deterministic Deterministic Indexing (polynomial) [96]
Deterministic Deterministic Inner product (logarithmic) [59]
Deterministic Parity XOR (constant) [100]
Nondeterministic Nondeterministic Inner product (logarithmic) [94]
Randomized Randomized Indexing (polynomial) [97]

Table 2.1: A few simulation theorems

simulate a communication protocol in the simpler computational model, in this case
query complexity.

A simulation theorem takes a communication protocol for a function composed with
a gadget and builds a decision tree for the original function. There are in fact quite a few
flavours of simulation theorems depending on the type of communication, gadget, and
decision tree—stronger communication models need stronger query models—and we
list some in Table 2.1 (see [97] for a broader list). The key ingredients for a simulation
theorem are in [158], using a different language, and in [96] it was stated in full
generality and its potential became clear. Among other more technical results, simulation
theorems have been used to prove separations in monotone circuit complexity [158],
separations in proof complexity [43], and lower bounds for the clique–independent set
problem [96, 93].

We build a refined version of a simulation theorem from deterministic communica-
tion to deterministic query complexity with the indexing gadget in Paper B. Since we
additionally know that the Dymond–Tompa game is equivalent to query complexity, we
can translate pebbling lower bounds into communication lower bounds, which in turn
we use to prove lower bounds in proof complexity.

Chapter 3

Contributions

3.1 Space in Polynomial Calculus
Summary of Towards an Understanding of Polynomial Calculus: New Separations and Lower Bounds
by Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals

In Paper A we explore the relation between degree and space in polynomial calculus.
First we try to find out whether an analogue of the relation between resolution width
and space of Theorem 2.4.2 holds. We present a partial answer with a couple of surprises
in Theorem 3.1.1, but to state it we need to define the formula F substituted with XOR
or F[⊕]. This is the formula that we obtain by replacing every variable x in F by the
exclusive or of two new variables x1 ⊕ x2. Our favourite clause x ∨ y ∨ z gets translated
into (x1 ⊕ x2)∨ (y1 ⊕ y2)∨ (z1 ⊕ z2), which we expand into CNF as 32 clauses

x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2 ∧
x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2 ∧
x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2 ∧

...

x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z1 , (3.1.1)

and in general a k-clause gets translated into 22k−1 clauses.

Theorem 3.1.1. If a k-CNF F[⊕] has a polynomial calculus proof in monomial space s,
then F has a resolution proof in width O(k+ s).

The first surprise is a disappointing one: we do not get a space lower bound for the
same formula F for which we have a degree lower bound, but for F[⊕]. The second
surprise is more appealing: we do not need a degree lower bound to apply the theorem,
but only a width lower bound. Since degree is never larger than width, this makes the
result stronger. In fact, degree can be significantly smaller than width, and this lets us
separate degree from space.

25

26 CHAPTER 3. CONTRIBUTIONS

Corollary 3.1.2. There is a family of formulas that have polynomial calculus proofs of
constant degree but require space Ω(n).

The formulas for which we obtain the separation are Tseitin formulas, which we
know to be easy for polynomial calculus but hard for resolution. It is not hard to see that
after applying a XOR substitution we are still left with a Tseitin formula, only for a graph
that now has two edges where there used to be one. Therefore it is still an easy formula
for polynomial calculus, but it is now in a form where we can apply Theorem 3.1.1 and
obtain a space lower bound.

Since graphs with double edges are somewhat artificial we also prove space lower
bounds for plain expander graphs, except that we need the technical condition that we
can partition their edges into small cycles. Some examples of graphs that satisfy this
condition are grids and random graphs of degree 4—the latter can almost surely be
partitioned into cycles of length eO(

p
n) plus a negligible amount of extra edges.

We prove both space lower bounds using the extensible families framework of [39].
This framework is inspired by the characterization of resolution space of [12] in terms
of the Spoiler–Duplicator game, and indeed using extensible families is enough to prove
all space lower bounds known to date, so one may wonder whether extensible families
characterize space in polynomial calculus. We offer circumstantial evidence that they
do not by proving that the functional pigeonhole principle only has extensible families
of constant size, which can only yield constant space lower bounds. While for all we
know the functional pigeonhole principle can be proved in constant space, this is not the
case for the usual pigeonhole principle, and both versions are equally hard with respect
to size—as opposed to the onto functional pigeonhole principle, which has proofs of
polynomial size in polynomial calculus.

3.2 Trade-offs in Cutting Planes
Summary of How Limited Interaction Hinders Real Communication (and What it Means for Proof
and Circuit Complexity) by Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals

In Paper B we prove a round-aware simulation theorem for communication complexity
and use it to prove size-space trade-offs for cutting planes and a separation in monotone
circuit complexity.

Unfortunately, a communication lower bound alone does not immediately work for
proving strong trade-offs where we ask not only for a small upper bound on line space
but for a small upper bound on total space. That is because a total space upper bound in
cutting planes implies a pebbling upper bound, which in turn implies a communication
upper bound.

The solution comes from revisiting the strategy for proving trade-offs. From a proof
we obtain a protocol for the communication version of the falsified clause search problem,
and then prove a communication lower bound. The protocol evaluates configurations of
the proof in a binary search pattern until it finds a configuration that the assignment

3.2. TRADE-OFFS IN CUTTING PLANES 27

satisfies followed by a configuration that the assignment falsifies. Since inference and
erasure steps are sound, the step between these configurations was an axiom download,
and that axiom is falsified. We can evaluate one configuration during the binary search
in one round and communication at most sη, where s is the number of lines in the
configuration and η is the cost of evaluating one line. Therefore if the proof has length
L and space s then the protocol has communication at most sη log L, and furthermore
there are only log L rounds of communication. So, instead of only relating the product
of measures s log L with communication as in [106, 95], we can relate space with
communication per round and length with number of rounds independently.

Trade-offs between rounds and communication have been well studied. The canonical
problem is pointer jumping, where each player holds an array with n pointers into the
array of the other player, they start at Alice’s first position, and they have to find the
position after following k pointers. Clearly they can solve the problem in k rounds by
revealing the appropriate pointer with a cost of log n bits per round, but if they only have
k− 1 rounds—or even if the wrong player starts speaking—then they require Ω(n/k2)
bits of communication [141].

We do not make use of such trade-offs directly but we use a simulation theorem to
lift query complexity trade-offs.

Theorem 3.2.1. If there is a deterministic communication protocol for a search problem
S ◦ INDn = S(IND(x1, y1), . . . , IND(xn, yn)) with communication c and r rounds, then
there is a decision tree for S with O(c/ log n) queries and r rounds.

Here IND : [m]×{0, 1}m→ {0, 1} is the indexing function defined as IND(x , y) = yx ,
and m= poly(n).

If the original formula is a pebbling formula, then the falsified clause search problem
becomes the false vertex problem, which we mentioned is equivalent to the Dymond–
Tompa game. We prove that decision trees with limited adaptivity are equivalent to
Dymond–Tompa strategies with limited rounds, so it only remains to prove a trade-off
for the Dymond–Tompa game.

Theorem 3.2.2. There is a family of graphs of depth d and dn vertices that have

• a Pebbler strategy with d rounds and 2d pebbles and

• a Pebbler strategy with 2 log d rounds and (n+ 2) log d pebbles, but

• any Pebbler strategy with r rounds requires min{r2d/r , n}/8 pebbles.

Combining Theorems 3.2.1 and 3.2.2 we already get trade-offs for the resolution
and polynomial calculus proof systems, but this is not enough for cutting planes, since
evaluating one line requires comparing two integers that can be as large as n! in general,
and this problem requires Ω(n log n) communication.

The solution is to use a model of communication where we can compare numbers
with little communication. This could be a randomized model, but we use the real

28 CHAPTER 3. CONTRIBUTIONS

communication model of [125], which was specifically designed to study cutting planes.
A real communication protocol can compare arbitrary numbers at unit cost, and while
real communication is strictly more powerful than deterministic, it is easier to analyze
than randomized communication. In fact, a simulation theorem for the real model was
already proved—with a different language—in [43] as a follow-up to [158], and we are
able to adapt their ideas to prove an analogue of Theorem 3.2.1 for real communication.

Theorem 3.2.3. If there is a real communication protocol for S◦INDn with communication
c and r rounds, then there is a decision tree for S with O(c/ log n) queries and r rounds.

Combining Theorems 3.2.3 and 3.2.2 yields trade-offs for cutting planes.

Theorem 3.2.4. There is a family of formulas that have

• a cutting planes proof in size O(n) and

• a proof in total space O(n1/40), but

• any proof with line space n1/20−ε requires length 2Ω(n1/40).

Another application of Theorems 3.2.1 and 3.2.2 is in monotone circuit complexity.
There is a depth hierarchy formonotone-NC, i.e., there are Boolean functions that can be
computed by monotone circuits of fan-in 2, polynomial size, and depth logi n, but cannot
be computed by monotone circuits of fan-in 2 and depth logi−1 n (of any size) [158].
The functions, however, can be computed with circuits of unbounded fan-in and depth
2 of quasipolynomial size. To prove a stronger monotone-AC hierarchy we revisit the
reduction from communication protocols to monotone circuits of [118] and observe that
depth corresponds to number of rounds while size corresponds to communication.

Theorem 3.2.5. For every i ∈ N there is a Boolean function over n variables that can be
computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but for which
for every q ∈ N every monotone circuit of depth q logi−1 n requires size 2Ω(n

1/11q).

3.3 Cumulative Space
Summary of Cumulative Space in Black-White Pebbling and Resolution by Joël Alwen, Susanna F.
de Rezende, Jakob Nordström, and Marc Vinyals

The concept of cumulative space arises from trying to give a more complete picture of
space, for instance distinguishing the space usage of the two generic computations that
we plotted in Figure 3.1. One uses large space during a short peak, while another uses
moderately large space throughout the whole computation.

Using a traditional space measure we would say that the peak computation uses
the most space, since the maximum space is larger, and we would be right in saying so
because if we are buying a memory chip, then we need it to hold the maximum memory
usage at any point. But what if we are trying to run many instances of the computations

3.3. CUMULATIVE SPACE 29

time

sp
ac
e

Figure 3.1: Space usage of two computations

in parallel? Then we can amortize the space usage of the peak computations by running
them with a large enough delay so that their space peaks do not intersect, but we cannot
do that with the barely fluctuating computations, so we would say that the latter use
more space.

As its name suggests, cumulative space is the area under the time-space curve. We
could have chosen some other measure such as average space, but that has the problem
that we can lower it artificially by extending the computation unnecessarily. Hence we
stay with cumulative space, which seems the most robust.

Far from being a fairy tale, this setup applies to cryptography, for example if we are
trying to invert a hash function by evaluating it massively in parallel. This motivated
the definition of cumulative space of [8] in order to obtain a more robust definition of
memory-hard functions. In that case the results follow from a parallel version of the
black pebble game where we lift the restriction of only changing one pebble per round.
We introduce cumulative space to proof complexity in Paper C, and for that we need the
black-white version of the pebble game instead. As we discuss in Section C.2, whether
the game is parallel does not play such a big role for us.

We prove a few results about the cumulative space of black-white pebbling. In
contrast to space, in which we can always improve on the trivial O(n) upper bound by a
log n factor, the O(n2) upper bound for cumulative space is tight.

Theorem 3.3.1. There is a family of graphs with cumulative black-white pebbling space
Ω(n2).

Every graph with large space also has large cumulative space, simply because if we
are to place s pebbles on a graph then we need one configuration with 1 pebble, another
with 2 pebbles, and so forth, for a total of Θ(s2). The converse does not hold, as there
are graphs with small space but large cumulative space.

Theorem 3.3.2. There is a family of graphs with black-white pebbling space O(log n) but
cumulative space Ω(n2/ log n)

30 CHAPTER 3. CONTRIBUTIONS

We can also improve on the trade-offs of [130] for bit-reversal graphs, which are
of the form ts = Ω(n2/s), and replace ts by the cumulative space. This may not say
much on first sight, but in fact it implies that the trade-offs are very robust, in that any
optimal pebbling of these graphs—in the sense that it matches the ts = Ω(n2/s) lower
bound—must be using worst case space most of the time.

Theorem 3.3.3. There is a family of graphs such that for any s = O(
p

n)

• there is a black-white pebbling with space O(s) and length O(n2/s2); in particular

– there is a black-white pebbling with space O(1), and

– there is a black-white pebbling with length O(n); but

• every black-white pebbling in spaceO(s) needs cumulative spaceΩ(n2/s); in particular

– every black-white pebbling in space O(s) and length O(n2/s2) needs Ω(n2/s2)
configurations with space Ω(s).

All of these results also have their counterparts in resolution, where we replace time
by length, space by line space, and cumulative space by cumulative line space, and they
follow directly by extending a lemma in [28] to cumulative space.

Lemma 3.3.4. If there is a resolution proof of PebG[⊕] in length L, space s, and cumulative
space c, then there is a black-white pebbling of G in time L, space s, and cumulative space c.

3.4 Trade-offs in CDCL
Summary of Trade-offs Between Time and Memory in a Tighter Model of CDCL SAT Solvers by Jan
Elffers, Jan Johannsen, Massimo Lauria, Thomas Magnard, Jakob Nordström, and Marc
Vinyals

We had left our review of CDCL in Section 2.7 mentioning that CDCL can polynomially
simulate resolution. Unfortunately the simulation does not tell us anything about space.
For it to work we need the CDCL algorithm not to forget any clause, which is far from
what an actual solver would do, hence we end up with worst case space.

In Paper D we define a proof system that faithfully models CDCL, including space,
and where we can plug in heuristics to form versions of CDCL in between an ideal
nondeterministic proof system and a completely specified algorithm.

Our proofs are formally execution traces that can be verified by a partially specified
CDCL algorithm that takes a proof as input in addition to a formula. The verifier then
uses the proof to make choices when a heuristic is not specified, and verifies that the
proof makes the same choices as the heuristic when it is specified. For example, a verifier
with an undefined decision heuristic and fixed learning heuristic will assign values to
variables according to the proof and make sure that it learns the same clauses as the
proof claims. Note that a verifier with a different learning heuristic may reject the proof

3.4. TRADE-OFFS IN CDCL 31

instead. In any case, all CDCL proofs have a unique translation into a resolution proof,
so we identify a proof with its translation and say that CDCL proofs are a subset of
resolution proofs. The full definition is in Section D.2.

In order to study space in this proof system we use the same formulas that we use for
resolution: pebbling formulas. All lower bounds follow immediately from the fact that
CDCL proofs are a subset of resolution proofs, so we only need to find upper bounds.
We prove that CDCL can—akin to resolution—prove a pebbling formula substituted with
XOR by simulating a black pebbling on the graph. Hence all length-space trade-offs of
[28] also hold for our proof system.

The kind of proofs that follow from a black pebbling crucially use restarts. Let us
sketch why. We simulate a pebble placement on vertex x by deriving the clauses that
represent vertex x being true, x1 ∨ x2 and x1 ∨ x2, and a pebble erasure by erasing the
corresponding clauses. Say that we learn the first clause x1 ∨ x2: that is because setting
both x1 7→ false and x2 7→ false leads to a conflict. To resolve the conflict we flip the
value of either value, say x2 7→ true. Now vertex x is set to true, and it will not stop
being so until we find a conflict higher up in the backtracking stack, so we cannot learn
the second clause x1 ∨ x2. But if we restart the backtracking then the vertex becomes
unassigned and we can set x1 7→ true and x2 7→ true and find a conflict quickly.

Hence we take the opportunity to study the importance of restarts by studying the
ability to prove pebbling formulas in a model of CDCL that disallows restarts—this is,
fixing a restart heuristic that never restarts. Perhaps surprisingly we are still able to
prove the same kind of trade-offs, but we need to do significantly more work.

First we introduce a way to represent pebbling strategies as a binary tree so that we
can operate on a pebbling recursively, and we build strategies of this form for the graphs
that we want to provide proofs for. Then we modify the pebbling to make it easier to
simulate, adding some padding between consecutive vertices in order to avoid undesired
unit propagations. This step works for any pebbling, but at the cost of changing the
graph, therefore the formulas that we prove trade-offs for differ slightly from those
in [28]. The last step is to actually generate a CDCL trace from the pebbling, which is a
very laborious but not conceptually hard task.

Finally, it is worth mentioning that we implemented software1 to automate translating
a black pebbling strategy to a CDCL proof without restarts. After all, and with a wink
towards Donald Knuth, it can be more reassuring to build such complicated proofs rather
than prove them correct. The software uses an earlier, more convoluted translation that
avoids modifying the graph, and for which we did not prove correctness, so while we
have proofs that we can touch they are not the same as we described. It remains for us
to update the software to produce the proofs we present in this paper.

1Available at https://github.com/marcvinyals/textbooksat/

https://github.com/marcvinyals/textbooksat/

32 CHAPTER 3. CONTRIBUTIONS

3.5 Inapproximability of Pebbling
Summary of Hardness of Approximation in PSPACE and Separation Results for Pebble Games by Siu
Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals

The last paper, Paper E, takes a meta view of pebbling. Pebbling is a great tool for
studying space complexity, but what is the space complexity of pebbling? More precisely,
we want to decide whether a graph G can be pebbled using at most s pebbles. We
can solve that within PSPACE for any pebble game (say by using a logarithmic space
algorithm to determine s-t connectivity in the graph of all configurations of size at most
s).

For black pebbling the problem is also PSPACE-hard [88]. A version of the black-white
and reversible pebbling games that is played on graphs of unbounded fan-in is also
PSPACE-hard [102, 55]. Unfortunately the techniques do not carry over, as these games
have substantially different properties—to begin with, there is no O(n/ log n) upper
bound. We can prove that reversible pebbling in graphs of fan-in 2 is PSPACE-hard, but
we need more complex constructions.

Theorem 3.5.1. Deciding the reversible pebbling space is PSPACE-complete.

All proofs of hardness of pebble games are similar at a high level to the original
in [88] and go through a direct and elaborate reduction from the Quantified Boolean
Formula (QBF) satisfiability problem. We craft gadgets that represent the parts of a QBF,
and connect them in a way such that the space of the resulting graph is s if the formula
is satisfiable and s+ 1 if it is not.

It is somewhat surprising that we can reduce what is an essentially two-player game
to a one-player game, but perhaps less so in the case of reversible pebbling, which we
know to be equivalent to the Dymond–Tompa game. We do not use this fact in the proofs,
and we leave as an open problem to find a simplified proof using the Dymond–Tompa
game instead.

We go one step further and prove that pebbling space is not only hard to compute
but to approximate within additive constants—again, even for graphs of fan-in 2.

Theorem 3.5.2. Approximating the black pebbling space within any additive constant is
PSPACE-hard.

Theorem 3.5.3. Approximating the reversible pebbling space within any additive constant
is PSPACE-hard.

These results are not as impressive as if we could prove hardness of approximation
within a multiplicative constant, but not much is known about hardness of approx-
imation in PSPACE—there are some multiplicative hardness of approximation results
for optimization versions of PSPACE-hard problems [63, 107]—and nothing at all for
pebbling.

3.5. INAPPROXIMABILITY OF PEBBLING 33

Instead we prove the results with two product constructions, one for each game,
that from a graph of order n and space s produce a graph of order O(n2) and space
2s+ p, where p is a constant that depends on the flavour of the game. One only needs
to apply the product a constant number of times to a graph whose pebbling number is
PSPACE-hard to compute exactly to obtain Theorems 3.5.2 and 3.5.3.

But most of this work would have been moot if black and reversible pebbling turned
out to be the same game. We already knew that they are not quite the same, as paths
have constant black space but logarithmic reversible space, but in all examples we had,
black and reversible pebbling are within an additive logarithmic term. We construct some
graphs, a wide version of paths that we call roads, where we can prove a multiplicative
logarithmic separation. There is still a gap between the s2 log n simulation of [126] and
our s log n separation.

It is worth mentioning that these results have direct applications to proof complexity.
Since the Dymond–Tompa cost is equivalent to decision tree depth over pebbling formulas,
which is in turn equivalent to resolution depth, it follows that it is PSPACE-hard to
approximate resolution depth within an additive constant. Additionally, since black
pebbling space is an upper bound on variable space, the separation between black and
reversible pebbling provides a separation between variable space and depth in resolution.

Chapter 4

Conclusion

In this thesis we made some progress towards understanding space in proof complexity.
First we studied proof systems stronger than resolution, namely polynomial calculus and
cutting planes. For polynomial calculus we proved a relation between resolution width
and polynomial calculus space, and a separation between degree and space. However it
still remains open to find—if it exists—a relation between degree and space that works
for all formulas, maybe via a combinatorial characterization of space, and to determine
whether resolution space and polynomial calculus space can be separated.

We showed strong length-space trade-offs for cutting planes, in the sense that upper
bounds are for a strict measure of space, while lower bounds are for a more lenient
measure. Unfortunately, in the process of applying a substitution our formulas suffer from
a polynomial blow-up, which leaves us with polynomial losses in the results. Finding a
better substitution for which the blow-up is only constant is an open problem not only
in proof complexity but in communication complexity too.

Then we sailed into uncharted waters and introduced two new measures: one for
cumulative space in resolution, and another for space in a proof system that accurately
depicts the CDCL algorithm. We studied cumulative space for black-white pebbling and
showed that it is possible to say things that do not immediately follow from maximal
space, and then we translated these results into resolution. As natural as cumulative
space is, it has not received too much attention, so it would be interesting to define it for
other proof systems and models of computation.

Regarding space in CDCL we showed a rich landscape of trade-offs comparable to
those in resolution. We used the opportunity to study the power of restarts in and we
found out that they are not needed to prove trade-offs. There is plenty of work to do in
this direction. For starters, we should verify that these results are relevant in practice
and try to observe them by running experiments on SAT solver implementations—there
is some preliminary work in [75]. We could also follow up on the study of restarts,
perhaps aiming for a separation with different formulas. And of course we could try to
extend the simulation of resolution by CDCL to work with space too.

35

36 CHAPTER 4. CONCLUSION

All of these results share a common pattern of hardness amplification. We prove
lower bounds in a simple model of computation (resolution width, query complexity,
black-white pebbling space), then we modify our problem a bit (composing with XOR
or with indexing), and then we show how the modified problem inherits the lower
bounds in a harder model of computation (polynomial calculus space, communication
complexity, resolution space). This is a very powerful paradigm and we are likely to find
more applications of it.

Finally we studied the complexity of the reversible pebble game itself, as well as how
hard it is to approximate the black and reversible space. We showed some connections to
proof complexity but, more importantly, a good understanding of the Dymond–Tompa
game helped with proving round-space trade-offs.

Part II

Included Papers

37

Paper A

Towards an Understanding of
Polynomial Calculus: New Separations
and Lower Bounds

Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström,
and Marc Vinyals

Full length version of the article published in Proceedings of the 40th International
Colloquium on Automata, Languages and Programming (ICALP ’13), July 2013, pp.
437–448.

Abstract

During the last decade, an active line of research in proof complexity has been
into the space complexity of proofs and how space is related to other measures. By
now these aspects of resolution are fairly well understood, but many open problems
remain for the related but stronger polynomial calculus (PC/PCR) proof system. For
instance, the space complexity of many standard “benchmark formulas” is still open,
as well as the relation of space to size and degree in PC/PCR.

We prove that if a formula requires large resolution width, then making XOR
substitution yields a formula requiring large PCR space, providing some circum-
stantial evidence that degree might be a lower bound for space. More importantly,
this immediately yields formulas that are very hard for space but very easy for size,
exhibiting a size-space separation similar to what is known for resolution. Using
related ideas, we show that if a graph has good expansion and in addition its edge set
can be partitioned into short cycles, then the Tseitin formula over this graph requires
large PCR space. In particular, Tseitin formulas over random 4-regular graphs almost
surely require space at least Ω

�p
n
�

.

39

40 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Our proofs use techniques recently introduced in [Bonacina-Galesi ’13]. Our final
contribution, however, is to show that these techniques provably cannot yield non-
constant space lower bounds for the functional pigeonhole principle, delineating the
limitations of this framework and suggesting that we are still far from characterizing
PC/PCR space.

A.1 Introduction

Proof complexity studies how hard it is to provide succinct certificates for tautological
formulas in propositional logic—i.e., proofs that formulas always evaluate to true under
any truth value assignment, where these proofs are verifiable in time polynomial in their
size. It is widely believed that there is no proof system where such efficiently verifiable
proofs can always be found of size at most polynomial in the size of the formulas they
prove. Showing this would establish NP 6= coNP, and hence P 6= NP, and the study of
proof complexity was initiated by Cook and Reckhow [66] as an approach towards this
(still very distant) goal.

A second prominent motivation for proof complexity is the connection to applied
SAT solving. By a standard transformation, any propositional logic formula F can be
transformed to another formula F ′ in conjunctive normal form (CNF) such that F ′ has
the same size up to constant factors and is unsatisfiable if and only if F is a tautology.
Any algorithm for solving SAT defines a proof system in the sense that the execution
trace of the algorithm constitutes a polynomial-time verifiable witness of unsatisfiability
(such a witness is often referred to as a refutation rather than a proof , and we will use
the two terms interchangeably in this paper). In the other direction, most modern SAT
solvers can in fact be seen to search for proofs in systems studied in proof complexity,
and upper and lower bounds for these proof systems hence give information about the
potential and limitations of such SAT solvers.

In addition to running time, a major concern in SAT solving is memory consumption.
In proof complexity, these two resources are modelled by proof size/length and proof
space. It is thus interesting to understand these complexity measures and how they
are related to each other, and such a study reveals intriguing connections that are also
of intrinsic interest to proof complexity. In this context, it is natural to focus on proof
systems at comparatively low levels in the proof complexity hierarchy that are, or could
plausibly be, used as a basis for SAT solvers. Such proof systems include resolution and
polynomial calculus. This paper takes as its starting point the former system but focuses
on the latter.

A.1.1 Previous Work

The resolution proof system was introduced in [35], and is at the foundation of state-of-
the-art SAT solvers based on so-called conflict-driven clause learning (CDCL) [18, 136].

A.1. INTRODUCTION 41

In resolution, one derives new disjunctive clauses from the clauses of the original
CNF formula until contradiction is reached. One of the early breakthroughs in proof
complexity was the (sub)exponential lower bound on proof length (measured as the
number of clauses in a proof) obtained by Haken [98]. Truly exponential lower bounds—
i.e., bounds exp(Ω(n)) in the size n of the formula—were later established in [61, 177]
and other papers.

Ben-Sasson and Wigderson [29] identified width as a crucial resource, where the
width is the size of a largest clause in a resolution proof. They proved that strong
lower bounds on width imply strong lower bounds on length, and used this to rederive
essentially all known length lower bounds in terms of width.

The study of space in resolution was initiated by Esteban and Torán [77], measuring
the space of a proof (informally) as the maximum number of clauses needed to be kept
in memory during proof verification. Alekhnovich et al. [2] later extended the concept
of space to a more general setting, including other proof systems. The (clause) space
measure can be shown to be at most linear in the formula size, and matching lower
bounds were proven in [2, 25, 77].

Atserias and Dalmau [12] proved that space is in fact lower-bounded by width,
which allowed to rederive all hitherto known space lower bounds as corollaries of width
lower bounds. A strong separation of the two measures was obtained in [27], exhibiting
a formula family with constant width complexity but almost linear space complexity.
Also, dramatic space-width trade-offs have been shown in [24], with formulas refutable
in constant width and constant space where optimizing one of the measures causes
essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [12] that
formulas of low space complexity also have short proofs. For the subsystem of tree-like
resolution, where each line in the proof can only be used once, [77] showed that length
upper bounds also imply space upper bounds, but for general resolution [27] established
that this is false in the strongest possible sense. Strong trade-offs between length and
space were proven in [28, 19].

This paper focuses on the more powerful polynomial calculus (PC)1 proof system
introduced by Clegg et al. [62], which is not at all as well understood. In a PC proof,
clauses are interpreted as multilinear polynomials (expanded out to sums of monomials),
and one derives contradiction by showing that these polynomials have no common root.
Intriguingly, while proof complexity-theoretic results seem to hold out the promise that
SAT solvers based on PC could be orders of magnitude faster than CDCL, such algebraic
solvers have so far failed to be truly competitive.

Proof size2 in PC is measured as the total number of monomials in a proof and the

1Strictly speaking, to get a stronger proof system than resolution we need to look at the generalization
PCR as defined in [2], but for simplicity we will be somewhat sloppy in this introduction in distinguishing
between PC and PCR.

2The length of a proof is the number of lines, whereas size also considers the size of lines. In resolution
the two measures are essentially equivalent. In PC size and length can be very different, however, and so size

42 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

analogue of resolution space is the number of monomials needed in memory during proof
verification. Clause width in resolution translates into polynomial degree in PC. While
length, space and width in resolution are fairly well understood as surveyed above, our
understanding of the corresponding complexity measures in PC is much more limited.

Impagliazzo et al. [111] showed that strong degree lower bounds imply strong size
lower bounds. This is a parallel to the length-width relation in [29], and in fact this
latter paper can be seen as a translation of the bound in [111] from PC to resolution.
This size-degree relation has been used to prove exponential lower bounds on size in a
number of papers, with [3] perhaps providing the most general setting.

The first lower bounds on space were reported in [2], but only sublinear bounds
and only for formulas of unbounded width. The first space lower bounds for k-CNF
formulas were presented in [79], and asymptotically optimal (linear) lower bounds were
finally proven by Bonacina and Galesi [39]. However, there are several formula families
with high resolution space complexity for which the PC space complexity has remained
unknown, e.g., Tseitin formulas (encoding that the sum of all vertex degrees in an
undirected graph must be even), ordering principle formulas, and functional pigeonhole
principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is a
lower bound for space (which would be the analogue of what holds in resolution) and
also it has been unknown whether the two measures can be separated in the sense that
there are formulas of low degree complexity requiring high space. However, [23] recently
proved a space-degree trade-off analogous to the resolution space-width trade-off in
[24] (in fact for the very same formulas). This could be interpreted as indicating that
there should be a space-degree separation analogous to the space-width separation in
resolution, and the authors of [39] suggest that their techniques might be a step towards
understanding degree and proving that degree lower-bounds space, similar to how this
was done for resolution width in [12].

As to size versus space in PC, essentially nothing has been known. It is open whether
small space complexity implies small size complexity and/or the other way around.
Some size-space trade-offs were recently reported in [106, 23], but these trade-offs are
weaker than the corresponding results for resolution.

A.1.2 Our Results

We study the relation of size, space, and degree in PC (and the stronger system PCR)
and present a number of new results as briefly described below.

1. We prove that if the resolution width of refuting a CNF formula F is w, then by
substituting each variable by an exclusive or of two new variables and expanding
out we get a new CNF formula F[⊕] requiring PCR space Ω(w). In one sense, this
is stronger than claiming that degree is a lower bound for space, since high width

is the right measure to study.

A.1. INTRODUCTION 43

complexity is a necessary but not sufficient condition for high degree complexity.
In another sense, however, this is (much) weaker in that XOR substitution can
amplify the hardness of formulas substantially. Nevertheless, to the best of our
knowledge this is the first result making any connection between width/degree
and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between length
and degree on the one hand and space on the other. Namely, taking expander
graphs and making double copies of all edges, we show that Tseitin formulas over
such graphs have proofs in size O(n log n) and degree O(1) in PC but require space
Θ(n) in PCR. (Furthermore, since these small-size proofs are tree-like, this shows
that there is no tight correlation between size and space in tree-like PC/PCR in
contrast to resolution.)

3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin
formulas over (simple or multi-)graphs where the edge set can be partitioned into
small cycles. (The two copies of every edge in the multi-graph above form such
cycles, but this works in greater generality.) In particular, for Tseitin formulas over
random d-regular graphs for d ≥ 4 we establish that an Ω(

p
n) PCR space lower

bound holds asymptotically almost surely.

4. On the negative side, we show that the techniques in [39] cannot prove any
non-constant PCR space lower bounds for functional pigeonhole principle (FPHP)
formulas. That is, although these formulas require high degree and it seems
plausible that they are hard also with respect to space, the machinery developed
in [39] provably cannot establish such lower bounds. Unfortunately, this seems to
indicate that we are further from characterizing degree in PC/PCR than previously
hoped.

A.1.3 Organization of This Paper

The rest of this paper is organized as follows. We briefly review preliminaries in Sec-
tion A.2. Section A.3 presents a overview of our results and provides some proof sketches
outlining the main technical ideas that go into the proofs.

In Section A.4, we prove that resolution width lower bounds plus substitutions with
XOR or other suitable Boolean functions yields PCR space lower bounds. We use this
in Section A.5 to separate size and degree from space in PC and PCR. In Section A.6,
we show PCR space lower bounds for Tseitin formulas over graphs with edge sets
decomposable into partitions of small cycles. The proof that random d-regular graphs for
d ≥ 4 (almost) decompose into cycles of length O(

p
n) is given in Section A.7. The fact

that PCR space lower bounds cannot be obtained for the functional pigeonhole principle
formulas with current techniques is proven in Section A.8, and in the same section we
show that a larger class of formulas containing FPHP formulas have essentially the same

44 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

space complexity for PC and PCR (so that when proving lower bounds, one can without
loss of generality ignore the complementary formal variables for negative literals in PCR
and focus only on PC).

We make some concluding remarks and discuss some of the (many) open questions
remaining in Section A.9. For completeness, in Appendix A.10 we provide a full descrip-
tion of our version of the techniques in [39] and provide proofs that the same claims
still hold in this slightly different setting.

A.2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation ¬x or x (a negative literal). It will also be convenient to use the alternative
notation x0 = x , x1 = x , where we identify 0 with true and 1 with false3 (so that x b

is true if x = b). A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. We denote the
empty clause by ⊥. A clause containing at most k literals is called a k-clause. A CNF
formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. A k-CNF formula is a CNF formula
consisting of k-clauses. We think of clauses and CNF formulas as sets so that order is
irrelevant and there is no repetitions.

Let F be a field and consider the polynomial ring F[x , x , y, y , . . .] (where x and x are
viewed as distinct formal variables). We employ the standard notation [n] = {1, . . . , n}.

Definition A.2.1 (Polynomial calculus resolution (PCR)). A PCR configuration P is a
set of polynomials in F[x , x , y, y , . . .]. A PCR refutation of a CNF formula F is a sequence
of configurations {P0, . . . ,Pτ} such that P0 = ;, 1 ∈ Pτ, and for t ∈ [τ] we obtain Pt

from Pt−1 by one of the following steps:

Axiom download Pt = Pt−1 ∪ {p}, where p is either a monomial m=
∏

i x b
i encoding

a clause C =
∨

i x b
i ∈ F , or a Boolean axiom x2 − x or complementarity axiom

x + x − 1 for any variable x (or x).

Inference Pt = Pt−1 ∪{p}, where p is inferred by linear combination q r
αq+β r or multiplic-

ation q
xq from polynomials q, r ∈ Pt−1 for α,β ∈ F and x a variable.

Erasure Pt = Pt−1 \ {p}, where p is a polynomial in Pt−1.

If we drop complementarity axioms and encode each negative literal x as the polynomial
(1− x), the proof system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π is the number of monomials (counted with
repetitions) in all downloaded or derived polynomials in π, the (monomial) space Sp(π)
is the maximal number of monomials (counted with repetitions)4 in any configuration in

3Note that this notational convention is the opposite of what is found in many other papers, but as we
will see shortly it is the natural choice in the context of polynomial calculus.

4We note that in [2], space was defined without counting repetitions of monomials. All our lower bounds
hold in this more stringent setting as well.

A.2. PRELIMINARIES 45

0 0

1

x

z

y

(a) Labelled triangle graph.

(x ∨ y)
∧ (x ∨ y)
∧ (x ∨ z)
∧ (x ∨ z)
∧ (y ∨ z)
∧ (y ∨ z)

(b) Corresponding Tseitin formula.

Figure A.1: Example Tseitin formula.

π, and the degree Deg(π) is the maximal degree of any monomial appearing in π. Taking
the minimum over all PCR refutations of a formula F , we define the size SPCR(F `⊥),
space SpPCR(F `⊥), and degree DegPCR(F `⊥) of refuting F in PCR (and analogously
for PC).

We can also define resolution in this framework, where proof lines are always clauses
(i.e., single monomials) and new clauses can be derived by the resolution rule inferring
C ∨ D from C ∨ x and D ∨ x . The length of a resolution refutation π is the number of
downloaded and derived clauses, the space is the maximal number of clauses in any
configuration, and the width is the size of a largest clause appearing in π (or equivalently
the degree of such a monomial). Taking the minimum over all refutations as above we
get the measures LR(F `⊥), SpR(F `⊥), and WR(F `⊥). It is not hard to show that
PCR can simulate resolution efficiently with respect to all these measures.

We say that a refutation is tree-like if every line is used at most once as the premise
of an inference rule before being erased (though it can possibly be rederived later). All
measures discussed above can also be defined for restricted subsystems of resolution, PC
and PCR admitting only tree-like refutations.

Let us now describe the family of CNF formulas which will be the main focus of our
study.

Definition A.2.2 (Tseitin formula). Let G = (V, E) be an undirected graph and χ : V →
{0,1} be a function. Identify every edge e ∈ E with a variable xe and let PARITY v,χ

denote the CNF encoding of the constraint that the number of true edges xe incident to
a vertex v ∈ V is equal to χ(v) (mod 2). Then the Tseitin formula over G with respect
to χ is Ts(G,χ) =

∧

v∈V PARITY v,χ .

When the degree of G is bounded by d, PARITY v,χ has at most 2d−1 clauses, all of
width at most d, and hence Ts(G,χ) is a d-CNF formula with at most 2d−1|V | clauses.
Figure A.1b gives an example Tseitin formula generated from the graph in Figure A.1a.
We say that a set of vertices U has odd (even) charge if χ(U) =

∑

u∈U χ(u) is odd (even).
By a simple counting argument one sees that Ts(G,χ) is unsatisfiable if V (G) has odd

46 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

charge. Lower bounds on the hardness of refuting such unsatisfiable formulas Ts(G,χ)
can be proven in terms of the expansion of G as defined next.

Definition A.2.3 (Connectivity expansion [2]). The connectivity expansion of G =
(V, E) is the largest c such that for every E′ ⊆ E, |E′| ≤ c, the graph G′ = (V, E \ E′) has a
connected component of size strictly greater than |V |/2.

If F is a CNF formula and f : {0,1}d → {0,1} is a Boolean function, then we can
obtain a new CNF formula by substituting f (x1, . . . , xd) for every variable x and expand-
ing out to conjunctive normal form. We write F[f] to denote the resulting substituted
formula, where we will be interested in substitutions with a particular kind of functions
defined as follows.

Definition A.2.4 (Non-authoritarian function [28]). We say that a Boolean function
f (x1, . . . , xd) is non-authoritarian if for every x i and for every assignment α to x i there
exist α0,α1 extending α such that f (αb) = b for b ∈ {0,1}.

By way of example, exclusive or (XOR), denoted ⊕, is clearly non-authoritarian, since
regardless of the value of one variable, the other one can be flipped to make the function
true or false, but standard non-exclusive or ∨ is not.

Let us finally give a brief overview of the framework developed in [39], which we
use to prove our PCR space lower bounds.5 A partial partition Q of a variable set V is a
collection of disjoint sets Q i ⊆ V . We use the notation

⋃

Q =
⋃

Q i∈Q
Q i . For two sets

of partial assignments H and H ′ to disjoint domains, we denote by H × H ′ the set of
assignments H × H ′ = {α ∪ β | α ∈ H and β ∈ H ′}. A set of partial assignments H to
the domain Q is flippable on Q if for each variable x ∈Q and b ∈ {0, 1} there exists an
assignment αb ∈ H such that αb(x) = b. We say that H satisfies a formula F if all α ∈ H
satisfy F .

A Q-structured assignment set is a pair (Q,H) consisting of a partial partition Q =
{Q1, . . . ,Q t} of V and a set of partial assignments H =

∏t
i=1 Hi , where each Hi assigns

to and is flippable on Q i . We write (Q,H) ´ (Q′,H′) if Q ⊆ Q′ and H′�Q = H, where
H′�Q =

∏

Q i∈Q
H ′i . A structured assignment set (Q,H) respects a CNF formula F ′ if

for every clause C ∈ F ′ either Vars(C) ∩
⋃

Q = ; or there is a set Q ∈ Q such that
Vars(C) ⊆Q and H satisfies C .

Expressed in this language, the key technical definition in [39] is as follows.

Definition A.2.5 (Extendible family). A non-empty family F of structured assignment
sets (Q,H) is r-extendible for a CNF formula F with respect to a satisfiable F ′ ⊆ F if
every (Q,H) ∈ F satisfies the following conditions.

Size |Q| ≤ r.

5The actual definitions that we use are slightly different but essentially equivalent. We provide the full
details including proofs in Section A.10 for completeness.

A.3. OVERVIEW OF RESULTS AND SKETCHES OF SOME PROOFS 47

Respectfulness (Q,H) respects F ′.

Restrictability For every Q′ ⊆Q the restriction (Q′,H�Q′) is in F .

Extendibility If |Q|< r then for every clause C ∈ F \ F ′ there exists (Q′,H′) ∈ F such
that 1. (Q,H)´ (Q′,H′), 2. H′ satisfies C , and 3. |Q′| ≤ |Q|+ 1.

When F ′ = ;, we simply say that F is r-extendible for F .

To prove PCR space lower bounds for a formula F , it is sufficient to find an extendible
family for F .

Theorem A.2.6 ([39]). Suppose that F is a CNF formula which has an r-extendible
family F with respect to some F ′ ⊆ F . Then SpPCR(F `⊥)≥ r/4.

All space lower bounds presented in this paper are obtained in this manner, where
in addition we always have F ′ = ;.

A.3 Overview of Results and Sketches of Some Proofs

In this section, we give a more detailed overview with formal statements of our results,
and also provide some proof sketches in order to convey the main technical ideas. As
a general rule, the upper bounds we state are for polynomial calculus (PC) whereas
the lower bounds hold for the stronger system polynomial calculus resolution (PCR).
In fact, even more can be said: just as is the case in [2, 79, 39], all our lower bounds
hold also for functional calculus, where proof lines are arbitrary Boolean functions over
clauses/monomials and anything that follows semantically from the current configuration
can be derived in a single step. We do not discuss this further below but instead refer to
Appendix A.10 for the details.

A.3.1 Relating PCR Space and Resolution Width

The starting point of our work is the question of how space and degree are related in
polynomial calculus, and in particular whether it is true that degree lower-bounds space.
While this question remains wide open, we make partial progress by showing that if the
resolution width of refuting a CNF formula F is large (which in particular must be the
case if F requires high degree), then by making XOR substitution we obtain a formula
F[⊕] that requires large PCR space. In fact, this works not only for exclusive or but for
any non-authoritarian function (as defined in Definition A.2.4). The formal statement is
as follows.

Theorem A.3.1. Let F be a k-CNF formula and let f be any non-authoritarian function.
Then it holds over any field that SpPCR(F[f] `⊥)≥ (WR(F `⊥)− k+ 1)/4.

48 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Proof sketch. In one sentence, the proof of Theorem A.3.1 is by combining the concept
of extendible families in Definition A.2.5 with the combinatorial characterization of
resolution width in [12]. We show that the properties of F implied by the width
lower bound can be used to construct an extendible family for F[f]. To make this
description easier to parse, let us start by describing in somewhat more detail the width
characterization in [12].

Consider the following game played on F by two players Spoiler and Duplicator.
Spoiler asks about assignments to variables in F and Duplicator answers true or false.
Spoiler can only remember ` assignments simultaneously, however, and has to forget
some variable when this limit is reached. If Duplicator is later asked about some forgotten
variable, the new assignment need not be consistent with the previous forgotten one.
Spoiler wins the game by constructing a partial assignment that falsifies some clause
in F , and the game is a Duplicator win if there is a strategy to keep playing forever
without Spoiler ever reaching this goal. It was proven in [12] that this game exactly
captures resolution width in the sense that Duplicator has a winning strategy if and only
if `≤WR(F `⊥).

Let us fix r = WR(F ` ⊥) − k + 1 and use Duplicator’s winning strategy for ` =
WR(F `⊥) to build an r-extendible family for F[⊕] (the proof for general non-authori-
tarian functions is very similar and is given in Section A.4). Consider any assignment α
reached during the game. We define a corresponding structured assignment set (Qα,Hα)
by adding a block Q x = {x1, x2} to Qα for every x ∈ Dom(α), and let Hx contain all
assignments αx to {x1, x2} such that αx(x1 ⊕ x2) = α(x).

Given these structured assignment sets (Qα,Hα), the family F is constructed in-
ductively as follows. The base case is that (Q;,H;) = (;,;) is in F . To extend (Qα,Hα)
to satisfy a clause in C[⊕], we simulate a Spoiler with memory α who asks about all
variables in C . Since Duplicator does not falsify C , when all variables have been queried
some literal in C must be satisfied by the assignment. Fix one such variable assignment
{x = b} and add

�

Qα∪{x=b},Hα∪{x=b}
�

as defined above to F . All that remains now is
to verify that this yields an extendible family as described in Definition A.2.5 and then
apply Theorem A.2.6.

A.3.2 Separation of Size and Degree from Space

An almost immediate consequence of Theorem A.3.1 is that there are formulas which
have small PC refutations in constant degree but nevertheless require maximal space in
PCR.

Theorem A.3.2. For any field F of characteristic p there is a family of k-CNF formulas
Fn (where k depends on p) of size O(n) for which SpPCR(Fn `⊥) = Ω(n) over any field
but which have tree-like PC refutations πn : Fn `⊥ over F of size S(πn) = O(n log n) and
degree Deg(πn) = O(1).

A.3. OVERVIEW OF RESULTS AND SKETCHES OF SOME PROOFS 49

Proof sketch. Let us focus on p = 2, deferring the general proof to Section A.5. Consider a
Tseitin formula Ts(G,χ) for any constant-degree graph G over n vertices with connectivity
expansion Ω(n) and any odd-charge function χ.

From [29] we know thatWR(F `⊥) = Ω(n). It is not hard to see that XOR substitution
yields another Tseitin formula Ts(G′,χ) for the multi-graph G′ obtained from G by adding
double copies of all edges. This formula requires large PCR space (over any field) by
Theorem A.3.1. The upper bound follows by observing that the CNF encodes a linear
system of equations, which is easily shown inconsistent in PC by summing up all equations
in a tree-like fashion.

It follows from Theorem A.3.2 that tree-like space in PC/PCR is not upper-bounded
by tree-like size, in contrast to resolution. This is the only example we are aware of where
the relations between size, degree, and space in PC/PCR differ from those between
length, width, and space in resolution, so let us state this as a formal corollary.

Corollary A.3.3. It is not true in PC/PCR that tree-like space complexity is upper-bounded
by the logarithm of tree-like size complexity.

A.3.3 Space Complexity of Tseitin Formulas

A closer analysis of the proof of Theorem A.3.2 reveals that it partitions the edge set
of G′ into small edge-disjoint cycles (namely, length-2 cycles corresponding to the two
copies of each original edge) and uses partial assignments that all maintain the same
parities of the vertices on a given cycle. It turns out that this approach can be made to
work in greater generality as stated next.

Theorem A.3.4. Let G = (V, E) be a connected graph of bounded degree d with connectivity
expansion c such that the edge set E can be partitioned into cycles of length at most b. Then
it holds over any field that SpPCR(Ts(G,χ) `⊥)≥ c/4b− d/8.

Proof sketch. We build on the resolution space lower bound in [2, 77], where the proof
works by inductively constructing an assignment αt for each derived configuration
Ct (which corresponds to removing edges from G and updating the vertex charges
accordingly) such that (a) αt satisfies Ct , and (b) αt does not create any odd-charge
component in G of size less than n/2. The inductive update can be performed as long as
the space is not too large, which shows that contradiction cannot be derived in small
space (since Ct is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an exponential
number of such good assignments, and in general we do not know how to do this. Never-
theless, some more thought reveals that the only important aspect of our assignments are
the resulting vertex parities. And if the edge set is partitioned into cycles, we can always
shift edge charges along the cycles so that for all the exponentially many assignments,
the vertex parities are all the same (meaning that on a higher level we only have to
maintain one good assignment after all). The full proof is presented in Section A.6.

50 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Some graphs, such as rectangular grids, can be partitioned into cycles of size O(1),
yielding tight bounds on space. A bit more surprisingly, random d-regular graphs for
d ≥ 4 turn out to (sort of) admit partitions into cycles of size O(

p
n), which yields the

following theorem.

Theorem A.3.5. Let G be a random d-regular graph on n vertices, where d ≥ 4. Then
over any field it holds almost surely that SpPCR(Ts(G,χ) `⊥) = Ω

�p
n
�

.

Proof sketch. As long as we are interested in properties holding asymptotically almost
surely, we can replace random 4-regular graphs with unions of two random Hamiltonian
cycles [121]. We show that a graph distributed according to the latter model almost
surely decomposes into cycles of length O(

p
n), along with εn additional edges (which

are easily taken care of separately). Since random graphs are also excellent expanders,
we can apply Theorem A.3.4. The argument extends straightforwardly to random d-
regular graphs for any d ≥ 4. The full proof, which contains a bit more by way of
technical details, is given in Section A.7.

We believe that the true space bound should actually be Θ(n), just as for resolution,
but such a result seems beyond the reach of our current techniques. Also, note that to
make Theorem A.3.4 go through we need graph expansion plus partitions into small
cycles. It seems plausible that expansion alone should be enough to imply PCR space
lower bounds, as for resolution, but again we are not able to prove this.

A.3.4 Limitations of the PCR Space Lower Bound Technique

The framework in [39] can also be used to rederive all PCR space lower bounds shown
previously in [2, 79], and in this sense [39] sums up what we know about PCR space
lower bounds. There are also intriguing similarities between [39] and the resolution
width characterization in [12] (as partly hinted in the proof sketch for Theorem A.3.1),
which raises the question whether extendible families could perhaps be a step towards
characterizing degree and showing that degree lower-bounds space in PC/PCR.

Even more intriguingly, however, there are CNF formulas for which it seems reason-
able to expect that PCR space lower bounds should hold, but where extendible families
seem very hard to construct. Such formulas include ordering principle formulas, func-
tional pigeonhole principle (FPHP) formulas, and random 3-CNF formulas. In fact, no
PCR space lower bounds are known for any 3-CNF formula—it is consistent with current
knowledge that all 3-CNF formulas could have constant space complexity in PCR (!),
though this seemingly absurd possibility can be ruled out for PC [79].

We show that the problems in applying [39] to the functional version of the pi-
geonhole principle are inherent, in that these techniques provably cannot establish any
nontrivial space lower bound. We refer to Section A.8 for the formal description of the
formulas and the proof of the next theorem.

Theorem A.3.6. There is no r-extendible family for FPHPn+1
n for r > 1.

A.4. PCR SPACE LOWER BOUNDS FROM RESOLUTION WIDTH 51

Since by [160] these formulas6 require PC refutation degree Ω(n), one way of
interpreting Theorem A.3.6 is that the concept of r-extendible families is very far from
providing the hoped-for characterization of degree.

One step towards proving PCR space lower bounds could be to obtain a weaker
PC space lower bound—as noted above in the discussion of 3-CNF formulas, this can
sometimes be easier. For FPHPn+1

n , however, and for a slightly more general class of
formulas described in Section A.8, it turns out that such PC space lower bounds would
immediately imply also PCR space lower bounds.

Theorem A.3.7. SpPCR(FPHPn+1
n `⊥) = Θ(SpPC(FPHPn+1

n `⊥)).

Proof sketch. In FPHPn+1
n we have variables x i, j for i ∈ [n+ 1], j ∈ [n], encoding that

pigeon i goes into hole j. The clauses of the formula require that every pigeon is mapped
to some hole and that this mapping is one-to-one. Because of this, the negation of x i, j is
equivalent to

∨

j′ 6= j x i, j′ and so the literal x i, j can be encoded as the monomial
∏

j′ 6= j x i, j′

in PC. Since this substitutes a monomial for a monomial the space does not increase.
Now we can take any PCR refutation of FPHPn+1

n and apply such substitutions line by
line. The inferences remain sound (with some local auxiliary steps added) and so this
process gives a PC refutation of FPHPn+1

n in roughly the same space.

A.4 PCR Space Lower Bounds From Resolution Width

In the rest of this paper, we give formal proofs of the results described in Section A.3.
We start by considering the question of relating space and degree in PCR. Although we
do not know how to prove (or rule out) an analogue of the relation between space and
width in resolution, we can use the combinatorial game from [12] to prove a weaker
relation between PCR space and resolution width. Recall from the informal description
of the game in Section A.3.1 that we have two players, Spoiler and Duplicator, and that
Duplicator needs to be able to provide an answer to any of Spoiler’s questions about
assignments to some bounded number of variables in order to win the game. Formally, a
winning strategy for Duplicator is defined as follows.

Definition A.4.1 (Duplicator’s strategy [12]). A Duplicator winning strategy for the
Boolean existential `-pebble game on a CNF formula F is a non-empty family D of
partial truth value assignments to Vars(F) such that every α ∈ D satisfies the following
conditions:

1. No clause C ∈ F is falsified by α.

2. The domain of α has size at most |Dom(α)| ≤ `.

6To be precise, the degree lower bound in [160] is proven for the functional pigeonhole principle encoded
as linear equations—the standard CNF version has large initial width/degree and so there is nothing to prove.
However, the linear-equations encoding of FPHP has axioms of large space, and so for space lower bounds we
want to study the CNF version.

52 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

3. For every subassignment α′ ⊆ α it holds that α′ ∈ D.

4. If |Dom(α)| < `, then for every variable x there exists an α′ ∈ D that assigns a
value to x and extends α (i.e., α′ ⊇ α).

In [12], Atserias and Dalmau proved the following tight connection between Duplic-
ator winning strategies and resolution refutation width.

Theorem A.4.2 ([12]). The CNF formula F has a resolution refutation of width ` if and
only if Duplicator has no winning strategy for the Boolean existential (`+ 1)-pebble game
on F .

The Duplicator strategy in Definition A.4.1 has some similarities with the extendible
family in Definition A.2.5, which can be taken to suggest that there might be a relation
between resolution width and PCR space. The main difference is that extendible families
consist of sets of assignments in which we must be able to flip every variable, while
Duplicator’s strategy is built on fixed individual assignments. However, if we substitute
every variable in F with a non-authoritarian function as defined in Definition A.2.4, then
it is straightforward to make the transition from fixed assignments to sets of flippable
assignments.

Lemma A.4.3. Let F be a k-CNF formula and let f be a non-authoritarian function. If
Duplicator wins the Boolean existential `-pebble game on F , then there exists an (`−k+1)-
extendible family for F[f].

Proof. Let D be a winning Duplicator strategy for F . We will use D to construct an
(`− k+ 1)-extendible family F for the substituted formula F[f]. In what follows, let us
denote by Varsd(x) the set of variables that we get when we substitute x by f (x1, . . . , xd)
in F for some non-authoritarian function f of arity d.

For x ∈ Vars(F), defineQ x = Varsd(x) and let Hx ,α = {β | Dom(β) =Q x and f (β) =
α(x)} be the set of all assignments over Q x for which f evaluates to the value that α
assigns to x . For any partial assignment α ∈ D we let the corresponding structured
assignment set (Qα,Hα) be the pair consisting of Qα = {Q x | x ∈ Dom(α)} and Hα =
∏

x∈Dom(α) Hx ,α. We define F to encompass all structured assignment sets (Qα,Hα)
corresponding to partial assignments α ∈ D with |Dom(α)| ≤ ` − k + 1. We need to
prove that F constructed in this way is an (`− k+ 1)-extendible family with respect to
F ′ = ;.

By construction, for every (Qα,Hα) ∈ F we have that Qα is a partial partition and
that the partial assignments Hx ,α ∈Hα assign to Q x ∈Qα. Furthermore, Hx ,α is flippable
on Q x . This is so since f is a non-authoritarian function, which means that for very
variable in x i ∈ Q x there exist assignments βb, b ∈ {0, 1}, to Q x such that βb(x i) = b
and f (βb) = α(x). Hence, all (Qα,Hα) ∈ F are structured assignment sets.

The size condition |Qα| ≤ ` − k + 1 in Definition A.2.5 is clearly satisfied for all
(Qα,Hα) ∈ F , and respectfulness is vacuously true. To see that the restriction property

A.4. PCR SPACE LOWER BOUNDS FROM RESOLUTION WIDTH 53

also holds, consider any (Qα,Hα) ∈ F obtained from α ∈ D. For any subset Q′ ⊆ Qα,
let α′ be the subassignment of α restricted to {x |Q x ∈Q′} and let H′ =

∏

Q x∈Q′
Hx ,α =

∏

x∈Dom(α′) Hx ,α′ . Then since α′ ∈ D by Definition A.4.1, it follows by the construction
of F that (Q′,H�Q′) = (Q′,H′) ∈ F as required.

It remains to prove that F has the extension property. Let (Qα,Hα) ∈ F be such
that |Qα| < `− k + 1 and let C be a clause in F[f]. We need to argue that (Qα,Hα)
can be extended to satisfy C . Let A ∈ F be the clause such that C ∈ A[f], i.e., C is
one of the clauses obtained when substituting f in A. If α ∈ D satisfies A, it follows
by construction that Hα satisfies all of A[f] and hence, in particular, C , and we are
done. Otherwise, it follows from the definition of a winning Duplicator strategy and
the fact that |α| ≤ `− k that α can be extended to an assignment α′ that queries all of
the (at most k) variables in A without falsifying the clause. Such an α′ must satisfy A.
Fix some variable x∗ ∈ Dom(α′) \ Dom(α) such that α′ satisfies A by assigning to x∗,
and let α∗ be the subassignment of α′ with domain Dom(α) ∪ {x∗}. This α′ must be
in D by Definition A.4.1, and analogously to what was argued above it must hold that
Hα∗ satisfies C ∈ A[f]. It is clear that (Qα,Hα)´ (Qα∗ ,Hα∗), and that |Qα∗ | ≤ |Qα|+ 1.
Hence, F satisfies extendibility, and the lemma follows.

Combining Lemma A.4.3 with the combinatorial characterization of width in The-
orem A.4.2 and the lower bound on space in terms of extendible families in The-
orem A.2.6, we obtain the first theorem claimed in Section A.3.

Theorem A.3.1 (restated). Let F be a k-CNF formula and let f be any non-authoritarian
function. Then

SpPCR(F[f] `⊥)≥
WR(F `⊥)− k+ 1

4
.

While it can be argued that this theorem might be interpreted as an indication
that degree could be a lower bound for space in PCR, a more immediate and concrete
consequence is that it gives us a way to prove the existence of formulas which have very
small PCR refutations, but for which any refutation must have essentially maximal space.
For polynomial calculus over fields of characteristic 2, we already have all the tools
needed to argue this. In particular, the space lower bound needed follows immediately
from Theorem A.3.1 as described next.

Corollary A.4.4. Let G be an expander graph of bounded degree over n vertices, let χ be
an odd-charge function on V (G), and let G′ be the multi-graph obtained by adding two
copies of each edge in G. Then

SpPCR(Ts(G′,χ) `⊥) = Ω(n) .

Proof. As shown in [29], refuting Tseitin formulas over expander graphs requires linear
width in resolution. It is not hard to see that substituting with XOR in a Tseitin formula
over G is the same as considering the formula over the multi-graph with two copies of

54 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

every edge. Thus Ts(G′,χ) requires monomial space Ω(n) by Theorem A.3.1, which is
linear in the formula size if G is a constant-degree expander.

As briefly discussed in Section A.3.2, it is not hard to show that Tseitin formulas
have small refutations in PCR (and even PC) over fields of characteristic 2, which yields
Corollary A.3.3 for this characteristic. However, this upper bound does not hold for
characteristics distinct from 2. Therefore, we need to work with generalized version of
Tseitin formulas and prove our results for such formulas instead. We do so in the next
section.

A.5 Formulas With Small Proofs May Require Large Space

In Section A.2 we defined Tseitin formulas as the CNF encoding of particular linear
systems over F2. Here we consider a generalization over fields of any positive charac-
teristic. Any such formula essentially defines an unsatisfiable linear system over Fp for
some prime p. In order to efficiently encode this linear system as a CNF it is important
that each equation mentions a small (for instance constant) number of variables: any
equation over d variables can be encoded as a set of at most 2d clauses with d literals
each. In particular, Tseitin formulas are defined on directed graph as follows.

Definition A.5.1. Let G = (V, E) be a directed graph and χ : V → {0,1, . . . , p− 1} be a
function. Identify every directed edge (u, v) ∈ E with a variable x(u,v) and let Modp

v,χ
denote the CNF encoding of the constraint that the number of incoming edges x(u,v)
incident to a vertex v ∈ V that are set to true, minus the number of outgoing edges x(v,w)
set to true is equal to χ(v) (mod p). Then the Tseitin formula over G with respect to χ
is Tsp(G,χ) =

∧

v∈V Modp
v,χ .

This formula is unsatisfiable when
∑

v χ(v) 6≡ 0 (mod p). Compare Definition A.2.2
with Definition A.5.1: for p = 2 the definitions coincide because in such characteristic
there is no difference between the contribution of the incoming and the outgoing edges.
For p = 2 it is natural to define the formula in terms of undirected graphs, indeed.
Not surprisingly, polynomial calculus over a field of characteristic p efficiently refutes
unsatisfiable Tseitin formulas defined on sums modulo p.

Lemma A.5.2. Consider a directed graph G = (V, E) with n vertices and constant de-
gree, and a function χ : V → {0, 1, . . . , p− 1} with

∑

v χ(v) 6≡ 0 (mod p). The formula
Tsp(G,χ) has a tree-like polynomial calculus refutation of constant degree, size O(n log n),
and monomial space O(n).

Furthermore, given any boolean function f on a constant number of variables, the result
holds for the substituted formula Tsp(G,χ)[f].

A.5. FORMULAS WITH SMALL PROOFS MAY REQUIRE LARGE SPACE 55

Proof. Let us first consider the case without substitution. Recall that true value is encoded
as 0 and false as 1. In this encoding formula Modp

v,χ is equivalent to

∑

u: (u,v)∈E

(1− xuv)−
∑

w: (v,w)∈E

(1− xvw)≡ χ(v) (mod p) . (A.5.1)

The proof is based on the natural intuition that summing the equations (A.5.1)
for all vertices in the graph results in a contradiction, since in the sum each variable
appears twice: once with positive and once with negative sign. Fix an enumeration of
V = {v1, . . . vn}, and fix the following notation for partial sums:

Sa,b :=
b
∑

i=a





∑

u:(u,vi)∈E

(1− xuvi
)−

∑

w:(vi ,w)∈E

(1− xvi w)



≡
b
∑

i=a

χ(vi) (mod p) . (A.5.2)

We fix t = 2dlog ne < 2n and consider Si,i to be the equation “0= 0” for all n< i ≤ t.
We set up a tree of height dlog ne, where leaves are labeled by equations Si,i and internal
nodes are labeled by the sum of the two children labels (i.e., a node at level k is labeled
by the equation Si,i+2k−1 for some i).

Each equation Si,i is derived from the encoding of Modp
vi ,χ

. This equation mention
only a constant number of variables, so by implicational completeness of polynomial
calculus (see Lemma A.5.3) we have a derivation of constant space and size.

Equations in internal nodes are derived by summing the equations of the children.
We derive all the equations of the tree in a bottom-up fashion. This concludes the
refutation since the equation S1,t at the root is

n
∑

i=1





∑

u:(u,vi)∈E

(1− xuvi
)−

∑

w:(vi ,w)∈E

(1− xvi w)



≡
n
∑

i=1

χ(vi) (mod p) (A.5.3)

∑

(u,v)∈E

(1− xuv)−
∑

(v,w)∈E

(1− xvw)≡
n
∑

i=1

χ(vi) (mod p) (A.5.4)

0≡
n
∑

i=1

χ(vi) (mod p) (A.5.5)

Which is the end of the refutation, since
∑n

i=1χ(vi) is non-zero.
The size of the proof accounts O(1) for the deduction of each Si,i , and O(n) for the

total number of monomials at each level of the tree: at level k there are t
2k equations

with at most O(2k) monomials. So the total size is as claimed.
Regarding the monomial space, notice that we need to keep simultaneously in

memory only the equations of two adjacent levels, which have at most O(n) monomials.
The degree of the refutation is O(1) for the inference of each equation Si,i . The rest

of the proof has degree 1.

56 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

The case with substitution is similar: consider a substituting function f on a constant
number of variables. There is a multilinear polynomial p f which evaluates exactly as f
on all {0,1} inputs, and which mentions a constant number of monomials.

The substituted linear forms Si,i[f] are linear combinations of copies of p f , so they
have a constant number of variables each and their inference from Modp

vi ,χ
[f] is doable

in constant space, size and degree because of Lemma A.5.3.
Once the equations Si,i[f] are derived, the refutation goes exactly as shown for the

case with no substitution. From this point on the original refutation is linear; applying
the trivial substitution to these proof lines increases the space, degree and size only by
constant factors.

For the sake of self-containment, we give a proof of the implicational completeness
of polynomial calculus. This completes the proof of Lemma A.5.2.

Lemma A.5.3. Consider a polynomial implication p1, . . . , pl |= p which is valid over {0,1}
assignments. Assume all involved polynomials collectively mention d variables and have
degree O(d); then there is a PC proof of this implication in degree O(d), space 2O(d), and
size 2O(d).

Proof. Without loss of generality we assume that all polynomials are in multilinear form.
This is because we can transform any polynomial of degree O(d) between its original
and multilinear version in size and space 2O(d). So each of the polynomials has size at
most 2d and degree d. Let α = {x1 7→ v1, . . . , xd 7→ vd} be an assignment; we define
Cα as

∏

i(vi x i + (1− vi)(1− x i)), the polynomial which evaluates to 1 exactly on the
assignment α. We list some useful observations:

Observation (1) is that given the axioms {x i = vi}i∈[d] and any polynomial q on
variables x1, . . . , xd , it is possible to efficiently infer q − α(q) = 0. We prove this by
induction on the number of variables. If d = 0 then q = α(q). Now assume that
q−α(q) = s+ x t −α(q). If we have deduced q�x=0 = s−α(q) and we have the axiom
x , we can easily infer x t and then s + x t − α(q). If we have deduced q�x=1 (which
is s + t − α(q)) and we have the axiom x − 1, we can easily infer (x − 1)t and then
s + t + (x − 1)t − α(q) = s + x t − α(q). This derivation requires O(d) steps, one per
variable, and both size and space are proportional to the number of monomials in q. The
degree is equal to the degree of q plus d.

Observation (2) is that for any q on variables x1, . . . , xd , we can infer from Boolean
axioms the polynomial Cα(q − α(q)), for every assignment α on such variables. The
inference is in degree O(d), and size and space are 2O(d). It is immediate for the simple
case q = x i: each Cα(x i − vi) contains the factor x2

i − x i by construction. For any
non-trivial q we apply the inference in Observation (1), with the caveat that each line is
multiplied by Cα. The resulting polynomial is Cα(q−α(q)).

Observation (3) is that
∑

α∈{0,1}d Cα = 1, and this is an easy induction over d (it also
follows from the semantic of polynomials Cα).

A.6. PCR SPACE LOWER BOUNDS FOR TSEITIN FORMULAS 57

We now see how to deduce Cαp for every assignment α. For α which satisfy p we
derive Cα(p− 0) using observation (2). For α which falsify p, pick any falsified pi and
deduce both Cα(pi − α(pi)) and Cαpi , using observations (2) and multiplication rule,
respectively. The sum is Cαα(pi), and since α(pi) is a non-zero field element, we can
multiply by p

α(pi)
to get Cαp.

Having deduced all Cαp we can use observation (3) to infer p. Notice that we did
2d inferences (one for each α), each of them of degree O(d) and each of them in space
2O(d), which also gives upper bound of 2O(d) on size.

Now we have seen that (substituted) Tseitin formulas are easy for polynomial calculus
under determined conditions. Nevertheless we can use the tools from Section A.4 to
show that even under such conditions, any refutation requires large space.

Theorem A.5.4 (restatement of Theorem A.3.2). For F any field of characteristic p
there is a family of k-CNF formulas Fn (where k depends on p) of size O(n) for which
SpPCR(Fn `⊥) = Ω(n) over any field but which have tree-like PC refutations πn : Fn `⊥
over F of size S(πn) = O(n log n) and degree Deg(πn) = O(1).

Proof. The formula family we consider is based on Tseitin formulas over a family of
Ramanujan graphs of constant degree. This is a family of simple graphs with good
expansion properties; a construction is given in [138]. Consider such a graph G on
m vertices: set an arbitrary orientation on the edges, and consider any χ : [m] →
{0, . . . , p− 1} with

∑

i χ(i) 6= 0 mod p.
In Corollary 4.5 of [3], it is claimed that if G is a d-regular graph for d at least some

constant value dp, then Tsp(G,χ) requires refutations of degree Ω(m) in polynomial
calculus over any field of characteristic different from p.

Polynomial calculus simulates resolution over any characteristic, and the degree of
the simulation is exactly the width of the simulated resolution proof. This implies that
resolution requires width Ω(m) to refute the formula.

Fix k = 2d. We apply a XOR substitution on formula Tsp(G,χ), and we get a k-CNF
formula on n= dm variables. Theorem A.3.1 implies that any polynomial calculus (or
PCR) refutation requires monomial space Ω(n), under any characteristic.

If the characteristic of the underlying field is p the upper bound follows from
Lemma A.5.2.

A.6 PCR Space Lower Bounds for Tseitin Formulas

In the following exposition we assume that G = (V, E) is a graph with connectivity
expansion c and χ : V → {0,1} is a Boolean function. We call a pair (G,χ) a charged
graph, and we say that a set of vertices U is even (odd) charged if

∑

v∈U χ(v) is even
(odd). We denote the set of edges incident to a vertex v by edgesv and extend the
notation to sets of vertices. We write α to denote the complementary assignment of α
obtained by flipping the value of all variables in the domain Dom(α).

58 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Definition A.6.1. The charged graph induced by a partial assignment α is ((V, E \
Dom(α)),γ), where γ(v) = χ(v) +

∑

e3v(1−α(e)).

Observation A.6.2. The formulas Ts((V, E \Dom(α)),γ) and Ts(G,χ)�α are equivalent.
An assignment α satisfies the clauses PARITY v,γ if and only if the vertex v is isolated and
even (as a singleton set) in the charged graph induced by α. In that case, we say that the
assignment α satisfies the vertex v.

Definition A.6.3 (non-splitting assignment). A charged graph is non-splitting if all
its connected components of size at most n/2 are even. A partial assignment α is
non-splitting if the charged graph induced by α is non-splitting.

Observation A.6.4. The empty assignment is non-splitting for the charged graph (G,χ) if
and only if (G,χ) is non-splitting. A connected graph is always non-splitting.

Observation A.6.5. Suppose α is a partial assignment extending a partial assignment β
(or conversely, β = α�D for some D ⊆ Dom(α)). If α is non-splitting, then so is β . In other
words, “unsubstituting” an edge cannot result in an odd component that has size less than
or equal to n/2 because component sizes can only increase.

The key idea in the resolution space lower bound is that if a proof does not mention
many edges, then it is possible to maintain a satisfiable assignment to the edges the
proof mentions. This satisfiable assignment shifts the charge in the graph so that a
contradiction only arises in vertices that the proof does not mention and leaves enough
freedom to keep adding edges to the assignment unless the proof reaches a space
threshold. Thus the proof is unable to derive a contradiction unless it mentions many
edges at once.

The following lemma implements the charge shifting idea.

Lemma A.6.6. Let α be a non-splitting assignment. Let e be an edge. Let D = Dom(α)∪{e}.
If |D| ≤ c then we can extend α to some non-splitting assignment β such that Dom(β) = D.

Proof. Let (G′,γ) be the charged graph induced by α. Let e = (u, v). Let C be the
connected component in G′ that contains the vertices u and v. Let α0 = α∪{e 7→ 0} and
α1 = α∪ {e 7→ 1}. Let (G′′,γ0) and (G′′,γ1) be the charged graph induced by α0 and α1

respectively. Observe that γ0(C) = γ1(C) = γ(C), where γ(C) =
�∑

v∈V (C) γ(v)
�

mod 2
for the vertices V (C) of component C .

If e is not a bridge, i.e., removing the edge e from G′ does not disconnect C , then we
can extend α to either α0 or α1. In this case there is no new component.

If e is a bridge, let C ′ and C ′′ be the components in G′′ that e disconnects C into. If
γ(C) is even, either both γ0(C ′) and γ0(C ′′) are even, in which case we can extend α to
α1, or both γ0(C ′) and γ0(C ′′) are odd, in which case we can extend α to α0 reversing
both parities. In this case all new components are even.

Otherwise if γ(C) is odd, since α is non-splitting, it holds that |C | > n/2. Since
|D| ≤ c, the graph G′′ has a connected component larger than n/2. The graph G′ cannot

A.6. PCR SPACE LOWER BOUNDS FOR TSEITIN FORMULAS 59

have two disjoint components both larger than n/2, so this large component is a subset
of C; either C ′ or C ′′. Assume it is C ′ without loss of generality. Since C is odd, either
γ0(C ′) is odd and γ0(C ′′) is even, in which case we can extend α to α1, or γ0(C ′) is even
and γ0(C ′′) is odd, in which case we can extend α to α0 reversing both parities. In this
case there is one new odd component, but it is larger than n/2.

Corollary A.6.7. Let α be a non-splitting assignment. Let E be a set of edges. Let D =
Dom(α)∪ E. If |D| ≤ c then we can extend α to some non-splitting assignment β such that
Dom(β) = D.

To extend this idea to a PCR lower bound for space, and in particular to the framework
of [39], we need to use assignments that are not only non-splitting but also resilient to
flips of the values of some variables.

Observe that if all the edges along a cycle change their value, the graph induced
by the cycle stays the same. The following definition will let us formalize this property.
Recall the cartesian product notation for sets of assignments.

Definition A.6.8 (Flipped assignments). Let α be a partial assignment and let Q be a
(total) partition of Dom(α). The set of flipped assignments of α with respect to Q is the
set of assignments given by

Flip(Q,α) =
∏

Q∈Q
{α�Q,α�Q} .

Observation A.6.9. If α is an assignment over a cycle C , then α and α induce the same
charged graph. Therefore, if Q is a set of disjoint cycles, all the flipped assignments of some
assignment α with respect to Q induce the same charged graph.

Theorem A.6.10 (Strengthening of Theorem A.3.4). Let (G,χ) be a non-splitting
charged graph of maximal degree d with connectivity expansion c such that a partition M
of E into edge-disjoint cycles of length at most b exists. Then

SpPCR(Ts(G,χ) `⊥)≥ c/4b− d/8 .

Note that this is a strengthening of Theorem A.3.4 since if G is connected then (G,χ)
is trivially non-splitting for every χ.

Proof. By Theorem A.2.6, it is sufficient to build an r-extendible family for r = c/b−d/2.
Let F be the set of all pairs (Q,Hα) satisfying:

1. Q ⊆ M and |Q| ≤ r.

2. Hα = Flip(Q,α), where α is any non-splitting assignment over
⋃

Q.

60 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Note that Q is a collection of edge-disjoint cycles and every Hα consists of the some
non-splitting assignment α and its flips over cycles. Each (Q,Hα) ∈ F has many different
representations, since Hα =Hβ whenever β ∈ Flip(α,Q).

Let us show that F is an extendible family. First, pairs (Q,Hα) are Q-structured by
construction.

The empty assignment is non-splitting by Observation A.6.4. So the family F is not
empty because (;,H;) ∈ F , where ; is the empty assignment.

Let us show that the family is closed under restriction. Consider any (Q,H) ∈ F
and Q′ ⊆Q. Let α ∈H, and let β be the restriction of α to

⋃

Q′. By construction α is
non-splitting, and restriction preserves the property of being non-splitting as noted in
Observation A.6.5, so (Q′,Hβ) ∈ F . Finally H�Q′ = Flip(Q,α)�Q′ = Flip(Q′,β) =Hβ .

Let us show that the family is closed under extension. Let (Q,H) ∈ F with |Q|< r
and let p ∈ PARITY v,χ for some vertex v ∈ V .

If H satisfies p we are done; otherwise we will extend a non-splitting assignment
associated with H.

Let α ∈H be a non-splitting assignment that does not satisfy p. Let Qv = {C ∈ M |
v ∈ C} be the cycles adjacent to v, and let Q+ = Qv \Q; we will see that Q+ is not
empty, but we do not need to assume it now. Let D = Dom(α)∪

⋃

Q+. By hypothesis
|Q∪Q+|< r + d/2, and it follows that |D|< c. Thus we can apply Corollary A.6.7 on α
and

⋃

Q+ to extend α to a non-splitting assignment β over D.
The assignment β disconnects the component {v} and is non-splitting, so it makes

the component {v} even. By Observation A.6.2, β satisfies the vertex v. Note that β
falsifies the subclause of p that mentions variables in

⋃

Q, as α does not satisfy p. If for
all C ∈Q+ and subclauses pC of p that mention variables in C , the assignment β either
falsified or satisfied all literals in pC , then there would be a non-splitting assignment
in Flip(Q+,β) that falsified all literals in p. However, this cannot happen as such an
assignment would falsify the vertex v, while keeping its charge the same as the satisfying
assignment β .

Thus, there is a cycle C ∈Q+ that contains one literal of p that β satisfies and one
literal that β falsifies. Let Q′ =Q∪ {C} and let H′ =Hβ . By construction (Q′,H′) ∈ F ,
and assignments in H′ restricted to C satisfy p, showing that (Q′,H′) satisfies the
extension condition.

Theorem A.3.4 is somewhat restrictive, in that it requires us to partition all edges in
the graph into short cycles. However, as the following corollary shows, it is enough to
partition most of the edges.

Corollary A.6.11. Let (G,χ) be a non-splitting charged graph of maximal degree d with
connectivity expansion c such that a partition M of E into edge-disjoint cycles of length at
most b and an additional number of t < c edges exist. Then

SpPCR(Ts(G,χ) `⊥)≥ (c − t)/4b− d/8

A.6. PCR SPACE LOWER BOUNDS FOR TSEITIN FORMULAS 61

Proof. Let H be the graph obtained by removing the t extra edges. Note that the
connectivity expansion of H is at least c− t. Corollary A.6.7 on page 59 shows that there
exists a non-splitting assignment α on G \H. Observation A.6.2 on page 58 implies that
for some γ, (H,γ) is a non-splitting charged graph. By a restriction argument, any PCR
refutation of a non-splitting Tseitin formula on G in space S can be translated to a PCR
refutation of a non-splitting Tseitin formula on H in space at most S. Theorem A.3.4
shows that S ≥ (c − t)/4b− d/8.

A.6.1 Application: Grid Graphs

There are families of graphs where we actually get matching upper and lower bounds
for PCR space. One such family is square grids. For the following subsection let n be
an even integer and denote Zn = Z/nZ, the integers modulo n. The following defines a
grid over a torus.

Definition A.6.12 (Grid graph). The grid graph (or discrete torus) T (n) is a 4-regular
graph with vertices V = Zn ×Zn and edges

E =
��

(i, j), (i + 1, j)
�

,
�

(i, j), (i, j + 1)
� �

�i, j ∈ V
	

,

where the sums are over Zn. We order the vertices of T (n) lexicographically: (i, j)< (k, l)
if i < k or i = k and j < l. The predecessor of a vertex (i, j) 6= (1, 1), denoted pred(i, j),
is the vertex immediately preceding (i, j) in this order.

We will explicitly refer to the edges we need to disconnect a set of vertices from a
graph. This notion is known as edge boundary.

Definition A.6.13. Let G(V, E) be a graph and U ⊆ V be a subset of vertices. The edge
boundary of U is the set of edges ∂e(U) = {(x , y) ∈ E : x ∈ U , y /∈ U}.

We can find an upper bound on PC space by mentioning all the vertices in lexico-
graphical order.

Lemma A.6.14. The space of refuting a Tseitin formula over the n× n grid graph for an
odd charge function χ over characteristic 2 is SpPC(Ts(T (n),χ) `⊥) = O(n).

Proof sketch. Observe that for every set of vertices U it holds that
∑

e∈edgesU e ≡
∑

e∈∂e(U)
e

(mod 2)where edgesU is the set of all edges incident to vertices in U , and that in PC over
characteristic 2 this expression corresponds to the polynomial

∑

e∈∂e(U)
e. Thus, we can

express
∑

e∈edgesU e ≡ χ(U) in space ∂e(U). If we let Ui j = {(a, b) ∈ V | (a, b) ≤ (i, j)},
the edge boundary of any Ui j is at most 2n+ 1, so the monomial space of each of the
polynomials pi j =

∑

e∈∂e(Ui j)
e−χ(Ui j) is at most 2n+ 1= O(n).

If we show how to derive the polynomials pi j in lexicographical order in O(n) space,
we will be done. And indeed, for any vertex (i, j) in the grid graph we can infer the
polynomial qi j =

∑

e3(i, j) e−χ((i, j)) by downloading the 2d−1 axioms PARITY(i, j),χ and

62 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

adding all of them in constant space. To derive pi j from ppred(i j) it is enough to add
the polynomials ppred(i j) and qi j . The maximum space is Sp(ppred(i j)) + Sp(pi j) +O(1) =
O(n).

The connectivity expansion follows from the following isoperimetric inequality.

Theorem A.6.15 ([37]). Let U be a subset of vertices of T (n) with |U | ≤ n2/2. Then

|∂e(U)| ≥min{2n, 4|U |1/2} .

Corollary A.6.16. The connectivity expansion of T (n) is 2n− 1.

Proof. If we erase 2n− 1 or less edges from T (n), then by Theorem A.6.15 the largest
region we can disconnect has size |U | ≤

�

(2n−1)/4
�2
< n2/2, so c ≥ 2n−1. If we erase

the 2n edges {((i, 0), (i, 1)) | i ∈ Zn} ∪ {((i, n/2), (i, n/2+ 1)) | i ∈ Zn} we obtain two
connected components of size n2/2, so c < 2n.

The lower bound on PCR space follows.

Corollary A.6.17. The space of refuting a Tseitin formula over the n×n grid graph, where
n is even, is SpPCR(Ts(T (n),χ) `⊥) = Ω(n) (over any characteristic).

Proof. Let us find a partition of the edges of T (n). Let C(i, j) be the set of edges of
the cycle

�

(i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)
�

. Then the set M = {C(i, j) | i + j ≡ 0
(mod 2)} is a partition of the edges of T (n) into edge-disjoint cycles of length 4. By
Theorem A.6.10, SpPCR(Ts(T (n),χ) `⊥)≥ (2n− 9)/16.

Theorem A.6.18. The space of refuting a Tseitin formula over the n× n grid graph for an
odd charge function χ over characteristic 2 is SpPCR(Ts(T (n),χ) `⊥) = Θ(n).

A.6.2 Application: Triangulations

Given a graph with good expansion, we can add a few edges to it and obtain a new
graph whose Tseitin formula we can prove to be hard for PCR space. We already showed
in Section A.4 how to use a XOR substitution to obtain such a multi-graph; the following
subsection shows how to obtain a simple graph. The proposed method is to convert every
edge into a triangle, and a greedy strategy is enough as the following lemma shows.

Lemma A.6.19. Let G be a simple graph of order n, size m and maximal degree d. If T
is an integer such that T (n− 4d − 2(T + 1)) ≥ m then there exists a simple graph H of
maximal degree at most 2d+2T which is a supergraph of G whose edges can be partitioned
into disjoint triangles.

A.7. CYCLE PARTITIONS OF RANDOM REGULAR GRAPHS 63

Proof. Consider the algorithm that iteratively chooses any edge (x , y) not yet handled,
chooses a vertex z not adjacent to any of the endpoints of minimal degree, and adds the
two remaining edges (x , z) and (y, z) from the endpoints to the vertex.

We consider the new edges to be directed (from x and y to z) and the indegree and
outdegree to refer to new edges only. The degree of a vertex is thus the sum of its initial
degree, its indegree and its outdegree. Observe that at every step the outdegree of every
vertex is at most its initial degree, which is at most d. When choosing the vertex z, we
will choose the vertex of minimal indegree.

Assume that at some state S of the execution of the algorithm the maximal indegree
is 2t. We claim that the algorithm handles at least the next n − 4d − 4(t + 1) edges
without the indegree exceeding 2(t + 1).

Indeed, consider the k-th edge (x , y) the algorithm visits after state S for k ≤
n− 4d − 4(t + 1). Its endpoints are connected to at most d + 2(t + 1) + d vertices each,
which we discard as candidates for z, and at most k−1 vertices increased their indegree
to 2(t + 1). There remain at least n− 4d − 4(t + 1)− k + 1 ≥ 1 potential vertices of
indegree at most 2t, and the greedy algorithm chooses one of these.

The initial indegree of all vertices is 0. After handling all m edges, the maximal
indegree increases at most T times, where T is such that

m≤
T−1
∑

t=0

(n− 4d − 4(t + 1)) = T (n− 4d − 2(T + 1)) . (A.6.1)

In particular, if d ≤ n/4 −
p

2m/2 − 1/2 such a T exists, and if d = o(n) the
inequality (A.6.1) holds asymptotically for T =

�

d+1
2

�

. The lower bound on space
follows by applying theorem Theorem A.2.6 to the resulting supergraph and noting that
the connectivity expansion cannot decrease.

Theorem A.6.20. Let G be a simple graph of maximal degree d = o(n) and connectivity
expansion c. There exists a simple graph H of maximal degree at most 3d + 2 which
is a supergraph of G such that the space of refuting a Tseitin formula over H is at least
SpPCR(Ts(H,χ) `⊥)≥ c/12− (3d + 2)/8.

A.7 Cycle Partitions of Random Regular Graphs

A.7.1 Models of Random Regular Graphs

Let Pn be a sequence of probability spaces. A sequence of events En on Pn holds asymp-
totically almost surely if Pr[En] −→ 1. In the sequel, we often abuse notation and say that
an event is true asymptotically almost surely in a probability space, when we actually
mean sequences of both. The probability space will depend on a parameter n.

Two probability spaces are contiguous if every event which holds asymptotically
almost surely in one also holds asymptotically almost surely in the other; we will use the

64 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

notation A≈ B to denote that A and B are contiguous. Let Dd be the probability space of
random d-regular graphs on n vertices, H+H be the probability space of unions of (not
necessarily disjoint) random Hamilton cycles on n vertices, and H⊕H be the probability
space of unions of disjoint random Hamilton cycles on n vertices; H⊕H is obtained by
conditioning H+H upon the event that the two random Hamilton cycles are disjoint.
Note that H+H is a probability space on multi-graphs. Kim and Wormald [121] proved
the following theorem (see also Wormald’s survey [185] and [112, §9.3–9.6]).

Theorem A.7.1. We have D4 ≈H⊕H.

We will need one more fact from [121], whose proof we only sketch.

Lemma A.7.2. If G ∼H+H then Pr[G is simple] −→ e−2.

Proof sketch. Fix the first Hamilton cycle H1. Let ei be the (random) ith edge of the
second Hamilton cycle H2. It is easy to see that Pr[ei ∈ H1] = 2/(n− 1), hence E[|H1 ∩
H2|] −→ 2. Moreover, one can show using Brun’s sieve (for example [6, Theorem 8.3.1])
that the distribution of |H1 ∩H2| is asymptotically Poisson; the required calculations are
sketched in [121, §2(iii)]. Hence Pr[|H1 ∩H2|= 0] −→ e−2.

Putting both facts together, we get the following result which will serve as our
vantage point over random 4-regular graphs.

Lemma A.7.3. Suppose E is an event which holds asymptotically almost surely in H+H.
Then E also holds asymptotically almost surely for random 4-regular graphs.

Proof. Lemma A.7.2 shows that E holds asymptotically almost surely in H⊕H, and so
in D4 by Theorem A.7.1.

Corollary A.7.4. A random 4-regular graph is connected asymptotically almost surely.

A.7.2 Some Properties of Random Regular Graphs

For a graph G = (V, E) and a subset U of the vertices, recall that N(U) is the set of edges
connecting U and V \ U . We say that the graph G is a δ-expander if for every set U of at
most |V |/2 vertices, |N(U)| ≥ δ|U |. Note that our definition involves edge expansion.
Bollobás [36] proved the following fundamental result.

Theorem A.7.5. There is a constant c1 such that asymptotically almost surely, a random
4-regular graph is a c1-expander.

In fact, we can choose any c1 < 2(1−η)≈ 0.4401, where η is the unique positive
solution of (1−η)1−η(1+η)1+η = 2. In particular, asymptotically almost surely a random
4-regular graph is a 0.44-expander.

The following lemma gives a lower bound on the connectivity expansion of a random
4-regular graph, defined in Definition A.2.3.

A.7. CYCLE PARTITIONS OF RANDOM REGULAR GRAPHS 65

Lemma A.7.6. There is a constant c2 such that asymptotically almost surely, the connectiv-
ity expansion of a random 4-regular graph on n vertices is at least c2n.

Proof. Let G be a random 4-regular graph. Theorem A.7.5 shows that asymptotically
almost surely, G is a c1-expander. Suppose G has connectivity expansion s. There is a set
W of s edges and an edge e such that G \W has a component of size larger than n/2,
but G \ (W ∪ {e}) has no component of size larger than n/2. Since e breaks the giant
component into two components, G \ (W ∪ {e}) must have a component U of size larger
than n/4. Expansion shows that |N(U)| ≥ c1|U | > (c1/4)n, and so s = |W | ≥ (c1/4)n.
This shows that we can choose c2 = c1/4.

A.7.3 Simple Lower Bound

In this section we prove that refuting a non-splitting Tseitin formula on a random 4-
regular graph on n vertices requires space Ω

�p

n/ log n
�

, asymptotically almost surely
over the choice of the graph.

The idea is to prove that asymptotically almost surely, a random 4-regular graph on
n vertices can be partitioned into cycles of length O

�p

n log n
�

. In order to prove that, it
will be useful to consider a model related to H+H.

Let [n] = {1, . . . , n}, and let Sn be the set of all permutations on [n]. Every permuta-
tion π ∈ Sn determines a Hamilton cycle

H(π) = (π(1),π(2)), (π(2),π(3)), . . . , (π(n− 1),π(n)), (π(n),π(1)) . (A.7.1)

(The cycle is undirected.) Let ι denote the identity permutation. We will consider the
probability space H(ι) +H(π) formed by taking the union of H(ι) and H(π), where π
is chosen uniformly at random from Sn.

The idea of the proof is to divide [n] into
p

n/ log n blocks of length
p

n log n. We
will show that asymptotically almost surely, each block Ik contains a point tk such that
sk = π(tk) ∈ Ik. For any two adjacent blocks Ik, Ik+1, we can form a cycle of length
O
�p

n log n
�

by pasting together the path from sk to sk+1 in H(ι) and the path from
π(tk) to π(tk+1) in H(π). As a result, the graph decomposes into

p

n/ log n cycles of
length O

�p

n log n
�

.

Let m be a parameter depending on n; in this section, we choose m =
p

n log n,
while in the next section, we choose m = C

p
n. For simplicity, we assume that m

and n/m are both integers. We partition [n] into n/m blocks I1, . . . , In/m of size m:
Ik = {(k−1)m+1, . . . , (k−1)m+m}. Let Bk be the event that π(Ik)∩ Ik = ;. We think
of Bk as a bad event, and our goal in this section is to show that asymptotically almost
surely, none of the Bk happen. In order to show this, we estimate the probability that Bk

happens.

Lemma A.7.7. For k ∈ [n/m], Pr[Bk]≤ e−m2/n.

66 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Proof. Using 1− x ≤ e−x , we calculate

Pr[Bk] =
m−1
∏

i=0

�

1−
m

n− i

�

≤
�

1−
m
n

�m
≤ e−m2/n . (A.7.2)

If Bk holds, we define tk to be the first point in Ik such that π(tk) ∈ Ik, and let
sk = π(tk).

Lemma A.7.8. Suppose Bk and Bk+1 both hold (indices taken modulo n/m). Define a
cycle Ck by taking two paths P ιk, Pπk from sk = π(tk) to sk+1 = π(tk+1), one from each of
the two Hamilton cycles:

P ιk = (sk, sk + 1), (sk + 1, sk + 2), . . . , (sk+1 − 1, sk+1) ,

Pπk = (π(tk),π(tk + 1)), (π(tk + 1),π(tk + 2)), . . . , (π(tk+1 − 1),π(tk+1)) .

The length of Ck is at most 4m.

Proof. Assume for simplicity that k 6= n/m. Then sk, tk ≥ (k− 1)m+ 1 and sk+1, tk+1 ≤
km+m. The length of Ck is (sk+1 − sk) + (tk+1 − tk)≤ 4m− 2.

If none of the bad events happen, then the cycles C1, . . . , Cn/m cover all of the graph.
Choosing m accordingly, we can ensure that this happens asymptotically almost surely.

Lemma A.7.9. Let m=
p

n log n. Asymptotically almost surely, a graph chosen according
to H(ι) +H(π) decomposes into n/m cycles of size at most 4m.

Proof. According to Lemma A.7.7, for each k ∈ [n/m], Pr[Bk]≤ e− log n = 1/n. A union
bound shows that asymptotically almost surely, none of the Bk happen. Lemma A.7.8
shows that the graph decomposes into n/m cycles of size at most 4m.

The lemma easily implies the lower bound.

Theorem A.7.10. Asymptotically almost surely, the space required to refute in PCR any
Tseitin formula on a random 4-regular graph on n vertices is Ω

�p

n/ log n
�

.

Proof. For reasons of symmetry, Lemma A.7.9 implies that asymptotically almost surely,
a graph chosen according to H+H decomposes into cycles of size at most 4

p

n log n.
Lemma A.7.6 shows that asymptotically almost surely, the connectivity expansion of
the graph is at least Ω(n). Corollary A.7.4 shows that asymptotically almost surely, the
graph is connected, and so the Tseitin formula is non-splitting. Hence Theorem A.3.4
gives a lower bound of Ω(

p

n/ log n).

A.7. CYCLE PARTITIONS OF RANDOM REGULAR GRAPHS 67

A.7.4 Improved Lower Bound

In this section we improve the results of Section A.7.3 by showing that refuting a non-
splitting Tseitin formula on a random 4-regular graph on n vertices requires spaceΩ

�p
n
�

,
asymptotically almost surely over the choice of the graph.

We use the general method of Section A.7.3, with a different choice of m, namely
m = C

p
n for some constant C to be determined later. Thinking of Bk as an indicator

variable, let B =
∑n/m

k=1 Bk. Lemma A.7.7 shows that E[B] ≤ e−C2
(n/m). We will show

that asymptotically almost surely, B ≤ 2e−C2
(n/m). This implies that the cycles Ck

together cover most of the graph, and therefore Corollary A.6.11 applies. The difficult
part of the proof is showing that B is concentrated around its mean.

Let p = Pr[Bk] (all the probabilities are the same). We need the following strength-
ening of Lemma A.7.7.

Lemma A.7.11. Let p = Pr[Bk], where Bk is the event that Ik ∩π(Ik) = ;. As n −→∞,
we have that p −→ e−C2

.

In order to show that B is concentrated around its mean, we show that for k 6= l, the
events Bk and Bl are asymptotically negatively correlated.

Lemma A.7.12. For every k 6= l ∈ [n/m], Pr[Bk ∧ Bl]≤ p2 + o(1).

We prove both lemmas below, but first, let us see how they imply the desired result.
The idea is that since any two bad events are asymptotically negatively correlated, the
variance of B is small, and so Chebyshev’s inequality shows that B is concentrated around
its mean.

Lemma A.7.13. Asymptotically almost surely, B ≤ 2e−C2
(n/m).

Proof. We have E[B] = (n/m)p and

Var(B) = E[B2]− (E[B])2

= (n/m)p+ (n/m)(n/m− 1)(p2 + o(1))− (n/m)2p2

= (n/m)p(1− p) + o
�

(n/m)2
�

,

using Lemma A.7.12. Chebyshev’s inequality shows that

Pr[|B − E[B]|> E[B]]≤
Var(B)
E[B]2

≤
(n/m)p+ o

�

(n/m)2
�

(n/m)2p2
= o(1) , (A.7.3)

since p = Ω(1) by Lemma A.7.11. Therefore asymptotically almost surely, B ≤ 2E[B] =
2(n/m)p ≤ 2e−C2

(n/m), using Lemma A.7.7.

68 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

The preceding lemma shows that the fraction of bad indices (indices k such that Bk

holds) is small. Say that a block Ik is good if Bk and Bk+1 both hold, and say that it is
supergood if both Ik−1 and Ik are good. Lemma A.7.8 associates a cycle Ck with each
good block Ik. If Ik is supergood, then the cycles Ck−1 and Ck together cover the entire
stretch of Ik, as the following lemma shows.

Lemma A.7.14. Suppose that block Ik is supergood. Then the union of the cycles Ck−1, Ck

given by Lemma A.7.8 contains the path of length m from min Ik to min Ik+1 in H(ι), as
well as the path of length m from π(min Ik) to π(min Ik+1) in H(π).

Proof. The cycle Ck−1 contains the path from sk−1 <min Ik to sk in H(ι). The cycle Ck

contains the path from sk to sk+1 ≥min Ik+1 in H(ι). Both paths together cover the path
from min Ik to min Ik+1 in H(ι). The argument for H(π) is identical.

We can now prove an analogue of Lemma A.7.9.

Lemma A.7.15. Let m = C
p

n. Asymptotically almost surely, a graph chosen according
to H(ι) +H(π) decomposes into cycles of size at most 4m and t additional edges, where
t ≤ 8e−C2

n.

Proof. Lemma A.7.13 shows that asymptotically almost surely, all but 4e−C2
(n/m) of the

n/m blocks I1, . . . , In/m are supergood, as each bad block prevents two blocks from being
supergood. Let C be the (disjoint) union of all cycles Ck constructed using Lemma A.7.8
for all supergood blocks Ik. The lemma shows that each cycle has size at most 4m.
Lemma A.7.14 shows that C contains all but at most 8e−C2

n edges of the graph.

Replacing Theorem A.3.4 with its corollary, Lemma A.7.15 easily implies the lower
bound.

Theorem A.7.16. Asymptotically almost surely, the space required to refute in PCR any
Tseitin formula on a random 4-regular graph on n vertices is Ω

�p
n
�

.

Proof. For reasons of symmetry, Lemma A.7.15 implies that asymptotically almost surely,
a graph chosen according to H+H decomposes into cycles of size at most 4C

p
n and t

additional edges, where t ≤ 8e−C2
n. For an appropriate choice of C we have t ≤ (c2/2)n.

Lemma A.7.6 shows that asymptotically almost surely, the connectivity expansion of the
graph is at least c2n. Corollary A.7.4 shows that asymptotically almost surely, the graph
is connected, and so the Tseitin formula is non-splitting. Hence Corollary A.6.11 gives a
lower bound of Ω

�p
n
�

.

A.7. CYCLE PARTITIONS OF RANDOM REGULAR GRAPHS 69

Technical Lemmas

We now turn to the proofs of Lemma A.7.11 and Lemma A.7.12. We start with the
former.

Proof of Lemma A.7.11. It is easy to check that for 0≤ x ≤ 1/2, 1− x ≥ e−x−x2
. There-

fore for large enough n,

p =
m−1
∏

i=0

�

1−
m

n− i

�

≥
�

1−
m

n−m

�m
≥ exp

�

−
m2

n−m
−

m3

(n−m)2

�

. (A.7.4)

For large enough n, m ≤ n/2, and so m2/(n−m) = m2/n+m3/(n(n−m)) ≤ m2/n+
2m3/n2. Similarly, m3/(n−m)2 ≤ 4m3/n2. Therefore, using e−x ≥ 1− x ,

p ≥ exp

�

−
m2

n
− 6

m3

n2

�

= exp

�

−C2 −
6C3

p
n

�

≥ e−C2

�

1−
6C3

p
n

�

. (A.7.5)

Hence lim inf p ≥ e−C2
. Lemma A.7.7 shows that also lim sup p ≤ e−C2

.

The proof of Lemma A.7.12 is more involved. Recall that the lemma claims that the
events Bk and Bl are asymptotically negatively correlated. In fact, they are asymptotically
uncorrelated. Recall that Pr[Bk] is roughly equal to e−C2

. Given the value of π on Ik, the
probability Pr[Bl] depends on |π(Ik)∩ Il |. Typically, this intersection will be very small,
and so Pr[Bl] is also roughly equal to e−C2

.
We will show that |π(Ik)∩ Il | is typically small using an extension of the well-known

Chernoff bound due to Kabanets and Impagliazzo [108, Theorem 1.1], attributed there
to Panconesi and Srinivasan [148].

Theorem A.7.17. Let X1, . . . , X r be Boolean random variables such that for any set S ⊆ [r],
Pr[
∧

i∈S X i]≤ δ|S|. Then for γ≥ δ,

Pr

�

r
∑

i=1

X i ≥ γr

�

≤ e−2r(γ−δ)2 .

The following lemma applies this bound to our situation (in an abstracted version).

Lemma A.7.18. Let a, b, c be integers such that a ≥ b, c, and let T be a random subset of
[a] of size b. For all ρ ≥ 1,

Pr[|T ∩ [c]| ≥ ρ(bc/a)]≤ e−2c(ρ−1)2(b/a)2 .

Proof. For i ∈ [c], let X i be the event that i ∈ T . For S ⊆ [c] such that |S| ≤ b,

Pr
T
[S ⊆ T] =

�a−|S|
b−|S|

�

�a
b

� =
|S|−1
∏

k=0

b− k
a− k

≤
�

b
a

�|S|
. (A.7.6)

Therefore we can apply Theorem A.7.17 with r = c, δ = b/a and γ= ρ(b/a).

70 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

We can now prove Lemma A.7.12.

Proof of Lemma A.7.12. We will show that Pr[Bl | Bk] ≤ p + o(1). This implies that
Pr[Bk ∧ Bl] = Pr[Bk]Pr[Bl | Bk]≤ p(p+ o(1)) = p2 + o(1).

Assuming the event Bk happens, π(Ik) is a random subset of [n] \ Ik of size m.
Plugging a = n−m and b = c = m in Lemma A.7.18, we deduce that for all ρ ≥ 1 there
is a n0 such that for all n≥ n0

Pr[|π(Ik)∩ Il | ≥ ρC2 | Bk]≤ e−2(ρ−1)2m(m/(n−m))2 (A.7.7)

≤ e−2(ρ−1)2m3/n2
= e−2C3(ρ−1)2/

p
n . (A.7.8)

Hence with probability 1− o(1) given Bk, D =: |π(Ik)∩ Il | ≤
p

m log m. Now

Pr[Bl | D = d] =
m−1
∏

i=0

�

1−
m− d

n−m− i

�

≤
�

1−
m− d

n

�m

≤ e−m(m−d)/n . (A.7.9)

For 0≤ x ≤ 1, one can check that ex ≤ 1+ 2x . Hence

Pr[Bl | D ≤
Æ

m log m]≤ e−m(m−
p

m log m)/n (A.7.10)

= e−C2+m
p

m log m/n ≤ e−C2

�

1+
2m
p

m log m
n

�

. (A.7.11)

Using Lemma A.7.11, we deduce that Pr[Bl | D ≤
p

m log m]≤ e−C2
+ o(1) = p+ o(1).

We conclude that Pr[Bl | Bk] = p+ o(1) and so Pr[Bk ∧ Bl] = p2 + o(1).

A.7.5 Regular Graphs of Degree Larger Than Four

Wormald [185, Corollary 4.17] showed that when d > 4, a random d-regular graph can
be obtained (up to contiguity) by taking the disjoint union of a random 4-regular graph
and a random (d − 4)-regular graph, a result summarized in the following theorem (see
also [112, Corollary 9.44]).

Theorem A.7.19. For d > 4 we have Dd ≈ D4 ⊕Dd−4. Furthermore, the probability that
a uniformly random 4-regular graph and a uniformly random (d − 4)-regular graph do
not intersect tends to a positive constant.

A Tseitin formula on a random d-regular graph generated according to D4 ⊕Dd−4

is harder to refute than a Tseitin formula on a random 4-regular graph, and so we can
generalize Theorem A.7.16 to random d-regular graphs for arbitrary d ≥ 4.

Theorem A.7.20 (restatement of Theorem A.3.5). Let d ≥ 4. Asymptotically almost
surely, the space required to refute in PCR any Tseitin formula on a random d-regular
graph on n vertices is Ω

�p
n
�

.

A.8. CURRENT TECHNIQUES AND THE FUNCTIONAL PIGEONHOLE PRINCIPLE 71

Proof. If d = 4 then Theorem A.7.16 already applies, so assume d > 4. Let G1 be a
random 4-regular graph, and let G2 be a random (d − 4)-regular graph. The graph
G = G1 + G2 is distributed according to D4 +Dd−4. We show below that asymptotically
almost surely, the space required to refute in PCR any Tseitin formula on G is Ω

�p
n
�

.
Since G1 and G2 are disjoint with constant probability according to Theorem A.7.19,
the theorem follows.

Let α be an arbitrary assignment to the edges of G2. Observation A.6.2 on page 58
shows that for every function f , Ts(G,χ)�α = Ts(G1,γ) for some other function γ. By a
restriction argument, any PCR refutation of Ts(G,χ) in space S can be translated to a
PCR refutation of Ts(G1,γ) in space at most S. Theorem A.7.16 on page 68 shows that
asymptotically almost surely, we must have S = Ω

�p
n
�

.

A.8 Current Techniques and the Functional Pigeonhole Principle

We now discuss the intrinsic limitations of the techniques employed so far. In Sec-
tion A.8.1 we show that Bonacina-Galesi framework does not allow to prove PCR space
lower bounds for an interesting formula like functional pigeonhole principle. In Sec-
tion A.8.2 we show that restricting to PC does not make the problem easier.

A.8.1 FPHP Formulas Do Not Have Extendible Families

One of the limits of the Bonacina-Galesi framework is that we cannot apply it to formulas
for which fixing a small set of variables causes a lot of unit clause propagation. Indeed,
most of the lower bound strategies in this paper aim to control this phenomenon (see
for example Lemma A.4.3). For the functional pigeonhole principle these strategies do
not work, as we now prove.

Definition A.8.1. The functional pigeonhole principle on m pigeons and n holes is the
formula defined on variables x i j for i ∈ [m] and j ∈ [n], made of the following clauses:

∨

j∈[n]
x i j for all i ∈ [m]; (pigeon axioms)

¬x i j ∨¬x i′ j for any i 6= i′ ∈ [m] and j ∈ [n]; (hole axioms)

¬x i j ∨¬x i j′ for any i ∈ [m] and j 6= j′ ∈ [n]. (functional axioms)

It is already known that this formula requires large space in resolution [29, 12]. It is
natural to suspect that this formula is hard in terms of monomial space as well. However,
the Bonacina-Galesi framework is not strong enough to prove it.

Theorem A.8.2 (restatement of Theorem A.3.6). There is no r-extendible family for
FPHPm

n for r > 1.

Proof. Assume that there is an r-extendible family F for the formula FPHPm
n which

respects some satisfiable F ′ ⊆ FPHPm
n , for r > 1.

72 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Let C be any clause in FPHPm
n \F ′; such clause exists because FPHPm

n is a contradiction.
The extension property ofF implies that there is a pair ({Q1}, H1) ∈ F , where H1 satisfies
C .

Recall that 0 encodes true, and 1 encodes false. Pick a variable x i j in Q1. In H1 there
is at least one partial assignment for which x i j = 0, and for any such assignment it holds
that x i′ j = 1 and x i j′ = 1 for all i′ 6= i and j′ 6= j, otherwise an initial clause would be
false.

Indeed, fix v to be any of these variables (either x i′ j or x i j′); the clause ¬x i j ∨¬v
is an axiom. If v 6∈ Q1 then this clause is not in F ′ because of the respectfulness of F ,
and furthermore there is at least one assignment in H1 which does not satisfy it (i.e.,
any assignment with x i j = 0). The extension property of F guarantees that there is
({Q1,Q2}, H1 × H2) ∈ F with v ∈ Q2, such that H1 × H2 satisfies ¬x i j ∨ ¬v. But this
contradicts the fact that H1×H2 contains the assignment {x i j = 1, v = 1}, which falsifies
¬x i j ∨¬v.

It follows that {x i′ j , x i j′ | i′ 6= i and j′ 6= j} ⊆ Q1, and that H1 satisfies all axioms
involving either pigeon i or hole j. We have just shown that assuming some x i j ∈ Q1,
we get {x i′ j , x i j′ | i′ ∈ [m], j′ ∈ [n]} ⊆Q1. This choice was arbitrary, so it follows that
for any i ∈ [m], j ∈ [n], the variable x i j is in Q1. In other words, Q1 contains all the
variables. Since FPHPm

n \ F ′ is contradictory, every assignment in H1 falsifies some clause,
and so the extension property fails for any such clause. We conclude that FPHPm

n has no
2-extendible family.

A.8.2 Formulas with Equal PC and PCR Space Complexities

Although finding an r-extendible family for the functional pigeonhole principle (and
hence proving a space lower bound) is not feasible, we might try and prove a weaker
PC space lower bound. However, as we have pointed out in Section A.3.4, in the case
of functional pigeonhole principle this makes no difference. In this section, we prove
formally this result for a broader class of formulas that is captured by the following
definition.

Definition A.8.3. We say that a CNF formula F is totally weight constrained if for every
variable x appearing in F there exists a clause Cx ∈ F with the following properties:

1. All literals in Cx are positive;

2. x is one of the variables appearing in Cx ;

3. For every two distinct variables y, z appearing in Cx , clause y ∨ z is in F .

For each variable x we refer to Cx as the x-neighborhood clause.

In such formulas each negative literal can be replaced with a clause/monomial
consisting of only positive literals that has the same semantic meaning. Thus, we can
turn a PCR refutation into a PC refutation without any substantial loss of space. In order

A.8. CURRENT TECHNIQUES AND THE FUNCTIONAL PIGEONHOLE PRINCIPLE 73

for us to be able to show that such a refutation is a valid PC refutation we need to show
that there are PC derivations of these monomials that use small space.

Theorem A.8.4. For a totally weight constrained CNF formula F , where each clause has a
costant number of negative literals, it holds that SpPC(F `⊥) = Θ(SpPCR(F `⊥)).

Proof. We can easily see that PCR simulates PC with only a constant loss in space. The
only problem in the simulation could arise when downloading an axiom that has negative
literals. Nevertheless, it is not hard to prove that PCR can expand every axiom to its PC
form while respecting the stated space bound.

In the other direction, we prove that PC can simulate a PCR refutation of F . Let
π be a PCR refutation of F in space at most s. As F is a totally weight constrained
formula, for every variable x we can fix its x-neighborhood clause Cx . Let us denote
by N(x) the set of variables from Cx excluding x . We transform the PCR refutation π
into a PC refutation by replacing each negative literal x with the monomial

∏

y∈N(x) y .
Obviously this transformation preserves space and we need to show that the transformed
configurations form a backbone of a valid PC refutation.

If the PCR refutation deletes a polynomial, we delete the appropriate transformed
polynomial from the configuration in the PC refutation. Similarly, in the case of linear
combination steps we just deduce the linear combination of the transformed polynomials.
Hence, these two types of steps can be done without any loss in space. In the case
of multiplication with a literal, if the literal is positive we multiply the appropriate
transformed polynomial with the same literal. Otherwise, the literal is negative and
we multiply the polynomial with all the variables in N(x), where x is the literal, while
making sure to delete the intermediate polynomials when they are no longer needed. In
this way we derive the transformed polynomial in at most O(s) space.

The axiom download steps are the only ones that remain. In the case of Boolean
axiom download, if we downloaded an axiom for a positive literal, we just download the
appropriate axiom in the PC refutation. Otherwise, the Boolean axiom corresponds to
some negative literal x and we need to derive the polynomial

∏

y∈N(x) y2 −
∏

y∈N(x) y .
This is done by downloading the Boolean axioms for each y ∈ N(x) and combining them
to get the transformed polynomial. Let B2 − B be one of the intermediate polynomials
in the derivation of the transformed Boolean axiom, where B is a monomial formed
by multiplying the variables in some subset of N(x). Then, for some variable y not
mentioned in B, we derive (B y)2 − B y by downloading y2 − y and taking the linear
combination of y(B2−B) and B2(y2− y). This PC derivation uses O(1)more monomials
than the PCR axiom download.

When the PCR proof downloads the complementarity axiom 1−x−x , the correspond-
ing PC proof needs to derive the polynomial 1− x −

∏

y∈N(x) y . Let N(x) = {y1, . . . , yl}.
We derive the transformed polynomial by successively deriving polynomials

T (i) =
l
∏

k=i+1

yk − x
l
∏

k=i+1

yk −
∏

k

yk , (A.8.1)

74 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

for i = 1, . . . , l. Note that T (l) is our transformed polynomial. The first T (1) in the
PC proof can be derived by downloading the axiom (1 − x)(1 − y1) and multiplying
it with variables y2, . . . , yl in order to get T (1) + x

∏

k yk. Subtracting from it the x-
neighborhood clause Cx = x

∏

k yk we get T (1).
We proceed to derive T (i + 1) from T (i) for all i. Similarly as before, we start by

downloading the axiom (1− x)(1− yi+1) and multiplying it with variables yi+2, . . . , yl

in order to get T (i + 1)− T (i). Adding this polynomial to T (i) we derive the (i + 1)st
polynomial T (i + 1) in our derivation of the transformed complementarity axiom. This
PC derivation uses O(1) more monomials than the PCR proof and all axioms of the
form (1− x)(1− yi) exist because F is totally weight constrained.

In the case of axiom download step for a clause axiom, we again have two cases. If
all literals of the axiom are positive we download the corresponding axiom in the PC
proof. Otherwise, we can write the axiom as x1 · · · xs · xs+1 · · · x l , where s is the number
of its negative literals. Let us denote by A(i) the polynomial

A(i) =
∏

y1∈N(x1)

y1 · · ·
∏

yi∈N(x i)

yi(1− x i+1) · · · (1− xs)xs+1 · · · x l , (A.8.2)

where i ranges over 0, . . . , s. Note that A(0) is the original PC axiom, while A(s) is the
transformed axiom that we want to derive. Also, let us denote by R(i) the polynomial

R(i) =
∏

y1∈N(x1)

y1 · · ·
∏

yi−1∈N(x i−1)

yi−1 · (1− x i+1) · · · (1− xs)xs+1 · · · x l , (A.8.3)

for i ranging from 1 to s, that is A(i) = R(i)
∏

yi∈N(x i)
yi = R(i + 1)(1− x i+1).

We first derive A(1) by deriving the transformed complementarity axiom 1− x1 −
∏

y1∈N(x1)
y1 for the variable x1 and multiplying it with R(1) in order to get A(0)− A(1).

Now we can get A(1) by subtracting the derived polynomial from the PC axiom A(0).
We proceed to derive A(s) by deriving A(i + 1) from A(i) for all i from 1 to s − 1.

This is again done by first deriving the appropriate complementarity axiom 1− x i+1 −
∏

yi+1∈N(x i+1)
yi+1 and multiplying it by R(i+1) in order to get A(i)−A(i+1). Subtracting

the derived polynomial from previously derived A(i), we get the (i + 1)st polynomial
in our derivation. These steps use O(2s) monomials, which is constant by the theorem
hypothesis, and the PC derivation of the transformed axiom uses at most O(1)monomials
more than the PCR axiom download step.

Hence, the theorem follows. Also, although we have ignored the constants involved
in the simulation, these constants can be computed explicitly and are small. The only
possible exception is the additive constant O(2s∗), where s∗ is the largest number of
negative literals in a clause of F .

An obvious example of the totally weight constrained formula is the functional
pigeonhole principle.

Corollary A.8.5 (Restatement of Theorem A.3.7). It holds that

SpPCR(FPHPm
n `⊥) = Θ(SpPC(FPHPm

n `⊥)) .

A.9. CONCLUDING REMARKS 75

Proof. It is easy to see that FPHPm
n formula is totally weight constrained, as every variable

appears in some pigeon axiom that is constrained by the functional axioms. Also, FPHPm
n

has at most 2 negative literals in each clause and hence we have that SpPCR(FPHPm
n `

⊥) = Θ(SpPC(FPHPm
n `⊥)).

Actually, we can say even more about the space complexity of the functional pigeon-
hole principle formulas. In [79], the authors prove that the PCR space complexity of
FPHPm

n is equal (up to constant factors) to the PCR space complexity of the extended

formula àFPHPm
n , where àFPHPm

n is the canonical equivalent 3-CNF version7 of the formula
FPHPm

n . Hence, we have that the PC space complexity lower bound for FPHPm
n would

actually lower bound the PCR space complexity of àFPHPm
n and give us the first PCR space

lower bound for some family of 3-CNF formulas.
This holds in greater generality for totally weight constrained formulas that also

fulfill the following technical condition: F is a weight-constrained CNF formula if for each
clause a1 ∨ a2 ∨ . . .∨ am of F with more than three literals, the formula also contains
clauses ¬ai ∨¬a j for all 1≤ i < j ≤ m. We stress the fact that the conditions of being
weight-constrained and totally weight constrained are incomparable.

Corollary A.8.6. For a simultaneously weight-constrained and a totally weight constrained
formula F , where each clause has a costant number of negative literals, it holds that

SpPCR(eF `⊥) = Θ(SpPCR(F `⊥)) = Θ(SpPC(F `⊥)) .

A.9 Concluding Remarks

In this paper, following up on recent work in [23, 39, 79, 106], we report further progress
on understanding space complexity in polynomial calculus and how the space measure
is related to size and degree. Specifically, we separate size and degree from space,
and provide some circumstantial evidence for the conjecture that degree might be a
lower bound on space in PC/PCR. We also prove space lower bounds for a large class of
Tseitin formulas, a well-studied formula family for which nothing was previously known
regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs are
not optimal, however. And for the functional pigeonhole principle, we show that the
technical tools developed in [39] cannot prove any non-constant PCR space lower bounds.
Although we have not been able to prove this, we believe that similar impossibility results
should hold also for ordering principle formulas and for the canonical 3-CNF version
of the pigeonhole principle. Since all of these formulas require large degree in PCR
and large space in resolution, it is natural to suspect that they should be hard for PCR

7We substitute every clause a1 ∨ a2 ∨ . . . ∨ ak, which has more than three literals, with the formula
(a1 ∨ y1)∧ (¬y1 ∨ a2 ∨ y2)∧ . . .∧ (¬yi−1 ∨ ai ∨ yi)∧ . . .∧ (¬yk−1 ∨ ak) where for each substituted clause all
variables yi are new. The substituted formula is a 3-CNF and it is satisfiable if and only if the original one is. It
is also easy to deduce the original clause from the substituting formula.

76 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

space as well. The fact that arguments along the lines of [39] do not seem to be able
to establish this suggests that we are still far from a combinatorial characterization of
degree analogous to the characterization of resolution width in [12].

It thus remains a major open problem to understand the relation between degree
and space in PC/PCR, and in particular whether degree is a lower bound on space or not
(or whether it even holds that resolution width provides a lower bound on PCR space).

Also, our separations of size and degree on the one hand and space on the other
depend on the characteristic of the underlying field, in that the characteristic must be
chosen first and the formula family exhibiting the separation works only for this specific
characteristic. It would be satisfying to find formulas that provide such separations re-
gardless of characteristic. Natural candidates are (various flavours of) ordering principle
formulas or onto function pigeon principle formulas, or, for potentially even stronger
separations, pebbling formulas.

Finally, an intriguing question is how (monomial) space in PC/PCR is related to
(clause) space in resolution. There are separations known for size versus length and
degree versus width, and it would seem reasonable to expect that PCR should be strictly
stronger than resolution also with respect to space, but this is completely open.8 The
flipside of this question is to what extent space lower bound techniques for resolution
carry over to PC/PCR. Since so far we do not know of any counter-examples, it is natural
to ask, for instance, whether semiwide CNF formulas as defined in [2] have high space
complexity not only in resolution but also in PCR.

Acknowledgements

The authors wish to thank Ilario Bonacina and Nicola Galesi for numerous and very
useful discussions.

The research of the first author has received funding from the European Union’s
Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 238381.
Part of the work of the first author was performed while visiting KTH Royal Institute of
Technology. The other authors were funded by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant
agreement no. 279611. The fourth author was also supported by Swedish Research
Council grants 621-2010-4797 and 621-2012-5645.

A.10 PCR Space Lower Bounds from Extendible Families

For the sake of self-containment, in this appendix we give an exposition of the Bonacina-
Galesi framework [39] for proving space lower bounds in Polynomial Calculus. We show
how the existence of a r-extendible family for a large value of r implies such bounds.

8For completeness, we mention that there is a very weak (constant-factor) separation in [2], but it crucially
depends on a somewhat artificial definition of space where monomials are not counted with repetitions.

A.10. PCR SPACE LOWER BOUNDS FROM EXTENDIBLE FAMILIES 77

This framework can actually prove space lower bounds for a proof system that it stronger
than PC or PCR.

Definition A.10.1 (Functional Calculus (FC)). A functional calculus configuration is a
set of arbitrary Boolean functions over Boolean variables. There is a single derivation
rule, semantic implication, where g can be inferred from f1, . . . , fn if every assignment
that satisfies f1 ∧ · · · ∧ fn also satisfies g.

Verifying a proof in FC is coNP-complete, and so FC is not a proof system in the sense
of Cook and Reckhow [66] unless coNP= NP.

There are many different circuit representations of the same Boolean function, so
we need to choose a minimal representation in order to define clause space.

Definition A.10.2. Let P be a FC configuration. A set of monomials U = {m1, . . . , ms}
defines P if for every function f ∈ P there is a function g such that g(m1, . . . , ms) ≡
f (x1, . . . , xn). The monomial space of P is the minimum size of a defining set of monomi-
als.

We can interpret polynomials in PCR as Boolean functions if we project them to
the Boolean ring F[x , x , y, y , . . .]/Span

�

x2 − x , 1− x − x , x2 − x , y2 − y, . . .
�

. Further-
more, the set of monomials in a PCR configuration counted without repetitions is a defin-
ing set of monomials for a FC configuration. Therefore we can view every proof in PCR as a
proof in FC that uses at most the same space. In particular, SpFC(F `⊥)≤ SpPCR(F `⊥).

We now prove Theorem A.2.6, following Bonacina and Galesi [39]. The general plan
of the proof is to consider a FC derivation of a formula F in small space, and show that
every configuration arising in the derivation is satisfiable. Since a refutation ends with
an unsatisfiable configuration, the derivation is not a refutation.

In order to show that every configuration arising in the derivation is satisfiable, we
maintain a satisfiability witness, in the form of a structured set of assignments together
with a CNF formula. The following definition captures the sense in which a satisfiability
witness guarantees that a board configuration is satisfiable. Fix a set of variables V and
consider partitions and total assignments with respect to this set. Recall that a total
assignment assigns a value to each variable in V .

Definition A.10.3. Let (Q,H) be a structured set of assignments, G be a CNF formula,
and P be a set of Boolean functions. We write G |=(Q,H) P if every total assignment that
extends some partial assignment in H and satisfies G also satisfies P.

In the proof, P is the contents of the board at a given point in the FC refutation, and
(Q,H), G together form a satisfiability witness. The CNF G is composed of two parts:
a satisfiable subset F ′ ⊂ F , which could be empty, and a 2-CNF M with a very specific
form given by the following definition.

Definition A.10.4. Let M be a 2-CNF formula over the variables V . We say that M is a
transversal of a partial partition Q defined on V if M mentions exactly one variable from

78 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

each block Q i ∈Q. (In particular, |Q| must be even and the number of clauses in M is
|Q|/2.)

A transversal CNF formula is always satisfiable, and so for F ′ = ;, any board con-
figuration P that has a satisfiability witness of this form must in fact be satisfiable. To
handle an arbitrary F ′, we add the requirement that (Q,H) respect F ′. Finally, we can
formally define the concept of satisfiability witness.

Definition A.10.5. Let P be a set of Boolean functions. A tuple (F ′;Q,H, M) is a
satisfiability witness for P if:

1. F ′ is a satisfiable CNF formula.

2. (Q,H) is a structured assignment set which respects F ′.

3. M is a 2-CNF formula which is a transversal of Q.

4. F ′ ∧M |=(Q,H) P.

The size of a satisfiability witness (F ′;Q,H, M) is |M |.

We single F ′ out since its value is fixed while Q,H, M are dynamic and change
throughout the FC refutation.

A FC refutation is composed of three kinds of steps: axiom download, inference and
erasure. It turns out that the first two steps are relatively easy to handle, as long as
we maintain the invariant that the size of the satisfiability witness is O(Sp(P)). This
invariant allows us to expand the witness in order to accommodate new axioms as long as
the monomial space is small enough, using the extension property of extendible families.

Erasure is more difficult, since the monomial space of the configuration could shrink,
and in order to maintain the invariant, we need to shrink the witness as well. This is
accomplished by the following crucial lemma, which shows that if a configuration has any
satisfiability witness, then we can find another satisfiability witness for the configuration
whose size is bounded in terms of the monomial space of the configuration.

Because of the technical issue of multiple representations we also need to use the
locality lemma in axiom download steps, but we could omit it in a proof of a space lower
bound for PCR. It is however a key piece in erasure steps.

Lemma A.10.6 (Locality lemma). Suppose (F ′;Q,H, M) is a satisfiability witness for
some set of Boolean functions P. There is another satisfiability witness (F ′;Q′,H′, M ′) for
P such that Q′ ⊆Q, H′ =H�Q′ and |M ′| ≤ 2Sp(P).

Proof. In this proof Q[x] denotes the (unique) class in Q that contains variable x .
The starting point of the proof is understanding the relation between monomials

in a defining set of monomials U of P and clauses in M which underlies the property
F ′ ∧M |=(Q,H) P. A clause C ∈ M affects a monomial m ∈ U whenever the two mention

A.10. PCR SPACE LOWER BOUNDS FROM EXTENDIBLE FAMILIES 79

variables belonging to the same partition in Q. If a clause C does not affect a monomial
m, then the clause C puts no constraints on the value of m.

Formally, we construct a bipartite graph between a minimal defining set of monomials
U and the set of clauses in M (which we identify with M itself). We draw an edge
between m ∈ U and C ∈ M whenever for some Q ∈ Q, both m and C mention some
variable in Q.

We break U into two parts: one part which is collectively affected by a small number
of clauses, and another part in which we can associate with each monomial two clauses
affecting it. To this end, let U1 be an inclusion-maximal set under the constraint |N(U1)| ≤
2|U1|, and let U2 = U\U1. We partition M accordingly into M1 = N(U1) and M2 = M\M1.
As a slight modification of Hall’s marriage theorem shows, the maximality of U1 implies
that we can associate with each monomial in U2 two unique clauses in M2 (that is, each
clause in M2 is associated with at most one monomial). In other words, there is a double
matching from U2 to M2. (For more details on this step, see [2, 79, 39].)

We construct the new 2-CNF M ′ out of two parts: M ′ = M1 ∪M ′2. The first part M1,
taken verbatim from M , takes care of U1. The other part M ′2, which we construct from
the double matching, takes care of U2.

The 2-CNF M ′2 consists of one clause Cm for every monomial m ∈ U2. In order to
define Cm, let xa ∨ y b and zc ∨wd be the two clauses in M2 that are matched to m in the
double matching. Assume without loss of generality that m= r es f m′, where r ∈Q[x]
and s ∈Q[z]. The clause Cm is defined as Cm = r e ∨ s f .

By construction, |M ′| ≤ 2|U1| + |U2| ≤ 2|U | = 2Sp(P). Having defined M ′, we
complete the definition of the new satisfiability witness as follows. First, letQ′ = {Q[x] |
x ∈ Vars(M ′)}; this guarantees that M ′ is a transversal of Q′. Observe that Q′ ⊆ Q.
Second, let H′ =H�Q′ . It is easy to check that (F ′;Q′,H′, M ′)) satisfies the first three
properties of a satisfiability witness. It remains to prove that F ′ ∧M ′ |=(Q′,H′) P.

In order to show that F ′ ∧M ′ |=(Q′,H′) P, we consider an arbitrary total assignment
α extending some partial assignment in H′ and satisfying F ′ ∧M ′. We will modify α
to another total assignment β that extends some partial assignment in H and satisfies
F ′ ∧ M , and furthermore has the property that β(m) = α(m) for every m ∈ U . By
assumption, F ′ ∧ M |=(Q,H) P, and so β(P) = 0. Since β(m) = α(m) for every m ∈ U ,
we conclude that α(P) = 0 as well.

We proceed to define β . For each clause xa∨ y b in M2, we will define β onQ[x],Q[y]
using partial assignments from H, distinguishing two cases: the clause is matched to
some monomial in U2, or it is unmatched. The values of all the other variables are taken
directly from α.

Suppose m ∈ U2 is matched to the clauses xa ∨ y b and zc ∨ wd and Cm = r e ∨ s f ,
where Q[x] = Q[r] and Q[z] = Q[s]. (In other words, we are in exactly the same
situation described above while constructing M ′.) Define β on Q[x],Q[y],Q[z],Q[w]
using partial assignments from H satisfying r e, y b, s f , wd . As a result, β satisfies the
clauses xa ∨ y b and zc ∨wd and the monomial m.

80 PAPER A. TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

For each unmatched clause xa ∨ y b in M2, we define β on Q[x] and Q[y] using
partial assignments from H satisfying xa and y b. As a result, β satisfies the clause
xa ∨ y b. Finally, complete the definition of β by defining β(x) = α(x) for any hitherto
undefined variable x . From the construction it is clear that β extends some partial
assignment in H.

In order to complete the proof, we need to show that β satisfies F ′ ∧M , and that β
agrees with α on all the monomials in U . We start by showing that β satisfies F ′∧M . By
construction, β satisfies the clauses in M2. Since β agrees with α on variables mentioned
in M1, β satisfies M1. Finally, let C ∈ F ′. Since (Q,H) respects F ′, either the variables
in C are disjoint from

⋃

Q, or the variables in C all belong to some Q i ∈ Q, and all
assignments in the respective Hi ∈H satisfy C . In the former case, β agrees with α on
variables mentioned in C , and so β satisfies C . In the latter case, β satisfies C since β
extends some partial assignment in H.

It remains to show that β(m) = α(m) for all monomials m ∈ U . In short, this is true
for monomials in U1 since α and β agree on all the relevant variables, and for monomials
in U2 since in both assignments they are reduced to zero. We proceed to show this
formally.

Suppose first that m ∈ U1. We claim that α(v) = β(v) for all variables v mentioned
in m. Indeed, if α(v) 6= β(v) then v ∈Q[x] for some clause C = xa ∨ y b in M2. Yet this
implies that m is connected to C , contradicting the definition of M2. We conclude that α
and β agree on all variables mentioned in m, and so α(m) = β(m) in this case.

Suppose next that m ∈ U2. We claim that α(m) = β(m) = 0. Let Cm = r e ∨ s f ,
and recall that m is of the form m = r es f m′. Thus α(m) = 0 since α satisfies Cm, and
β(m) = 0 since it satisfies r e and s f by construction.

Theorem A.10.7 (restatement of Theorem A.2.6 [39]). Let F be a CNF formula with
an r-extendible family F with respect to some F ′ ⊆ F . Then SpFC(F `⊥)≥ r/4.

Proof. Let F be an r-extendible family with respect to some satisfiable F ′ ⊆ F . Let π be
a derivation from F in space Sp(π) < r/4. We will show that 1 /∈ π or, even stronger,
that every configuration Pt appearing in π is satisfiable.

We will maintain a satisfiability witness (F ′;Qt ,Ht , Mt) for every configuration Pt .
Our satisfiability witnesses will satisfy two conditions: (Qt ,Ht) ∈ F , and the size bound
|Mt | ≤ 2Sp(Pt). The existence of a satisfiability witness implies that Pt is satisfiable.
Indeed, let α ∈Ht be some partial assignment that satisfies all the literals in Mt . Since
(Qt ,Ht) respects F ′, each clause in F ′ is either already satisfied by α or is completely
disjoint from the domain of α. As F ′ is satisfiable, we can extend α to a total assignment
β which satisfies F ′. Hence, from F ′ ∧Mt |=(Qt ,Ht) Pt we have that β satisfies Pt , and so
Pt is satisfiable.

We construct the satisfiability witnesses by induction. For t = 0, the satisfiability
witness is (F ′;;,;,;). For the induction step, suppose we are given a satisfiability witness
(F ′;Q,H, M) for Pt . We will construct a satisfiability witness (F ′;Q′,H′, M ′) for Pt+1.

A.10. PCR SPACE LOWER BOUNDS FROM EXTENDIBLE FAMILIES 81

To simplify the notation, let P = Pt and P′ = Pt+1. We distinguish three cases, which
correspond to the three possible steps in the proof.

Axiom download. Let C be the downloaded clause, which we also view as a monomial.
If C ∈ F ′ or every extension α of a partial assignment in H satisfies C , then in particular
F ′ ∧M |=(Q,H) P∪ {C}= P′, and M ′ = M , Q′ =Q, H′ =H form a satisfiability witness.

Otherwise, by hypothesis Sp(P′) < r/4 and so Sp(P) < r/4− 1. Indeed, if U is a
defining set of monomials of P, then U ∪{C} is a defining set of monomials of P′. By the
induction hypothesis, |Q|< r − 1. By the extension property of extendible family, there
exists a structured set of assignments (Q̃, H̃) ∈ F such that |Q̃| < r, (Q,H) ´ (Q̃, H̃)
and H̃ |= C . By assumption H 6|= C and so Q 6= Q̃. Let Q̃=Q∪ {Q}.

The assignments corresponding to Q in H̃ will ensure that the clause C is satisfied.
Since we are going to add a new clause to M ′, we need to come up with two new parts
in Q′, and so we repeat the process. Let D be any axiom in F \ F ′ such that H̃ 6|= D; if
no such axiom exists then F is satisfiable and the theorem follows vacuously. Repeat the
argument above and obtain a new disjoint set Q′ and a structured set of assignments
(Q′,H′) ∈ F .

Choose arbitrary variables x ∈ Q and y ∈ Q′, and let M ′ = M ∪ {x ∨ y}. By
construction, (F ′;Q′,H′, M ′) is a satisfiability witness for P′.

In both cases, by LemmaA.10.6 there is another satisfiability witness (F ′;Q′′,H′′, M ′′)
for P′ satisfying the size bound and with Q′′ ⊆ Q′, H′′ = H′�Q′′ . By the restriction
property of the extendible family, we have (Q′′,H′′) ∈ F .

Inference. It is enough to pick M ′ = M , Q′ =Q, H′ =H. The first three properties in
the definition of satisfiability witness continue to hold, while the last property follows
from the soundness of FC. Finally, the size bound trivially holds since |P′| ≥ |P|.

Erasure. Since FC is sound, (F ′;Q,H, M) is a satisfiability witness for P′ as well. Hence
Lemma A.10.6 furnishes us with a satisfiability witness (F ′;Q′,H′, M ′) for P′ satisfying
the size bound and with Q′ ⊆Q, H′ =H�Q′ . By the restriction property of extendible,
(Q′,H′) ∈ F .

Paper B

How Limited Interaction Hinders Real
Communication (and What it Means
for Proof and Circuit Complexity)

Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals

Full length version of the article published in Proceedings of the 57th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS ’16), October 2016, pp. 295–304.

Abstract

We obtain the first true size-space trade-offs for the cutting planes proof system,
where the upper bounds hold for size and total space for derivations with constant-
size coefficients, and the lower bounds apply to length and formula space (i.e.,
number of inequalities in memory) even for derivations with exponentially large
coefficients. These are also the first trade-offs to hold uniformly for resolution,
polynomial calculus and cutting planes, thus capturing themainmethods of reasoning
used in current state-of-the-art SAT solvers.

We prove our results by a reduction to communication lower bounds in a round-
efficient version of the real communication model of [Krajíček ’98], drawing on
and extending techniques in [Raz and McKenzie ’99] and [Göös et al. ’15]. The
communication lower bounds are in turn established by a reduction to trade-offs
between cost and number of rounds in the game of [Dymond and Tompa ’85] played
on directed acyclic graphs.

As a by-product of the techniques developed to show these proof complexity
trade-off results, we also obtain an exponential separation betweenmonotone-ACi−1

and monotone-ACi , improving exponentially over the superpolynomial separation
in [Raz and McKenzie ’99]. That is, we give an explicit Boolean function that can
be computed by monotone Boolean circuits of depth logi n and polynomial size, but
for which circuits of depth O(logi−1 n) require exponential size.

83

84 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

B.1 Introduction

Ever since the discovery of NP-completeness by Cook and Levin in [64, 131], the problem
of how hard it is to decide satisfiability of formulas in propositional logic has played
a leading role in theoretical computer science. Although the conventional wisdom
is that SAT should be a very hard problem—to the extent that the Exponential Time
Hypothesis [109] concerning its worst-case complexity is a standard assumption used
in many other hardness results—essentially no non-trivial lower bounds on the time
complexity of the SAT problem are known.

A less ambitious goal is to ask for lower bounds if not only the running time but
also the memory usage of the algorithm is restricted. Yet it took until [84] to rule out a
linear-time, logarithmic-space algorithm for SAT. Later research has shown that refuting
unsatisfiable formulas on random-access machines cannot be done non-deterministically
in simultaneous time n41/3

and space no(1) [72] and SAT cannot be decided determin-
istically in simultaneous time n1.8 and space no(1) [184]. On Turing machines, no non-
deterministic algorithm solving SAT in time T and space s can achieve T · s = n2/ log3 n
[166]. (See [181] for a good survey of the area with more details on this kind of results.)

For a problem that is believed to require exponential time, the results listed above
might not seem very impressive. Yet they should not necessarily be viewed only as
an illustration of the weaknesses of current techniques for proving lower bounds. It
is important to realize that the adversary is formidable—applied research in the last
15–20 years has led to the development of amazingly efficient algorithms, so-called
SAT solvers, that solve many real-world instances with millions of variables, and do so
in linear time. Today, practitioners often think of SAT as an easy problem to reduce to,
rather than a hard problem to reduce from (we refer the reader to [34] for more on this
fascinating topic).

Virtually the only tool currently available for a rigorous analysis of the performance
of such SAT solvers is proof complexity [66], where one studies the methods of reasoning
used by the corresponding algorithms. The transcript of the computations made can be
viewed as a formal proof applying the relevant method of reasoning, and proof complexity
analyses the resources needed when all computational choices are made optimally (i.e.,
non-deterministically). Even though this is quite a challenging adversarial setting, proof
complexity has nevertheless managed to give tight exponential lower bounds on the
worst-case running time for many approaches for SAT used in practice by lower-bounding
proof size.

The focus of this paper is on time-space trade-offs in computational models describing
current state-of-the-art SAT solvers. This research is partly driven by SAT solver running
time and memory usage—in practice, space consumption can be almost as much of a
bottleneck as running time—but is also motivated by the fundamental importance of
time and space complexity in computational complexity.

B.1. INTRODUCTION 85

B.1.1 Previous Work on Proof Complexity Trade-offs

In resolution [35], which is arguably the most well-studied proof system in proof com-
plexity, the input is an unsatisfiable formula in conjunctive normal form (CNF) and
new disjunctive clauses are derived from this formula until an explicit contradiction
is reached (in the form of the empty clause without literals). Resolution is also the
method of reasoning underlying the currently most successful SAT solving paradigm
based on so-called conflict-driven clause learning (CDCL) [18, 136, 139]. The question of
time-space trade-offs for resolution was first raised by Ben-Sasson in 2002 (journal ver-
sion in [24]), who also obtained such trade-offs for the restricted subsystem of tree-like
resolution. Size-space trade-offs for general, unrestricted resolution were later shown in
[143, 28, 19, 23].

In contrast to the trade-off results for random-access and Turing machines reviewed
above, in these more limited models of computation one can obtain exponential lower
bounds on proof size (corresponding to running time) for proofs in sublinear but poly-
nomial space [143, 28], and results in [19, 23] even exhibit trade-offs where size has to
be superpolynomial and space has to be superlinear simultaneously. Another difference
is that these results are true trade-offs in the sense that it is actually possible to refute
the formulas both in small size and small space, only not simultaneously. A third nice
feature of the trade-offs are that the upper bounds are on proof size and total space,
whereas the (sometimes tightly matching) lower bounds are on length and formula space,
meaning that one only charges one time unit for each derivation step regardless of its
complexity, and only one space unit per “formula” (for resolution: per clause) regardless
of how large it is. Thus, the upper bounds are algorithmically achievable, while the
lower bounds hold in a significantly stronger model.

A stronger proof system than resolution is polynomial calculus [62, 2], where the
clauses of a formula are translated to multilinear polynomials and calculations inside
the ideal generated by these polynomials (basically corresponding to a Gröbner basis
computation) establishes unsatisfiability. Among other things, polynomial calculus
captures CDCL solvers extended with reasoning about systems of linear equations mod 2.
The first size-space trade-offs for polynomial calculus—which were not true trade-offs
in the sense discussed above, however—were obtained in [106], and these results were
further improved in [23] to true trade-offs essentially matching the results cited above
for resolution except for a small loss in parameters.

Another proof system that is also stronger than resolution and that has been the focus
of much research is cutting planes [68], which formalizes the integer linear programming
algorithm in [91, 60] and underlies so-called pseudo-Boolean SAT solvers. In cutting
planes the clauses of a CNF formula are translated to linear inequalities, which are then
manipulated to derive a contradiction. Thus, the question of Boolean satisfiability is
reduced to the geometry of polytopes over the real numbers. Cutting planes is much more
poorly understood than resolution and polynomial calculus, however, and size-space
trade-offs have proven elusive. The results in [106] apply not only to resolution and

86 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

polynomial calculus but also to cutting planes, and were improved further in [95] to
hold for even stronger proof systems, but unfortunately are not true trade-offs in the
sense discussed above.

The problem is that what is shown in [106, 95] is only that proofs in small space
for certain formulas have to be very large, but it is not established that these formulas
can be refuted space-efficiently. In fact, for resolution it can be shown using techniques
from [27] that such small-space proofs provably do not exist, and for polynomial calculus
there is circumstantial evidence for a similar claim. As discussed in Section B.3, this
turns out to be an inherent limitation of the technique used.

In a recent surprising paper [87], it was shown that cutting planes can refute any
formula in constant space if we only count the number of lines or formulas. Plugging
this result into [106, 95] yields a trade-off of sorts, since “small-space” proofs will
always exist, but the catch is that such proofs will have exponentially large coefficients.
This means that these trade-offs do not seem very “algorithmically relevant” in the
sense that such proofs could hardly be found in practice, and saying that a proof with
exponential-size coefficients has “constant space” somehow does not feel quite right.

B.1.2 Our Proof Complexity Contributions

In this paper we report the first true, algorithmically realizable trade-offs for cutting
planes, where the upper bounds hold for proof size and total space and the lower bounds
apply to proof length and formula space (i.e., number of inequalities). The trade-offs
also hold for resolution and polynomial calculus, making them the first trade-offs that
hold for essentially all methods of reasoning used in the most successful SAT solvers to
date.1

Below, we state two examples of the kind of trade-offs we obtain (referring the reader
to Section B.2 for the missing formal definitions). In the rest of this section we will focus
on cutting planes, since this proof system is the main target of this work. However, all the
lower bounds stated also hold for polynomial calculus (and for the strictly weaker proof
system resolution), and since all our upper bounds are actually proven in resolution they
transfer to both polynomial calculus and cutting planes.

The first result is a “robust trade-off” that holds all the way from polylogarithmic to
polynomial space as stated next.

Theorem B.1.1 (Informal). There exists an explicitly constructible family of 6-CNF for-
mulas {FN}∞N=1 of size Θ(N) such that:

1We remark that this ignores the issue of formula preprocessing techniques, which are heavily used in
most state-of-the-art SAT solvers, and some of which potentially require the full extended Frege proof system
for a complete formal description (but can also sometimes cause a provable exponential loss in reasoning
power). Since in practice SAT solvers fail to solve many of the combinatorial benchmark formulas that are
hard for resolution, polynomial calculus, and cutting planes but easy for (even non-extended) Frege, however,
and since in addition it is usually not hard to come up with formulas that foil any concrete preprocessing
techniques actually used, this seems like a reasonable simplification.

B.1. INTRODUCTION 87

log4 N N1/40N1/20N1/10 N2/5

N

2log2 N

2log4 N

2N1/40

Space

Length

(a) Robust trade-off

log4 N N1/40N1/20N1/10 N2/5

N

2log2 N

2log4 N

2N1/40

Space

Length

(b) Exponential trade-off

Figure B.1: Pictorial illustrations of trade-offs in Theorems B.1.1 and B.1.2

1. FN can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O

�

N2/5
�

.

2. FN can be refuted by cutting planes with constant-size coefficients in total space
O(log4 N) and size 2O(log4 N).

3. Any cutting planes refutation of FN , even with coefficients of unbounded size, in
formula space less than N1/10−ε requires length greater than 2Ω(log2 N).

The second trade-off holds over a smaller space range, but causes an exponential
and not just superpolynomial blow-up in proof size.

Theorem B.1.2 (Informal). There exists an explicitly constructible family of 6-CNF for-
mulas {FN}∞N=1 of size Θ(N) such that:

1. FN can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O

�

N2/5
�

.

2. FN can be refuted by cutting planes with constant-size coefficients in total space
O
�

N1/40
�

and size 2O(N1/40).

3. Any cutting planes refutation of FN , even with coefficients of unbounded size, in
formula space less than N1/20−ε requires length greater than 2Ω(N

1/40).

See Figure B.1 for an illustration of these results, where blue dots denote provable
upper bounds on time-space parameters of cutting planes refutations and the shaded
red areas show ranges of parameters that are impossible to achieve.

88 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

B.1.3 Previous Work in Monotone Circuit Complexity

Since this paper also makes contributions to monotone circuit complexity, we next
review some relevant background in this area. After superpolynomial lower bounds on
the size of monotone circuits computing explicit functions were obtained in [159, 11]
(see also [46]), the first step towards the natural next goal of establishing a depth
hierarchy for monotone circuits was taken in [118], proving that connectivity, which is
in monotone-NC2, requires depth Ω(log2 n) for monotone circuits with fan-in 2. This
implies a separation between monotone-NC1 and monotone-NC2. The same approach
was used in [158] to prove a separation between monotone-NCi−1 and monotone-NCi

for every i. This result can be rephrased as saying that there is a family of Boolean
functions

�

f i
	

such that f i can be computed by monotone circuits of depth logi n, fan-in
2, and polynomial size but cannot be computed by any monotone circuit of depth o(logi n)
and fan-in 2. This result was later extended in [114] to circuits of semi-unbounded
fan-in—i.e., with AND-gates of fan-in 2 and OR-gates of unbounded fan-in.

Going into more details, the function in [158] that witnesses the separation between
monotone-NCi−1 and monotone-NCi can be computed by a monotone circuit of depth
logi−1 n, polynomial fan-in, and polynomial size, and therefore the separation is between
monotone-NCi−1 andmonotone-ACi−1. This immediately implies a separation between
monotone-ACi−1 and monotone-ACi as well, since monotone-ACi−1 is contained in
monotone-NCi . However, this separation only guarantees a superpolynomial circuit size
lower bound. Furthermore, the function f i only depends on log40i n variables and so
it can be computed by a monotone DNF of size 2log40i n, i.e., there is a quasipolynomial
upper bound.

We remark that it is clearly not possible to prove a superpolynomial separation
between monotone-NCi−1 and monotone-NCi in view of the simple fact that circuits in
these classes have fan-in 2, and hence it only makes sense to talk about superpolynomial
versus exponential separations in the monotone-AC hierarchy. It should be noted that
exponential separations between monotone circuits of bounded depth were previously
known, but only for depth less than logarithmic. It was shown in [122] that the complete
tree of depth k, arity n1/k, and size Θ(n), with alternating levels of AND and OR, requires
size 2Ω(n

1/k/k) to compute with circuits of depth k − 1. This result was later reproven
in [141] using the communication complexity of the pointer jumping function (see
also [157]).

B.1.4 Our Monotone Circuit Complexity Contributions

In this paper, we establish an exponential separation in the monotone-AC hierarchy.
More precisely, for each i ∈ N we exhibit a Boolean function f i that can be computed by
monotone circuits of depth logi n but such that every monotone circuit of depth at most
O(logi−1 n) requires size 2nΩ(1) (where the hidden constant in the lower bound depends
inversely on that in the upper bound).

B.1. INTRODUCTION 89

Theorem B.1.3. For every i ∈ N there is a Boolean function over n variables that can be
computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but for which
every monotone circuit of depth q logi−1 n requires size 2Ω(n

1/(10+4ε)q).

B.1.5 Discussion of Techniques

Let us now briefly discuss the techniques we use to establish the above results, focusing
for concreteness on Theorems B.1.1 and B.1.2. These theorems are proven by a careful
chain of reductions as follows.

1. Our first step is to use the connection made explicit in [106], and also used in [95],
that short and space-efficient proofs for a CNF formula F can be converted to
efficient communication protocols for the falsified clause search problem for F .
Going beyond [106, 95], however, we make the simple but absolutely crucial
additional observation that protocols obtained in this way are also round-efficient.
Furthermore, in contrast to [106, 95] we do not study randomized communication,
but instead focus on the real communication model introduced by Krajíček [125]
with the purpose of getting a tighter correspondence with cutting planes.

2. We next generalize the communication-to-decision-tree simulation theorem for
composed search problem in the celebrated paper by Göös et al. [96] to the real
communication model, and then extend it further to be able to handle rounds
using the parallel decision trees introduced by Valiant [178]. This part is inspired
by [43], where the simulation theorem in the precursor [158] of [96] was proven
for real communication but without taking round efficiency into account.

3. To leverage this machinery we need a base CNF search problem, and just as in
[28, 95, 106, 23] (and many other papers) the pebbling formulas PebG from [29]
turn out to be handy here, provided that they are defined over appropriately
chosen directed acyclic graphs G. These formulas are then lifted (corresponding
to composition of search problems) as described in [20], though the parameters
of the lifting are different (and unfortunately significantly worse than in [106]).

4. The following step is the relatively straightforward observation that efficient
parallel decision trees for formulas PebG yield good strategies in the pebble game
of Dymond and Tompa [74] played on the underlying graph G. At the same time,
this is a somewhat unexpected twist, since in previous papers such as [27, 28, 23]
size and space lower bounds for pebbling formulas always followed from the
black-white pebble game [67] on G, but we cannot make use of that latter game
here.

5. Since we have to use the Dymond–Tompa game rather than the black-white pebble
game, as a consequence we also have to use different graphs than in [28, 106, 23]—
in particular, modifying the construction of graphs with good black-white pebbling

90 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

trade-offs in [130]—and as a concluding step we prove Dymond–Tompa trade-offs
for these graphs.

Putting all these pieces together, we obtain a general theorem saying that graphs
with Dymond–Tompa trade-offs yield explicit 6-CNF formulas with size-space trade-offs
for cutting planes (and polynomial calculus and resolution). Theorem B.1.3 follows by a
similar chain of reductions.

B.1.6 Paper Outline

The rest of this paper is organized as follows. In Section B.2 we give a more detailed
overview of the steps in the proofs of our main theorems, introducing formal definitions
of the concepts discussed above as need arises. In Section B.3 we translate proofs into
communication protocols. The heart of the paper is then in Section B.4, where we
establish that communication protocols for lifted search problems can be simulated by
decision trees for the original search problems. In Section B.5 we show how decision trees
for our search problem for pebbling formulas can be converted to Dymond–Tompa game
strategies for the corresponding graphs, and in Section B.6 we show Dymond–Tompa
trade-offs. After having established the upper bounds needed for our proof complexity
trade-offs in Section B.7, we put all the pieces together in Section B.8. Section B.9 then
discusses how we can use the same tools to obtain circuit complexity separations. Finally,
we make some concluding remarks in Section B.10.

B.2 Preliminaries and Proof Overview

In this section, we describe which components are needed for our results stated in
Section B.1 and how they fit together. Our goal is to give an accessible high-level outline
of the proofs, but still make clear what are the main technical points in the arguments
and also indicate some of the challenges that have to be overcome.

Let us start by reviewing the concepts we need from proof complexity. Throughout
this paper all logarithms are to base 2 unless otherwise specified, and we write [n] to
denote the set {1,2, . . . , n}.

B.2.1 Proof Complexity Basics and Cutting Planes

For x a Boolean variable, a literal over x is either the variable x itself or its negation,
denoted x . It will also be convenient to use the notation x1 = x and x0 = x . A clause
C = a1 ∨ · · · ∨ ak is a disjunction of literals and a CNF formula F = C1 ∧ · · · ∧ Cm is a
conjunction of clauses. We will think of clauses and CNF formulas as sets, so that the
ordering is inconsequential and there are no repetitions. A k-CNF formula is a CNF
formula consisting of clauses containing at most k literals.

We write α,β to denote truth value assignments, i.e., functions to {0,1}, where we
identify 0 with false and 1 with true (thus, x b is the literal satisfied by setting x = b).

B.2. PRELIMINARIES AND PROOF OVERVIEW 91

We have the usual semantics that a clause is true under α, or satisfied by α, if at least
one literal in it is true, and a CNF formula is satisfied if all clauses in it are satisfied. We
write ⊥ to denote the empty clause without literals, which is false under all truth value
assignments.

Following [2, 77], we view a proof of unsatisifiability of a CNF formula F , or refutation
of F , as a non-deterministic computation, with a special read-only input tape from
which the clauses of the formula F being refuted (which we refer to as axioms) can be
downloaded and a working memory where all derivation steps are made. In a cutting
planes (CP) derivation, memory configurations are sets of linear inequalities

∑

j a j x j ≥ c
with a j , c ∈ Z. We translate clauses C to linear inequalities L(C) by identifying the

clause
∨

j x
b j

j with the inequality
∑

j(−1)1−b j x j ≥ 1−
∑

j(1− b j). A CP refutation of
F is a sequence of configurations (L0, . . . ,Lτ) such that L0 = ;, the inequality 0 ≥ 1
occurs in Lτ, and for t ∈ [τ] we obtain Lt from Lt−1 by one of the following rules:

Axiom download Lt = Lt−1 ∪ {L} for L being either the encoding L(C) of an axiom
clause C ∈ F or a variable axiom x j ≥ 0 or −x j ≥ −1 for any variable x j .

Inference Lt = Lt−1 ∪ {L} for L inferred by addition

∑

j a j x j ≥ c
∑

j b j x j ≥ d
∑

j(a j + b j)x j ≥ c + d
,

multiplication

∑

j a j x j ≥ c
∑

j ka j x j ≥ kc
, or division

∑

j ka j x j ≥ c
∑

j a j x j ≥ dc/ke
for k ∈ N+.

Erasure Lt = Lt−1 \ {L} for some L ∈ Lt−1.

The length of a CP refutation is the number of linear inequalities L appearing in
download and inference steps, counted with repetitions. We obtain the size of a refutation
by also summing the sizes of the coefficients and constant terms in the inequalities,
i.e., each inequality

∑

j a j x j ≥ c contributes log|c|+
∑

j log|a j |. The formula space of
a configuration L = {

∑

j ai, j x i, j ≥ ci | i ∈ [s]} is the number of inequalities s in it, and

the total space of L is
∑

i∈[s]

�

log|ci |+
∑

j log|ai, j |
�

. We obtain the formula space or total
space of a refutation by taking the maximum over all configurations in it. Finally, the
length, size, formula space, and total space of refuting a formula F is obtained by taking
the minimum over all CP refutations of the formula with respect to the corresponding
complexity measure.

B.2.2 Composed Search Problems and Lifted CNF Formulas

Informally speaking, the idea behind lifting, or composition, is to take a relation over
some domain and extend it to tuples from the same domain by combining it with a
selector function that determines on which coordinates from the tuples the relation
should be evaluated.

Let S be any relation on the Cartesian product A×Q. We will think of S as a search
problem with input domain A and output range Q, where on any input a ∈ A the task is

92 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

to find some q ∈Q such that (a, q) ∈ S (assuming that S is such that there always exists
at least one solution). Throughout this paper, we will have A= {0,1}m for some m ∈ N+,
so for simplicity we fix A to be such a domain from now on.

For any ` ∈ N+, we define the lift of length ` of S to be a new search problem
Lift`(S) ⊆

�

[`]m × {0, 1}m·`
�

×Q with input domain [`]m × {0,1}m·` and output range Q
such that for any x ∈ [`]m, any bit-vector {yi, j}i∈[m], j∈[`], and any q ∈Q, it holds that

(x , y, q) ∈ Lift`(S) if and only if
�

(y1,x1
, y2,x2

, . . . , ym,xm
), q
�

∈ S . (B.2.1)

In what follows, we will refer to the coordinates of the x-vector as selector variables and
those of the y-vector as main variables, and we will sometimes use the notation

select(x i , yi) = yi,x i
(B.2.2)

to denote the bit in yi selected by x i . We extend this notation to vectors to write
select(x , y) = yx = (y1,x1

, . . . , ym,xm
).

As in [106, 95], we obtain our results by studying lifted search problems defined
in terms of CNF formulas and proving communication lower bounds for such problems.
Syntactically speaking, however, these objects are not themselves CNF formulas, which
is what we use to feed to our proof system. Therefore, we need an additional step which
translates the lifted search problems back to CNF as follows.

Definition B.2.1 (Lifted formula [20]). Given ` ∈ N+ and a CNF formula F over
variables u1, . . . , un, the lift of length ` of F , denoted Lift`(F), is the formula over variables
{x i, j}i∈[n], j∈[`] (selector variables) and {yi, j}i∈[n], j∈[`] (main variables) containing the
following clauses:

• For every i ∈ [n], an auxiliary clause

x i,1 ∨ x i,2 ∨ · · · ∨ x i,` . (B.2.3a)

• For every clause C ∈ F , where C = ui1 ∨ · · · ∨ uis ∨ uis+1
∨ · · · ∨ uit

for some variable
indices i1, . . . , it ∈ [n], and for every tuple (j1, . . . , jt) ∈ [`]t , a main clause

x i1, j1 ∨ yi1, j1 ∨ · · · ∨ x is , js ∨ yis , js ∨ x is+1, js+1
∨ y is+1, js+1

∨ · · · ∨ x it , jt ∨ y it , jt . (B.2.3b)

Intuitively, we can think of the selector variables as encoding the vector x ∈ [`]m

in the lifted search problem (B.2.1). Since x i, j ∨ yi, j is equivalent to the implication
x i, j → yi, j , we can rewrite (B.2.3b) as

(x i1, j1 → yi1, j1)∨ · · · ∨ (x it , jt → y it , jt) , (B.2.4)

from which we can see that for every clause C the auxiliary clauses encode that there is at
least one choice of selector variables x i, j which are all true, and for this choice of selector
variables the yi, j-variables in the lifted main clause will play the role of the ui-variables,

B.2. PRELIMINARIES AND PROOF OVERVIEW 93

giving us back the original clause C . It is easily verified that F is unsatisfiable if and only
if H = Lift`(F) is unsatisfiable, and that if F is a k-CNF formula with m clauses, then
H is a max(2k,`)-CNF formula with at most m`k + n clauses. A small technical issue
for us compared to [106, 95] is that `� k will not be constant, but we can convert the
wide clauses in (B.2.3a) to constant width using extension variables, and so we will just
ignore this issue in our proof overview.

B.2.3 Pebbling Contradictions

An important role in many proof complexity trade-off results is played by so-called
pebbling contradictions. For our purposes it suffices to say that they are defined in terms
of directed acyclic graphs (DAGs) G, where for simplicity we assume that all vertices have
indegree 0 or 2. We refer to vertices with indegree 0 as sources and assume that there is
a unique sink vertex with outdegree 0. What the pebbling contradiction over G says is
that the sources are true and that truth propagates from predecessors to successors, but
that the sink is false. The formal definition follows.

Definition B.2.2 (Pebbling contradiction [29]). Let G be a DAG with sources S and a
unique sink z, and with all non-sources having indegree 2. Then the pebbling contradiction
over G, denoted PebG , is the conjunction of the following clauses over variables {v | v ∈
V (G)}:

• for every source vertex s ∈ S, a unit clause s (source axioms),

• For all non-sources w with immediate predecessors u, v, a clause u∨v∨w (pebbling
axioms),

• for the sink z, the unit clause z (sink axiom).

If G has n vertices, the formula PebG is an unsatisfiable 3-CNF formula with n+ 1
clauses over n variables. For an example of a pebbling contradiction, see the CNF formula
in Figure B.2b defined in terms of the graph in Figure B.2a.

To make the connection back to Definition B.2.1, in Figure B.3 we present the lift
of length 2 of the CNF formula in Figure B.2b, with the auxiliary clauses at the top of
the left column followed by the main clauses one by one, listed for all tuples of selector
indices (with the only difference that since the variables in this formula are u, v, w, x , y, z
rather than u1, . . . , un, we denote the main variables by yu, j1 , yv, j2 , yw, j3 , et cetera, rather
than yi1, j1 , yi2, j2 , . . .). We will refer to the main clauses in Figure B.2b as source axioms,
pebbling axioms, and sink axioms, respectively, when they have been obtained by lifting
of the correspondingly named axioms in the pebbling contradiction.

B.2.4 Real Communication and Falsified Clause Search Problems

For our communication complexity results we study a two-player communication model,
referring to the players as Alice and Bob following tradition. We first briefly discuss the

94 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

u v w

x y

z

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u∨ v ∨ x)
∧ (v ∨w∨ y)
∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction Peb
Π2
.

Figure B.2: Example pebbling contradiction for the pyramid of height 2.

basic deterministic model, and then explain how we need to extend it, directing the
reader to [128] for any omitted standard communication complexity facts.

In the communication problem of computing a function f : X × Y →Q, Alice is given
an input x ∈ X , Bob is given an input y ∈ Y , and they are required to find f (x , y) while
minimizing the communication between them. A communication protocol is a binary
tree where Alice and Bob start at the root, every node specifies who is going to speak,
the value of the spoken bit is only a function of the node v and the input x if Alice speaks
or y if Bob does, and leaves are labelled by correct values f (x , y). Similarly, for any
relation S ⊆ X × Y ×Q, the communication problem for S is one in which Alice is given
x ∈ X , Bob is given y ∈ Y , and they are required to communicate to find some q such
that (x , y, q) ∈ S. The cost of a protocol is the maximum number of bits communicated
on any input, and the number of rounds is the maximum number of alternations between
Alice and Bob speaking.

In order to obtain trade-offs for cutting planes, we need to study the more general
real communication model in [125], where Alice and Bob interact via a referee, and also
introduce the concept of rounds in this model. It is convenient to describe the protocol
as a (non-binary) tree, where at node v in the protocol tree Alice and Bob send kv real
numbers φv,1(x), . . . ,φv,kv

(x) andψv,1(y), . . . ,ψv,kv
(y), respectively, to the referee. The

referee announces the results of the comparisons φv,i(x) ≤ ψv,i(y) for i ∈ [kv] as a
kv-bit binary string, after which the players move to the corresponding next node in
the protocol tree. The number of rounds r of a protocol is the depth of the tree and
the cost c is the total number of comparisons made by the referee for any input. It is
easy to see that this model can simulate standard deterministic communication (for
instance, if Alice wants to send a message, she sends the complement of that message to
the referee and Bob sends a list of the same length with all entries 1/2) and is in fact
strictly stronger (since equality can be solved with just two bits of communication).

The communication problem that we are interested in is the (falsified) clause search
problem. This is the problem of, given an unsatisfiable CNF formula F and a truth value

B.2. PRELIMINARIES AND PROOF OVERVIEW 95

(xu,1 ∨ xu,2) ∧ (x v,1 ∨ y v,1 ∨ xw,1 ∨ yw,1 ∨ x y,1 ∨ yy,1)

∧ (xv,1 ∨ xv,2) ∧ (x v,1 ∨ y v,1 ∨ xw,1 ∨ yw,1 ∨ x y,2 ∨ yy,2)

∧ (xw,1 ∨ xw,2) ∧ (x v,1 ∨ y v,1 ∨ xw,2 ∨ yw,2 ∨ x y,1 ∨ yy,1)

∧ (x x ,1 ∨ x x ,2) ∧ (x v,1 ∨ y v,1 ∨ xw,2 ∨ yw,2 ∨ x y,2 ∨ yy,2)

∧ (x y,1 ∨ x y,2) ∧ (x v,2 ∨ y v,2 ∨ xw,1 ∨ yw,1 ∨ x y,1 ∨ yy,1)

∧ (xz,1 ∨ xz,2) ∧ (x v,2 ∨ y v,2 ∨ xw,1 ∨ yw,1 ∨ x y,2 ∨ yy,2)

∧ (xu,1 ∨ yu,1) ∧ (x v,2 ∨ y v,2 ∨ xw,2 ∨ yw,2 ∨ x y,1 ∨ yy,1)

∧ (xu,2 ∨ yu,2) ∧ (x v,2 ∨ y v,2 ∨ xw,2 ∨ yw,2 ∨ x y,2 ∨ yy,2)

∧ (x v,1 ∨ yv,1) ∧ (x x ,1 ∨ y x ,1 ∨ x y,1 ∨ y y,1 ∨ xz,1 ∨ yz,1)

∧ (x v,2 ∨ yv,2) ∧ (x x ,1 ∨ y x ,1 ∨ x y,1 ∨ y y,1 ∨ xz,2 ∨ yz,2)

∧ (xw,1 ∨ yw,1) ∧ (x x ,1 ∨ y x ,1 ∨ x y,2 ∨ y y,2 ∨ xz,1 ∨ yz,1)

∧ (xw,2 ∨ yw,2) ∧ (x x ,1 ∨ y x ,1 ∨ x y,2 ∨ y y,2 ∨ xz,2 ∨ yz,2)

∧ (xu,1 ∨ yu,1 ∨ x v,1 ∨ y v,1 ∨ x x ,1 ∨ yx ,1) ∧ (x x ,2 ∨ y x ,2 ∨ x y,1 ∨ y y,1 ∨ xz,1 ∨ yz,1)

∧ (xu,1 ∨ yu,1 ∨ x v,1 ∨ y v,1 ∨ x x ,2 ∨ yx ,2) ∧ (x x ,2 ∨ y x ,2 ∨ x y,1 ∨ y y,1 ∨ xz,2 ∨ yz,2)

∧ (xu,1 ∨ yu,1 ∨ x v,2 ∨ y v,2 ∨ x x ,1 ∨ yx ,1) ∧ (x x ,2 ∨ y x ,2 ∨ x y,2 ∨ y y,2 ∨ xz,1 ∨ yz,1)

∧ (xu,1 ∨ yu,1 ∨ x v,2 ∨ y v,2 ∨ x x ,2 ∨ yx ,2) ∧ (x x ,2 ∨ y x ,2 ∨ x y,2 ∨ y y,2 ∨ xz,2 ∨ yz,2)

∧ (xu,2 ∨ yu,2 ∨ x v,1 ∨ y v,1 ∨ x x ,1 ∨ yx ,1) ∧ (xz,1 ∨ yz,1)
∧ (xu,2 ∨ yu,2 ∨ x v,1 ∨ y v,1 ∨ x x ,2 ∨ yx ,2) ∧ (xz,2 ∨ yz,2)
∧ (xu,2 ∨ yu,2 ∨ x v,2 ∨ y v,2 ∨ x x ,1 ∨ yx ,1)
∧ (xu,2 ∨ yu,2 ∨ x v,2 ∨ y v,2 ∨ x x ,2 ∨ yx ,2)

Figure B.3: Lifted formula Lift2

�

PebΠ2

�

of length 2 obtained from the pebbling contradic-
tion over Π2.

assignment α, finding a clause C ∈ F falsified by α. We denote this problem by Search(F).
In fact, from a communication complexity point of view we will be interested in lifts
of this search problem Lift(Search(F)), while for our proof complexity trade-offs the
perspective is slightly different in that we need to study the CNF formula Lift(F) from
Definition B.2.1 and relate the hardness of this formula to the communication complexity
of the falsified clause search problem Search(Lift(F)). Happily, this distinction does not
really matter to us, since a good communication protocol for Search(Lift(F)) can also be
used to solve Lift(Search(F)), and hence a lower bound for the latter communication
problem applies also to the former, as stated formally in the next observation.

Observation B.2.3. Suppose that F is an unsatisfiable CNF formula. Then any two-player
real communication protocol for Search(Lift`(F)) where all selector variables x i, j in the

96 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

same block are given to the same player can be adapted to a protocol for Lift`(Search(F))
with the same parameters.

We refer to, e.g., [106] for the easy proof (which is independent of the concrete
communication model under consideration). Thanks to this observation, we can freely
switch perspectives between Lift`(Search(F)) and Search(Lift`(F)) when we want to
prove lower bounds for the latter problem. The reason that such lower bounds are
interesting, in turn, is that if a CNF formula H has a CP refutation in short length and
small space, then such a proof can be used to construct a round- and communication-
efficient protocol for Search(H).

Lemma B.2.4. If a CNF formula H can be refuted by cutting planes in length L and formula
space s, then for any partition of the variables of H between Alice and Bob there is a real
communication protocol solving Search(H) in dlog Le rounds with total communication
cost at most s · dlog Le.

Sketching the proof very briefly, given a truth value assignment α Alice and Bob can
do binary search over the refutation (L0 = ;,L1, . . . ,LL) of H until they find a t ∈ [L]
such that Lt evaluates to true under α but Lt−1 evaluates to false. Then the derivation
step at time t must be a download of an axiom C ∈ H falsified by α. For the details
we can reuse the proof from [106] verbatim, just adding the one simple but absolutely
crucial observation that the protocol obtained in this way is also round-efficient, since
all communication needed to evaluate a particular configuration Lt can be performed in
parallel.

It is worth noting that although we state Lemma B.2.4 for cutting planes here,
there is nothing that really uses the syntactic properties of the cutting planes refutation.
Thus, the proof works equally well for resolution, polynomial calculus, or any proof
system for which configurations can be evaluated by round-efficient protocols where the
communication scales as the space of the configuration.

B.2.5 Simulations of Protocols by Parallel Decision Trees

A parallel decision tree [178] for a search problem S ⊆ {0,1}m ×Q is a tree T such that
each node v is labelled by a set of variables Vv and has exactly one outgoing edge for each
of the 2|Vv | possible assignments to these variables, and such that for every α ∈ {0,1}m

the path from the root of T defined by the edges consistent with α ends at a leaf labelled
by some q ∈Q such that (α, q) ∈ S (where again the tacit assumption is that S is such
that such a solution always exists). The number of queries of T is the maximal sum of set
sizes |Vv | along any path in T , and the depth of T is the length of a longest path.

Any decision tree T for a search problem S can be simulated by a communication
protocol for the lifted problem Lift(S) in a straightforward way, where if T wants to
query the ith variable Alice and Bob can communicate to find yi,x i

and then walk
in T according to this value. Such a walk will end in a leaf labelled by a q such that

B.2. PRELIMINARIES AND PROOF OVERVIEW 97

�

(y1,x1
, y2,x2

, . . . , ym,xm
), q
�

∈ S, i.e., a solution to the lifted search problem, and thus
the query complexity of the original search problem provides an upper bound on the
communication cost of the lifted problem. If in addition there is a parallel decision tree
with small depth, then a protocol simulating such a tree will also be round-efficient.
The main technical result of our paper is that simulating such a parallel decision tree is
essentially the best any round-efficient protocol can do (provided that the lifting of the
search problem is done with appropriate parameters).

Theorem B.2.5 (Simulation theorem). Let S be a relation with domain {0,1}m and let
`= m3+ε for some constant ε > 0. If there is an r-round real communication protocol in
cost c that solves Lift`(S), then there is a parallel decision tree in depth r solving S using
O(c/ log`) queries.

We remark that similar simulation theorems have previously been shown for both
deterministic communication [158, 96] and real communication [43], but unfortunately
they fail to take round efficiency into account. Our proof of Theorem B.2.5 follows
the approach in these papers to build a decision tree for the original problem that
simulates the communication protocol for the lifted problem. In order to obtain an
efficient simulation we have to maintain (in an amortized sense) that the decision tree
queries a variable only when a noticeable amount of communication has taken place. To
prove that the decision tree constructed in this way is correct, we need to show that at the
end of the simulation there exists a pair of inputs to Alice and Bob that are compatible
both with the transcript and with a lift of the original input. Towards this end, during
the simulation we maintain a set of such compatible inputs, which must not be allowed
to shrink too fast.

In order for the proof to work we need to be able to handle two kinds of events:
communication events, where we simulate the players communicating; and query events,
where the decision tree under construction queries some variable and gets its actual
value. Both of these events force us to prune the set of compatible communication inputs.
In the first case we want to choose a communication message that removes as few inputs
as possible, whereas in the second case we have to restrict the communication inputs
to a subset that is compatible with the value returned by the decision tree query. We
make sure to query a variable only when the transcript “reveals too much information”
about Alice’s and Bob’s lifted input related to that variable, and thanks to this we can
argue that query events do not happen too often and that the amount of communication
provides an upper bound on the total number of queries.

Extending these techniques to round-efficient protocols and simulations by parallel
decision trees causes significant additional complications, however. Very briefly, one
issue is that we cannot let the tree query an individual variable as soon as sufficient
information has been “revealed” about it during the simulation, but have to wait until we
can issue a whole set of queries corresponding to a single message of the protocol. This
makes it challenging to maintain a set of compatible inputs for variables we have not yet
been allowed to query. Another issue is that, in contrast to deterministic communication

98 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

protocols, real protocols do not partition the input domain into combinatorial rectangles.
While this is not a big problem for a single comparison by the referee, it becomes
more challenging when we want to handle a round consisting of many simultaneous
comparisons.

B.2.6 From Decision Trees to Dymond–Tompa Trade-offs

The Dymond–Tompa game [74]2 is played in rounds on a DAG G by two players Pebbler
and Challenger. In the first round, Pebbler places pebbles on a non-empty subset of
vertices of G including the unique sink z and Challenger picks some vertex in this set. In
all subsequent rounds, Pebbler places pebbles on some non-empty subset of vertices not
yet containing pebbles, and Challenger either challenges a vertex in this new set (jumps)
or re-challenges the previously chosen vertex (stays). This repeats until at the end of
a round Challenger is standing on a vertex with all immediate predecessors pebbled
(or on a source, for which the condition vacuously holds), at which point the game
ends. Intuitively, Challenger is challenging Pebbler to “catch me if you can” and wants
to play for as many rounds as possible, whereas Pebbler wants to “surround” Challenger
as quickly as possible. We say that Pebbler wins the r-round Dymond–Tompa game on G
in cost c if there is a strategy such that Pebbler can always finish the game in at most r
rounds placing a total of at most c pebbles regardless of how Challenger plays.

In order to obtain lower bounds on the query complexity of parallel decision trees
of bounded depth, we use an adversary argument and describe strategies that give as
unhelpful answers as possible for variables queried by the decision trees. If we specialize
this to the clause search problem for pebbling contradictions PebG , such adversary
strategies are equivalent to Challenger strategies in the Dymond–Tompa game on G. For
standard binary decision trees and the Dymond–Tompa game with unlimited number of
rounds this was proven in [54],3 and we show that this equivalence extends also to our
more general setting where decision trees can issue queries in parallel and we account
for the number of rounds in the Dymond–Tompa game.

Lemma B.2.6. If there is a parallel decision tree for Search
�

PebG

�

in depth r using at most
c queries, then Pebbler has a winning strategy in the r-round Dymond–Tompa game on G
in cost at most c + 1.

It follows from this lemma that round-cost trade-offs for Dymond–Tompa pebbling
implies depth-query trade-offs for parallel decision trees. To conclude the proof of the
lower bound in our trade-off results, we need to find a family of graphs for which we can
prove lower bounds for the cost of Pebbler strategies in the Dymond–Tompa game with
bounded number of rounds. Towards this end, we establish that graphs that satisfy a
certain connectivity property possess trade-offs between number of rounds and cost, and

2We give a slightly different, but essentially equivalent, description of the Dymond–Tompa game that is
closer to recent papers such as [54, 56].

3This game on decision trees is called the Raz–McKenzie game in [54].

B.2. PRELIMINARIES AND PROOF OVERVIEW 99

then exhibit such graphs. These graphs were inspired by graphs for which black-white
pebbling trade-offs were shown in [130], but we need to make some modifications in
order to obtain Dymond–Tompa trade-offs.

Lemma B.2.7. For any n, r ∈ N+ there exists an explicitly constructible DAG G(n, r) with
O(rn log n) vertices such that the cost of the r-round Dymond–Tompa game on G(n, r) is
at least Ω(n).

The graph G(n, r) is structured in r + 1 layers and we obtain the lemma by designing
a strategy for Challenger such that as long as Pebbler does not place too many pebbles,
Challenger can make sure that in the ith round the challenged pebble is above the
ith layer. Hence, the game does not end within r rounds.

B.2.7 Proofs of Main Theorems

Combining all the components discussed above we can now prove the following trade-off
lower bound.

Theorem B.2.8. Let G be a DAG over m vertices such that any winning strategy for Pebbler
in the r-round Dymond–Tompa game on G has cost Ω(c), and let ε > 0 and ` = m3+ε.
Then Lift`

�

PebG

�

is a 6-CNF formula over Θ(m4+ε) variables and N = Θ(m10+3ε) clauses
such that any cutting planes refutation of it in formula space less than c

r log N , even with
coefficients of unbounded size, requires length at least 2Ω(r).

Proof. Suppose for the sake of contradiction that there is a cutting planes refutation
of Lift`

�

PebG

�

in length 2o(r) and formula space less than c
r log N . By Lemma B.2.4 this

implies that there is a real communication protocol that solves Lift`
�

Search(PebG)
�

in o(r)
rounds and total cost o(c log N). Using Theorem B.2.5 we obtain a parallel decision tree
computing Search(PebG) using o(c) queries and depth o(r). But if so, by Lemma B.2.6
Pebbler wins the o(r)-round Dymond–Tompa game on G in cost o(c), which contradicts
the assumption of the theorem.

In order to attain our trade-off results we also need upper bounds on refutations
of these formulas. Small-size upper bounds follow by essentially the same approach of
lifting black pebbling upper bounds as in [28, 106], although more care is needed since
our lifts are of non-constant length. For the small-space refutations, this technique does
not work because the space loss due to the large lift length is larger than the upper bound
we are aiming for. Luckily, we can instead prove upper bounds in the Dymond–Tompa
game with unlimited rounds and then convert them into refutations in small space.
Theorems B.1.1 and B.1.2 then follow from Theorem B.2.8 applied to an appropriate
family of graphs that exhibit Dymond–Tompa trade-offs as in Lemma B.2.7.

The tools we have developed also allow us to prove the monotone circuit separa-
tion in Theorem B.1.3. The function that witnesses the separation is inspired by the

100 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

PYRAMID-GEN function of [158] adapted to the graphs in Lemma B.2.7. Then we trans-
late the Dymond–Tompa trade-off into a lower bound for deterministic communication
protocols with few rounds, which we then transform into a lower bound for circuits of
small depth via the Karchmer–Wigderson game [118].

B.3 From Proofs to Communication Protocols

As mentioned in the preliminaries, length space trade-offs for a given proof system
can be obtained via reduction to the falsified clause search problem. Exactly which
communication model to consider for the search problem depends on the proof system.
Given a sequential proof system P and a communication model M, let cP,M and rP,M
be the maximum cost and the maximum number of rounds, respectively, required to
evaluate a line/formula of any configuration.

The idea behind the reduction is to, given a refutation as a sequence of configurations,
do a binary search in this sequence in order to find two consecutive configurations such
that the first is evaluated to true and the second to false. Since the proof system is
sound, this false configuration must be due to an axiom download and this axiom must
be falsified. Finally, observing that each line/formula of a configuration can be evaluated
in parallel, we get the following lemma.

Lemma B.3.1. Let π be a refutation in a sequential proof system P of a CNF formula F
in length L and formula space s. Then, in any (deterministic) communication model M
and for any partition of the variables of F between Alice and Bob there is a communication
protocol that solves Search(F) in rP,M · dlog Le rounds with total communication cost at
most s · cP,M · dlog Le.

Proof. Suppose Alice and Bob are each given a part of an assignment α to F . Fix a
P-refutation π= {D0,D1, . . . ,DL} of F as in the statement of the lemma. By definition
of refutation, it must be the case that D0 = ; and ⊥ ∈ DL .

Alice and Bob consider the configuration DL/2 in the refutation at time L/2 and with
joint efforts (involving some communication, which we will discuss shortly) evaluate the
truth value of DL/2 under the assignment α. If DL/2 is true under α, they continue their
search in the subderivation {DL/2,D1, . . . ,DL}. If DL/2 is false, the search continues in
the first half of the refutation {D0,D1, . . . ,DL/2} Note that D0 = ; is vacuously true under
any assignment, and since ⊥ ∈ DL this last configuration evaluates to false under any
assignment. The binary search is carried out so as to maintain that the first configuration
in the current subderivation under consideration evaluates to true and the last one
evaluates to false under the given assignment α. Hence, after at most dlog Le steps Alice
and Bob find a t ∈ [L] such that Dt−1 is true under α but Dt is false. Since the proof
system is sound, the derivation step to get from Dt−1 to Dt cannot have been an inference
or erasure, but must be a download of some axiom clause C ∈ H. This clause C must be
false under α, and so Alice and Bob give C as their answer.

B.3. FROM PROOFS TO COMMUNICATION PROTOCOLS 101

Now all that remains is to discuss how much communication is needed to evaluate a
configuration in the refutation. Every line/formula in the configuration can be evaluated
with cost at most cP,M and in at most rP,M rounds. Moreover, the rP,M rounds to
evaluate each line can be done in parallel by simply concatenating, at each round i, all
the ith messages of the protocol for evaluating each line of the configuration. Since each
configuration has at most s lines, it can be evaluated with cost at most s · cP,M and in at
most rP,M rounds.

We note that, for randomized communication models (which we do not use in this
paper, but are used for example in [106, 95]), the above theorem holds if cP,M and rP,M

are defined to be the maximum cost and the maximum number of rounds, respectively,
required to evaluate a line/formula of any configuration with high enough probability
of success so that the union bound of the probability of error over all the evaluations of
configurations is small enough.

Ideally, given a proof system P we want a communication model M such that rP,M

and cP,M are constants, or at least a slow growing function. We only consider semantic
versions of proof systems, where we specify the format of proof lines and use the fact
that derivation rules, whichever they are, are semantically sound (as defined in [2]).

For example, if P is resolution, where lines are clauses of the form
∨

j x
b j

j , then
Alice and Bob can evaluate a line in two rounds and two bits of communication in the
deterministic communication model.

If we consider polynomial calculus over any field F, where lines are polynomials
of the form

∑

m

∏

j am, j x j but the space measure is the number of monomials, Alice
and Bob first check that the assignment is {0,1}-valued—and immediately output a
falsified axiom otherwise—and then run the binary search protocol, where they can
evaluate a monomial in two rounds and two bits of communication in the deterministic
communication model.

For cutting planes with bounded coefficients, Alice and Bob can evaluate a line in two
rounds and either O(log N) bits of communication in the deterministic communication
model if the bound is a polynomial in the size of the formula or O(log L) bits if the bound
is a polynomial in the size of the refutation.

For unrestricted cutting planes, Alice and Bob can evaluate a line in one round and
one comparison in the real communication model.

The small but key difference from previous papers [106, 95] is that we explicitly
consider rounds. The theorem states that if there exists a refutation in small space and
small length, then there is a communication protocol that solves the falsified clause
search problem not only with small communication cost, but also in few rounds.

It seems unlikely that the techniques used so far (without rounds) would yield true
trade-offs; let us discuss why. For a trade-off of the form s · log L ≥ x to be a true trade-
off there must exist a refutation in small space and another one in small length. The
formulas for which trade-offs have been proven are lifted versions of pebbling formulas,

102 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

which have refutations in small (linear) length, but not necessarily small space: the
black-white pebbling number is a lower bound for resolution space, as proven in [28].

For the pyramid graphs studied in [106, 95], the black-white pebbling number is
asymptotically equal to the Dymond–Tompa price, which in turn is an upper bound
for the communication complexity, as we argued in Section B.2. Therefore, for the
resolution proof system, the apparent trade-off is actually s · log L = Ω(s), giving only an
uninformative length lower bound for the feasible range of space, and so the formula
properties are better described by a space lower bound rather than a trade-off.

It seems plausible that the black-white pebbling number is also a lower bound for
polynomial calculus space and cutting planes total space, and thus the “trade-offs”
between PC-space or CP-total space and length, might also turn out to be unconditional
space lower bounds.

Even if we consider other graph families, the best separation between black-white
pebbling number and Dymond–Tompa price so far is logarithmic in the size of the
graph [56], which still does not give meaningful results for resolution. It seems more
promising to search for trade-offs in graphs where the black-white pebbling number is
small but nonetheless have trade-offs in resolution, established by some means other
than communication complexity.

To keep the discussion short and focused we only mention that trade-offs have been
proven for stacks of superconcentrators [28] and Carlson–Savage graphs [144]. Yet in
both cases the Dymond–Tompa price is too small to give meaningful trade-offs: in the
first case, it is enough to note that the Dymond–Tompa price is at most the depth, and a
stack of superconcentrators has small depth; for Carlson–Savage graphs, the proof is
similar, but the depth argument is not enough.

To sum up, we showed that the graphs for which the previous techniques yield
trade-offs are likely to have unconditional space lower bounds (but we cannot prove it),
and that for graph families that may have trade-offs—and indeed we prove that this
is the case for a special family of superconcentrators—the previous techniques cannot
prove them.

B.4 From Real Communication to Parallel Decision Trees

We have reached the heart of the reduction. This is by far the most intriguing and also
the most difficult part of the paper. The reader that first wishes to have an overview of
the whole proof should skip Sections B.4.1 and B.4.2.

To prove Theorem B.2.5 we use the same high-level approach of [158, 43, 96]: we
build a decision tree that simulates a protocol computing the composed search problem
Lift(S) and it only queries a variable when, in a certain sense, the transcript reveals too
much information about the index for that variable.

More precisely, we keep two sets of inputs A and B that are compatible with the
communication so far and that are large enough. Additionally for A we enforce that for

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 103

each coordinate i that we have not queried yet, if we fix every other coordinate to some
value, there are still many choices for what to set the index x i to.

To maintain the invariant, we need to handle two kinds of events: communication
events where we guess a message and restrict A and B to the new compatible inputs,
with some additional cleanup, and query events, where some coordinate i becomes too
dependent on other coordinates. Since for each coordinate there are more choices for
yi than Bob can expect to communicate, we will be able to find an input for the players
such that select(x i , yi) agrees with zi , and then restrict A and B appropriately.

At the end of the protocol, if we were to query the remaining variables, we would
have a pair of inputs (x , y) that are compatible with the transcript, therefore the protocol
answers correctly, and such that select(x i , yi) = zi in every coordinate, therefore the
answer is also correct for the decision tree.

To argue that we do not make too many queries we keep a density function that
measures how many choices we have for Alice’s input over not queried coordinates. This
function increases on communication, decreases after a query, and is nonnegative, which
gives us a bound on the number of queries in terms of communication.

The description up to this point is common to all flavours of the simulation theorem,
with or without rounds and with deterministic or real communication. The differences
will surface once we try to implement it.

The first challenge we encounter is when exactly should we query a variable. If we
do not have any bound on depth, then we can do that as soon as we detect that the
invariant is broken and we need to restore it. Since we want to measure the effect of
rounds, however, this exact approach will not work for us, because we might need to
query a variable mid-message. Indeed, if Alice sends the message x1 x2, we would first
simulate sending some bits of x1, then query z1 and restrict the inputs to those such
that select(x1, y1) = z1, keep simulating sending bits of x1 and x2, then query z2 and
restrict the inputs, and finish sending bits. We had to use two rounds of queries in a
single round of communication.

It seems natural to delay querying the variables until the end of the message, but
now we have another problem. Assume that Bob had sent that the 0-th bit of y1 is a 0,
and that Alice’s message is x1. If we guess that the message is x1 = 0 but after we query
z1 we get that z1 = 1, then the inputs compatible with the communication stop being
compatible with the gadget select.

Our solution is to indeed delay querying the variables until the end of the message
but still restrict the inputs as soon as the invariant breaks, in a way that, after fixing x1,
select(x1, y1) can take any value. During the interval of communication between the
restriction and the query we keep a set C that acts as a proxy for B over the coordinates
that we have not queried (and do not intend to). This is a harder task, but still feasible
because only Alice speaks during this time, so we do not need to know B precisely.

The second challenge is to adapt the simulation to a real communication protocol.
As opposed to deterministic protocols, the set of compatible inputs does not necessarily
form a rectangle. However, as observed by [113], the result of one comparison splits the

104 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

matrix of inputs in such a way that one quadrant—thus a rectangle—is monochromatic,
and [43] uses this fact to decide the outcome of each comparison.

Since we want to query variables only at the end of each round we might not know
what B is at the time we want to extract a rectangle from a comparison matrix, and
unfortunately the proxy does not help. Therefore we need to extract rectangles from
the input when we do know B, this is before we start simulating the message. We could
easily extract a rectangle of size a 2−k × 2−k-fraction of the inputs, where k is the size of
the message, but that would be equivalent to simulating the message in one go, which
we argued does not work in the deterministic case.

Our solution is to extract a rectangle of size a 1/4× 2−k log k-fraction of the inputs.
Even though this is equivalent to simulating a long Bob message at once, it has the
advantage that the equivalent message for Alice is very short, so we can still use the very
same techniques to recover the invariants as in the deterministic case.

B.4.1 Simulation of Decision Trees by Deterministic Communication
Protocols

We begin by proving the simulation theorem for the more common deterministic commu-
nication model. Throughout this section we assume that the arity of the select function
is `= m3+ε for some small constant ε > 0, where m is the size of the input.

Theorem B.4.1. If there is a deterministic communication protocol computing Lift(S)
using communication c and r rounds, then there is a parallel decision tree computing S
using O(c/ log`) queries and depth r.

We mention in Section B.2 that we have to use a lift of polynomial length as opposed
to constant length; this is needed for the simulation theorem to apply. In [96] and [158]
the lift is of size m20, while in [43] the lift is of size m14, and a more careful analysis
shows that m4+ε is enough. Using a combinatorial approach to the analysis we can lower
the lift length to m3+ε, but getting beyond this seems hard.

To be able to prove Theorem B.4.1 we need to introduce some notation. Let γ =
1/(3+ ε), δ, λ, µ be numbers strictly between 0 and 1 such that the inequalities

λ− γ > µ (B.4.1a)

µ+δ− 1> γ (B.4.1b)

γ+δ < 1 (B.4.1c)

hold. Note that a solution exists iff γ < 1/3. For concreteness, we can think of γ =
1/3− 2ξ, λ= 1− ξ, µ= 2/3, and δ = 2/3 for some ξ > 0.

Let Π be an r-round deterministic communication protocol computing Lift(S) in cost
c. Let X and Y be inputs to Alice and Bob. Let X v and Y v be the inputs compatible with
node v of the protocol tree. We are going to keep two sets A⊆ [`]m and B ⊆ {0, 1}`m of

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 105

inputs that are compatible with the communication so far, this is A⊆ X v and B ⊆ Y v ,
but have been cleaned up.

We will often be interested in the coordinates that the decision tree has not yet
queried, which we denote I ⊆ [m]. We denote a vector with coordinates in I by
x I = {x i : i ∈ I} and, as a reminder, we denote a set of such vectors by SI . We denote the
projection of a set to I coordinates by πI (SJ) = {x I ∈ {0,1}I : x ∈ SJ for some xJ\I ∈
{0,1}J\I}.

In order to formalize the property of having little information about a coordinate,
we define Graphi(AI) as the bipartite graph where left vertices x i are elements of [`],
right vertices x I\{i} are elements of [`]|I |−1, and there is an edge between two vertices
if x I ∈ AI . Analogously, let Graphi(BI) be the bipartite graph where left vertices yi

are elements of {0,1}`, right vertices yI\{i} are elements of {0, 1}`(|I |−1), and there is
an edge between two vertices if yI ∈ BI . Now let MinDegi(AI) and AvgDegi(AI) be the
minimum and average right degree of Graphi(AI), both taken over the set of vertices
of positive degree. We consider that we do not know too much about a coordinate i
if AvgDegi(AI) ≥ `λ. Moreover, we say AI is thick if MinDegi(AI) ≥ `µ for all i ∈ I , a
property we will make sure to keep throughout the simulation. Observe that, since |AI |
is the number of edges in Graphi(AI) and |πI\{i}(AI)| is the number of right vertices with
positive degree, the definition of average degree is equivalent to

AvgDegi(AI) =
|AI |

|πI\{i}(AI)|
, (B.4.2)

which is more convenient to work with.
A useful observation is that minimum degree (and therefore thickness) is monotone

with respect to projections.

Observation B.4.2 ([158]). MinDeg j(πI\{i}(A))≥MinDeg j(πI (A)) for all j ∈ I \ {i}.

Proof. For each index j ∈ I \ {i}, if there is an edge between x I\{ j} and x j in Graph j(AI),
then there is also an edge between x I\{i, j} and x j in Graph j(πI\{i}(AI)). Formally,

N j(x I\{i, j}) = {x j : x I\{i} ∈ πI\{i}(A)}= {x j : ∃x i x I ∈ πI (A)} (B.4.3)

=
⋃

x i

{x j : x I ∈ πI (A)}=
⋃

x i

N j(x I\{ j}) , (B.4.4)

so for any x i with positive right degree we have

|N j(x I\{i, j})| ≥ |N j(x I\{ j})| ≥MinDeg j(πI (A)) .

Finally, we define two density measures for inputs over non-queried coordinates. For
AI ⊆ [`]|I |, let α(AI) = − log |AI |

`|I |
= |I | log`− log|AI |. Analogously, for BI ⊆ {0, 1}`|I |, let

β(BI) = − log |BI |
2`|I | = |I |`− log|BI |. We will make sure to keep these measures small, so

that at any point there are many inputs compatible with the communication so far.
In fact, density even increases with projections.

106 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Observation B.4.3 ([96]). α(πI\{i}(A)) = α(πI (A))− log`+ log AvgDegi(πI (A))

Proof. By definition of α, this is equivalent to |πI\{i}(A)| = |πI (A)|/AvgDegi(πI (A)),
which follows from the definition of average degree (B.4.2).

We have an auxiliary procedure prune, which we use to restore the thickness of A
after Alice speaks, with the following properties.

Lemma B.4.4 (Thickness Lemma [158]). If AvgDegi(πI (A))≥ `λ/4 for all i ∈ I , then
the return value A′ of prune(A, I) satisfies

1. πI (A′) is thick;

2. α(πI (A′))≤ α(πI (A)) + 1.

To restrict the inputs on one coordinate i to a set U ⊆ [`] we write ρi,U(A) = {x ∈
A : x i ∈ U}, and similarly for V ⊆ {0,1}`, we have ρi,V (B) = {y ∈ B : yi ∈ V}. The set
of b-monochromatic colourings of U is V b(U) = {w ∈ {0, 1}` : ∀ j ∈ U w j = b}.

We have another auxiliary procedure project, which we use to pick the appropriate
U after we make a query in order to recover the density of A with respect to the
remaining coordinates, with the following properties. Note that in the description of
Algorithm B.4 we employ sets CI that act as a proxy for πI (B). We denote CI\{i}

(b)(U) =
πI\{i}(ρi,V b(U)(CI)).

Lemma B.4.5 (Projection Lemma). If πI (A) is thick, and β(CI) ≤ 2`γ log2 `, then the
return value U of project(A, CI , I , i) satisfies

1. πI\{i}(ρi,U(A)) is thick ;

2. α(πI\{i}(ρi,U(A)))≤ α(πI (A))− log`+ log AvgDegi(πI (A)) ;

3. β(CI\{i}
(0)(U)∩ CI\{i}

(1)(U))≤ β(CI) + 1.

The decision tree that witnesses Theorem B.4.1 is Algorithm eval. The difference
from the algorithm in [158, 96] is that, when we need to restrict the sets A and B,
instead of making a query we consider both possible outcomes for Bob. We can delay
committing to either outcome until the moment before Bob starts to speak, at which
point we make all queries at once. We assume that Q is a queue, this is, its elements are
sorted in insertion order. We also assume that argmax decides arbitrarily in case of tie,
and observe that if b = arg max|πI (A∩ X vb)|, then α(πI (A∩ X vb))≤ α(πI (A)) + 1.

Lemma B.4.6 (Main Lemma). If Π is a protocol that computes Lift(S) using communica-
tion c < m

2 (1−λ) log` and r rounds, then eval computes S using at most 2c/(1−λ) log`
queries and depth r.

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 107

1 let A= [`]m, B = {0,1}`m, I = [m], v be the root of Π
2 while v is not a leaf do
3 let Q = ;, CI = πI (B)
4 while v is a node where Alice speaks do
5 while ∃i ∈ I such that AvgDegi(πI (A))< `λ do
6 let Ui = project (A, CI , I , i)
7 let A= ρi,Ui

(A), CI\{i} = CI\{i}
(0)(Ui)∩ CI\{i}

(1)(Ui)
8 let I = I \ {i}, Q =Q ∪ {i}
9 let b = arg max|πI (A∩ X vb)|

10 let A= prune(A∩ X vb , I), v = vb

11 query coordinates Q to get string zQ
12 for i ∈Q do
13 let B = ρi,V (B), where V = V zi (Ui)

14 while v is a node where Bob speaks do
15 let b = arg max|πI (B ∩ Y vb)|
16 let B = B ∩ Y vb , v = vb

17 return the answer at v

Figure B.4: Procedure eval(Π,z)

Observe that Theorem B.4.1 follow from this lemma, since if c ≥ m
2 (1−λ) log` then

a parallel decision tree that queries all variables in depth 1, satisfies the theorem. Before
proving Lemma B.4.6, let us consider some possible protocols and what Algorithm B.4
does.

Consider the trivial protocol where Alice in one round sends all of her input to Bob,
who outputs the answer. To be fair, this is a bit too much communication for Lemma B.4.6
to apply, but let us look over this fact and try to get an intuition of what happens. While
Alice is speaking, the algorithm has to commit to the values of her coordinates, and
therefore, for all coordinates i, AvgDegi(πI (A)) eventually becomes too small and i is
marked to be queried. After she finishes speaking the algorithm queries all coordinates
and restricts Bob’s input to be compatible with the queries and with Alice’s message, i.e.,
it only keeps inputs that have the queried value on the corresponding position. Finally,
the algorithm answers what Bob would output for any of the compatible inputs. Note
that the decision tree in this case is the depth-1 decision tree that queries all coordinates
at once and answers accordingly.

Another possible protocol is the one that follows a parallel decision tree T , as ex-
plained in Section B.2: Alice and Bob communicate to find the value of the coordinates
queried on each node and then continue on T according to these values. For this protocol,
Algorithm B.4 marks to be queried all the coordinates Alice and Bob talk about because

108 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

the corresponding average degree gets too low. Note that the final decision tree is exactly
the same as the one Alice and Bob were following.

Now we consider what happens in a more extreme case. Suppose the protocol is
very unbalanced in the sense that Alice’s first bit is a 0 if her first coordinate is 42, and
otherwise is a 1. In this case, when at line 9 the algorithm chooses a bit for Alice to
speak, it will always choose 1 since it is compatible with the most inputs.

Proof of Lemma B.4.6. Let Rv be the rectangle of inputs compatible with node v, and let
cA

v (resp. cB
v) be the number of bits sent by Alice (resp. Bob) up to node v. Let χ be the

number of queries so far, i.e., χ = m− |I |. We show that the following invariants hold
throughout the algorithm:

1. πI (A) is thick;

2. A× B ⊆ Rv;

3. χ ≤ 2cA
v/(1−λ) log`;

4. β(CI)≤ χ + cB
v ;

and the following invariant holds at the beginning of each round:

5. β(πI (B))≤ χ + cB
v ;

6. select(x i , yi) = zi for all (x , y) ∈ A× B and i /∈ I .

All six invariants are true at the beginning of the algorithm. To prove invariants 1
through 4, we assume they hold up to the current point of the algorithm and prove they
hold after executing the next line.

The set A is modified at lines 7 and 10, both of which ensure that πI (A) is thick,
therefore invariant 1 holds. We need to argue, though, that the assumptions of the
corresponding lemmas hold and therefore we are allowed to apply them. For line 7
we need to argue that Lemma B.4.5 applies, and that is the case, since we assume
invariant 1 holds before this point, and since invariants 3 and 4 together with the
assumption of Lemma B.4.6 that cA

v + cB
v ≤ m log`= `γ log` imply that β(CI)≤ χ+ cB

v ≤
2cA

v/(1−λ) log`+ cB
v ≤ cA

v + cB
v ≤ `

γ log`. For line 10 we need to argue that Lemma B.4.4
applies and, indeed, we have that

AvgDegi(πI (A∩ X vb)) =
|πI (A∩ X vb)|
|πI\{i}(A∩ X vb)|

≥
1
2 |πI (A)|
|πI\{i}(A)|

=
1
2

AvgDegi(πI (A))≥ `λ/2 .

(B.4.5)
We note that the conditions for Lemmas B.4.4 and B.4.5 to apply are more relaxed than
what we prove. This is so because we will apply the same lemmas when dealing with
real communication and there we will need this extra slack.

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 109

For invariant 2, first note that A and B never increase. Moreover, the rectangle of
compatible inputs Rv changes when v is modified at lines 10 and 16, and in both cases
we restrict A (resp. B) to a subset of X b (resp. Y b).

To see that we make at most 2cv/(1−λ) log` queries, we observe that each query
comes from a call to project in line 6, which decreases α by at least (1 − λ) log`
because AvgDegi(AI)< `λ. However, α(πI (A))≤ 2cA

v since, at line 9, b is chosen so that
α(πI (A∩ X vb)) ≤ α(πI (A)) + 1 and thus, by Lemma B.4.4, α increases by at most 2 at
line 10, i.e., after one bit of communication. Since α≥ 0 at all times by definition, the
upper bound in invariant 3 follows.

Note that CI is only updated at lines 3 and 7. At line 3 it holds by the fact that
invariant 5 is true at the beginning of a round. At line 7, Lemma B.4.5 guarantees that
β(CI\{i}

(0)(U)∩ CI\{i}
(1)(U))≤ β(CI) + 1. Note that it is possible to apply Lemma B.4.5

as argued before. Therefore, invariant 4 follows.
To prove that invariant 5 holds at the end of a round we distinguish whether Alice

or Bob spoke. If Bob spoke, B was updated at line 16 and the invariant clearly holds
since each bit b that Bob says is chosen such that β(πI (B ∩ Y vb)) increases by at most 1.

If Alice spoke, B is updated in line 13. Let Q = {i1, . . . , i|Q|}. Let I0 be the non-queried
coordinates at the beginning of the round and Iη = Iη−1 \ {iη}, for η ∈ [|Q|]. Moreover,
let B0 be the value of B at the beginning of the round and Bη = ρi,V (Bη−1), for η ∈ [|Q|]
and i = iη. We prove by induction over η that πIη(Bη) ⊇ CIη . Recall that CIη is a set
whose elements are vectors with coordinates in Iη and is not the projection of a set C to
Iη. Therefore, the subscript serves not only as a reminder of the form of its elements,
but also as an identifier of the set. At the beginning of the round πI0

(B0) = CI0
. At each

iteration,

πIη(Bη) = πIη(ρi,V (Bη−1)) ⊇ πIη(ρi,V (πIη−1
(Bη−1))) (B.4.6)

⊇ πIη(ρi,V (CIη−1
)) = CIη−1

(zi)(Ui) ⊇ CIη (B.4.7)

so at the end β(πI|Q|(B|Q|)) ≤ β(CI|Q|) ≤ χ + cB
v , where the last inequality follows from

invariant 4.
For invariant 6, recall that A and B never increase. Furthermore, each time I is

modified at line 8, we add to Q the coordinate i for which invariant 6 no longer holds
(since the element i was removed from I and it has not been queried yet). Then we
restore the invariant before the next iteration by restricting B at line 13. Indeed, if
(x , y) ∈ A× B, then x i ∈ Ui and yi ∈ V zi (Ui), so by definition of V it holds that yi x i

= zi .
We have finished proving the invariants. From now on we assume that the algorithm

ended and reached a leaf v. It is clear that the decision tree has depth r and the total
number of queries is at most 2c/(1− λ) log` < m by invariant 3. It remains to prove
correctness, that is, for any z ∈ {0, 1}m that we fix, the decision tree answered S(z).

In order to prove this, we show that there exists an input (x , y) ∈ Rv such that
select(x , y) = z, which implies

eval(Π, z) = Π(x , y) = (Lift(S))(x , y) = S(select(x , y)) = S(z) . (B.4.8)

110 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

1 let AI = πI (A)
2 while ∃i such that MinDegi(AI)< `µ do
3 let x ′I\{i} ∈ V (Graphi(AI)) be a right vertex of degree less than d
4 let AI = {x ∈ AI : x I\{i} 6= x ′I\{i}}

5 return {x ∈ A : x I ∈ AI}

Figure B.5: Procedure prune(A, I)

This is done by restricting A and B to A′ and B′ so that any input in A′ and any input in
B′ are compatible with z and finally arguing that A′ and B′ are non-empty. For every
queried coordinate i, we have already restricted A and B so that for any x ∈ A and any
y ∈ B, select(x i , yi) = zi; thus we are left to deal with the non-queried coordinates.

Note that Graphi(π{i}(A)) has only one vertex on the right with label ;, and an edge
from this vertex to an element x i ∈ [`] if x i ∈ π{i}(A). Although Graphi(π;(A)) is not
defined (which is the reason we have to apply Claims B.4.7 and B.4.8 directly and not
Lemma B.4.5), the projection π;(A) is well-defined and it is either the empty set, in
which case A is empty, or it is the singleton set containing the empty string, in which
case there exists at least one element x ∈ A. The same holds for B, π;(B) is either empty
or it is the singleton set containing the empty string. Therefore, by the definition of α
and β , if α(π;(A)) (resp. β(π;(B))) is finite, then A (resp. B) is non-empty.

We start with A′ = A, B′ = B and I ′ = I such that πI ′(A′) is thick, β(πI ′(B′)) ≤
χ + cB

v ≤ `
γ log` and I ′ is non-empty since we queried less than m coordinates. While I ′

is not empty, we choose i ∈ I ′ and apply Claims B.4.7 and B.4.8 to get a set U such that
πI ′\{i}(ρi,U(A′)) = πI ′\{i}(A′) and β(πI ′\{i}(B′)

(0)(U)∩πI ′\{i}(B′)
(1)(U))≤ β(πI (B′))+1.

We then set A′ = ρi,U(A′) and B′ = ρi,V (B′), where V = V zi (U), and thus, by definition
of V , for all x ∈ A′ and y ∈ B′ it holds that select(yi , x i) = zi . Finally we set I ′ = I ′ \ {i}
and repeat. Note that these claims can indeed be applied while I ′ is not empty, since the
fact that thickness is monotone (Observation B.4.2) implies πI ′(A′) is thick, and since
β(πI ′(B′)) ≤ cB

v + (χ + |I |) ≤ c +m < 2`γ log`, because β(πI ′(B′)) is increasing by at
most 1 for every i ∈ I .

At the end of this process, the set B′ is such that β(πI ′(B′)) ≤ 2`γ log` <∞, and
thus B′ is non-empty. Moreover, we have that π;(A′) = π;(A), and since A is non-empty
(because α(πI (A))≤ 2cA

v), π;(A
′) is the singleton set containing the empty string and,

therefore, A′ is non-empty.

Now we explain the auxiliary procedures. Procedure prune just removes vertices
with too small degree. Thus, we only need to argue that this process does not last for
too long.

Proof of Lemma B.4.4. A′I = πI (A′) is thick by construction. It remains to show that
|A′I | ≥ |πI (A)|/2. For each coordinate i ∈ I we observe that, by the definition of

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 111

1 let U ⊆ [`] be a set such that
2 πI\{i}(ρi,U(A)) = πI\{i}(A)
3 β(CI\{i}

(0)(U)∩ CI\{i}
(1)(U))≥ β(CI) + 1

4 return U

Figure B.6: Procedure project(A, CI , I , i)

average degree, there are at most |πI (A)|/AvgDegi(πI (A)) right vertices of positive
degree in Graphi(πI (A)), and since Graphi(A

′
I) ⊆ Graphi(πI (A)), there are at most

|πI (A)|/AvgDegi(πI (A)) right vertices of positive degree in Graphi(A
′
I). Clearly this is an

upper bound on the number of iterations of the procedure prune for coordinate i, since
every iteration removes a right vertex of positive degree. Since AvgDegi(πI (A))≥ `λ/4
for all i ∈ I , the total number of iterations for each coordinate is at most

|πI (A)|/AvgDegi(πI (A))≤ 4|πI (A)|/`λ , (B.4.9)

which makes a total of at most 4|I ||πI (A)|/`λ ≤ 4`γ−λ|πI (A)| iterations overall. Each iter-
ation removes deg(X ′I\{i})< `

µ elements from A′I , for a total of at most 4`γ+µ−λ|πI (A)| ≤
|πI (A)|/2 elements removed. The last inequality holds because of assumption (B.4.1a).
Thus, at least |πI (A)|/2 elements remain.

Our Lemma B.4.5 is slightly stronger than the projection lemmas in [158, 96] because
it needs to handle both outcomes of the query to zi , so we care not only about each of
ρi,V b(U)(B) separately but about B(0)(U) ∩ B(1)(U). Nonetheless, essentially the same
proof of [158] using the probabilistic method works—but not that of [96], where the
probabilities are too small for us. Procedure project, therefore, just asserts the existence
of a return value U with the required properties.

The probabilities in the claims below are with respect to U picked uniformly among
all subsets of [`] of size `δ.

Claim B.4.7 ([158]). If A is thick, then πI\{i}(ρi,U(A)) = πI\{i}(A) with probability
1− o(1).

Claim B.4.8. If β(CI) ≤ 2`γ log`, then β(CI\{i}
(0)(U) ∩ CI\{i}

(1)(U)) ≤ β(CI) + 1 with
probability 1− o(1).

Proof of Lemma B.4.5. By union bound there exists U that satisfies Claim B.4.7 and
Claim B.4.8. Item 1 then follows from Observation B.4.2, and item 2 from Observa-
tion B.4.3.

Proof of Claim B.4.7. The equality holds if every right vertex of Graphi(πI (A)) with
positive degree has an edge into U . Since MinDegi(πI (A))≥ `µ, the probability that U

112 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

yi yI\{i}

V 0

V 1

C (0)I

C (1)I

C (∗)I

bCI

Figure B.7: Sets used in the proof of Claim B.4.8

is contained within the non-neighbours of any right vertex x I\{i} is

�`−|Ni(x I\{i})|
`δ

�

�

`
`δ

� ≤

�

`−`µ
`δ

�

�

`
`δ

� ≤ (1− `µ−1)`
δ

≤ e−`
µ+δ−1

. (B.4.10)

By a union bound over all right vertices, the probability of the equality not holding is at
most

`|I |−1e−`
µ+δ−1

< e|I | log`−`µ+δ−1
≤ e`

γ log`−`µ+δ−1
= o(1) . (B.4.11)

The last equality holds because of assumption (B.4.1b).

The proof of Claim B.4.8 follows [158] except that our version of Claim B.4.10 is
stronger and we apply it twice.

Proof of Claim B.4.8. We begin by observing that CI\{i}
(b)(U), the set of right vertices

that can be completed to b over U , is equal to N j(V b(U)) (see Figure B.7). We want

to prove that the set C (∗)I\{i}(U) = CI\{i}
(0)(U)∩ CI\{i}

(1)(U) of right vertices that can be

completed to any colour over U is large, namely that |C (∗)I\{i}|/2
`(|I |−1) ≥ ψ/2 where

ψ= |CI |/2`|I | = 2−β(CI).
Right vertices of degree larger than 2`ψ/4 can be completed to any colour with

high probability. Indeed, |Ni(yI\{i})| ≥ 2` ·ψ/4 = 2` · 2−β(C)/4 ≥ 2` · 2−2`γ log2 `/4 ≥
2` · 2−3`γ log2 `, so for each b ∈ {0,1} we can apply Claim B.4.10 with φ = 3 log2 ` to
show that Ni(yI\{i})∩ V b(U) 6= ; with probability 1− o(1). Taking a union bound, we
can assume that Ni(yI\{i})∩ V b(U) 6= ; holds for both b ∈ {0, 1} except with probability

o(1). In other words, yI\{i} ∈ C (b)I\{i} for b ∈ {0,1}, so yI\{i} ∈ C (∗)I\{i}.

We have shown that for every yI\{i} ∈ bCI\{i} = {yI\{i} : deg(yI\{i})≥ 2`ψ/4} it holds
that yI\{i} ∈ C (∗)I\{i} with probability 1 − o(1). By Observation B.4.9, with probability

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 113

1− o(1),
|C (∗)I\{i}| ≥ 2/3 · |bCI\{i}| . (B.4.12)

In fact, 2/3 can be chosen to be any arbitrary number strictly smaller than 1, and the
statement would still hold.

Therefore it is enough to prove that the set bCI\{i} of right vertices with large degree
is large. Indeed, we have

2`|I |ψ= |CI | ≤ |bCI\{i}| · 2` + |{0,1}`(|I |−1) \ bCI\{i}| · 2` ·ψ/4 (B.4.13)

≤ |bCI\{i}| · 2` + 2`(|I |−1) · 2` ·ψ/4= |bCI\{i}| · 2` + 2`|I | ·ψ/4 , (B.4.14)

from where
|bCI\{i}| ≥ 3/4 ·ψ · 2`(|I |−1) . (B.4.15)

and the claim follows by combining equations (B.4.12) and (B.4.15). We observe that
the 1/4 in the definition of right vertices with large degree can be any arbitrarily small
constant.

Observation B.4.9. Let T be a set and S a set-valued random variable. If Pr[s ∈ S]≥ p
for every s ∈ T , then Pr[|S| ≥ q|T |]≥ (p− q)/(1− q).

Proof. Let x = Pr[|S| ≥ q|T |]. Then

p ≤ Pr[s ∈ S] = Pr[s ∈ S||S| ≥ q|T |]Pr[|S| ≥ q|T |] + Pr[s ∈ S||S|< q|T |]Pr[|S|< q|T |]
(B.4.16)

≤ 1 · x + q · (1− x) , (B.4.17)

from which the observation follows.

As before, we think of W ⊆ {0,1}` as a set of binary colourings of [`] and denote
by πU(W) the projection of W to a subset U ⊆ [`], i.e. πU(W) = {wU ∈ {0,1}U : w ∈
W for some w[`]\U ∈ {0, 1}[`]\I}. Note that this is the same operation as πI (A), except
they apply to different domains.

Claim B.4.10. Let W ⊆ {0, 1}` be any set of size at least 2−φ`
γ

·2`, where φ is any function
of ` such that logφ = o(log`). Let U be a uniformly random subset of [`] of size `δ. Then,
for any b ∈ {0, 1}, {b}|U | ∈ πU(W) with probability at least 1− o(1).

In the original paper [158] the constants are set to γ = 2/20, δ = 5/20. The same
probabilistic argument works for any choice of constants such that γ+ 3δ/2< 1. Here we
present a combinatorial proof that works for any constants such that γ+ δ < 1, and in
particular holds for γ= 1/3− ξ and δ = 2/3, for any ξ > 0.

Proof. We will prove the following equivalent statement: if PrU[{b}|U | 6∈ πU(W)] ≥ q

(for, say, q = φ/ log`), then |W | ≤ 2`−φ`
γ

. We will only use the fact that γ+δ < 1+
log q

φ

log`

(for q = φ/ log` this says that γ+δ < 1− log log`
log`). The following statement, which is a

corollary of Kruskal–Katona Theorem, will be proved later on.

114 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Claim B.4.11. Let U be any family of subsets of [`], where every U ∈ U is of size u. If
|U | ≥

∑t
i=0

�

`−1−i
`−u−i

�

and if W ⊆ {0,1}` is such that {b}|U | 6∈ πU(W) for every U ∈ U , then
it holds that |W | ≤ 2` −

∑`−u
j=0

∑t
i=0

�

`−1−i
`−u−i− j

�

.

Let U be the set of all U ⊂ [`] of size `δ such that {b}|U | 6∈ πU(W). We have that

|U |
�

`
`δ

� = Pr
U
[{b}|U | 6∈ πU(W)]≥ q . (B.4.18)

Hence we get

|U | ≥ q
�

`

`δ

�

= q
`

`δ

�

`− 1
`δ − 1

�

≥
q `

`δ
∑

i=0

�

`− 1− i
`δ − 1

�

=

q `

`δ
∑

i=0

�

`− 1− i
`− `δ − i

�

. (B.4.19)

We can therefore apply Claim B.4.11 with u= `δ and t = q `
`δ

to get

|W | ≤ 2` −
`−`δ
∑

j=0

q `

`δ
∑

i=0

�

`− 1− i
`− `δ − i − j

�

≤ 2`−q `

`δ
+1 + 2`

δ log` ≤ 2`−φ`
γ

, (B.4.20)

where the second inequality is a straightforward calculation that we prove in Claim B.4.15

and the last inequality follows from γ+δ < 1+
log q

φ

log` .

To prove Claim B.4.11 we need to introduce some terminology from extremal com-
binatorics.

We use the following terminology from [115]. If w is a binary colouring of [`] (i.e. a
binary vector of length `), we say a neighbour of a w is a colouring which can be obtained
from w by flipping one of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}` of binary
colourings is the set ∂ (A) of all its neighbours. A set A is k-regular if every colouring in
A colours exactly k elements 1. Note that in this case ∂ (A) is (k− 1)-regular. The best
possible lower bounds for the size of ∂ (A) were obtained independently by Kruskal [127]
and Katona [119].

Theorem B.4.12 (Kruskal–Katona Theorem). If A⊆ {0,1}` is k-regular, and if

|A|=
�

ak

k

�

+
�

ak−1

k− 1

�

+ . . .+
�

as

s

�

then

|∂ (A)| ≥
�

ak

k− 1

�

+
�

ak−1

k− 2

�

+ . . .+
�

as

s− 1

�

.

Let P(S) denote the power set of S. In [85] it is proven that there exists an explicit
compression function C : P({0,1}`) → P({0,1}`) such that, given a k-regular set
A ⊆ {0, 1}`, C(A) is k-regular, |C(A)| = |A| and |∂ (C(A))| matches the lower bound in
Theorem B.4.12, and, furthermore, the following proposition holds.

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 115

Proposition B.4.13. ∂ (C(A)) ⊆ C(∂ (A)).

Although this follows directly from the proposition in Section 2 of [85], the formula-
tion above is from [10].

We define the iterated shadow of a k-regular set A⊆ {0,1}` to be ∂ ≤k(A) = ∪k
j=0A j ,

where A0 = A and A j = ∂ (A j−1) for 0< j ≤ k. The following corollary follows immedi-
ately from Theorem B.4.12 and Proposition B.4.13.

Corollary B.4.14. If A⊆ {0,1}` is k-regular, and if

|A|=
�

ak

k

�

+
�

ak−1

k− 1

�

+ . . .+
�

as

s

�

then

|∂ ≤k(A)| ≥
k
∑

j=0

�

ak

k− j

�

+
�

ak−1

k− 1− j

�

+ . . .+
�

as

s− j

�

.

Proof of Claim B.4.11. Given U , define WU to be the largest set of colourings {0, 1}` such
that {b}|U | 6∈ πU(W) for all U ∈ U . For simplicity, we will consider b = 0, i.e. WU is the
set that contains all the colourings of [`] that do not colour any U ∈ U completely 0.

Let U ′ ⊆ U be a set of size exactly
∑t

i=0

�

`−1−i
`−u−i

�

. Obviously, WU ′ is at least as large
as WU .

Let 1UC ∈ {0,1}` be the indicator functions for the complement of a set U , i.e.
1UC = 1− 1U . Let A be the set of 1UC ∈ {0,1}` for U ∈ U ′. Note that A is (`− u)-regular
and that the iterated shadow of A is exactly the set of colourings that are not in WU ′ .
Applying Corollary B.4.14 to A, we get

|∂ ≤k(A)| ≥
k
∑

j=0

t
∑

i=0

�

`− 1− i
k− i − j

�

=
`−u
∑

j=0

t
∑

i=0

�

`− 1− i
`− u− i − j

�

.

Therefore, |WU | ≤ |WU ′ |= 2` − |∂ ≤k(A)| ≤ 2` −
∑`−u

j=0

∑t
i=0

�

`−1−i
`−u−i− j

�

.

For completeness we include the calculations needed in Claim B.4.10.

Claim B.4.15. It holds that

`−u
∑

j=0

t
∑

i=0

�

`− 1− i
`− u− i − j

�

≥ 2` − 2`−t+1 + 2u log` .

Proof. The claim follows from the following sequence of elementary calculations

116 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

`−u
∑

j=0

t
∑

i=0

�

`− 1− i
`− u− i − j

�

=
`−u
∑

j=0

t
∑

i=0

�

`− 1− i
`− 1− j

�

(∗)

=
`−u
∑

j=0

�

`−1
∑

i=0

�

i
`− 1− j

�

−
`−t
∑

i=0

�

i
`− 1− j

�

�

=
`−u
∑

j=0

��

`

`− j

�

−
�

`− t + 1
`− j

��

(∗∗)

=
`−u
∑

j=0

�

`

j

�

−
`−u−t+1
∑

j=0

�

`− t + 1
j

�

(∗)

= 2` −
∑̀

j=`−u+1

�

`

j

�

− 2`−t+1 +
`−t+1
∑

j=`−u−t+2

�

`− t + 1
j

�

≥ 2` − 2`−t+1 +
u−1
∑

j=0

�

`

j

�

≥ 2` − 2`−t+1 + `u = 2` − 2`−t+1 + 2u log` ,

where the equalities in (∗) follow from renaming of variables and the fact that
�n

k

�

=
� n

n−k

�

;

the equality in (∗∗) follows from
∑n−1

i=0

� i
k−1

�

=
�n

k

�

.

B.4.2 Simulation of Decision Trees by Real Communication Protocols

In this section we show how to adapt the simulation theorem to real communication.

TheoremB.4.16. If there is a real communication protocol computing Lift(S) using commu-
nication c and r rounds, then there is a parallel decision tree computing S using O(c/ log`)
queries and depth r.

The proof follows the same strategy as in the deterministic case, this is we are going to
construct a decision tree by simulating a real communication protocol and only querying
the coordinates where the communication protocol would have too much information
on x i .

The major difference in analyzing real communication protocols as opposed to
deterministic ones is that the set of compatible inputs is not a rectangle, but a monotone
set as defined next.

Definition B.4.17. A Boolean matrix M is monotone if Mi1 j1 ≤ Mi2 j2 , for all pairs of
entries such that i1 ≤ i2 and j1 ≤ j2.

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 117

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure B.8: Monotone matrix partitioned in 5× 5 blocks; the 3rd block-column has 4
monochromatic blocks.

Recall that each communication step is a comparison φ(x) ≤ ψ(y) and that we
restrict our attention to inputs in a set A× B. We lay out the results of the comparison in
the matrix (Jφ(x)≤ψ(y)K)x ,y indexed by x ∈ A, y ∈ B, with rows sorted decreasingly
according to φ and columns increasingly according to ψ. Note that we use the Iverson
bracket notation

JZK=

¨

1 if the Boolean expression Z is true;

0 otherwise.
(B.4.21)

The communication matrix is monotone: if φ(x1) ≥ φ(x2) and ψ(x1) ≤ ψ(x2) then
φ(x2)≤ φ(x1)≤ψ(y1)≤ψ(y2).

The fact that the set of compatible inputs is not a rectangle can be circumvented,
since as observed in [113] in every monotone matrix there exists one quadrant—thus
a large rectangle—that is monochromatic. It is therefore possible to restrict the set of
compatible inputs to a quadrant when we want to choose the outcome of a comparison,
as done in [43].

However, this is not enough for us. Since we want to query variables only at the end
of each round of k comparisons, and after using procedure project we no longer know
what B is, we need to restrict the inputs to rectangles beforehand. This means we have
to avoid shrinking A too much, and definitely less than the 2k factor we would get by
picking quadrants.

Our solution is to partition the matrix into (k+ 1)× (k+ 1) blocks of size |A|/(k+
1)× |B|/(k + 1) and then restrict Bob’s input to one of the (k + 1) block-columns, so
that Alice’s input forms a rectangle in k out of the k + 1 block-rows (see Figure B.8).
Formally, we have the following lemma.

Lemma B.4.18. Let M be a monotone matrix partitioned into (k + 1)× (k + 1) blocks.
There is a block-column such that k of its blocks are monochromatic.

118 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Proof. Consider a non-monochromatic block. Since its bottom-right corner has value 1,
all blocks below and to the right are 1-blocks. This is, if we consider non-monochromatic
blocks left-to-right in a sequence, then a block cannot be below its predecessor, which
means that there are at most 2k+1 non-monochromatic blocks overall. By the pigeonhole
principle, at least one of the column-blocks contains at most one non-monochromatic
block.

We take advantage of this lemma with the following construction. Given two sets
A⊆ [`]m and B ⊆ {0, 1}`m, we define the b-monochromatic part of A with respect to B
as A[b, B]φ,ψ = {x ∈ A : ∀y ∈ B Jφ(x)≤ψ(y)K= b}.

For technical reasons we want each element in πI (A) to have a unique completion to
A. Therefore we define a new operator σI (A) = {x ∈ A : ∀x ′ ∈ A if x ′I = x I then x < x ′},
where the order is, say, the lexicographic order. In other words, each element of σI (A) is
the minimum among all elements of A that share the same I coordinates. Observe that
πI (A) = πI (σI (A)). We define σI (B) analogously.

We have all the ingredients to explain the simulation procedure eval. Note that the
comparisons at lines 4 and 9 are the same.

Lemma B.4.19 (Main Lemma). If Π is a real protocol that computes Lift(S) using
communication c < m

2 (1− λ) log` and r rounds, then eval computes S using 5c/(1−
λ) log` queries and depth r.

Proof. The proof is very similar to the proof of Lemma B.4.6. Let Rv be the set (not
necessarily a rectangle) of inputs compatible with node v, let cv be the amount of
communication up to node v, and let rv be the number of rounds up to node v. Let χ be
the number of queries so far, i.e., χ = m− |I |. We show that the following invariants
hold throughout the algorithm:

1. πI (A) is thick;

2. A× B ⊆ Rv;

3. χ ≤ (2cv + 3rv)/(1−λ) log`;

4. β(CI)≤ (cv + kv) log(cv + 1) +χ;

and the following invariants hold at the beginning of each round:

5. β(πI (B))≤ cv log(cv + 1) +χ;

6. select(x i , yi) = zi for all (x , y) ∈ A× B and i /∈ I .

All five invariants are true at the beginning of the algorithm.
The main difference with the proof of Lemma B.4.6 is proving invariant 1, because we

modify A not only at lines 12 and 15, but also at line 7. At each point A is modified, the
corresponding procedure ensures that πI (A) is thick. We need to argue, though, that the

B.4. FROM REAL COMMUNICATION TO PARALLEL DECISION TREES 119

1 let A= [`]m, B = {0,1}`m, I = [m], v be the root of Π
2 while v is not a leaf do
3 let A′ = σI (A), B = σI (B)
4 foreach comparison φ vs ψ do
5 let B = arg max|B′|=|B|/(kv+1)|A′[0, B′]φ,ψ ∪ A′[1, B′]φ,ψ|
6 let A′ = A′[0, B]φ,ψ ∪ A′[1, B]φ,ψ

7 let A = prune (A′, I)
8 let Q = ;, CI = πI (B)
9 foreach comparison φ vs ψ do

10 while ∃i ∈ I such that AvgDegi(πI (A))< `λ do
11 let Ui = project (A, CI , I , i)
12 let A= ρi,Ui

(A), CI\{i} = CI\{i}
(0)(Ui)∩ CI\{i}

(1)(Ui)
13 let I = I \ {i}, Q =Q ∪ {i}
14 let b j = argmax|πI (A[b, B]φ,ψ)|
15 let A= prune(A[b j , B]φ,ψ, I)

16 query coordinates Q to get string zQ
17 for i ∈Q do
18 let B = ρi,V (B), where V = V zi (Ui)

19 let v = vb1,...,bk

20 return the answer at v

Figure B.9: Procedure eval(Π,z)

assumptions of the corresponding lemmas hold, and therefore it is correct to apply them.
The argument for applying prune in line 15 is the same as in the proof of Lemma B.4.6.
For line 12, we note that, by invariants 4 and 3, β(CI) ≤ (cv + kv) · log(cv + 1) + χ ≤
m
2 (log`) ·2(log m)+5cv ≤ `γ log2 `+5`γ log`≤ 2`γ log2 `. Hence we only need to prove
that we can apply Lemma B.4.4 in line 7.

We begin by observing that at line 3, AvgDegi(πI (A′)) ≥ `λ, since πI (A′) = πI (A).
Furthermore, at line 6, the size of A′ decreases by at most a 1−1/(kv+1) fraction. Indeed,
if we divide the comparison matrix (Jφ(x)≤ψ(y)K)x ,y into (kv + 1)× (kv + 1) blocks
of size |A′|/(kv + 1)× |B|/(kv + 1), by Lemma B.4.18 at least one of the column-blocks
contains kv monochromatic blocks, i.e., a 1− 1/(kv + 1) fraction is monochromatic.

Since we have at most kv comparisons, the size of A′ at line 7 is at least a (1−1/(kv+
1))kv ≥ 1/4 fraction of the original. Also, after line 3 there is a bijection between A′ and
πI (A′), so the size of πI (A′) is also at least a 1/4 fraction and Lemma B.4.4 applies.

For invariant 2, note that A and B never increase and that the set of compatible inputs
Rv only changes when v is modified at line 19. However, A was restricted at line 15
so that Jφ(x)≤ψ(y)K = b for every x ∈ A and y ∈ B; in other words A× B ⊆ Rvb ,

120 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

therefore invariant 2 holds. Note that we can only restrict A in this manner because we
had already restricted B in line 5.

To see that we make at most (2cv + 3rv)/(1−λ) log` queries, we observe that each
query comes from a call to project in line 11, which decreases α by at least (1−λ) log`
because AvgDegi(AI)< `λ. However, α only increases (by at most 2) at line 15, i.e., after
one bit of communication, and (by at most 3) at line 7, i.e., once per round. Since α≥ 0
at all times by definition, the upper bound in invariant 3 follows.

To prove invariants 4 and 5 we observe that B shrinks at two points. One is at
line 5, where β increases by log(kv + 1) ≤ log c with every bit of communication.
Therefore, when we set CI = πI (B) at line 8 invariant 4 holds. In line 12, Lemma B.4.5
guarantees that β(CI) increases by at most 1 with every query, therefore β(CI) ≤
(cv + kv) log(c+1)+χ holds at all times. Finally, we note that β(πI (B))≤ β(CI), by the
same argument as in the proof of invariant 5 of Lemma B.4.6, and that cv is updated to
cv + kv before the next round.

For invariant 6, recall that A and B never increase. Moreover, each time I is modified
at line 13, we add the coordinate i for which invariant 6 breaks to Q. Then we restore
the invariant before the next iteration by restricting B at line 18. Indeed, if (x , y) ∈ A×B,
then x i ∈ U and yi ∈ V zi (U), so by definition of V it holds that yi x i

= zi .
It is clear that the decision tree has depth r and the total number of queries is at

most 5c/(1 − λ) log` by invariant 3. The proof of correctness is identical to that of
Lemma B.4.6.

B.5 From Parallel Decision Trees to Dymond–Tompa Games

In this section we prove that the adversary argument on a parallel decision tree for
the falsified search problem of a pebbling contradiction gives a Pebbler strategy for the
Dymond–Tompa game.

It is more convenient to work with the Dymond–Tompa game when there is a
challenged pebble at all times. Therefore in this and the following section we use an
alternative but equivalent definition. Initially the unique sink has a pebble and it is
challenged, and then the game starts without a special first round. The number of rounds
is the number of actual rounds, not counting the setup, and the cost is the total number
of pebbles, including the initial pebble on the sink.

Lemma B.2.6 (Restated). If there is a parallel decision tree for Search
�

PebG

�

in depth r
using at most c queries, then Pebbler has a winning strategy in the r-round Dymond–Tompa
game on G in cost at most c + 1.

We prove that, in fact, the parallel decision tree complexity of the falsified clause
search problem of a pebbling contradiction is equivalent to the Dymond–Tompa game
on the graph with an extra sink on top. Formally, we define bG as a graph with vertices
V (G)∪ {t} and edges E(G)∪ {(z, t)}, where z is the unique sink of G. Clearly the game

B.5. FROM PARALLEL DECISION TREES TO DYMOND–TOMPA GAMES 121

on bG needs as many pebbles as G, and one more pebble is enough, so Lemma B.2.6
follows from Lemma B.5.1.

Lemma B.5.1. There is a parallel decision tree for Search
�

PebG

�

in depth r using c queries
if and only if Pebbler has a winning strategy in the r-round Dymond–Tompa game on bG in
cost c + 1.

Proof. Assume there is a parallel decision tree for Search
�

PebG

�

in depth r using c queries.
We construct a strategy for Pebbler in r rounds and c + 1 pebbles. We say that a vertex s
reaches a vertex t if there is a (possibly empty) path from s to t where all intermediate
vertices are not queried. We keep these invariants.

1. The challenged pebble in the Dymond–Tompa game is false.

2. A false vertex is reachable from another false vertex if and only if it is not challenged
in the Dymond–Tompa game.

3. In the subtree of the challenged pebble a vertex has a pebble if and only if it has
been queried.

When it is Pebbler’s turn, Pebbler looks at the decision tree and places pebbles in
those vertices being queried that can reach the challenged pebble. After Challenger’s
turn, Pebbler follows the branch in the decision tree in which the challenged pebble
is false and other vertices are false if they are reachable from a false vertex or true
otherwise.

Dymond–Tompa moves are valid and the invariants are kept. When we reach a leaf
in the decision tree we made at most c queries in r rounds by assumption, therefore
Pebbler also used at most c pebbles on vertices of G plus one pebble on the extra sink and
r rounds. It remains to show that the Dymond–Tompa game also ended. The decision
tree points to a falsified clause, which is not the sink axiom because the sink is always
false. Therefore we have a false vertex whose predecessors are true. By item 2, that
false pebble is challenged, and by item 3 all of its predecessors have pebbles, therefore
the Dymond–Tompa game also ended.

Assume there is a Pebbler strategy in r rounds and c + 1 pebbles. We construct a
parallel decision tree for Search

�

PebG

�

in depth r using c queries.
We look at the strategy for Pebbler and add a node to the decision tree that queries

the variables corresponding to vertices being pebbled that can reach the challenged
pebble. For each branch, we simulate a Challenger move. We consider the set of new
vertices coloured false and that are not reachable by any false vertex. If this set is empty,
then Challenger stays. Otherwise Challenger jumps to any of these vertices.

Dymond–Tompa moves are valid and the invariants are kept. When the Dymond–
Tompa game ends, Pebbler has used at most c + 1 pebbles in r rounds by assumption,
one of which outside G, therefore the decision tree also made at most c queries in r
rounds. It remains to show that we can label the leaves of the decision tree in such a

122 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

way that the assignment induced by the decision tree falsifies a clause. At the end of the
Dymond–Tompa game, all of the predecessors of the challenged pebble have pebbles. By
item 1 it is false, and by item 3 its predecessors are queried. By item 2, its predecessors
are true, therefore we can label the leaf with the clause claiming that if the predecessors
of the challenged vertex are true then the challenged vertex is true.

B.6 Dymond–Tompa Trade-offs

In this section we prove upper and lower bounds for the Dymond–Tompa game on
graphs of a given family. The lower bounds are the final missing piece in order to get
length-space trade-offs for cutting plane proofs, and the upper bounds will be used to
obtain space-efficient proofs, as explained in Section B.7.

Our goal is to prove the following lemma.

Lemma B.6.1. For any n, d ∈ N+ such that n is a power of 2, there exists an explicitly
constructible DAG G(n, d) of depth d with O(dn) vertices and indegree at most 2 such that:

1. for any r ≤ d, the cost of an r-round DT game is at most min{r2(2dd/re − 1),
rn(2ddlog de/re − 1)};

2. for any r ≤ d, the cost of an r-round DT game is at least min{ r2d/r

8 , n
8}.

We first define a family of graphs for which we will prove the lemma.

Definition B.6.2 (Butterfly graph). A k-dimensional butterfly graph G is a DAG with
vertices labelled by pairs (w, i) for 0≤ w≤ 2k − 1 and 0≤ i ≤ k, and with edges from
vertex (w, i) to (w′, i + 1) if the binary representations of w and w′ are equal except
for possibly in the (i + 1)st most significant bit. Note that G has (2k + 1)k vertices, has
2k sources and 2k sinks, and that all vertices that are not sources have indegree two.

Moreover, if H is a graph with n sinks and n sources, we say a graph is a stack of s
Hs, if it consists of s copies of H such that sources on level i are identified with sinks on
level i + 1 for i ∈ {1, . . . , s− 1}.

For any n, d ∈ N such that n is a power of 2, the graph G(n, d) we will consider for
the Dymond–Tompa game consists of a (possibly fractional) stack of butterfly graphs
of dimension log n, with an attached binary tree on top such that the depth of this
graph is exactly d (see Figure B.10a). Note that if d is a multiple of log n, then this
graph has exactly d/ log n blocks (the 1st block is a binary tree). Moreover, if d ≤ log n,
then G(n, d,) is just a binary tree of depth d. Observe that, if d ≥ log n, G(n, d) has
(d − log n)n+ 2n− 1 vertices.

B.6. DYMOND–TOMPA TRADE-OFFS 123

(a) Stack of graphs with binary tree on top
(dashed lines represent vertex identification)

(b) 3-dimensional butterfly graph

Figure B.10: Stack of butterflies

B.6.1 Upper Bounds for the Cost of the Dymond–Tompa Game on
Butterfly Graphs

Given a graph G, we say T is a Pebbler strategy for G if the following holds.

1. Each node x ∈ V (T) is labelled with a set of vertices S(x) ⊂ V (G) (corresponding
to a valid set of vertices where Pebbler can place pebbles at the current stage
of the game). We note that in order for S(x) to be a valid move for Pebbler at
node x , it must be the case that if P is the path from the root of T to x , then
S(x)∩ (

⋃

y∈V (P) S(y)) = ; (Pebbler cannot repebble a vertex) and S(x) 6= ; if any
vertex in

⋃

y∈V (P) S(y) has an immediate predecessor that is unpebbled (if the
game has not ended, Pebbler must place at least one pebble).

2. Each edge leaving a node x ∈ V (T) is labelled with a set of vertices Sx y ⊆ S(x)∪
Sp(x)x of possible Challenger moves (corresponding to pebbles that Challenger
challenges and that lead to the same Pebbler strategy), where p(x) is the parent
of x in T . In the case where x is the root of the tree, define Sp(x)x = ;. In
order for T to be a complete strategy, i.e., for T to describe how to deal with
all possible Challenger moves, it must be the case that at every node x either

124 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

⋃

y:x y∈E(T) Sx y = S(x)∪ Sp(x)x or all immediate predecessors of S(x)∪ Sp(x)x are
pebbled, and in this latter case x is a leaf.

Proposition B.6.3. If there is a winning Pebbler strategy tree T with max degree a, depth
d and such that the label of each node is of size at most b, then the cost of a r-round DT
game, for any r ≤ d, is at most r b(add/re − 1).

Proof. Pebbler’s strategy will be as follows: at round i Pebbler will be playing according
to the strategy tree Ti . At the first rounds, let T1 = T . Let r ≤ d. For every i ≤ r, let T ′i
be a subtree of Ti consisting of all nodes at distance less than dd/re of the root. Note that
there are at most add/re − 1 nodes in T ′i . At rounds i, Pebbler places pebbles on all the
vertices that are in some label of nodes in V (T ′i). Since each node has at most b labels,
Pebbler places at most b(add/re − 1) pebbles at each rounds. If Challenger challenges a
vertex v that does not have all its immediate predecessors pebbled, then v must be in
the label of some edge x y where x is a leaf of T ′i . Let Ti+1 be the subtree of Ti having y
as root.

This is a valid strategy for Pebbler and since for every i, the depth of Ti+1 is dd/re
smaller than the depth of Ti and rdd/re ≥ d, the game will end in at most r rounds.
Thus the total number of pebbles placed is at most r b(add/re − 1).

We state an immediate corollary of Proposition B.6.3, which is to weak to imply the
upper bounds we stated, but has the advantage that it doesn’t depend on strategy trees
and might be useful for other purposes.

Corollary B.6.4. If Pebbler has a winning strategy in d rounds and x pebbles per round,
then the cost of a r-round DT game, for any r ≤ d, is at most r x((x + 1)dd/re − 1) ≤
r(x + 1)dd/re+1.

All that is left to prove the upper bounds is to show that there exists Pebbler strategy
trees with certain properties. We prove two propositions below which together with
Proposition B.6.3 implies the upper bounds in Lemma B.6.1

Proposition B.6.5. There is a Pebbler strategy tree T for the graph G(n, d) with max
degree 2, depth d and such that the label of each vertex is of size at most 2.

The proof follows from the following straightforward claim.

Claim B.6.6. For any graph with depth d and indegree at most α, there is a winning
Pebbler strategy in d rounds and using at most α pebbles per round. Moreover, this strategy
is such that if Challenger stays the game immediately ends.

Proof. The Pebbler strategy is simply to, at every round, pebble all in-neighbours of the
challenged vertex.

Proposition B.6.7. There is a winning Pebbler strategy tree T for the graph G(n, d) with
max degree 2, depth dlog de and such that the label of each vertex is of size at most n.

B.6. DYMOND–TOMPA TRADE-OFFS 125

Proof. The winning Pebbler strategy is to do a binary search in the rows of G(n, d). The
strategy only depends on whether Challenger stays or moves, but does not depend on
what particular pebble Challenger chooses to pebble. Thus the Pebbler strategy tree T
has max degree 2. The proposition then follows from the fact that G(n, d) has depth d
and has at most n vertices per row.

B.6.2 Lower Bounds for the Cost of the Dymond–Tompa Game on
Butterfly Graphs

Now we would like to show that the strategies described in the previous subsection are
essentially the best Pebbler can do. As a warm up, and to give some intuition on the
strategy, we prove a special case of Lemma B.6.1. In order to keep the proof simple,
we use the alternative definition of the Dymond–Tompa game and consider a stack of
butterflies with an extra vertex on top, bG, as defined in Section B.5.

Lemma B.6.8. For any n, r ∈ N+ such that n is a power of 2, there exists an explicitly
constructible DAG bG(n, r log n) of depth r log n+ 1 with O(nr log n) vertices and indegree
at most 2 such that for any r ≤ d, the cost of an r-round DT game is at least n

4 .

As we observe further on, this lemma holds not only for stacks of butterfly graphs,
but also for stack of other kinds of graphs, provided Claim B.6.9 holds.

Throughout the Dymond–Tompa game, we say a vertex t is reachable from s if there
is a path from s to t with no pebbles neither on internal vertices of the path nor on the
vertex s (but t may be pebbled). We say a sink at level ` is good if it is unpebbled and
is reachable by at least n/2+ 1 sources at level `. Furthermore, we say a source s is
disconnected from a sink t if there is no completely (including end points) unpebbled
path from s to t, and we consider the number of source-sink disconnections in a graph as
the number of pairs (t, s) such that s is disconnected from t. The proof uses the following
claim.

Claim B.6.9. Given a butterfly graph with n sinks, if at most n/4−1 vertices are removed,
there still are at least n/2+ 1 good sink-vertices.

Proof of Claim B.6.9. If there are less than n/2+ 1 good sink-vertices, then the number
of source-sink disconnections is at least n/2 · n/2 (at least n/2 non-good sinks are not
reached by at least n/2 sources). Note that any vertex in a butterfly graph is in exactly
n distinct source-sink paths So if a is the number of vertices removed, then there are at
most an source-sink disconnections. This implies that a ≥ n/4.

Note that the proof above goes through for any graph that satisfy the following
properties: the graph has n sources and sinks; every source can reach every sink; and
removing any set of at most a vertices causes at most an source-sink disconnections.

We can now proceed to the proof of the warm-up lemma.

126 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Proof of Lemma B.6.8. We give a strategy for Challenger in the Dymond–Tompa game
over the graph bG(n, r log n) defined above so that, assuming Pebbler has at most n/4− 1
pebbles, the game will not end within r rounds.

At a high level, Challenger’s strategy will be to keep in mind, before every round,
a good sink that can reach the challenged vertex; more precisely, before round `+ 1
Challenger will have a good sink at level ` in mind, say t`. After the Pebbler places
pebbles on the graph, Challenger chooses a good sink at level `+1 that is reachable from
t` and decides to have that in mind. He will then check if there are any new pebbles
that are causing the challenged vertex to be unreachable from t`, and if so, challenges
one that is reachable from t`.

The proof goes as follows. Wemaintain the invariant that before round `, Challenger’s
chosen vertex t` is a good sink at level ` and reaches the challenged vertex. Before
the first rounds, the challenged vertex is the sink of bG (the vertex that is not in G) and
Challenger’s chosen vertex is the original sink of G, t1, which clearly is a good sink
at level 1 (it is unpebbled and reachable from all sources at level 1) and reaches the
challenged vertex.

Suppose that the invariant was true until round `, i.e. suppose that before Pebbler’s
(`− 1)st move, Challenger’s chosen vertex t`−1 is a good sink at level `− 1 and reaches
the challenged vertex. At round `− 1, Pebbler places some pebbles. Since Pebbler has at
most n/4− 1 pebbles in total, we can conclude by Claim B.6.9 that there are at least
n/2 + 1 good sinks at level `. Since t`−1 was a good sink before round ` − 1, there
must be a good sink at level `, say t`, which was reachable from t`−1 before round
`− 1. Challenger decides t` will be the next chosen vertex. Since before round `− 1, t`
reached t`−1 and t`−1 reached the challenged vertex, the only possible pebbles that are
disconnecting t` from the challenged vertex are the newly put pebbles. If there are no
such blocking pebbles, i.e., if t` reaches the challenged vertex, Challenger stays. If there
are newly put pebbles that block all paths from t` to the challenged vertex, Challenger
challenges one that is reachable from t`. Thus, before round `, Challenger’s chosen
vertex t` is a good sink at level ` and reaches the challenged vertex, and the invariant is
maintained.

We conclude that before round (r+1), Challenger’s chosen vertex t r+1 is an unpebbled
vertex global source (which would have been a good sink at level r + 1, if such a level
had existed) that reaches the challenged vertex, and hence the game has not ended.

Now to prove the lower bound in Lemma B.6.1 in its full generality, we must allow
any number of rounds (at most the depth) and still get a good bound on the cost of the
game. We again describe a strategy for Challenger; the difference is that Challenger
cannot afford to jump log n rows every round. Intuitively, we do not think of the graph
as a stack of blocks, but as a continuous block such that any consecutive log n rows is
isomorphic to a butterfly graph.

Note that given any vertex v ∈ V (G(n, d)) at distance d ′ from the set of sources, the
subgraph induced by all vertices that reach v is isomorphic to G(n, d ′). We therefore

B.6. DYMOND–TOMPA TRADE-OFFS 127

refer to the top binary tree of the subgraph G(n, d ′) as the tree induced by the vertices
that reach v and are at distance at most log n from v.

We give a more general definition of a good vertex and define a partially good vertex.
Let T be a complete directed binary tree rooted at v. We say v (or T) is good if v can be
reached by strictly more than half of the leaves. If T has n leaves this is equivalent to
requiring that, for any h′ ≤ log n, v can be reached by strictly more than 2h′/2 vertices at
distance h′ from v. Given a vertex u ∈ V (T) at distance h from the leaves, we say u (or
the subtree of T rooted at u) is T -partially good if, for any h′ ≤ h, u can be reached by
strictly more than 2h′/2 vertices at distance h′ from u. When T is clear from the context,
we just say u is partially good.

We are now ready to prove the lower bound.

Proof of Lemma B.6.1, item 2. We actually prove something stronger: we allow Pebbler
to place some pebbles before the game begins, provided that the top binary tree remains
good. We charge only for the pebbles placed outside the binary tree. Challenger is not
allowed to challenge any pebble that was placed in this initial stage. We denote this
game DT*.

Formally, we prove the following claim. Given a graph G and a challenged vertex on
this graph, if there is a vertex v in G that reaches the challenged vertex and that is the
sink of a graph G(n, d), then cost of the r-round DT* game on G is at least min{α2d/α

8 , n
8},

where α=min{d, r}.
We prove this claim by induction on α. For α = 1, either d > r = 1 or d = 1. If

d > r = 1, G(n, d) consists of at least a binary tree of depth d ′ = min{d, log n} with
2d ′+1 − 1 vertices and such that the sink reaches the challenged vertex. Since after
Pebbler places the initial pebbles the binary tree must be a good tree, at least half of
the tree reaches the challenged vertex (actually, strictly more than half of the pebbles
in every row must reach the challenged vertex, which makes a total of at least 2d ′ + d ′

vertices that reach the challenged vertex). Clearly Pebbler must pebble all the vertices
that reach the challenged vertex in order to finish the game in one round, therefore
the cost is more than min{ 2d

8 , n
8}. If d = 1, then clearly at least 1 pebble is needed and

1≥ 1/4= α2d/α/8, so the base case holds.
Now suppose α≥ 2 and that Pebbler has placed some initial pebbles on the graph,

but maintaining the top binary tree good. Pebbler then starts the first round by placing
some pebbles. Let x ≥ 1 be the number of pebbles Pebbler placed in the top binary
tree in the first round (note we are not counting the initial pebbles placed before the
game began). If d ≤ dlog 4xe (i.e., if the graph is shallow or if Pebbler placed too many
pebbles), the claim holds since this implies x ≥ 2d

8 and clearly 2d

8 ≥
2d/α+logα

8 = α2d/α

8 , for
any α and d that satisfy 2≤ α≤ d. We thus assume d > dlog4xe.

Note that the row that is at distance dlog4xe from the root of the top binary tree has
exactly y = 2dlog4xe ≥ 4x vertices. Before the first round, at least y/2 of these vertices
were partially good (with respect to the top binary tree). Since x ≤ y/4 pebbles were
placed, at least y/4 of these partially good trees were untouched at this round. We will

128 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

show that, provided that there are less than n/8 pebbles in the graph, then at least one
of these partially good trees is totally good.

Fix a set of y/4 partially good trees that were untouched at this round. If d ≤ log n,
then the partially good trees are all totally good. If d > log n, we consider the set S of
all the (pebbled or unpebbled) vertices at distance log n from the root of the top binary
tree that are in one of these y/4 partially good trees. Since these trees are disjoint there
are at least y/4 · (n/y) = n/4 such vertices. Consider the block consisting of vertices at
distance at most log y from S. Note that the number of source-sinks paths in this block
is at least n/4 · y and any vertex in this block is in at most y such paths. Therefore, if
there are less than n/8 pebbles, then there are more than ny/8 unpebbled source-sink
paths in this block. This means that at least one of the y/4 partially good tree has more
than n/2 unpebbled source-sink paths in this block, which implies that it is a totally
good tree.

Let v be the root of this totally good tree. We know that v reached the challenged
vertex before this rounds. This implies that if v no longer reaches the challenged vertex
then there are newly placed pebbles blocking a path between v and the challenged
vertex. If this is the case, Challenger challenges a newly placed pebble that is in such a
path and that is closest to v (i.e., is reachable from v). The graph induced by all vertices
that reach v satisfies the invariants and has depth d − log y ≥ d − log8x . We observe
that, the x pebbles we account for at this round were placed on the binary tree, and
therefore are not counted again when applying the induction hypothesis.

If r − 1 > d − log y (i.e., the number of rounds left is larger than the depth of
the remaining subgraph), we argue that claim follows. To show this, we consider two
cases: r < d/2 and d/2 ≤ r. In the first case, we show that the number of pebbles
placed has to be large since in one round the depth of the remaining subgraph was
reduced by a lot. Note that r < d/2 this implies that d − log y < d/2 − 1 and thus
8x ≥ y > 2d/2+1. Moreover, α = min{r, d} = r < d/2 and since d/α + logα is a
monotone decreasing function for α ∈ [2, d/2], we have that 8x > 2d/2+1 ≥ 2d/α+logα

and the claim follows. In the second case, the intuition is that the claim we want to
prove is not so strong. Indeed, note that d/2≤ r implies that d/2≤ α=min{r, d} ≤ d,
and thus 2d/α+logα ≤ 2d, so it is enough to show that at least 2d/8 pebbles are needed.
Applying the induction hypothesis on the subgraph induced by all vertices that reach
v we have that the cost of this subgraph is at least min{ 2(d−log y)

8 , n
8}. The claim follows

by noting that 8x + 2(d − log y) ≥ 2d + 8x − 2 log8x ≥ 2d, where the last inequality
follows since x ≥ 1.

We thus assume r − 1≤ d − log y (which implies r ≤ d and α= r), and apply the
induction hypothesis on the subgraph induced by all vertices that reach v to get that the
cost of this subgraph with one less round is at least min{ (r−1)2(d−log8x)/(r−1)

8 , n
8}.

It suffices to show that

(r − 1)2(d−log8x)/(r−1) + 8x ≥ r2d/r .

B.6. DYMOND–TOMPA TRADE-OFFS 129

Let a = d
r −

d−log 8x
r−1 , so that 8x = 2d/r+a(r−1). Rewriting the equation above we have

(r − 1)2(d−log 8x)/(r−1) + 8x = (r − 1)2d/r−a + 2d/r+a(r−1)

= r2d/r

�

(r − 1)2−a

r
+

2a(r−1)

r

�

. (B.6.1)

Note that, for any r ≥ 1, (r − 1)2−a + 2a(r−1) ≥ r. Indeed, for any fixed r ≥ 1, a
straightforward calculation shows that the real function f (a) = (r − 1)2−a − r + 2a(r−1)

is minimized at a = 0 and f (0) = 0. This concludes the proof.

To conclude this section, we define a more general class of previously studied graphs
and prove that Lemma B.6.8 also applies for stacks of any graph in this class.

Definition B.6.10 (Connector). A n-connector is a DAG with n sources S and n sinks T ,
and that satisfies the following property: for any subsets S′ ⊆ S of sources and T ′ ⊆ T
of sinks of size |S′| = |T ′| and for any specification M of which source in S′ should be
connected to which sink in T ′ (one-to-one correspondence), it holds that there are |S′|
vertex-disjoint paths between S′ and T ′ satisfying M .

As mentioned previously, for the proof of Lemma B.6.8 for r = d/ log n the only
property of the graph that is needed is that each stack satisfies Claim B.6.9. We show
that a n-connector does satisfy the properties required by Claim B.6.9.

Proposition B.6.11. A n-connector satisfies the following two properties:

1. any source can reach any sink;

2. the removal of any set of a vertices causes at most an source-sink disconnections, i.e.,
the sum over all sinks v of the number of sources that cannot reach v is at most an.

Proof. Let G be a n-connector. Obviously G satisfies property 1. Let A be any set of
vertices in G. Let a = |A|. We will show that the removal of A causes at most an source-
sink disconnections, thus concluding that G also satisfies property 2. Let G′ be the graph
that results from G after the removal of A.

Let H = ((S, T), E) be a bipartite graph, where S correspond to the sources in G and
T to the sinks, and there is an edge (s, t) if source s doesn’t reach sink t in G′. Let q′ be
the size of a maximum matching in H. This implies that H has a vertex cover of size q′

(Kőnig’s theorem). Since every vertex in H has degree at most n, we conclude that H has
at most q′n edges, which means that A caused at most q′n source-sink disconnections.

Suppose q′ > a, and let M = {(s1, t1), (s2, t2), . . . , (sa+1, ta+1)} be a matching of size
a+ 1 in H. Given the set S′ = {s1, s2, . . . , sa+1} of sources, the set T ′ = {t1, t2, . . . , ta+1}
of sinks and M as the specification of which source should be connected to which sink,
we have that in G there are a+ 1 disjoint paths connecting S′ to T ′ according to M . But
this is a contradiction, since all paths must contain a vertex in A.

130 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Therefore, we conclude that q′ ≤ a and A caused at most rn ≤ an source-sink
disconnections.

Interestingly, butterfly graphs and connectors also relate in that connecting two
k-dimensional butterfly graphs in a certain back-to-back fashion gives a 2k-connector. A
description of this construction and a proof of this fact can be found, e.g., in [146].

It is known [154] that n-connectors require Ω(n log n) edges. However, the following
question remains open: Does there exist an explicitly constructable family {Gn} of DAGs
with n sources and sinks and of size linear on n such that, for any r ∈ N+, the cost of an
r-round DT game on a stack of r graphs Gn is also linear on n?

B.7 Upper Bounds for Size and Space

We prove the upper bounds in terms of the weaker resolution proof system. A resolution
configuration C is a set of clauses. A resolution refutation of a CNF formula F is a
sequence of configurations C0, . . . ,Cτ such that C0 = ;, the empty clause ⊥ ∈ Cτ, and
for t ∈ [τ] we obtain Ct from Ct−1 by one of the following steps:

Axiom download Ct = Ct−1 ∪ {C}, for C ∈ F .

Inference Ct = Ct−1 ∪ {C ∨ D}, where C ∨ D is inferred by the resolution rule

C ∨ x D ∨ x
C ∨ D

.

Erasure Ct = Ct−1 \ {C}, for some C ∈ Ct−1.

The length of a refutation is the number of axiom downloads and inferences. The
line space of a configuration is the number of clauses, and the total space is the number
of literals. The (line/total) space of a refutation is the maximum over all configurations.

It is easy to see that cutting planes can simulate the resolution rule using at most w
additions and one division, where w is the width of the shortest clause, and therefore a
resolution refutation in length L, width w and space s gives a cutting planes refutation
in size O(w2 L) and space s+ 1 where the largest coefficient is 2. The refutation that we
construct in Lemma B.7.3 is of constant width, so cutting planes can simulate it with
constant overhead, and in Lemma B.7.7 it is not but we can ignore polynomial factors.

The search depth of a formula F is the minimum number of queries of a decision
tree for the search problem of F . As observed in [135, 26], a search tree for the falsified
clause search problem is equivalent to a tree-like resolution refutation. We can construct
a refutation essentially by replacing each internal node labelled with a variable x in
the search tree with the result of resolving its two children over the variable x . It is
straightforward to check that this is indeed a valid resolution refutation.

Lemma B.7.1 ([77]). If a CNF formula has search depth d, then it has a refutation in
length 2d , width d, and space d simultaneously.

B.7. UPPER BOUNDS FOR SIZE AND SPACE 131

Proof. Consider the refutation tree T equivalent to a minimal depth search tree. Travers-
ing the refutation tree in depth-first order it is straightforward to reconstruct a tree-like
refutation of length |T | ≤ 2d , width d, and space d, where |T | is the order of T .

To show length upper bounds we simulate a black pebbling in resolution and then
lift that refutation, as done in for instance [28].

The black pebble game is played by a single player on a DAG. The allowed moves are
to place a pebble on a vertex if its predecessors have pebbles and to remove a pebble
from any vertex. A pebbling is a sequence of moves that begin with the empty graph
and end with a pebble on the sink. The number of moves of a pebbling is called the
time, and the maximum number of pebbles on the graph at the same time the space. An
excellent survey of pebbling up to ca 1980 is [153], and some more recent developments
are covered in the upcoming survey [146].

Lemma B.7.2. If there is a black pebbling for an indegree 2 graph G in space s and time τ,
then there is a resolution refutation of PebG in length O(τ), width 3, and total space O(s).

Proof. We build a refutation π of PebG by keeping in memory the unit clause v for every
vertex v that has a pebble. This is trivial for sources because these clauses are already
axioms. For a vertex v with predecessors u1 and u2, when we place a pebble over v its
predecessors have pebbles, therefore the clauses u1 and u2 are in memory. We download
the axiom u1 ∨ u2 ∨ v, resolve it with u1 and u2 to obtain the clause v, and then delete
intermediate clauses.

We can use a generic procedure to transform any refutation into a refutation for the
corresponding lifted formula (see Lemma 4.3 in the ECCC version of [28]). However,
we obtain better upper bounds if we take the structure of the refutation into account.

Lemma B.7.3. Let G be a graph of indegree 2 with a black pebbling in space s and time τ.
Then there is a refutation of Lift`(PebG) in size O(τ · `3) and total space O(s · `).

Proof. Let π be the refutation of PebG given by Lemma B.7.2. We build a refutation π′

of Lift(F) by deriving, for each unit clause v, the ` clauses Lift(v). This is trivial in the
axiom download and erasure cases, and we are left with inference. The only inference
steps we need to deal with are of the form

u1 ∨ u2 ∨ v u1

u2 ∨ v u2
v

(B.7.1)

and we handle both inference steps at once.
Recall that for a lifted formula to have constant width we have to split the wide

auxiliary clauses (B.2.3a), introducing extension variables, but we were not explicit
about how to do that. We split the clause

∨`

a=1 xa,u into a clause x1,u∨ s2,u, `−2 clauses
of the form sa,u ∨ xa+1,u ∨ sa,u, and a clause s`,u ∨ x`,u.

132 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

x1,u1
∨ y1,u1

∨ B x1,u1
∨ y1,u1

x1,u1
∨ B x1,u1

∨ s2,u1

s2,u1
∨ B

x2,u1
∨ y2,u1

∨ B x2,u1
∨ y2,u1

x2,u1
∨ B s2,u1

∨ x2,u1
∨ s3,u1

s2,u1
∨ s3,u1

∨ B

s3,u1
∨ B

...
s`,u1
∨ B

...
s`,u1

∨ B

B

Figure B.11: Simulation of a pebbling step

First we fix a clause C ∈ Lift(v) that we want to derive. Then we fix a clause
B ∈ Lift(u2 ∨ v) that contains C as a subclause. We can derive B by resolving the clauses
xa,u1

∨ ya,u1
∨ B, which are actual axioms of Lift(PebG), first with xa,u1

∨ ya,u1
, which are

in memory by hypothesis, and then with the axioms sa,u1
∨ xa,u1

∨ sa+1,u1
that result of

breaking
∨`

a=1 xa,u1
into clauses of constant width. See Figure B.11 for details. Such a

derivation requires O(`) steps and constant space.
We repeat this procedure for all of the ` clauses in B ∈ Lift(u2 ∨ v) that contain C as

a subclause, using at most O(`2) steps and space `+O(1). Now we have all the clauses
required to derive C by repeating the above procedure with the clauses Lift(u2)∨ C that
we just derived, the clauses xa,u1

∨ ya,u1
, which are also in memory by hypothesis, and

the axioms sa,u1
∨ xa,u1

∨ sa+1,u1
. Such a derivation requires an additional O(`) steps

and constant additional space, for a total of O(`2) steps and space `+O(1). Finally we
repeat the whole procedure ` times, once for each clause C ∈ Lift(v), for a total of O(`3)
steps and space 2`+O(1).

Observe that all clauses are of constant width, so the size and total space are also
O(`3) and O(`), and furthermore we can simulate the resolution proof in cutting planes
with constant overhead.

If we only care about optimizing size, then a strategy that places pebbles in topological
order and never removes a pebble is a valid pebbling of any graph of order m in time m
and space m, which gives a short refutation in size O(m`3) and space O(m`).

Lemma B.7.4. Let G be a graph of order m and indegree 2. For any ` ≥ m3 there is a
refutation of Lift`(PebG) in size O(N) and total space O(N2/5), where N = Θ(m`) is the
size of Lift`

�

PebG

�

.

In terms of space, even the most space-efficient pebbling strategy would give a
refutation in space O(`), which is too weak. Therefore to obtain good space upper
bounds we go through the Dymond–Tompa game and search depth instead of black
pebbling. The following Lemma follows from Lemma B.5.1 and was first proved in [54].

B.8. PUTTING THE PIECES TOGETHER 133

Lemma B.7.5 ([54]). If there is a Dymond–Tompa pebbling strategy for a graph G in
space s, then the formula PebG has search depth s.

If we lay out the extension variables so that their indices form an ordered binary tree
and attach two nodes labelled xa,u and xa+1,u to each leaf sa,u we get a search tree that
finds a selector variable set to true by any assignment that respects auxiliary clauses.
We can use this tree to build search trees for a lifted formula.

Lemma B.7.6. Given a CNF formula F of search depth d, the lifted formula Lift`(F) has
search depth d log`.

Proof. Given a decision tree T1 for the falsified clause search problem on F of depth d
and a decision tree T2 that finds a selector variable set to true of depth log`, we build a
decision tree T3 for the falsified clause search problem on Lift`(F) of depth d log` by
composing the trees as follows.

First we modify T2. We reinterpret the leaves as queries to selector variables xa,u,
and we attach two new nodes to every selector variable query. We label the 0-leaf of
xa,u with the falsified clause sa,u ∨ xa,u ∨ sa+1,u, and we label the 1-node with the main
variable ya,u. We add two unlabelled leaves to the ya,u node.

Then, starting at the root of T1, we apply the following recursive procedure. If the
root is an inner vertex labelled with a variable u, then we add a copy of T2 that queries
variables corresponding to u. To each 0-leaf we attach the result of this procedure on
the 0-subtree of T1, and to each 1-leaf we attach the result of this procedure on the
1-subtree.

Finally, for each leaf of T3 that we did not label yet, there is a corresponding leaf
in T1 labelled with a clause C . C is falsified by the assignment α induced by the
branch leading to C . By construction, the assignment β induced by the branch in
T3 respects auxiliary clauses and, for every variable u ∈ Vars(C) it sets xa,u = 1 and
ya,u = α(u) for some a ∈ [`]. Therefore we can label the leaf of T3 with the main clause
∨

u∈Vars(C) xa,u ∨ y1−α(u)
a,u .

Lemma B.7.7. Let G be a graph of order m and indegree 2 with Dymond–Tompa price s.
For any ` ≥ m3 there is a refutation of Lift`

�

PebG

�

in size 2O(s log N) and space O(s log N),
where N = Θ(m`3) is the size of Lift`

�

PebG

�

.

Proof. This follows immediately from Lemmas B.7.5, B.7.6, and B.7.1.

B.8 Putting the Pieces Together

By the technical result proved in Section B.2, Theorem B.2.8, we know that if G is a
graph over m vertices such that the r-round Dymond–Tompa game on G costs Ω(c), then
for `= m3+ε, Lift`

�

PebG

�

is a 6-CNF formula over Θ(m4+ε) variables and N = Θ(m10+3ε)
clauses such that for any CP refutation of Lift`

�

PebG

�

even with coefficients of unbounded

134 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

size in formula space less than c
r log N requires length greater than 2Ω(r). This fact

together with the lower and upper bounds proven in Sections B.6 and B.7 yield the
following theorem.

Theorem B.8.1. There is an explicitly constructible two-parameter family of unsatisfiable
6-CNF formulas F(n, d), for n, d ∈ N+, of size N = Θ((dn)10+ε) such that:

1. F(n, d) can be refuted by CP with small coefficients in size O(N) and total space
O(N2/5).

2. F(n, d) can be refuted by CP with small coefficients in total space O(d log N) and
size 2O(d log N).

3. For any r ≤ d, any CP refutation even with coefficients of unbounded size of F(n, d)
in formula space less than min{ 2d/r log N

8 , n log N
8r } requires length greater than 2Ω(r).

Proof. Let G be a stack of depth d of butterfly graphs of dimension log n which has a
total of Θ(dn) vertices. Let F(n, d) = Lift`(PebG).

Item 1 follows directly from Lemma B.7.4. Item 2 follows from setting r = d in the
upper bound stated in part 1 of Lemma B.6.1 and combining it with Lemma B.7.7.

By Lemma B.6.1 we get that for any r ≤ d, the r-round Dymond–Tompa game played
on G has cost at least at least min{ r2d/r

8 , n
8}. Thus, by Theorem B.2.8, we get item 3.

Choosing the right values for d and r in Theorem B.8.1, we get the following to
corollaries. These are generalizations of Theorems B.1.1 and B.1.2.

Corollary B.8.2. For any positive constant K, there exists a family of 6-CNF formulas
{FN}∞N=1 of size Θ(N) such that:

1. FN can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).

2. FN can be refuted by CP with small coefficients in total space O(logK+2 N) and size
2O(logK+2 N).

3. Any CP refutation even with coefficients of unbounded size of FN in formula space
less than N1/10−ε requires length greater than 2Ω(logK N), for any constant ε > 0.

Proof. The proof follows from setting d = logK+1 n and r = d/ log n in Theorem B.8.1
and for every N , choosing n to be a power of 2 such that N is at most a factor off from
(nd)10+ε.

We note that log N = Θ(log n), so 2 holds. Moreover, N = o((nd)10+2ε), thus
N1/10−ε = o((nd)(10+2ε)(1/10−ε)) and

(nd)(10+2ε)(1/10−ε) = (n logK+1 n)(10+2ε)(1/10−ε)

≤ (n · nε)(1−9ε) < n(1−8ε)

<
n

8 logK n
<

n
8r

log N ,

B.9. EXPONENTIAL SEPARATION OF THE MONOTONE AC HIERARCHY 135

and therefore 3 also holds.

Corollary B.8.3. For any positive constant K, there exists a family of 6-CNF formulas
{FN}∞N=1 of size Θ(N) such that:

1. FN can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).

2. FN can be refuted by CP with small coefficients in total space O
�

N
1

10(K+1)
�

and size

2O
�

N
1

10(K+1)
�

.

3. Any CP refutation even with coefficients of unbounded size of FN in formula space

less than N
K−1

10(K+1)−ε requires length greater than 2Ω
�

N
1

10(K+1)
�

, for any constant ε > 0.

Proof. The proof follows from setting d = n1/K log n and r = d/ log n in Theorem B.8.1
and for every N , choosing n to be a power of 2 such that N is at most a factor off from
(nd)10+ε.

We note that N
1

10(K+1) = Θ((nd)
10+ε

10(K+1)) and (nd)
10+ε

10(K+1) > d log N , hence 2 holds.
Moreover, N = o((nd)10+2ε), thus N

K−1
10(K+1)−ε = o((nd)(10+2ε)(K−1

10(K+1)−ε)) and

(nd)(10+2ε)(K−1
10(K+1)−ε) = (n(K+1)/K log n)(10+2ε)(K−1

10(K+1)−ε)

< n(10+2ε)(K−1
10K −ε) · nε <

n(K−1)/K

8

<
n(K−1)/K

8
log N =

n
8r

log N ,

and, therefore 3 also holds.

B.9 Exponential Separation of the Monotone AC Hierarchy

Unsurprisingly, we follow the same approach as [158]. Our function is a restriction
of the GEN function, except that instead of restricting the valid instances to pyramid
graphs, which are unconditionally hard, we restrict the valid instances to the graphs from
Section B.6 that exhibit round-space trade-offs. We then use our round-aware simulation
theorem to lift the trade-off to communication complexity and the Karchmer–Wigderson
game to translate it to a trade-off for monotone circuits.

Definition B.9.1. The Karchmer–Wigderson game [118] is the following communication
problem: given a monotone function f , Alice gets an input x such that f (x) = 1 and
Bob gets an input y such that f (y) = 0. Their task is to compute a coordinate i such
that x i = 1 and yi = 0

Theorem B.9.2 ([118]). If there is a monotone circuit for f of size 2c and depth r, then
there is a protocol for the Karchmer–Wigderson game of communication rc and r rounds.

136 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Proof. The proof is a simple induction on the depth of the circuit. If the circuit has no
gates, the players just return the index of the output variable. Otherwise, assume the
output gate is an OR-gate, i.e., f =

∨

gi . Then gi(y) = 0 for all i and there exists i such
that gi(x) = 1. Alice sends i with cost at most c and we apply the induction hypothesis
on a circuit of one less level. If the output gate is an AND-gate, Bob acts analogously.

Definition B.9.3. Given a graph G of indegree 2 and ` ∈ N, the G-GEN Boolean function
is defined as follows. There is a variable (v, a) for every source v ∈ G and index a ∈ [`].
There is a variable (v∨u1∨u2, a, b, c) for every non-source vertex v ∈ G with predecessors
u1 and u2 and triple (a, b, c) ∈ [`]3. There is a variable (z, a) for every index a ∈ [`].
A pair (v, a) is reachable if v is a source and (v, a) is 1, or there exist (b, c) such that
(v∨u1∨u2, a, b, c) is 1, (u1, b) is reachable, and (u2, c) is reachable. The value of G-GEN
is 1 if there exists some index a ∈ [`] such that (z, a) is reachable and (z, a) is 1.

Lemma B.9.4. There is a monotone circuit that computes G-GEN in depth 2d, fan-in `2,
and size O(m`3), where d is the depth of G.

Proof. The circuit computes whether each of the pairs (v, a) is reachable. For v a source
we just have a variable. For a non-source v, we have, for each pair (b, c) ∈ [`]2, an
AND-gate of fan-in 3 and inputs the gate that computes (u1, b), the gate that computes
(u2, c), and the variable (v ∨u1 ∨u2, a, b, c), and one OR-gate of fan-in `2 with inputs all
of these gates. Finally, we have ` AND-gates with inputs the gate that computes (z, a)
and the variable (z, a), and an OR-gate of fan-in `.

Lemma B.9.5. If there is a deterministic communication protocol for the Karchmer–
Wigderson game on G-GEN of communication c and r rounds, then there is a deterministic
communication protocol for Lift(Search(PebG)) of communication c and r rounds.

Proof. Let (x , y) be an input to assignment to Lift(Search(PebG)), this is a vector of
indices and a vector of binary strings such that select(xv , yv) is an assignment to a
variable v of PebG .

Alice builds a 1-input for the Karchmer–Wigderson game on G-GEN as follows. For
every source v ∈ G, Alice sets the variable (v, xv) to 1, and for every non-source vertex
v ∈ G, Alice sets the variable (v ∨ u1 ∨ u2, xv , xu1

, xu2
) to 1. Alice sets (z, xz) to 1. The

remaining variables are 0.
Bob builds an input as follows. For every source v ∈ G, Bob sets the variable (v, a) to

(yv)a, and for every non-source vertex v ∈ G, Bob sets the variable (v∨u1∨u2, a, b, c) to
0 if (yv)a = 0, (yu1

)b = 1, and (yu2
)c = 1, and to 1 otherwise. Bob sets (z, a) to 1−(yz)a.

Observe that, in Bob’s input, if a pair (v, a) is reachable, then (yv)a = 1. For the sink,
this means that if (z, a) is reachable then (z, a) = 1− (yz)a = 0, so the input evaluates
to 0.

Both players then simulate the protocol for the Karchmer–Wigderson game and they
get a variable that Alice set to 1 and Bob set to 0. If it is (v, xv), then (yv)xv

= 0, so
axiom v is falsified. If it is (v ∨ u1 ∨ u2, xv , xu1

, xu2
), then (yv)xv

= 0, (yu1
)xu1
= 1, and

B.10. CONCLUDING REMARKS 137

(yu1
)xu1
= 1, so axiom v ∨ u1 ∨ u2 is falsified. If it is (t, xv), then (yz)xv

= 1, so axiom z
is falsified.

Theorem B.1.3 (Restated). For every i ∈ N there is a Boolean function over n variables
that can be computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but
for which every monotone circuit of depth q logi−1 n requires size 2Ω(n

1/(10+4ε)q).

Proof. Let G be a stack of logi−1 n butterflies with w = (n1/(10+3ε))/(logi−1 n) sources
and sinks. This is a graph of depth d ≤ logi n/(10 + 3ε) and size m ≤ n1/(10+3ε), so
we can set ` = m3+ε ≤ n(3+ε)/(10+3ε), and the number of variables of G-GEN is indeed
at most m`3 ≤ n. By Lemma B.9.4, there is a monotone circuit of depth 2d ≤ logi n,
fan-in `2 ≤ n4/5, and size O(n) that computes G-GEN. By Theorem B.9.2, Lemma B.9.5,
Theorem B.4.1, Lemma B.2.6, and Lemma B.6.1, any circuit of depth at most q logi−1 n
that computes G-GEN requires size 2(w

1/q log`)/(4r) = 2Ω(n
1/(10+4ε)q).

B.10 Concluding Remarks

In this paper we report the first true size-space trade-offs for cutting planes, exhib-
iting CNF formulas which have small-size and small-space proofs with constant-size
coefficients but for which any short proofs must use a lot of memory, even when using
exponentially large coefficients and even when we measure just the number of lines (i.e.,
inequalities) rather than total size. Furthermore, these results also hold for resolution
and polynomial calculus, and are thus the first trade-offs to uniformly capture the proof
systems underlying the currently best SAT solvers.

The main technical component in our proof is a reduction to communication complex-
ity as in [106, 95], but with the crucial difference that we reduce to round-efficient proto-
cols in the real communication model of [125]. Extending the techniques in [158, 96, 43]
to this more general setting, and combining them with new trade-off results for Dymond–
Tompa pebbling [74], yields our results. Using the same approach we are also able
to obtain an exponential separation between monotone-ACi−1 and monotone-ACi , im-
proving on the superpolynomial separation in [158].

An interesting challenge would be to extend our reduction to stronger communication
models such as two-party randomized or multi-party real communication, which would
yield trade-offs for stronger proof systems. A recent result in this direction is [92], but
unfortunately it seems hard to incorporate round-efficiency in this framework.

Another question concerns the size of the lifting gadgets we need to construct formulas
exhibiting trade-offs. Our gadgets have large polynomial size, which incurs a substantial
loss in the results. It would be nice to construct constant-size gadgets, which could lead
to tighter trade-off results.

Many proof complexity trade-offs have been obtained by reducing to the black-white
pebble game [67], but in this paper we use the Dymond–Tompa game. It would be
desirable to obtain a better understanding of the role of these games and what kind of
trade-offs can be obtained from them.

138 PAPER B. HOW LIMITED INTERACTION HINDERS REAL COMMUNICATION

Finally, from a proof complexity perspective we have very few examples of formula
families that exhibit size-space trade-offs. Apart from the pebbling formulas studied in
this work, the only natural examples4 are the Tseitin contradictions over long, narrow
grids in [19, 23]. It would be interesting to prove size-space trade-offs for the latter
formulas also in cutting planes, or to find other formulas with size-space trade-offs for
this or other proof systems.

Acknowledgements

The authors wish to acknowledge Mladen Mikša, who participated in the initial stages
of this work and has kept contributing helpful remarks throughout the project, and
Massimo Lauria, with whom we have had many fruitful discussions on time-space trade-
offs and other topics in proof complexity. We want to thank Siu Man Chan for introducing
us to the wonderful world of Dymond–Tompa pebbling. Different subsets of the authors
are grateful for detailed and very helpful discussions on communication complexity
with Joshua Brody, Arkadev Chattopadhyay, Prahladh Harsha, Johan Håstad, Troy Lee,
Jaikumar Radakrishnan, and Anup Rao. Finally, we are thankful to Dieter van Melkebeek
and Ryan Williams for help with references for general SAT time-space trade-offs.

The authors were funded by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement
no. 279611 as well as by the Swedish Research Council grant 621-2012-5645.

4Ignoring trade-offs obtained in [143] by gluing together disjoint copies of unrelated formulas.

Paper C

Cumulative Space in Black-White
Pebbling and Resolution

Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and
Marc Vinyals

Full length version of the article published in Proceedings of the 8th Innovations in Theor-
etical Computer Science Conference (ITCS ’17), January 2017

Abstract

We study space complexity and time-space trade-offs with a focus not on peak
memory usage but on overall memory consumption throughout the computation.
Such a cumulative space measure was introduced for the computational model of
parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results
in cryptography. We consider instead the nondeterministic black-white pebble game
and prove optimal cumulative space lower bounds and trade-offs, where in order to
minimize pebbling time the space has to remain large during a significant fraction of
the pebbling.

We also initiate the study of cumulative space in proof complexity, an area
where other space complexity measures have been extensively studied during the
last 10–15 years. Using and extending the connection between proof complexity
and pebble games in [Ben-Sasson and Nordström ’08, ’11], we obtain several strong
cumulative space results for (even parallel versions of) the resolution proof system,
and outline some possible future directions of study of this, in our opinion, natural
and interesting space measure.

C.1 Introduction

The time and space complexity measures are at the heart of understanding computation.
Unfortunately, there is little we can say about general computation models such as

139

140 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

Boolean circuits, let alone Turing machines. But if we allow ourselves to work with
simpler models of computation, then we have a better chance at understanding these
resources, and in fact there has been impressive progress in restricted models like
bounded-depth circuits.

One of the first success stories in this direction are pebble games. The original (black)
pebble game is played by a single player on a directed acyclic graph (DAG) with a single
sink and all vertices having bounded indegree and consists of two simple rules:

1. we can add a pebble to a vertex if all its direct predecessors have pebbles, and

2. we can remove a pebble from a vertex at any time.

The goal of the game is to place a pebble on the sink of the graph. Time is measured
as the number of moves to reach this goal, and the space is the maximum number of
pebbles needed simultaneously at any point during the pebbling.

Quite surprisingly, this seemingly simple and innocent game can be used to obtain
strong results even for general computation models, as it is at the core of the DTIME

�

t
�

⊆
SPACE

�

t/ log t
�

space upper bound for Turing machines in [104]. Pebbling was first used
in [149] to study flowcharts and recursive schemata, and different variants of the game
have later been applied to a rich selection of problems in computer science, including
register allocation [171], algorithmic time and space trade-offs [58], parallel time [74],
communication complexity [158], monotone space complexity [57, 81], cryptography
[8, 73], and proof complexity [27, 29, 43] (where it should be emphasized that the
above list of references is far from exhaustive). An excellent overview of pebbling up
to ca 1980 is given in [153] and another in-depth treatment of some pebbling-related
questions can be found in chapter 10 of [167]. Some more recent developments are
discussed in the upcoming survey [146].

Let us briefly discuss what is known about space in proof complexity, since this is one
of the two topics we are focusing on in this paper. The study of space in proof complexity
was initiated in [77], which introduced the clause space measure for the well-known
resolution proof system, a measure that has subsequently been thoroughly investigated.
Informally, the clause space of a resolution proof can be defined as the maximal number
of additional clauses—on top of the clauses in the original CNF formula—that a verifier
needs to keep in memory at any time while checking the correctness of the proof.1 While
some formulas have proofs requiring only a small, sometimes even just constant, space
overhead during verification, other formulas require a linear amount of extra space
[2, 25, 77], and as shown in [77] no formulas require more than linear clause space in
resolution.

Other papers have studied how space relates to other proof complexity measures.
With respect to proof length, which can be viewed as a measure of (nondeterministic)
running time, there is a wide range of trade-off results. It has been shown that there are

1Though slightly different from the definition in [77], this is equivalent up to a small additive constant.

C.1. INTRODUCTION 141

formulas which have both short and space-efficient proofs, but as one of these measures
is optimized the other one can blow up to almost worst-case behaviour [28]. Not only
this, but there are even formulas where short proofs require more than the worst-case
linear space [19, 23]. Yet other papers have studied other space measures such as
total space [2, 38, 40], measuring the total number of symbols in a proof, and space
complexity has also been considered for other proof systems than resolution. We refer
the reader to the survey [145] for more details (although, for obvious reasons, it fails to
cover the very latest results on total space).

All the space measures discussed above have in common the fact that they refer to
the maximum space used at some point in the proof, but they are far from providing
a complete picture of space usage during the whole proof. If we only know that a
formula has high space complexity, it is not possible to distinguish between a formula
that requires large space only at the beginning of the proof, say, and another that requires
large space throughout the whole proof. This distinction might not be so important
if we are considering the memory requirements of a verifier, since in this case we are
chiefly interested in the maximum. However, it could be relevant for proof search: an
algorithm that searches for a proof by producing clauses needs to discard many of them
or risk exhausting its available memory. In this case, the difference between needing
large space once versus at all times is the difference between making one lucky choice
of which clauses to keep in memory versus being lucky all the time.

A similar issue occurs with so-called memory-hard functions in the context of cryp-
tography. The idea behind memory-hard functions is that they should require a large
amount of memory to evaluate, so that in order to compute such a function for many
inputs as a part of a brute-force attack either an infeasible amount of memory is needed
or the attack needs to be carried out sequentially. Yet, if the function only requires a
large amount of memory during a limited time of the computation, then it is possible to
reuse memory for different computations overlapping suitably in time as observed in [7].
Therefore, a more appropriate measure to analyse memory-hard functions is cumulative
space complexity as introduced in [8], where one measures not the maximum memory
consumption but the total memory usage aggregated over the time of the computation.

Although with hindsight this cumulative space complexity measure appears to be a
very natural way of quantifying memory usage, it does not seem to have received too
much attention in computational complexity theory, and to the best of our knowledge it
has not been considered at all in the context of proof complexity. One of the main contri-
butions of this paper is to transfer the concept of cumulative space to proof complexity
and to initiate a study of this complexity measure for the resolution proof system.

Pebble games turn out to be a useful tool also for analysing cumulative space. For
pebbling strategies cumulative space is straightforwardly defined as the sum over all
steps of the pebbling of the number of pebbles on the DAG at each point in time. Thus,
in the standard pebble game discussed above any DAG with n vertices can trivially be
pebbled in time n and cumulative space O

�

n2
�

by placing pebbles on all vertices in
topological order. Since every vertex needs to be pebbled at some point, a trivial lower

142 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

bound for the cumulative space is n. However, depending on the intended application
one needs to consider other variations of this pebble game as discussed next.

In a proof complexity setting we need to study the black-white pebble game, which
was introduced in [67] with the objective of modelling nondeterministic computations.
Here white pebbles, corresponding to nondeterministic guesses, can be placed at any
vertex at any time, but such a white pebble can only be removed from a vertex when all
direct predecessors have (black or white) pebbles, corresponding to that the correctness
of the nondeterministic guess can be verified.

To model parallel computation in a cryptographic setting, [8] introduced yet another
pebble game, namely the parallel (black) pebble game. In this game, all the pebbling
moves that are legal at some point in time can be performed simultaneously in one single
step. This change of rules does not affect the maximal space required to pebble a DAG,
but typically changes the pebbling time. Any connected DAG with a single sink requires
linear time to pebble sequentially, but for a parallel pebbling it is easy to see that the time
required is upper-bounded by the depth of the graph (i.e., the length of a longest path).
We remark that an attractive feature of parallel pebbling is that it better captures the
difference between maximal and cumulative space. Note that in any sequential pebbling
game placing s pebbles requires s time steps, and during the last s/2 steps there will
be at least s/2 pebbles on the DAG. Thus, any pebbling in maximal space s requires
cumulative space Ω

�

s2
�

. In contrast, in a parallel pebbling the cumulative space can be
small even when the maximal space is large.

C.1.1 Our Pebbling Contributions

In this paper, we study the cumulative space measure in the context of black-white
pebbling. In order to do so, we also extend black-white pebbling to a parallel version.
As pebble games go, this is a very powerful model, since it turns out that any DAG can
be pebbled with a parallel black-white pebbling in constant time and linear cumulative
space. Perhaps somewhat surprisingly, however, it is still possible to prove nontrivial
time-space trade-offs. It can be shown that the parallel and sequential versions of black-
white pebbling are closely connected (as discussed in more detail later in the paper), and
therefore in this overview the exposition is focused on sequential black-white pebbling.

The first question we address is how the large cumulative space can be in the worst
case for sequential black-white pebbling. As noted above, a trivial (black-only) pebbling
in linear time and space has cumulative space O

�

n2
�

for any graph over n vertices. In the
other direction, the Ω(n/ log n) space lower bound in [89] already gives a Ω(n2/ log2 n)
cumulative space lower bound for sequential black-white pebbling, as explained above.
One cannot get a better cumulative space lower bound by this simple argument from
maximal space lower bounds, however, since any DAG of constant indegree can be
pebbled in maximal space O(n/ log n) [104].

We prove that the family of grate graphs in [169] require Ω(n2) cumulative space for
sequential black-white pebbling. This shows that for cumulative space it is not possible to

C.1. INTRODUCTION 143

improve on the trivial quadratic upper bound, in contrast to the maximal space measure
where it is always possible to save a logarithmic factor from the trivial linear upper bound.
This is also different from the parallel black pebble game, where there is a o(n2) worst-
case upper bound for cumulative space [7] and the best known cumulative space lower
bound is Ω

�

n2/ log n
�

[9]. In fact, it turns out that the difference between the sequential
black-white and parallel black pebble games can be very large. We also prove that (a
modified version of) the butterfly graphs in [173] require cumulative space Ω(n2/ log n)
in the sequential black-white pebble game but can be pebbled in linear cumulative space
in the parallel black pebble game. Butterfly graphs also show that graphs that require
large cumulative space do not necessarily require large maximal space, as they have
logarithmic depth and thus can be pebbled in logarithmic space as observed in [104].
We obtain these results by studying the lower bounds on cumulative space in parallel
black pebbling in [9] in terms of depth-robustness of graphs, and extending these lower
bounds to other pebble games and other families of graphs.

Our next set of results concern trade-offs between time and space. Here our starting
point is the family of bit-reversal permutation graphs studied in [130] which can be
pebbled either with 3 pebbles or (as any graph) in linear time, but for which any
pebbling in time t and space s must satisfy t = Ω(n2/s2), where as before n is the
number of vertices in the graph.

We strengthen this trade-off to cumulative space, proving that pebblings of these
graphs in space s require cumulative space Ω

�

n2/s
�

, which in particular implies that
a pebbling in time O

�

n2/s2
�

must use space Ω(s) not only at some point but most of
the time.2 Furthermore, we establish an unconditional Ω

�

n3/2
�

cumulative space lower
bound, which provides another example of graphs that require (at least somewhat) large
cumulative space but can be pebbled in very small (even constant) maximal space. Our
proofs of these results work by adapting the dispersion technique from [9]. This technique
has the advantage that it isolates an abstract combinatorial property of the graph that
makes the lower bound argument go through, and this cleaner approach enables us
to prove these results not only for bit-reversal graphs but also for random permutation
graphs (by showing that these graphs possess the required combinatorial property with
high probability). To the best of our knowledge no trade-offs (even non-cumulative
ones) were known for such graphs before for any flavour of the pebble game.

Finally, we consider a very concrete, extremal question regarding pebbling time-space
trade-offs. It is an easy observation that any sequential black-white pebbling in constant
space s can be carried out in time O

�

ns
�

, since there are only
∑s

k=0 2k
�n

k

�

possible different
configurations of s pebbles in the graph, and no configuration repeats in a pebbling (or
else the intermediate moves can be removed). In fact, a bit more thought reveals that
this time bound can be sharpened to O

�

ns−1
�

, since every configuration in space s is
immediately followed by a pebble removal, and so we only need to consider distinct

2Note, importantly, that such a space lower bound is not implied by the simple “space s implies cumulative
space Ω

�

s2
�

” argument discussed previously.

144 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

configurations of s− 1 pebbles. It is a natural question whether this simple counting
argument is in fact tight, so that there are graphs that can be pebbled in space s but
where any such pebbling requires time Ω

�

ns−1
�

.
For pebbling space s = 3, the minimum space in which any nontrivial pebbling

strategy is possible, the bit-reversal graphs in [130] discussed above show that the
answer to this question is affirmative. It is not hard to see that by stacking s− 2 bit-
reversal DAGs on top of one another, identifying the top layer in one graph with the
bottom layer in the graph above, one obtains graphs that are pebblable in space s but
where the obvious pebbling strategy achieving this bound requires time O

�

ns−1
�

. We
prove that this trivial upper bound is indeed asymptotically tight for any constant s.

C.1.2 Our Proof Complexity Contributions

Turning now to proof complexity, we consider the main contribution of our paper to
be that we initiate the study of the cumulative space measure. While the concept of
cumulative space seems to be as natural as maximal space, we are not aware of it having
been studied in the context of proof complexity before. As was the case for the first papers
on (maximal) space complexity in resolution [77], in this first paper on cumulative space
in proof complexity we focus on the resolution proof system.

An immediate observation is that proof length is always a lower bound on cumulative
space, and so exponential lower bounds on proof length—as shown for resolution in
[61, 98, 177] and many later papers—trivially imply exponential lower bounds on
cumulative space. Therefore, it seems that the cumulative space measure will be of
independent interest mostly for formulas which have reasonably short proofs. An obvious
candidate family to study are pebbling formulas [29], which have proofs in linear length,
but which exhibit a rich variety of properties with respect to space complexity depending
on the underlying graphs in terms of which they are defined.

However, we also need to decide on an appropriate model of the resolution proof
system in which to study cumulative space. In the context of pebbling we concluded that
cumulative space makes most sense for parallel versions of the pebble games, and so
it is natural to ask whether one should consider a parallel version of resolution when
studying cumulative clause space. It is not hard to argue that such a parallel model
of resolution could be interesting in its own right, since it might be useful as a tool to
analyse attempts to parallelize state-of-the-art SAT solvers using so-called conflict-driven
clause learning (CDCL) [18, 136].

We define and study several different versions of the resolution proof systems with
varying degrees of parallelity. The running time of parallel CDCL solvers has previously
been analysed using resolution depth and the related conflict resolution depth and schedule
makespan measures introduced in [120], and our models of parallel resolution allow us
to reason about space in addition to time.

Similarly to what is the case for pebble games, our most general model of parallel
resolution, where clauses can be inferred not just by syntactic application of the resolution

C.2. PEBBLING RESULTS OVERVIEW 145

rule but by semantic inference, is extremely powerful, so much so that it can deal with
any formula in a constant number of steps and linear space. Since we can establish a
tight relation between space and parallel speedup also for resolution, however, we can
still obtain lower bounds when the maximal space is limited.

Studying pebbling formulas in these different models of resolution, and revisiting
the reductions between resolution and pebble games in [27, 28], we can translate the
pebbling results in Section C.1.1 to results for the resolution proof system. Summarizing
very briefly, we exhibit different formulas that have

• proofs in linear length but require quadratic cumulative space,

• proofs in logarithmic space but require Ω(n2/ log n) cumulative space, and

• trade-offs between proof length and cumulative space.

C.1.3 Paper Outline

The rest of this paper is organized as follows. In Section C.2 we present a more detailed
overview of our pebbling results, introducing formal definitions of the pebble games
and measures discussed above, and we give an analogous overview for resolution in
Section C.3. Section C.4 contains detailed proofs of our pebbling theorems, and Sec-
tion C.5 explains how the reduction from pebbling to resolution in [27, 28] can be used
to derive cumulative space results for resolution even in a parallel setting. We conclude
in Section C.6 with a discussion of possible directions for future research.

C.2 Pebbling Results Overview

Let us start our pebbling overview by giving formal definitions of the basic concepts.

C.2.1 Definition of Pebble Games and Basic Properties

We say that a directed acyclic graph (DAG) G = (V, E) with |V |= n has size n. A vertex
v ∈ V has indegree δ if it has δ incoming edges {(u1, v), . . . , (uδ, v)} ⊆ E, ui 6= u j for
i 6= j, and we say that G has indegree δ if the maximum indegree of any vertex of G
is δ. A vertex with no incoming edges is called a source and a vertex with no outgoing
edges is called a sink. We say that a vertex u is a predecessor of a vertex v if there exists
a directed path from u to v; moreover, if this path consists of only one edge then u is
a direct predecessor of v. We denote by parents(v) the set of all direct predecessors of
v. For technical reasons, it will sometimes be convenient to allow paths of length 0 in
the definition above, so that a vertex can be a predecessor of itself. We will sometimes
consider graphs obtained from other graphs by removing subsets of vertices, and for
U ⊆ V we write G − U =

�

V \ U , E \ ((U × V)∪ (V × U)
�

to denote the DAG obtained
from G by removing the vertices in U and all edges incident to U .

146 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

To get a unified description of all flavours of the pebble game discussed in Section C.1,
it is convenient to define pebbling as follows.

Definition C.2.1 (Pebble games). Let G = (V, E) be a DAG with a unique sink vertex
z. The black-white pebble game on G is the following one-player game. At any time i,
we have a black-white pebbling configuration Pi = (Bi , Wi) of black pebbles Bi and white
pebbles Wi on the vertices of G, at most one pebble per vertex. The rules of how a pebble
configuration Pi−1 = (Bi−1, Wi−1) can be changed to Pi = (Bi , Wi) are as follows:

1. A black pebble may be placed on a vertex v only if all immediate predecessors of v
are covered by pebbles in both Pi−1 and Pi , i.e.,

v ∈ (Bi \ Bi−1) ⇒ parents(v) ⊆ Pi−1 ∩ Pi .

Note that, in particular, a black pebble can always be placed on a source vertex.

2. A black pebble on any vertex v in Pi−1 can be removed in Pi .

3. A white pebble can be placed on any vertex v in Pi .

4. A white pebble on a vertex v in Pi−1 may be removed in Pi only if all immediate
predecessors of v are covered by pebbles in both Pi−1 and Pi , i.e.,

v ∈ (Wi−1 \Wi) ⇒ parents(v) ⊆ Pi−1 ∩ Pi .

In particular, a white pebble can always be removed from a source vertex.

A legal pebbling P of G is a sequence P = (P0, . . . ,Pτ) where every configuration Pi can
be obtained from Pi−1 using the rules 1–4. A complete pebbling P = (P0, . . . ,Pτ) is a
legal pebbling where P0 = Pτ = (;,;) and z ∈

⋃τ

i=0(Bi ∪Wi) (i.e., the sink is pebbled at
some point).

A black pebbling is a pebbling where Wi = ; for all i ∈ [τ]. A pebbling is sequential
if only a single application of a single rule 1–4 is used to get from from Pi−1 to Pi for
all i ∈ [τ]. In a (fully) parallel pebbling an arbitrary number of applications of the
rules 1–4 can be made to Pi−1 to obtain Pi (but note that all pebble placements and
removals have to be legal with respect to Pi−1, and cannot make use of any pebble
placements or removals made in parallel). Finally, we will also consider parallel-black
sequential-white pebblings, which allows parallel applications of black pebble rules 1–2
to Pi−1 to obtain Pi , but only a single application of the white pebble rules 3–4. Note
that, in the parallel setting, a simultaneous application of rules 1 and 4 on a same vertex
replaces a white pebble by a black one.

The time of a pebbling P = (P0, . . . ,Pτ) is t(P) = t; the (maximal) space is s(P) =
s =maxi∈[t]|Bi |+ |Wi |; and the cumulative space is c(P) = c =

∑

i∈[t]|Bi |+ |Wi | (where
we observe that c ≤ st).

C.2. PEBBLING RESULTS OVERVIEW 147

Parallel black pebbling was introduced in [8], where it was pointed out that for
certain graphs parallel pebblings can be much more efficient than sequential, while for
others they cannot do any better. For example, if we are considering time-space tradeoffs,
any sequential black pebbling in space s and time t of the bit-reversal graph must satisfy
st = Ω

�

n2
�

[130], while in the parallel black game one can pebble such graphs in linear
time and space O(

p
n) [8]. In contrast, it was shown in [9] that there are graphs that

can be pebbled sequentially in space s and time t satisfying st = O
�

n2/ log n
�

, but where
these graphs even in the parallel model require not only st = Ω

�

n2/ log n
�

but also
cumulative space Ω

�

n2/ log n
�

.
Unlike the case of the black pebble game, we show that time and space in the black-

white sequential and parallel games are closely related. Up to constant factors, it holds
that if a parallel black-white pebbling P has maximal space s, then it is possible to save
a factor s, but not more than a factor s, in time compared to a sequential black-white
pebbling in the same space s.

Observation C.2.2. Let P be a parallel black-white pebbling of a DAG G in time t, space s,
and cumulative space c. Then there is a sequential black-white pebbling of G in time 2ts,
space 2s, and cumulative space cs.

Proof. Each parallel move places at most s pebbles and removes at most s pebbles,
therefore we can simulate it by 2s sequential moves (making the pebble placements first,
to make sure that these moves remain legal).

Lemma C.2.3. Let P be a sequential black-white pebbling of G in time t, space s, and
cumulative space c, and let k be a positive integer. Then there is a parallel black-white
pebbling of G in time 3dt/ke, space s+ dk/2e, and cumulative space 3dc/ke+ t.

Proof. We divide P into dt/ke intervals of (at most) k moves. We reorder the pebbling
moves within each of these intervals so that we do all placements first and removals
afterwards. This is still essentially a valid pebbling, because each configuration is a
superset of the corresponding configuration in P, except that we can possibly have
vertices temporarily covered by several pebbles. The space usage in any intermediate
configuration increases to at most s+ dk/2e. We then collapse each subsequence into one
parallel placement of white pebbles, one step replacing white pebbles with black pebbles
as needed, and one parallel removal of black pebbles (this allows us to make all black
pebble placements in parallel even though later black pebbles might be dependent on
earlier pebble placements in the sequential pebbling). This decreases the time to 3dt/ke.

To bound the cumulative space, note that if there is a configuration Pi in a se-
quential interval that has space si , then the corresponding three parallel configurations
have aggregate space at most 3si + 2x j , where x j is the number of placements in
that interval. Now consider a partition of the sequential pebbling into k subsequences
Pi ,Pi+k, . . . ,Pi+k(dt/ke−1) of t/k configurations, evenly spaced, starting at i ∈ [1, k]. By
an averaging argument, at least one of these k subsequences has a cumulative space of

148 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

at most bc/kc. Hence the total cumulative space is at most
∑

j∈[t/k−1](3si+ j + 2x i+ j) =
3
∑

j∈[t/k−1] si+ j + 2
∑

j∈[t/k−1] x j ≥ 3c/k+ 2t/2.

Observe that when k = Θ(s) the cumulative space in Lemma C.2.3 is dominated by
the term t, so we only save a factor s in cumulative space when the sequential pebbling
has cumulative space c = Θ(st). Since the graphs we will discuss in what follows have
cumulative space lower bounds of this form, studying the sequential game already gives
us all the information we want about the parallel game.

Corollary C.2.4. Let P be a black-white pebbling of G in time t and space s. Then there is
a parallel black-white pebbling of G in time dt/2se, space 4s, and cumulative space 2t.

C.2.2 Robustness and High Cumulative Space Complexity

We proceed to define the concept of depth-robustness of graphs, which is inspired by
[76, 150] and which will be central to our work.

Definition C.2.5 (G -robustness). Let G be a family of DAGs and let e, d ∈ N+ be
positive integers. We say that a DAG G = (V, E) is (e, d)-G-robust if for every subset of
vertices U ⊆ V of size at most e it holds that G − U contains a subgraph H ∈ G of size at
least d.

When G is the class of directed paths, then we say that G is depth-robust, and when
G is the class of DAGs with one sink the DAG G is said to be predecessor-robust.3

For our pebbling lower bounds we are interested in graphs with very high robustness,
i.e., for as large values of e and d as possible. Depth-robustness was first studied by Erdős,
Graham and Szemerédi [76] who showed how to construct DAGs with indegreeΘ(log(n))
possessing (Ω(n),Ω(n))-depth-robustness. However, in our applications it is important
that the graphs have constant indegree. Valiant [179] showed that for constant inde-
gree and linear depth the best we can hope for is (O

�

n/log n
�

,O(n))-depth-robustness.
Fortunately for us, it was shown in [9, 150] that such extremal (Θ

�

n/log n
�

,Θ(n))-depth-
robust graphs do exist. Conversely, if we want constant indegree with the parameter
e linear in the graph size, then (εn, n1−ε)-depth-robustness is the best we can hope
for [179]. In [169] a family of constant-indegree (Θ(n),Θ(n1−ε))-depth-robust graphs
were presented.

The connection between depth-robustness and cumulative space was made in [9],
where it was shown that an (e, d)-depth-robustness graph requires parallel black cumu-
lative space at least ed. In this work, we give a more general theorem of this form for
the case of G-robustness. We then use this theorem to obtain the following lower bounds
for depth-robust and predecessor-robust graphs.

3This choice of terminology is inspired by [150], which discusses the dual notions of “depth-separators”
and “predecessor-separators.”

C.2. PEBBLING RESULTS OVERVIEW 149

Lemma C.2.6. If G is an (e, d)-depth-robust DAG, then G requires sequential black-white
cumulative space at least ed, and parallel-black sequential-white cumulative space at
least e

p
d.

Lemma C.2.7. If G is an (e, d)-predecessor-robust DAG, then G requires black-white
cumulative space at least ed.

Focusing on the range of parameters discussed above, we can see that, it follows from
Lemmas C.2.6 and C.2.7 that a (Θ(n/log n),Θ(n))-depth-robust graph has sequential
black-white cumulative space complexity Ω

�

n2/ log n
�

and parallel-black sequential-
white pebbling space complexity Ω

�

n3/2/ log n
�

.
A class of DAGs that are predecessor-robust are grates—graphs with n′ sources

and n′ sinks such that after the removal of an arbitrary set of kn′ vertices (for some
constant k) there are still a linear number of sources and sinks that are all pairwise
connected.4 Butterfly graphs [173] are grates with n = n′ log n′ vertices that are
(Θ(n/ log n),Θ(n/ log n))-predecessor-robust. Moreover, it is not hard to show that
if we append n′ single-sink DAGs of size log n′, one to each source of the butterfly graph,
the resulting graph is (Θ(n/ log n),Θ(n))-predecessor-robust. This implies that these
graphs require cumulative space Ω(n2/ log n). Note that butterfly graphs (also in the
modified version just described) can be pebbled with O(log n) pebbles (since the graphs
have depth O(log n)), and thus it is not the case that high cumulative space implies large
maximal space.

It has been established that extremal depth-robustness is both a necessary [7] and
sufficient [9] condition to have high cumulative space in the parallel black game. In par-
ticular, using the fact that no graph of size n with constant indegree is (ω(n/log n),Θ(n))-
depth-robust, it was shown in [7] that in the parallel black pebble game, for any con-
stant ε > 0, any such graph has cumulative space complexity o

�

n2/log1−ε n
�

. A natural
question is if this also holds for black-white pebbling. We show that this is not the
case: there are graphs that have maximum cumulative space complexity Ω(n2) in the
black-white pebble game. This follows from Lemma C.2.7 and the existence of grates of
size linear in the number of sources and sinks [169].

C.2.3 Dispersion and Cumulative Space Trade-Offs

Another property of graphs that is important in the current paper is dispersion. This notion
was used in [9] to obtain another condition ensuring high parallel black cumulative space
complexity. We define two similar concepts and then use them to obtain cumulative
space trade-offs. The results we get are for two classes of permutation graphs—graphs
that consist two ordered paths of vertices 1,2, . . . , n, where in addition an edge is added

4Strictly speaking, these graphs have multiple sinks and so do not conform to the DAG requirements
in Definition C.2.1. However, it is easy to turn any multi-sink DAG of interest into a single-sink DAG with
essentially the same properties—we refer to Section C.4 for the details—and so we ignore this technicality
here.

150 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

0000

0000

0001

0001

0010

0010

0011

0011

0100

0100

0101

0101

0110

0110

0111

0111

1000

1000

1001

1001

1010

1010

1011

1011

1100

1100

1101

1101

1110

1110

1111

1111

Figure C.1: A bit reversal permutation graph

from each vertex i in the first path to its image under some specified permutation σ in
the second path.

A family of permutations that will be of particular interest to us are the so-called
bit-reversal permutations, which are defined for n = 2m and which simply reverse the
binary representations of numbers. That is, if j = (b1 · · · bm)(2), then the bit-reversal
permutation σ sends j to σ(j) = (bm · · · b1)(2) (see Figure C.1). It was previously
known [130] that any sequential black-white pebbling of a bit-reversal permutation
graph on 2n vertices in time t and space s satisfies st = Ω

�

n2/s
�

. Moreover, it was shown
in [130] that this is tight up to constant factors and that there is a black-white pebbling
in time t and space s such that st = O

�

n3/2
�

.
We observe that while bit-reversal graphs are not (2

p
n, 2
p

n)-depth-robust, they
can be shown to be (

p
n, n)-predecessor-robust. Therefore, in constrast to [9], where it

was not possible to establish a parallel black cumulative space lower bound of n3/2 using
depth-robustness, we are able to obtain a black-white cumulative space lower bound of
n3/2 using predecessor-robustness.

Our reason for studying dispersion properties of bit-reversal graphs is to characterize
how cumulative space increases when space decreases. As a corollary of Lemma C.4.10
we can show that the time-space trade-off in [130] can be strengthened to a cumulative
space trade-off. Our result implies that if P is a sequential black-white pebbling of a
bit-reversal graph in space s and time n2/s2, then it needs to use space s not only at
some point of the pebbling, but during a large part of the time.

An advantage of our approach is that we identify a general property of graphs that
imply cumulative space trade-offs, so that the task of establishing a trade-off reduces to
proving that the graph has this desired property. As a consequence of this simplification,
we are able to prove the same kind of trade-off results not only for bit-reversal graphs
but also for random permutation graphs, a class of graphs for which it seems nothing
was known before.

Theorem C.2.8. If G is a random permutation graph, then it holds asymptotically almost

C.2. PEBBLING RESULTS OVERVIEW 151

surely that in the sequential black-white pebble game G requires cumulative space Ω(n3/2)
and any pebbling P of G in maximal space s has cumulative space Ω(n2/s).

C.2.4 Pebblings in Small Space Can Require Maximum Length

Let us finally consider the question of how long a shortest sequential pebbling of a graph
can be given constraints on the maximal pebbling space. Without loss of generality,
a black pebbling in space s takes time at most

� n
≤s

�

≤ ns, simply because there is no
need to repeat any pebble configuration. A moment of thought reveals that in fact
we get the upper bound

� n
s−1

�

+
� n
≤s−1

�

≤ ns−1, since every configuration in maximal
space s is followed by an erasure yielding a space-(s− 1) configuration, and these
configurations also do not repeat. For black-white pebbling the upper bound becomes
2s−1

�� n
s−1

�

+
� n
≤s−1

��

≤ 2s−1ns−1.
As discussed in the introduction, it can be read off from [130] that for space-3

pebblings the O
�

n2
�

upper bound is tight up to constant factors—bit-reversal DAGs are
examples of graphs for which pebblings in optimal space 3, or indeed any constant space,
require quadratic time. We extend this result to any s = O(1) by exhibiting graphs that
can be pebbled in space s but where any such pebbling requires time Ω

�

ns−1
�

. We do
this by generalizing permutation graphs to multiple layers, where we have k directed
path graphs of length n and k− 1 layers of permutations between the vertices 1,2, . . . , n
in consecutive paths (so that the permutation graphs considered in [130] are 2-layer
bit-reversal graphs with paths of length n). We state two theorems below for the black
and black-white sequential pebble games, and just as for the 2-layer graphs in [130] our
bounds can be stated not just for minimal space but also an arbitrary space parameter s
greater than this minimum.

Theorem C.2.9. Let G be a k-layer bit-reversal graph with paths of length n. Then for
any s such that k+ 1≤ s ≤

p
n there exists a sequential black pebbling of G in space s and

time O(nk/s2k−3). Furthermore, every sequential black pebbling of G in space s requires
time Ω(nk/s2k−3).

Theorem C.2.10. Let G be a k-layer bit-reversal graph with paths of length n. Then for
any s such that k+1≤ s ≤

p
n there exists a sequential black-white pebbling of G in space s

and time O(nk/s2k−2). Furthermore, every sequential black-white pebbling of G in space s,
requires time Ω(nk/s2k−2).

Our proofs of these results are inspired by the reasoning in [130] for 2-layer per-
mutation graphs, but we also need to overcome some new challenges. The essence of
the argument is that in order to place a pebble on the jth layer we need to do some
work on the preceding layer. If we only have two layers the argument ends here, but
when we want to apply the argument recursively we need to be more careful. Indeed,
placing pebbles on the (j − 1)st layer will now require placing more pebbles on the
(j − 2)nd layer, but if we choose the order in which we do the pebble placements wisely,

152 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

we may be able to reuse part of the work in the (j − 2)nd layer for several pebble place-
ments in the (j − 1)st layer. We are able to find a strategy to exploit this insight and
obtain optimal upper bounds, but also to make the lower bound argument resilient
enough to get asymptotically matching lower bounds.

C.3 Cumulative Space for the Resolution Proof System

We now proceed to describe in more detail the proof complexity results in our paper.
We start this section by a brief review of some standard proof complexity preliminaries,
after which we discuss how to refine the definition of the resolution proof system to be
able to make meaningful and precise claims about maximal space and cumulative space.
This then allows us to make the connection to the pebbling results in Section C.2 and
what proof complexity implications they have.

A literal over a Boolean variable x is either x itself (a positive literal) or its negation x
(a negative literal). A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals ai over pairwise
disjoint variables. A k-clause is a clause that contains at most k literals. A CNF formula
F = C1 ∧ · · · ∧ Cm is a conjunction of clauses and a k-CNF formula is a CNF formula
consisting of k-clauses. We think of clauses and CNF formulas as sets: order is irrelevant
and there are no repetitions.

The standard definition of a resolution refutation π : F `⊥ of an unsatisfiable CNF
formula F—or a resolution proof for (the unsatisfiability of) F—is as an ordered sequence
of clauses π= (D1, . . . , Dt) such that Dt =⊥ is the empty clause containing no literals,
and each clause Di , i ∈ [t], is either an axiom Di ∈ F or is derived from clauses Dj and
Dk, j, k < i, by the resolution rule

B ∨ x C ∨ x
B ∨ C

, (C.3.1)

where we refer to B ∨ C as the resolvent over x of B ∨ x and C ∨ x .
In order to study space in general, and cumulative space in particular, we refine the

above definition into a family of proof systems as follows.

Definition C.3.1 (Resolution). A resolution refutation π : F `⊥ of a CNF formula F is a
sequence of configurations, or sets of clauses, π= (C0, . . . ,Ct) such that C0 = ;, ⊥ ∈ Ct ,
and for all i ∈ [t] we obtain Ci from Ci−1 by applying exactly one of the following type
of rules:

Axiom download Add A∈ F .

Inference Add D derived from clauses in Ci−1.

Erasure Remove clauses from Ci−1.

We say that a refutation is (a) sequential if at every time step we apply the chosen rule
exactly once; (b) inference-parallel if only one clause can be downloaded but the inference

C.3. CUMULATIVE SPACE FOR THE RESOLUTION PROOF SYSTEM 153

rule can be applied an arbitrary number of times (but always deriving from Ci−1); and
(c) fully parallel (or just parallel) if both axiom download and inference rules can be
applied an arbitrary number of times (but note that we cannot mix applications of
different rules in the same step). Furthermore, a refutation is said to be (1) syntactic if
inferences use the resolution rule (C.3.1) and (2) semantic if instead any clause D such
that Ci−1 � D can be inferred immediately.

The length of a resolution refutation π is the number of derivation steps t and the
size is the total number of clauses introduced in downloads and inference steps (counted
with repetitions). 5 The maximal (clause) space, or just space, of π is max{|Ci | : Ci ∈ π}
and the cumulative (clause) space is

∑

Ci∈π
|Ci |.

Note that Definition C.3.1 yields a total of six different flavours of resolution 1(a)–
2(c) depending on the amount of parallelism and on whether inferences are syntactic or
semantic. In what follows, we will discuss our motivation for considering these different
models and what we can say about them.

A first, general comment is that from a proof complexity point of view we are mainly
interested in syntactic versions of the proof systems in Definition C.3.1. Strictly speaking,
the semantic versions are not even propositional proof system in the sense of Cook and
Reckhow [66], since we do not know how to verify semantic implications in polynomial
time. In any semantic system we can download all axioms in the formula and then derive
contradiction in a single inference step, and efficiently verifying such an inference means
solving Sat in polynomial time. However, most results on (clause) space in the proof
complexity literature actually hold in the stronger semantic setting. For maximal space
this is not so surprising, since the semantic and syntactic space measures are within a
constant factor of each other [2], but even for trade-offs one tends to get results in the
semantic setting for free (with the notable exceptions of [19, 23]).

Syntactic sequential resolution is the standard definition discussed at the beginning
of this section (and note that for this version of resolution the length and size measures
are essentially the same). A somewhat unsatisfactory feature of this model is that
(analogously to what is the case for pebbling) a maximal space lower bound s immediately
implies a cumulative space lower bound Ω

�

s2
�

. The reason is completely analogous:
since we can only infer one new clause per time step, during the s/2 time steps before
reaching space s we must have had at least s/2 clauses in memory. It turns out, however,
that we can actually beat this lower bound in certain settings, and we also remark that
cumulative length-space trade-offs do not necessarily follow from such trivial arguments
and so make sense even for syntactic sequential resolution.

By allowing parallel application of inference steps we want to try to get away from
cumulative space lower bounds that hold only for the trivial reason just discussed. In

5For standard resolution as defined in the literature it is most often the case that the length and size
definitions coincide, and we could have achieved this here also by counting only axiom download and inference
steps when measuring length. Including also erasure steps seems slightly more natural in the current context,
however, and also changes the measure by at most a constant factor 2, which is completely immaterial for our
purposes.

154 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

syntactic inference-parallel resolution we therefore allow clauses to be derived in parallel.
As it turns out, anything we are currently able to prove for this model we can also
establish for the stronger semantic inference-parallel resolution system.

We can also go in the other direction from the syntactic sequential model and
introduce a parallelism of sorts by studying semantic sequential resolution. As already
alluded to, this is a very powerful system since any formula can be refuted in linear
size and space by downloading all its axioms in a linear number of steps and then
deriving contradiction in just one semantic inference step, but nevertheless the space
lower bounds and length-space trade-offs in [27, 28] hold in this model, and can in fact
be verified to hold even for semantic inference-parallel resolution.

The most challenging models in terms of lower bounds are the fully parallel ones.
Syntactic parallel resolution could be viewed as a potentially interesting model for proving
lower bounds on parallel SAT solvers using conflict-driven clause learning, where one
could imagine an arbitrarily large number of solvers producing resolvents in parallel and
having perfect access to shared memory. It is not hard to see that if a standard resolution
proof is represented as a DAG in the natural way, then syntactic parallel length, which
would be a proxy for execution time, is just the depth of this DAG.

In the semantic model, adding also parallel axiom downloads makes the proof system
exceptionally powerful, since now any formula can be refuted in constant length 2, linear
size, and linear cumulative space. This seems a bit too strong to be really interesting
(and can be viewed as a reason for preferring the inference-parallel version described
previously). However, we shall see that even for semantic fully parallel resolution it is
still possible to obtain nontrivial trade-off results if the maximal (non-cumulative) space
is bounded.

Moving on from this philosophical discourse to a more concrete discussion of results,
we note that most of the proof complexity consequences we derive from the pebbling
results in Section C.2 are for semantic inference-parallel resolution, and thus hold for
all models above except the fully parallel ones. We start by reporting a disappointing
fact, however: even in semantic inference-parallel resolution we have the problem that
cumulative space is at least maximal space squared.

Lemma C.3.2. If F requires maximal space s in semantic inference-parallel resolution,
then any semantic inference-parallel refutation of F has cumulative space Ω

�

s2
�

.

Proof. For simplicity let us think of each step in a semantic inference-parallel resolution
refutation as being either an inference-plus-erasure step or a download step. Clearly,
this can only affect the clause space measure by a factor 2.

An inference-plus-erasure step can be seen as a compression operation. Since the
proof system is semantic, we only care about the information contained in a configuration,
and since an inference step cannot increase the information but only add explicitly clauses
that are already implied by the configuration, there is no need to add any extra clauses
on top of the minimum amount needed to encode the semantic information we want
the proof to maintain at this point. Therefore, without loss of generality the number of

C.3. CUMULATIVE SPACE FOR THE RESOLUTION PROOF SYSTEM 155

clauses only increases at download steps, and since these are sequential we can conclude
that the number of clauses increases by at most 1 at every step.

But this means that we can apply the same argument as for syntactic sequential
resolution above: during the s/2 time steps preceding a space-s configuration we must
have at least s/2 clauses in memory, and hence a cumulative lower bound Ω

�

s2
�

follows.

It is important to note, though, that Lemma C.3.2 has no implications for cumulative
space trade-offs for formulas where the maximal space complexity is at most O

�p
N
�

measured in the formula size N , since in this setting the max-space-squared argument
only implies a trivial Ω(N) cumulative space lower bound, and we present such trade-
off results below that do not follow from Lemma C.3.2. We also report results that
asymptotically beat the maximal-space-squared lower bound for cumulative space.

In order to obtain these results, we need to review how our cumulative pebbling
results in Section C.2 can be translated to claims about resolution refutations of so-called
XORified pebbling formulas. We will be very brief here, since all that needs to be done is
to read the pebbling-to-resolution reductions in [28] and verify that the proofs work not
only for semantic sequential resolution but also for semantic inference-parallel resolution.
We just state the reduction that we need below, since we can use it in a completely
black-box fashion without knowing any details about what these formulas are. The
interested reader is referred to [28] for the missing details.6

Theorem C.3.3 (by the proof of Theorem 2.1 in [28]). Let π be a semantic inference-
parallel resolution refutation of a XORified pebbling formula PebG[⊕] in length L, maximal
space s, and cumulative clause space c. Then there is a sequential black-white pebbling of
the underlying DAG G in time L, space s, and cumulative space c.

Analogously to what is the case in [28], the generic reduction in Theorem C.3.3
can now be applied to a multitude of different graph families with different pebbling
properties to yield CNF formulas with the same properties in resolution. Below we just
give a sample of such results that we find particularly interesting.

For maximal space it is known that formulas refutable in linear size O(N) never
require space more than O(N/ log N). For cumulative space the lower bound can be
truly quadratic, however, beating the max-space-squared bound in Lemma C.3.2 by a
factor log2 N .

Theorem C.3.4. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) that have syn-
tactic sequential resolution refutations in size O(N), and hence also in maximal clause space

6It might be worth noting, though, that just as in [28] our results hold not only for pebbling formulas
substituted with exclusive or—substitution with any so-called non-authoritarian (or robust) function that
can never be fixed by restricting any single variable to some value works fine. Binary exclusive or is just
the simplest example of such a function, whereas standard or is a simple non-example since setting a single
variable to true fixes the value of the function to true.

156 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

O(N/ log N), but for which any semantic inference-parallel refutations require cumulative
clause space Ω(N2).

This theorem follows from studying pebbling formulas defined in terms of grate
graphs as in [169] and using that the high predecessor-robustness of these graphs imply
strong lower bounds on cumulative space as stated in Section C.2.

A natural question is what cumulative space tells us about maximal space, and in
particular whether high cumulative space complexity implies that the maximal space
complexity must also be large. This might sound intuitively plausible, but turns out to
be false in a very strong sense.

Theorem C.3.5. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) that can be
refuted in syntactic sequential resolution in size O(N) and also in maximal clause space
O(log N), but for which any semantic inference-parallel refutations require cumulative
clause space Ω(N2/ log N).

Here the graphs we need are surprisingly simple, namely butterfly graphs. They
again have high predecessor-robustness, but since they are shallow the pebbling formulas
generated from them have refutations in small maximal space.

Finally, we turn to the question of length-space trade-offs. We remark that in a
cumulative space setting formulas for which small-space proofs require superpolynomial
length, as in the strongest results in [28, 23, 19], are not too interesting, since length
is trivially a lower bound on cumulative space. Rather, we focus on formulas for which
small-space proofs incur only a polynomial blow-up in proof length. Can we find such
formulas for which it holds not only that short proofs must have large maximal space s,
but where such short proofs must be memory-intensive in that this amount of space s
must be used essentially throughout the whole proof? The answer to this question is yes,
and one example are pebbling formulas over the bitreversal permutation graphs studied
in [130]. The next theorem follows by combining the reduction in Theorem C.3.3 with
the fact that bitreversal graphs are dispersed as stated in Section C.2.

Theorem C.3.6. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) such that
for any s = O

�p
N
�

the formula FN has a syntactic sequential resolution refutation in size
O
�

N2/s2
�

and maximal clause space O(s), but any semantic inference-parallel refutation
of FN in maximal space s requires cumulative clause space Ω(N2/s).

In particular, a proof in maximal space s has length Ω(N2/s2), and if furthermore
the proof has length O(N2/s2), then Ω(N2/s2) of the configurations have space Ω(s).
Hence, these formulas have syntactic sequential resolution refutations in simultaneous
length O(N) and space O

�p
N
�

, but any semantic inference-parallel refutation with the
same parameters has Ω(N) configurations with space Ω(

p
N). We remark that this result

makes sense even in the weaker syntactic sequential model, since maximal space Ω(
p

N)
only implies a trivial Ω(N) cumulative space lower bound.

C.3. CUMULATIVE SPACE FOR THE RESOLUTION PROOF SYSTEM 157

As already noted, semantic fully parallel resolution is an extremely powerful model,
since we can refute any formula with just one (parallel) axiom download step followed
by one (semantic) inference step, but if we limit the available space then the usefulness
of parallelism is restricted. In fact, the speed-up from parallelism is proportional to the
space.

Observation C.3.7. Let π be a semantic parallel resolution refutation of a formula F in
length L, maximal clause space s, and cumulative clause space c. Then there is a semantic
sequential refutation of F in length Ls, maximal clause space s, and cumulative clause
space cs.

Proof. Each parallel axiom download or inference adds at most s new clauses, therefore
we can simulate it by s sequential axiom downloads or inferences respectively.

Using Observation C.3.7 we can transfer the trade-offs above from inference-parallel
to fully parallel semantic resolution by sacrificing a factor s.

Lemma C.3.8. Let π be a syntactic sequential resolution refutation of a formula F in
length L, maximal space s, and cumulative space c, and let ` ∈ N+ be a positive integer.
Then there is a semantic parallel resolution refutation of F in length 3dL/`e, maximal space
s+ d`/2e, and cumulative space 3dc/`e+ L.

Proof sketch. Analogously to the proof of Lemma C.2.3, we divide π into L/` intervals
of ` steps each. We reorder derivation steps within every interval so that we do all
axiom downloads first, inferences next, and removals at the end of the interval. We
then collapse each sequence into one axiom download, one inference, and one removal
step.

Let us finally just observe that although proving strong lower bounds for the fully
parallel versions of resolution looks like a formidable challenge, which we leave as future
work, we can obtain a simple separation between semantic and syntactic fully parallel
resolution.

Proposition C.3.9. Every syntactic, fully parallel resolution refutation of a minimally
unsatisfiable CNF formula in space s ≤ N requires length N/s+ log s− 2.

Proof Sketch. Since the inference rule is binary, the number of useful clauses in the
second-to-last-last configuration, namely those used to infer contradiction, is at most 2.
Analogously, the number of useful clauses in the ith last configuration is at most 2i .
Hence, in the last log s steps we see at most 2s useful clauses in total. Since we need to
see each axiom at least once, we still need at least N/s− 2 more steps.

In particular, any syntactic refutation requires length log N , and a refutation in this
length requires space Ω(N). This is in contrast to semantic refutations, which have
proofs in length 2, and no space lower bound other than the trivial N/L.

158 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

By way of example, consider a (plain) pebbling formula on a path graph of length N .
A syntactic refutation in length log N requires space Ω(N), while there exists semantic
refutation in length log N and space 2N/ log N +O(1): just download the axioms cor-
responding to 2N/ log N consecutive vertices at a time and infer one new clause.

While this is technically a separation, it is also very brittle. For any integer k, it is
possible to find a syntactic proof in length (1+ 1/k) log N and space 2kN/ log N +O(1).
First, download the axioms corresponding to evenly spaced vertices at distance log N/k.
Then for 2

k log N steps download the clauses corresponding to the previous and next
vertex and do a parallel inference step. Another inference step leaves us with a path of
length N/k log N , which we can trivially refute in length log N − log k− log log N and
space N/k log N .

C.4 Pebbling Cumulative Space Lower Bounds and Trade-offs

We denote with PG , P
‖
G , P

bw
G , Ppbsw

G , P‖bw
G the set of all legal sequential black, parallel

black, sequential black-white, parallel-black sequential-white, and parallel black-white
pebblings of G respectively.

Definition C.4.1 (Pebbling Complexity Notions). We define |P|= |B|+|W |. The space,
time, space-time and cumulative space complexities of a pebbling P = {P0, . . . ,Pτ} ∈
P‖bw

G are defined as

Πt(P) = τ , Πs(P) =max
i∈[τ]
|Pi | , Πst(P) = Πt(P) ·Πs(P) , and Πcc(P) =

∑

i∈[τ]

|Pi | .

For a measure µ ∈ {s, t, st, cc}, and a pebbling class C ∈ {·,‖, bw, pbsw,‖bw}, the pebbling
complexity measures of G are defined as

ΠC
µ(G) = min

P∈PC
G

Πµ(P) .

C.4.1 Robustness Implies Cumulative Space Lower Bounds

In this section we draw connections between the G-robustness of a graph and its cumu-
lative space complexity for several types of pebbling games and sets G. To do this we
first generalize a similar result in [9] to the case of G-robustness. Using this we show
the results for two of the black-white pebbling variants considered in this work.

Theorem C.4.2. Let G be a class of graphs each with a single sink. For any d ∈ N let

τd =min{ΠC
t (L) : L ∈ G, size(L)≥ d}.

If G is an (e, d)-G-robust DAG then for any pebbling class C ∈ {·,‖, bw, pbsw,‖bw} it
holds that ΠC

cc(G)> eτd .

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 159

Proof. Fix a pebbling class C ∈ {·,‖, bw, pbsw,‖bw}. For any α ∈ N we define the
following helpful value:

cα := ΠC
cc(G)/τα.

We will show that for any d there exists a node set B of size |B| ≤ cd such that G − B
contains no subgraph L ∈ G of size at least d, or put differently, that G is not (cd , d)-G-
robust. Note that this implies the theorem.

Fix positive integer d and let P = (P1, . . . ,Pm) be a (class C) pebbling of G with
minimal cumulative space complexity. That is

∑m
i=1 |Pi |= ΠC

cc(G). For each Pi we define
the set Pi := {(v, i) : v ∈ Pi}. For i ∈ [d] define

Bi := Pi ∪ Pi+τd
∪ Pi+2τd

. . .

We observe that by construction
∑d−1

i=0 |Bi |= ΠC
cc(G), so the size of the Bi ’s is cd on

average. Let B be the smallest Bi . Then of course |B| ≤ cd .
It remains to show that G − B contains no subgraph L ∈ G of size (at least) d. Let

L ∈ G be (any one of) the largest such subgraphs of G−B and let v be its sink. Let j ∈ N
be such that (v, j) ∈ B and ∀ j′ < j (v, j′) 6∈ B. Intuitively j is index of the first interval
(of length τd − 1) when v is pebbled in B.

Claim C.4.3. For any v in graph L such a j ∈ N always exists.

Proof. As L is a subgraph of G − B node v is never pebbled in a time step of the form
i + j td for some j ∈ N. However v must be pebbled at some point by P. To see this
for the (parallel) black pebbling classes notice that to pebble a node its parents, and so
(recursively) all of its predecessors must first be pebbled. Since v is either a sink of G or
a predecessor of a sink of G, to legally pebble G node v must also be pebbled. Similarly,
for the (parallel) black-white pebbling classes, if P is legal then it must also pebble node
v at some point. To see why this is we first argue, for the sake of contradiction, that if
a node u is not pebbled by P then nor are any of its children. Thus if v is not pebbled
then by repeating this argument we see that no sink having v as a predecessor can be
pebbled by P which contradicts P being legal.

Suppose v is never pebbled. Then clearly its child u can never be pebbled with a
black pebble as this would violate rule 1 of Definition C.2.1. Moreover u can not be
pebbled with a white pebble as this white pebble can not be removed without violating
rule 4 of Definition C.2.1. Yet if it such a white pebble were not removed then the final
configuration would still contain that white pebble which would contradict the legality
of P.

Let P ′ be that subpebbling for that interval but restricted to the pebbles on L. More
formally P ′ = (P′i+ jτd+1, . . . ,P′i+(j+1)τd−1) where P

′
i = Pi ∩ L.

Claim C.4.4. P ′ is a legal pebbling (for class C) of the graph L.

160 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

Proof. The previous claim established that v, the sink of L, is indeed pebbled by P ′.
We first show the claim for the sequential and parallel variants of the black pebbling

game. That is we show P ′ also satisfies the pebbling rules. Suppose for a second that
this were not the case, then this would mean that P would also violate the rule in the
same step. Indeed, when constructing P ′ from P we did not remove any pebbles from
nodes in L. So if one is missing in P ′ (thereby violating rule 2) then it is also missing
for P. This concludes the parallel black pebbling case. For the sequential case it remains
only to observe that we added no new pebbles when constructing P ′. So if P places no
more than 1 pebble per step then so does P ′.

Next we show the claim for both of the black-white pebbling variants. That is we
show that if P ′ violates rule 2 3 and 3′ then so does P. Placing a black pebble illegally in
P ′ implies that it was already placed illegally in P for the same reason as just described
above. Similarly, removing a white pebble illegally in P ′ occurs only when one of its
parents wasn’t currently pebbled. However then that parent would also not be pebbled
at this point in P. Finally clearly no more pebbles are being placed in P ′ than in P since
the former is obtained from the later by removing pebbles. This completes the proof of
the claim.

To complete the proof of the theorem it remains only to observe that P ′ is a legal
pebbling of L lasting for less than τd steps. Thus by definition of τd it must be that L
has size less than d.

As a first corollary to this theorem we obtain the following relations between
depth-robustness and cumulative space complexity for each of the considered peb-
bling games. Together with the constructions of [150, 7, 169] they imply high space
complexity graphs for each of the pebbling game.

Corollary C.4.5. Let G be (e, d)-depth-robust. Then the following holds:

Π·cc(G)> ed Π‖cc(G)> ed Πbw
cc (G)> ed Πpbsw

cc (G) = Ω(e
p

d).

The first inequality is implied by the second (as any legal sequential black pebbling
of G is also a legal parallel black pebbling). The second inequality is proven in [9]. We
now show the remaining two.

Proof. Let G contain only simple directed paths as in the definition of depth-robustness.
To see the third inequality we must show that in the sequential black-white pebbling

game τd ≥ d (where τd is defined as in Theorem C.4.2). Put simply, we must show that
no path of length d can be pebbled in less than d steps. But by Definition C.2.1, at no
step can more than one pebble be placed on G. Moreover, just as argued already in the
proof of Theorem C.4.2 legally pebbling a path (or any DAG for that matter) requires
placing a pebble at least once on each node. So clearly a path of length d requires at
least d time.

The fourth inequality is implied by the following claim together with Theorem C.4.2
implies the fourth and final inequality of the corollary.

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 161

Claim C.4.6. In the parallel-black sequential-white pebbling game a path of length d
requires Ω(

p
d) time to pebble.

Proof. Let Ld be the path of length d. To see why Πpbsw
t (Ld) = Ω(

p
d) let there be a

legal pebbling of Ld and suppose it runs for at most t = o(
p

d) steps. As argued already
in the proof of Theorem C.4.2 above, for the pebbling to be legal, each node in Ld must
have been pebbled at some point. However at most o(

p
d) white pebbles can be placed

on Ld as they must be placed one step at a time. Therefore there must be (at least) one
sub-path in Ld of length d/t = Ω(

p
d) to be pebbled only with (parallel) black pebbles.

However a node can not be pebbled with a black pebble before its parents are pebbled.
Thus such the sub-path requires Ω(

p
d) steps before it can be pebbled using only black

pebbles. This is a contradiction to t = o(
p

d).

As a second corollary to Theorem C.4.2 we get the following relation between
predecessor-robustness and black-white cumulative space complexity. In particular the
linear sized grates of [169] have Θ(n2) black-white cumulative space complexity.

Corollary C.4.7. Let G be (e, d)-predecessor-robust. Then Πbw
cc (G)> ed.

Proof. It suffices to show that min{Πbw
t (G) : G ∈ G, size(G)≥ d}= d. But this follows

trivially since in the black-white game at most one pebble may be placed per turn. Yet,
as shown in the proof of Theorem C.4.2, all nodes of a graph must be pebbled at least
once in a legal pebbling. Thus Πbw

t (G)≥ size(G) which completes the proof.

C.4.2 Dispersion and Cumulative Space Trade-offs

In [9] it is proven that dispersion implies cumulative space lower bounds for parallel
black pebbling. In this section we show that subgraph-dispersion implies both cumulative
space lower bounds and cumulative space trade-offs for black-white pebbling. We also
prove that random permutations are path-dispersed and therefore exhibit such trade-offs.

Dispersion Implies Cumulative Space Trade-offs

Intuitively, A DAG is (k, z, g)-path-dispersed if it contains a path that can be partitioned
into k segments such that each segment has at least z disjoint incoming paths of length
at least g. The following definitions make this concept precise.

Definition C.4.8. A DAG is (k, z, g)-path-dispersed if it contains a path L that can be par-
titioned into k paths, L1, L2, . . . , Lk, such that for every L i there are z paths, φ i

1,φ i
2, . . . ,φ i

z ,
each with at least g vertices that satisfy the following:

• for every i ∈ [k] and every j, j′ ∈ [z] such that j 6= j′, then φ i
j ∩φ

i
j′ = ;;

162 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

• for every i, i′ ∈ [k] and every j ∈ [z], then L i ∩φ i′
j = ;; and

• for every i ∈ [k] and every j ∈ [z] there is a vertex v i
j ∈ L i such that there is an edge

from the sink of φ i
j to v i

j and moreover, if j′ ∈ [z] and j 6= j′, then v i
j 6= v i

j′ .

Note that the paths coming into one segment have to be disjoint among themselves,
but not necessarily among paths coming into other segments.

Definition C.4.9. A DAG is (k, z, g)-subgraph-dispersed if it contains k disjoint subgraphs,
L1, L2, . . . , Lk, such that for every L i there are z subgraphs, φ i

1,φ i
2, . . . ,φ i

z , each with at
least g vertices that satisfy the following:

• for every i ∈ [k] and every j, j′ ∈ [z] such that j 6= j′, then φ i
j ∩φ

i
j′ = ;;

• for every i, i′ ∈ [k] and every j ∈ [z], then L i ∩φ i′
j = ;; and

• for every i ∈ [k] and every j ∈ [z] there is a vertex v i
j ∈ L i such that v i

j is the only
sink of the subgraph induced by {v i

j} ∪ V (φ i
j) and moreover, if j′ ∈ [z] and j 6= j′,

then v i
j 6= v i

j′ .

Note that a (k, z, g)-path-dispersed graph is also (k, z, g)-subgraph-dispersed. We
prove the following lemma for the latter definition.

Lemma C.4.10. If G is a (k, z, g)-subgraph-dispersed graph, then

Πbw
cc (G)≥ k min{gz/2, z2/4} .

Furthermore, if P ∈ Pbw is a sequential black-white pebbling of G in space Πs(P) = s ≤ z/2,
then

Πcc(P)≥ k min{g(z − s), g(z − 2s) + s2} .

We prove that two subclasses of permutation graphs are path-dispersed and use
Lemma C.4.10 to prove cumulative space trade-offs.

Proof. Consider k disjoint subgraphs, L1, L2, . . . , Lk, and the corresponding subgraphs
φ i

j for i ∈ [k] and j ∈ [z] that witness the fact that G is (k, z, g)-subgraph-dispersed
graph. We refer to the subgraphs φ i

j as incoming-subgraphs.
We keep an account for each L i . For each pebbling move, we charge some of the

pebbles in the configuration to each account, ensuring that we do not charge the same
pebble at the same configuration to more than one account. It is enough to prove that
Πcc(L

i)≥min{gz, g(z − 2s) + s2} for each subgraph L i .
We charge pebbles according to the following rules:

1. When a black pebble is placed or a white pebble is removed from L i , charge all
pebbles on incoming-subgraphs to the account of L i .

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 163

2. When a black is placed or a white is removed from some incoming-subgraph,
charge, for all i′ ∈ [k], all pebbles on L i′ to the account of L i′ .

Observe that at every configuration a pebble is never charged to two different
segments L i . This is so because if a black pebble is placed or a white pebble is removed
from L i then it is not being placed or removed from any φ nor from any other L i′ , i 6= i′,
because these subgraphs are disjoint and hence any pebble charged at this configuration
is only being charged to L i . Moreover, if a black is placed or a white is removed from
some φ i

j , then the pebbles charged to each L i are only the pebbles on L i , and since
theses subgraphs are disjoint, no pebble is being charged twice.

We now focus on a given subgraph L i , so we drop the superscript and denote it L.
We consider a time interval during which L is pebbled, i.e., there is no pebble on L before
the the interval, every vertex in L is pebbled at some point, there is no pebble on L after
the interval, and there is some pebble on L at all times during the interval. This interval
exists because L has a unique sink.

We label incoming-subgraphs according to the time j they are first used, i.e., a black
pebble is placed or a white pebble is removed from the vertex in L which is the sink of
the incoming-subgraph. Let φ1,φ2, . . . ,φz be the incoming-subgraphs according to this
labelling.

For each path φ j we distinguish four cases depending on when the path is empty.

Case 1 (1): There is a pebble on φ j during all of the interval. We charge at least |L| ≥ z
pebbles according to rule 1, since there is always a pebble on φ j during the interval.

Case 2 (010): The path φ j is completely pebbled and unpebbled within the interval.
We charge at least |φ j | ≥ g pebbles according to rule 2, since there is always a
pebble on L while φ j is pebbled and unpebbled.

Case 3 (01): There is no pebble on φ j at the beginning of the interval, and there is
some pebble on φ j at all times since the first pebble is placed on φ j . We charge at
least |L| − j ≥ z − j pebbles according to rule 1, since there is always a pebble on
φ j after time j.

Case 4 (10): There is no pebble on φ j at the end of the interval, and there is some
pebble on φ j at all times before the last pebble is removed from φ j . We charge
at least j pebbles according to rule 1, since there is always a pebble on φ j before
time j.

If we group the incoming-subgraphs by cases, we have that Πcc(L)≥ z|Φ1|+ g|Φ010|+
∑

j∈Φ01
(z − j) +

∑

j∈Φ10
j. The minimum is attained when {z − j : φ j ∈ Φ01}= { j : φ j ∈

Φ10}= [|Φ01|], in which case we haveΠcc(L)≥ z|Φ1|+ g|Φ010|+|Φ01|(|Φ01|+1). Without
any more restrictions, there are two possible minima: if g ≥ z/2, then the minimum is
attained when |Φ01|= |Φ10|= z/2, in which case we get Πcc(L)≥ z2/4; and if g < z/2
then the minimum is attained when |Φ01|= |Φ10|= g and |Φ010|= z−2g, in which case

164 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

we get Πcc(L)≥ g(z − g)≥ gz/2. If we enforce that the space is at most s ≤ z/2, then
|Φ1 ∪Φ01| ≤ s and |Φ1 ∪Φ10| ≤ s. Therefore, if g ≥ s the first minimum is attained when
|Φ010| = z − 2s and |Φ01| = |Φ10| = s, giving Πcc(L) ≥ g(z − 2s) + s2; and if g < s then
the second minimum yields Πcc(L)≥ g(z − g)≥ g(z − s).

Permutation Graphs are Disperse

Definition C.4.11. Given a permutation σ ∈ Sn, the permutation graph G(σ) is the
graph G = (W, E) such that W = {x1, x2, . . . , xn, y1, y2, . . . , yn}, and E = {(x i , x i+1),
(yi , yi+1), (x i , yσ(i)) | 1≤ i ≤ n}.

Recall that for n= 2χ the bit-reversal permutation reverses the binary representation
of a number. This is, if j = (b1 . . . bχ)(2) then σ(j) = (bχ . . . b1)(2). From Lemma C.4.10
we get the following result.

Corollary C.4.12. If G be a bit-reversal permutation graph on 2n vertices, then

Πbw
cc (P)≥

n3/2

4
.

Furthermore, if P ∈ Pbw is a sequential black-white pebbling of G in space s = Πs(P), then

Πcc(P)≥
n2

9s
+

n
6

.

Proof. For every z ≤ n that is a power of 2, by partitioning the path (y1, y2, . . . , yn) in
G in n/z paths of length z, it is easy to see that G is (n/z, z, n/z)-path-dispersed. From
Lemma C.4.10 we get that Πbw

cc (P)≥ n3/2/4 by setting z = 2dχ/2e.
Moreover, we also get that if P is a sequential black-white pebbling of G in space

s = Πs(P), then

Πcc(P)≥
n2(z − 2s)

z2
+

ns
z

min
nn

z
, s
o

. (C.4.1)

If s ≥ n/3,Πcc(P)≥
n2

9s+
n
6 holds trivially. So let us assume that s ≤ n/3, and hence setting

z = 2dlog3se, we have z ≤ n. Note that 3s ≤ z ≤ 6s, and that min3s≤z≤6s(z−2s)/z2 = 1/9s.
The result then follows by observing that min{n/z, s} ≥ 1.

We now focus on the study of random permutation graphs. We will define a distribu-
tion which is equivalent to choosing a permutation uniformly at random.

Let j1, j2 . . . , jn, k1, k2 . . . , kn be integers in [n] chosen independently uniformly at
random. Let G′ = (X ∪ Y, A) be a digraph such that

• X = {x1, x2, . . . , xn},

• Y = {y1, y2, . . . , yn}, and

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 165

• A= {(x i , x i+1), (yi , yi+1), (x ji , yki
)|1≤ i ≤ n}.

We perform two operations on G′ to obtain the graph G: edge contraction and degree
reduction. Edge contraction consists of contracting one by one any edge (x i , x i+1) or
(yi , yi+1) such that one of the endpoints is not adjacent to at least one vertex in the
opposite partition. Degree reduction consists of substituting vertices of high degree
by paths and distributing the edges adjacent to that vertex to the vertices on the path.
Formally, for all vertices x ∈ X that are adjacent to d ≥ 2 vertices in Y , say {yi1 , . . . , yid },
substitute x by a path on d vertices, say {x i1 , . . . , x id }, and for i ∈ [d] include the edge
(x i1 , yiσ(1)), where σ is a random permutation in Sd . The analogous operation is done
for vertices y ∈ Y of high degree.

We are now ready to prove the following theorem.

Theorem C.4.13. A random permutation graph is whp an (αk, (β − 1/2)z,αk)-path-
dispersed graph, for α,β < 1, α+ β −αβ � (1− e−n/kz) and kz = O(n).

Proof. We define a bipartite graph H from G′ in the followingmanner. Let H = ((U , V), F)
with U = {u1, u2, . . . , uk} and V = {v1, v2, . . . , vz}. Each node ui ∈ U is a super-node that
corresponds to {xk(i−1)+1, xk(i−1)+2, . . . , xk(i−1)+n/k} and similarly each node vi ∈ V is a
super-node that corresponds to {yz(i−1)+1, yz(i−1)+2, . . . , yz(i−1)+n/z}. For w ∈ U ∪ V let
S(w) ⊂ X ∪ Y be the set of vertices that w represents. There is an edge from u ∈ U to
v ∈ V if there is at least one edge from some vertex in S(u) to some vertex in S(v) (see
Figure C.2).

Theorem C.4.13 follows from the following claim which we will prove later on.

Claim C.4.14. Let Z be an integer random variable in [1, kz] that represents the number
of edges in H. Let p = (1− 1/kz)n and q = (1− 1/(kz − 1))n. Then

Pr[Z ≤ δkz]≤
p(q− p)
(1− p−δ)2

, for δ ≤ (1− p) .

Note that limn→∞ q − p = 0 and that limn→∞ p � 1 if kz = O(n). Hence for any
δ� (1− p) the probability that Z is less than δkz goes to 0 as n increases. In other
words, with high probability the number of edges in the bipartite graph is extremely
close to its expected value.

Claim C.4.14 implies that for any α, β that satisfy α+ β −αβ ≤ δ ≤ (1− p), then
with probability at least 1− p(q−p)

(1−p−δ)2 there are αk nodes in U with outdegree at least
βz, and βz nodes in V with indegree at least αk. This is indeed the case, because if
there were not αk nodes in U with outdegree at least βz, then there would be strictly
less than (1−α)βkz +αkz = (α+ β −αβ)kz ≤ δkz edges in H, and the same holds if
there were not βz nodes in V with indegree at least αk.

Consider a node u ∈ U with outdegree at least βz. We say an edge adjacent to u is
significant if its other endpoint is a vertex in V with indegree at least αk. Observe that,
since there are at least βz nodes in V with indegree at least αk, there must be are at least

166 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

x12

y12

u1 u2 u3 u4

v1 v2 v3

Figure C.2: An example of a random graph G′ and its corresponding bipartite graph H,
for k = 4 and z = 3

(2β−1)z significant edges adjacent to u. By choosing every other significant edge, we can
guarantee that there is at least an αk-distance in G between the corresponding endpoint
nodes. Finally, since there are at least αk nodes in U with outdegree at least βz, we
conclude that G is (αk, (β − 1/2)z,αk)-path-dispersed with probability 1− p(q−p)

(1−p−δ)2 , for

α+β −αβ ≤ δ ≤ (1− p). Choosing δ� (1− e−n/kz)≤ (1− p) yields the theorem.

Proof of Claim C.4.14. Let us consider the probability of a given edge not being present
in H. Let u, u′ ∈ U and v, v′ ∈ V be nodes chosen independently at random conditioned
on u 6= u′ or v 6= v′. We define p = Pr[uv 6∈ E] = (1− 1/kz)n and q = Pr[u′v′ 6∈ E |uv 6∈
E] = (1− 1/(kz − 1))n, so that Pr[uv 6∈ E and u′v′ 6∈ E] = pq.

From Chebyshev’s inequality, we have that

Pr[Z ≤ δkz]≤ Pr[|E[Z]− Z | ≥ |E[Z]−δkz|]≤
Var(Z)

(E[Z]−δkz)2
.

Let X v be an integer random variable in [1, z] that represents the degree of v ∈ V .
Note that Z =

∑

v∈V X v . Let Yuv be a binary random variable that indicate is uv ∈ E.

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 167

Therefore, we obtain

E[Z2] =
∑

v,v′∈V,v 6=v′
E[X vX v′] = k E[X 2

v] + k(k− 1)E[X vX v′ 6=v] (C.4.2)

= (kz)2(1− 2p+ pq)− kzp(q− p) , (C.4.3)

which follows from

E[X vX v′] =
∑

u,u′∈U

E[YuvYu′v′] = z2 Pr[Yuv = 1 and Yu′v′ = 1] = z2(1−2p+pq) , (C.4.4)

where v′ 6= v, and from

E[X 2
v] =

∑

u,u′∈U

E[YuvYu′v] = z(1− p) + z(z − 1)(1− 2p+ pq) . (C.4.5)

Moreover, from linearity of expectation we get that E[Z] = kz(1− p). Hence,

Pr[Z ≤ δkz]≤
Var(Z)

(E[Z]−δkz)2
≤

(kz)2p(q− p)
(kz(1− p)−δkz)2

≤
p(q− p)
(1− p−δ)2

.

Corollary C.4.15. If G is a random permutation graph, then whp ΠP bw
cc (G)≥ n3/2/125.

and any black-white pebbling P of G in space s, is such that Πcc(P)≥ n2/1250s.

Proof. Taking k = n/4z, α= 4/5 and β = 9/10, we get α+β −αβ = 98/100 and (1−
e−n/kz) = (1− e−4)> 0.9816, and hence the conditions of Theorem C.4.13 are satisfied.
Theorem C.4.13 therefore implies that with high probability G is (n/5z, 2z/5, n/5z)-
path-dispersed. By setting z =

p
n, Lemma C.4.10 implies that ΠP bw

cc (G)≥ n3/2/53. and
by setting z = 10s, Lemma C.4.10 implies that any black-white pebbling P of G in space
s, is such that Πcc(P)≥ n2/1250s.

C.4.3 Pebbling in Small Space Can Require Maximum Length

In this section we prove Theorems C.2.9 and C.2.10. We work with the following graphs.

Definition C.4.11 (Restated). Given a permutationσ ∈Sn, the permutation graph G(σ)
is the graph G = (W, E) such that W = {x1, x2, . . . , xn, y1, y2, . . . , yn}, and E = {(x i , x i+1),
(yi , yi+1), (x i , yσ(i)) | 1≤ i ≤ n}.

For n = 2χ , the bit-reversal permutation reverses the binary representation of a
number. This is, if j = (b1 . . . bχ)(2) then σ(j) = (bχ . . . b1)(2). Observe that the bit-
reversal permutation is an involution, this is σ2 = 1. For simplicity we shall assume that
χ is even.

As a warm-up before proving general upper bounds, we begin by proving upper
bounds for space

p
n. The main ideas we need are already in Lemma C.4.16.

168 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

0000

0000

0001

0001

0010

0010

0011

0011

0100

0100

0101

0101

0110

0110

0111

0111

1000

1000

1001

1001

1010

1010

1011

1011

1100

1100

1101

1101

1110

1110

1111

1111

Figure C.3: The predecessors of a block are evenly distributed

Figure C.4: An operation on layer i requires the same operation on layer i − 2

Lemma C.4.16. Let G be a k-layer bit-reversal graph. There is a sequential black pebbling
P ∈ PG in space Πs(P) = k

p
n+O(1) and time Πt(P)≤ k2n3/2.

Proof. We divide each path in
p

n blocks of length
p

n. Observe that the image of a block
are
p

n evenly separated vertices at distance
p

n (see Figure C.3, where the predecessors
of the black block marked in black are marked in grey).

We pebble the graph layer by layer, keeping the invariant that when we begin to
pebble a layer i there are

p
n pebbles in each layer below, one at the beginning of each

block. We call layers even or odd depending on the distance to layer i. We have two
types of operations, each of which consists of several moves:

1. advance a (new) pebble through a block on an odd layer, and

2. advance each pebble on an even layer to the next position.

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 169

To pebble a layer we add a pebble at the beginning and then we proceed in rounds.
In a round we apply

p
n times operation 2, and then we add a pebble at the beginning.

At each round the number of pebbles in the layer increases by 1, until after round
p

n−1
we have

p
n pebbles on positions that are multiples of

p
n.

We maintain the following invariant between operations: there are
p

n pebbles on
each layer below, and while pebbles on odd layers are on positions that are multiples ofp

n, after the j-th operation on layer i pebbles on even layers are on positions congruent
with j module

p
n. Observe that after a round, this is

p
n operations, all pebbles are on

positions that are multiples of
p

n.
We claim that if the operation invariant holds, then the cost of an operation is

p
n

plus the cost of the opposite operation in the layer below, this is time i
p

n on layer i.
Indeed, if want to advance all pebbles on an even layer ` to the next position, we

just need to advance one pebble along the preimage of the destination vertices, which is
the σ−1(j)-th block in layer `−1, and advance the corresponding pebble in layer ` after
each advance in layer `− 1. Since there is a pebble at the beginning of each block, we
do not need more operations in layer `− 1 (but we need operations in layer `− 2).

If instead we want to advance a pebble through block σ−1(j) on an odd layer `, then
we need to have pebbles in the preimage of the block, which is the set of vertices in
layer `− 1 congruent with σ−2(j) = j modulo

p
n. By the operation invariant, the set of

vertices in layer `− 1 congruent with j − 1 modulo
p

n all have pebbles, so it is enough
to advance each pebble on layer `− 1 to the next position (see Figure C.4, where the
configuration after the 2-nd operation is marked in black and the nodes needed for the
3-rd operation are marked in grey).

The total time to pebble the graph is the time to pebble each layer, this is
∑k

i=1 in3/2 ≤
k2n3/2, plus one additional round on layer k in order to reach the sink, which needs kn
steps.

Lemma C.4.17. Let G be a k-layer bit-reversal graph. There is a sequential black-white
pebbling P ∈ Pbw

G in space Πs(P) = 2k
p

n+O(1) and time Πt(P)≤ kn.

Proof. We use the same approach as the black-only case, except that now we can initially
setup each layer with white pebbles, and we convert these white pebbles into black
whenever we have the opportunity.

More precisely, we initially place k
p

n white pebbles, each at the beginning of one
block. Then we do

p
n even layer operations on layer k. Observe that at the end of each

operation on each odd layer we replace a white pebble with a black pebble, and at the
very end we replace all white pebbles with black pebbles on each even layer.

The final cost is the cost to do
p

n advance operations on the last layer, this is time
kn.

The general upper bounds use the same approach, except that some times the blocks
we want to pebble through do not have a pebble at the beginning, so we have to so a

170 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

0000

0000

0001

0001

0010

0010

0011

0011

0100

0100

0101

0101

0110

0110

0111

0111

1000

1000

1001

1001

1010

1010

1011

1011

1100

1100

1101

1101

1110

1110

1111

1111

Figure C.5: The predecessors of evenly distributed blocks are evenly distributed blocks

setup phase. By choosing the order in which we pebble blocks, however, we are able to
reuse the same setup for pebbling s consecutive blocks, thus saving on time.

Lemma C.4.18. Let G be a k-layer bit-reversal graph. There is a sequential black pebbling
P ∈ Pbw

G in space Πs(P) = 2k2s+O(1) and time Πt(P)≤ nk/s2k−3 +O(nk−1).

Proof. We divide each path in n/s blocks of length s. Observe that the preimage of s
blocks at distance n/s are s (different) blocks at distance n/s (see Figure C.5).

Our approach is again to pebble the graph layer by layer, but now we only keep s
pebbles in each layer. More precisely, when we begin to pebble a layer i there are s
pebbles on positions that are multiples of n/s.

We have one type of operation: advance every pebble on layer i through a block.
This operation combines the two operations on Lemma C.4.16, and in fact it uses them
internally.

In order to do an operation on layer i, we setup the pebbles on each layer below so
that layer ` is the preimage of layer `+ 1 for ` ∈ [i − 1]. Then, for s rounds, we do the
following, in ascending layer order. On an even layer, we advance each pebble to the
next position. On an odd layer, we advance a pebble through whichever block happens
to be the image of the previous layer.

Let T (i) be the time of doing one operation on layer i and Σ(i) =
∑i
`=1 T (i). The

time to setup layer ` is at most the time of doing n/s2 operations on layer `, which gives
a cost of

∑

`∈[i−1] n/s
2T (`) for the setup phase. Then for each round we only need to do

s moves in each layer, which gives a cost of is2 for s rounds.
We get the recurrence

T (1) = s2 T (i) = (n/s2)Σ(i − 1) + is2

Σ(1) = T (1) Σ(i) = Σ(i − 1) + T (i) ,

C.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 171

which we can solve to get

T (i) =
∑

`∈[i]

�

i
`− 1

�

ni−`/s2(i−`)

Σ(i) =
∑

`∈[i]

�

i + 1
`− 1

�

ni−`/s2(i−`) .

The total time to pebble the graph is the time of doing n/s operations on each layer
from 1 to k, that is (n/s)Σ(k) = nk/s2k−3 +O(nk−1).

Lemma C.4.19. Let G be a k-layer bit-reversal graph. There is a sequential black-white
pebbling P ∈ Pbw

G in space Πs(P) = 2k2s+O(1) and time Πt(P)≤ nk/s2k−2 +O(nk−1).

Proof. As in the proof of Lemma C.4.17, we begin by adding s white pebbles on each
layer, so that we just need to do n/s2 operations in each layer.

We prove the lower bounds for space smaller than
p

n since for space larger than
p

n
we can just observe that a k-layer permutation graph contains a 2-layer permutation
graph and use the lower bounds in [130].

Lemma C.4.20. Let G be a k-layer bit-reversal graph. Let P ∈ PG be a sequential black
pebbling in space Πs(P) = s ≤

p
n/4. Then

Πt(P)≥ nk/23ks2k−3 .

Proof. It is enough to prove that T ≥ nk/23k−1s2k−3 for s a power of 2. Consider a
pebbling in space s. We divide each path in n/2s blocks of length 2s.

We show that pebbling a block, this is starting with an empty block and placing a
pebble on the sink, on the i-th layer requires time ni−1/23i−2s2i−4 for i ≥ 2.

Observe that to pebble the graph we have to consecutively pebble n/2s blocks on the
k-th layer, for a total of nk/23k−1s2k−3 as we wanted to show.

For i = 2, consider the 2s predecessors in layer 1 of the block we want to pebble. By
construction of the bit-reversal permutation, the distance between these predecessors
is n/2s. Since there are at most s − 1 pebbles in layer 1, there are at least s + 1 such
predecessors whose closest pebble is at distance n/2s. Therefore, at least n/2 steps on
layer 1 are needed before each predecessor has a pebble.

For i > 2, by the same argument there is at least one predecessor in layer i−1 whose
closest pebble is at distance n/2s, therefore we can find n/4s2−2≥ n/8s2 empty blocks
in layer i − 1 that need to be consecutively pebbled during the time interval we are
considering. By induction hypothesis, pebbling a block on the i − 1-th layer requires
time ni−2/23i−5s2i−6. Since the blocks are pebbled in disjoint time intervals we can add
the costs, so the total time is ni−1/23i−2s2i−4.

172 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

Observe that in the induction step, even if we try to use the fact that there are s+ 1
blocks in layer i − 1 that need to be pebbled, we cannot simply sum the individual cost
of each block: their pebbling times can overlap, so a pebble placed in layer i−1 or below
and used for one block in layer i may also be used for another block in layer i.

Lemma C.4.21. Let G be a k-layer bit-reversal graph. Let P ∈ Pbw
G be a sequential

black-white pebbling in space Πs(P) = s ≤
p

n/4. Then

Πt(P)≥ nk/23k−3s2k−2 .

Proof. For black-white pebbling we say that a block is pebbled during some time interval
if it is empty at the beginning, there is a pebble at the end of the block at some point in
the interval, and there are only black pebbles left at the end of the interval.

In contrast to the proof of Lemma C.4.20, we cannot assume that blocks need to
be pebbled consecutively, but we can still show that in any time interval of length
ni−1/23i−4s2i−4 at most s blocks are pebbled.

This is true for i = 1.
For i > 1, consider a set of s blocks and the first time interval in which a block is

completely pebbled. Arguing analogously to the proof of Lemma C.4.20, at the beginning
of the interval there are s vertices in layer i − 1 whose closest pebble is at distance n/2s,
so we can find s(n/4s2 − 2) ≥ n/8s blocks in layer i − 1 that are also empty at the
beginning of the interval. By induction hypothesis, we can find n/8s2 sets of blocks that
are being pebbled in consecutive time intervals, and each such interval lasts for at least
ni−2/23i−7s2i−6 steps. Now, it is possible that some of these moves could be reused to
make progress on some other block in layer i than the one we are considering, but since
the pebbling uses only s pebbles and we assumed that this is the first block to be pebbled,
there are at most s− 1 other blocks on layer i that may also finish being pebbled, those
that already had a pebble on them. At the end of the time interval, we discard these
blocks from the set, we look at the next time interval in which a block is completely
pebbled, and repeat until we finish handling all blocks.

Observe that to pebble the graph we have to pebble n/2s blocks on the k-th layer,
and thus we have n/2s2 time intervals for a total of nk/23k−3s2k−2 steps, as stated in the
Lemma.

C.5 Reduction from Pebbling to Resolution

C.6 Concluding Remarks

In this paper, we study space complexity with a focus not on peak memory usage but
on aggregated memory consumption over the whole computation. We consider two
computational models, namely pebble games on DAGs and the resolution proof system
in proof complexity.

C.6. CONCLUDING REMARKS 173

For black-white pebbling, which is a model of nondeterministic computation, we
prove optimal cumulative space lower bounds and also time-space trade-offs where in
order to achieve optimal time the space needs to be large not only at a single point
in time but throughout essentially the whole computation. We do so by studying the
concepts of depth-robustness and dispersion of graphs, drawing on and extending work in
[7, 8, 9] and other papers, and proving that different graph families of interest possess
these properties.

In the context of proof complexity we are not aware of the cumulative space measure
having been studied before, and so our first contribution here is to give a suitable formal
definition, and also to consider different, more or less parallel, versions of the resolution
proof system in which it makes sense to study cumulative space. We then use, and
slightly extend, the reductions between pebbling and resolution in [27, 28] to transfer
our lower bounds and trade-off results for pebbling also to resolution.

Since, to the best of our knowledge, ours is the first paper to study cumulative space
both for black-white pebbling and for proof complexity, it is perhaps not so surprising
that there is a wealth of open problems that this paper does not resolve. Below, we
briefly discuss some possible directions for future research.

One set of questions on which we make progress but which we do not answer
completely concern the relation between maximal space and cumulative space. For
sequential black-white pebblings of n-vertex DAGs we prove an optimalΩ

�

n2
�

cumulative
space lower bound for a particular family of DAGs, but for graphs that can be pebbled in
maximal space O(log n) we only obtain a Ω

�

n2/ log n
�

cumulative space lower bound
and for graphs pebblable in space O(1) the best cumulative bound we can get is Ω

�

n3/2
�

.
Could it be the case that there are graphs that can be pebbled in maximal space O(1) but
nevertheless require cumulative space Ω

�

n2
�

? Or do strong enough cumulative space
lower bounds by necessity imply also nontrivial maximal space lower bounds?

We briefly mentioned a pebble game between sequential black-white and parallel
black-white pebbling, the parallel-black sequential-white game, as an example of how
to apply the depth-robustness lemma to other pebbling models. Does this pebble game
have other interesting properties or applications?

It has been shown for parallel black pebbling that extremal depth-robustness is both
necessary and sufficient for a graph to have high cumulative space complexity. We
prove that for black-white pebbling predecessor-robustness is sufficient to imply high
cumulative space, but leave open whether this condition is necessary or not.

For standard time-space trade-offs in sequential pebbling, it was shown in [130] that
bit-reversal DAGs have a black pebbling trade-off of the form t = Θ

�

n2/s
�

whereas for
black-white pebbling the trade-off is a slightly weaker t = Θ

�

n2/s2
�

. It was conjectured
in [130] that there are other permutation graphs for which the black-white pebbling
trade-off could also be shown to be an optimal t = Θ

�

n2/s
�

. One natural candidate class
of graphs to consider in this context are graphs obtained from random permutations,
and this is the original reason why we were interested to study them in this paper. So
far we were only able to obtain trade-offs with the same parameters as for bit-reversal

174 PAPER C. CUMULATIVE SPACE IN BLACK-WHITE PEBBLING AND RESOLUTION

DAGs, but it is an interesting question whether our tools could be sharpened to prove
even stronger trade-offs results for random permutation graphs.

Turning to our proof complexity results, they can be seen to be yet another con-
tribution to the sequence of papers [142, 147, 27, 144, 28] obtaining space bounds
and time-space trade-offs in proof complexity by instead studying pebble games and
reductions between pebblings of DAGs and resolution refutations of so-called pebbling
formulas defined in terms of these DAGs. While these connections have turned out to be
very fruitful, it would also be interesting to go beyond pebbling formulas and explore
whether cumulative space results could be obtained for, e.g., Tseitin formulas on long
and narrow rectangular grids as studied in [19, 23] or for other formulas.

One motivation behind our models of parallel resolution was the connection to
parallel SAT solving, but our models do not take into account practical limitations such
as the number of computing nodes or the communication between nodes. Could there
be natural ways to incorporate such limitations, and could this also provide a better
understanding of parallel resolution?

Another, somewhat related, question is whether formulas possessing strong cumulat-
ive space lower bounds are hard also in practice for (sequential or parallel) SAT solvers.
Just maximal space lower bounds do not seem to be sufficient to imply practical hard-
ness, as shown, e.g., in the fairly extensive empirical experiments on pebbling formulas
in [116], but perhaps cumulative space could be a more relevant concept in this context.

Finally, it can be noted that our study of cumulative space in proof complexity as
initiated in this paper is limited to the resolution proof system. This is mostly because
resolution is the proof system where space complexity is best understood, and where the
toolbox for studying these questions is most well developed. However, different concepts
of maximal space and time-space trade-offs have been studied also for other proof systems
such as polynomial calculus [2, 23, 39, 78, 79] and cutting planes [71, 87, 95, 106], and
it would be interesting to extend the study of cumulative space to these proof systems.

Acknowledgements

The authors wish to thank Yuval Filmus for making us aware of each other’s existence
and thus providing the stimulus for the joint work that led up to this paper. Different
subsets of the authors are grateful to Ilario Bonacina, with whom we had stimulating
discussions during various stages of this project and who, in particular, provided valuable
insights on dispersion, and to Adam Schill Collberg and Jan Elffers for helpful discussions
on random permutation graphs.

The second, third and fourth authors were funded by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement no. 279611. The third author was also supported by Swedish Research
Council grants 621-2010-4797 and 621-2012-5645.

Paper D

Trade-offs Between Time and Memory
in a Tighter Model of CDCL SAT Solvers

Jan Elffers, Jan Johannsen, Massimo Lauria, Thomas Magnard,
Jakob Nordström, and Marc Vinyals

Full length version of the article published in Proceedings of the 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’16), July 2016,
pp. 160–176

Abstract

A long line of research has studied the power of conflict-driven clause learning
(CDCL) and how it compares to the resolution proof system in which it searches
for proofs. It has been shown that CDCL can polynomially simulate resolution even
with an adversarially chosen learning scheme as long as it is asserting. However,
the simulation only works under the assumption that no learned clauses are ever
forgotten, and the polynomial blow-up is significant. Moreover, the simulation
requires very frequent restarts, whereas the power of CDCL with less frequent or
entirely without restarts remains poorly understood. With a view towards obtaining
results with tighter relations between CDCL and resolution, we introduce a more
fine-grained model of CDCL that captures not only time but also memory usage and
number of restarts. We show how previously established strong size-space trade-offs
for resolution can be transformed into equally strong trade-offs between time and
memory usage for CDCL, where the upper bounds hold for CDCL without any restarts
using the standard 1UIP clause learning scheme, and the (in some cases tightly
matching) lower bounds hold for arbitrarily frequent restarts and arbitrary clause
learning schemes.

175

176 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

D.1 Introduction

For two decades the dominant strategy for solving the Boolean satisfiability problem
(SAT) in practice has been conflict-driven clause learning (CDCL) [18, 136, 139]. Although
SAT is an NP-complete problem, and is hence widely believed to be intractable in the
worst case, CDCL SAT solvers have turned out to be immensely successful over a wide
range of application areas. An important problem is to understand how such SAT solvers
can be so efficient and what theoretical limits exist on their performance.

D.1.1 Previous Work

At the core, CDCL searches for proofs in the proof system resolution [35]. While pre-
and inprocessing techniques can, and sometimes do, go significantly beyond resolution
(incorporating, e.g., solving of linear equations mod 2 and reasoning with cardinality
constraints), understanding the power of even just the fundamental CDCL search al-
gorithm seems like an interesting and challenging problem in its own right. Three crucial
aspects of CDCL solvers, which are the focus of our work, are running time, memory
usage, and restart policy.

In resolution, time is modelled by the size/length complexity measure, in that lower
bounds on proof size yield lower bounds on the running time of CDCL solvers. Resolution
proof size is a well-studied measure. It is not hard to show that it need never be larger
than exponential in the formula size, and such exponential lower bounds were shown
already in, e.g., [98, 177, 61].

Another more recently studied measure is (clause) space, measured as the number
of clauses one needs to keep in memory while verifying the correctness of a resolution
proof.1 We remark that although the study of space was originally motivated by SAT
solving concerns, it is not a priori clear to what extent this abstract space measure
corresponds to CDCL memory usage. Space need never be more than linear in the worst
case [77], even though such proofs might have exponential size, and optimal linear
lower bounds on space were obtained in [2, 25, 77].

More interesting than such space bounds is perhaps what can be said regarding
simultaneous optimization of time and space, which is the setting in which SAT solvers
operate. There are strong trade-offs [28, 19, 23] showing that this is not possible in
general. What this means is that one can find formulas for which (a) there are short proofs
and (b) also space-efficient proofs but (c) no proof can get close to being simultaneously
both size- and space-efficient.

Regarding restarts, such a concept does not quite make sense for resolution proofs
and so has not been studied in that context as far as we are aware.

1We mention for completeness that there is also a total space measure counting the number of literals in
memory, which has been studied in, e.g., [2, 40, 32, 38], but for our purposes clause space seems like a more
relevant measure to focus on.

D.1. INTRODUCTION 177

It is natural to ask to what extent upper and lower bounds for resolution apply to
CDCL. By comparison, it is well understood that the DPLL method [70, 69] searches
for proofs in tree-like resolution, which incurs an exponential loss in performance as
compared to general resolution. There has been a long line of research investigating how
CDCL compares to general resolution, e.g., [21, 180, 50, 101], culminating in the result
by [152] that CDCL viewed as a proof system polynomially simulates resolution with
respect to size/time. The nonconstructive part of this result is that variable decisions are
not done according to some concrete heuristic but are provided as helpful advice to the
solver. This limitation is probably inherent, since a fully algorithmic result would have
unexpected implications in complexity theory [4]. It is worth noting, however, that in
independent work [13] showed that for resolution proofs where all clauses have constant
size, using a random variable selection heuristic will yield a constructive polynomial-time
simulation.

One strength of the results in [13, 152] is that they hold regardless of the specific
learning scheme used, as long as it is asserting (an assumption that anyway lies at the
heart of the CDCL algorithm). The results also have a few less desirable aspects, however:

• The simulations require very frequent restarts. Only the first conflict after each
restart is useful, and after that one has to wait for the next restart to make any
further progress.

• There is also a large polynomial blow-up in the simulations, which means that for
practical purposes these simulations are far too inefficient to yield really concrete
insights into CDCL performance as compared to resolution.

• Finally, and most seriously, the results crucially rely on the assumption that no
learned clause is ever forgotten. This is unrealistic, as typically around 90–95% of
learned clauses are erased during CDCL search and this is absolutely essential for
performance.

It would be desirable to obtain results relating CDCL and resolution that also take the
above aspects into account.

Addressing one of these concerns, a more fine-grained study of the power of CDCL
without restarts has been conducted in, e.g., [50, 45, 51, 22]. One problematic aspect
here is that the models studied appear to be quite far from actual CDCL behaviour. Some
papers assume non-standard and rather artificial preprocessing steps. Others study
CDCL models that do not enforce that unit clauses are propagated or that do not trigger
conflict analysis as soon as a clause is falsified. In the latter case, as a result one gets very
limited restrictions on what the clause learning schemes are, and it is hard even to talk
about what “conflict analysis” is supposed to mean in this context. This is not an issue
for results establishing lower bounds limiting what CDCL can do—here a stronger model
of CDCL only makes the results stronger—but for upper bounds the results become too
optimistic, indicating that the theoretical CDCL model can do much better than what
seems possible in practice. As a case in point, there are currently no known separations

178 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

between general resolution and CDCL without restarts, but part of the reason for this
appears to be that the models of CDCL without restarts are clearly too strong to be
realistic.

We are not aware of any work on models measuring not only time but also memory
consumption in a proof system formalizing CDCL. As discussed above, one can define
a space measure for resolution proofs, but it is not clear what relation, if any, there is
between this space measure and the size of the clause database during CDCL execution.

D.1.2 Our Contributions

In this work, we present a proof system that tightly models running time, memory
usage, and restarts in CDCL. The model draws heavily on [13, 152], combined with
ideas from [50] to capture memory and restarts. Indeed, we do not claim any key new
technical insights for this part of our work, but rather it is more a matter of carefully
studying previous models and painstakingly putting the pieces together to get as clean
and simple a proof system as possible that is nevertheless significantly “closer to the
metal” than in previous papers.

Our CDCL proof system enforces unit propagation and triggers conflict analysis
directly at a conflict. It can incorporate any asserting learning scheme (as long as it
is based on resolution derivations from the current conflict and reason clauses), and
this scheme is specified explicitly as a parameter. Right from the definitions one obtains
natural measures of time, memory usage, and restarts. Variable decisions are still
provided externally, just as in [13, 152], but in principle one could also plug in, say, the
most commonly used VSIDS (variable state independent decaying sum) decision scheme
with phase saving and analyse what proofs can be generated using these heuristics
(though this is not the focus of our current work). Since we are now managing the
database of learned clauses explicitly, we also have to specify a clause database reduction
policy. In this paper, the decisions about which clauses to delete are also provided to the
solver, but the model allows to plug in a concrete reduction policy as well.

We argue that the proof system we present faithfully models possible execution traces
during CDCL search. Some interesting questions to study in this model are as follows:

1. Do upper and lower bounds on resolution size and space transfer to this CDCL
proof system?

2. How does CDCL compare to general resolution if we want efficient simulations
with respect to both time and space, and in addition aim for at most constant-factor
blow-ups rather than arbitrary polynomial blow-ups?

3. What is the power of CDCL without restarts compared to the subsystems of tree-
like resolution or so-called regular resolution? (Briefly, regularity is the somewhat
SAT solver-like restriction on resolution that along each path in the proof any
variable is branched over only once.)

D.1. INTRODUCTION 179

The worst-case upper bounds on size and space in resolution carry over to time and
memory usage in CDCL, and it turns out that this can in fact be read off from [140],
although that paper uses quite a different language (and so we present a self-contained
proof in this paper for completeness). More interestingly, we show that there is a
straightforward translation from CDCL to resolution that preserves both time and space,
and so we obtain that all size and space lower bounds previously established for resolution
apply also to CDCL (which, in particular, was not at all obvious for space).

This means that the lower bounds on time-space trade-offs in [28, 19, 23] also hold
for CDCL. But this does not yet yield true trade-offs, since for such results we also want
upper bounds. That is, we want to show that CDCL can find time- or space-efficient proofs
optimizing just one of these measures in isolation. It is known how to construct such
proofs in resolution, but these proofs are not obviously CDCL-like. Since SAT solving
was mentioned as a motivation for [28, 19, 23] it is a relevant question whether the
size-space trade-offs shown in these papers correspond to anything one could expect
to see in practice, or whether the size- and space-efficient proofs have such peculiar
structure that nothing similar can be found by CDCL proof search.

The main contribution of our work is to address the question of whether true time-
space trade-offs can be established for CDCL. Finding an answer turns out to be sur-
prisingly technically challenging, and we are not able to prove the known trade-offs for
exactly the same formulas as in [28, 19, 23] However, for many of the formulas it is
possible to modify them slightly to obtain CDCL trade-offs with essentially the same
parameters. An additional feature of these trade-offs is that all our upper bounds hold
for CDCL without any restarts using the standard 1UIP (first unique implication point)
learning scheme, while the (often tightly matching) lower bounds hold for arbitrarily
frequent restarts and arbitrarily chosen clause learning schemes (even non-asserting
ones).

We leave as open problems whether CDCL with 1UIP clause learning and with
or without restarts can simulate or be separated from general or regular resolution,
respectively. While those problems still look quite challenging, we hope and believe
that it should be possible to make progress by investigating them in a model that more
closely resembles what happens during CDCL proof search in practice, such as the model
presented in this paper.

D.1.3 Organization of This Paper

In Section D.2 we define our model of CDCL and relate it to the resolution proof system,
and an overview of our results is then given in Section D.3. A more detailed discussion
of CDCL worst-case bounds is presented in Section D.4. We establish our time-space
trade-off results for CDCL in Sections D.5 and D.6. Finally, Section D.7 contains some
concluding remarks.

180 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

D.2 Modelling CDCL as a Proof System

We start by describing our model of CDCL and how it is formalized as a proof system.
As already mentioned, this is very much inspired by [13, 152], but with ideas added
from [50]. We want to remark right away that we describe the model at a level of detail
that might seem excessive to SAT practitioners familiar with CDCL. We do so precisely
because a serious issue with many contributions on the theoretical side has been that
they fail to get crucial details of the model right, as discussed in the introduction.2

D.2.1 Preliminaries

Let us first fix some standard notation and terminology. A literal a over a Boolean
variable x is either x itself or its negation x (a positive or negative literal, respectively). A
clause C = a1 ∨ · · · ∨ ak is a disjunction of literals, where the clause is unit if it contains
only one literal. A CNF formula F is a conjunction of clauses F = C1 ∧ · · · ∧ Cm. We think
of clauses and CNF formulas as sets, so that the order of elements is irrelevant and there
are no repetitions.

A resolution derivation of C from F is a sequence of clauses (C1, C2, . . . , Cτ) such that
Cτ = C and every Ci is either a clause in F (an axiom) or is derived from clauses C j , Ck

with j, k < i, by the resolution rule

C ∨ x D ∨ x
C ∨ D

, (D.2.1)

where we say that C ∨ x and D ∨ x are resolved over x . A derivation is trivial if all
variables resolved over are distinct and each Ci either is an axiom or is derived from a
resolution rule application where one of the resolved clauses is an axiom. A resolution
refutation of, or resolution proof for, an unsatisfiable formula F is a derivation of the
empty clause ⊥ (containing no literals) from the axioms in F . We can representent a
refutation either as an annotated list of clauses as in Figure D.1a or as a directed acyclic
graph (DAG) as in Figure D.1b. We say that a refutation is tree-like if this DAG is a tree
(which is the case in Figure D.1b).

The length or size of a proof is the number of clauses in it counted with repetitions.
The space of a proof at step t is the number of clauses at steps ≤ t that are used in
applications of the resolution rule at steps ≥ t. Looking at the example in Figure D.1,
the space usage at step 7 is 5 (the clauses in memory at this point are clauses 1, 3, 5, 6,
and 7). The space of a proof is obtained by measuring the space at each step and taking
the maximum.

2Indeed there were issues with the model we presented in the conference version of this paper as well.
Our description of the behaviour of the solver after a restart was not matching exactly what actual solvers
seem to do in practice. Our trade-offs deal with CDCL proofs without restarts, therefore the correctness of the
results was not compromised.

D.2. MODELLING CDCL AS A PROOF SYSTEM 181

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

(a) Annotated list of clauses in refutation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

(b) DAG representation of refutation.

Figure D.1: Resolution refutation represented as list of clauses and directed acyclic
graph.

D.2.2 A Formal Description of Conflict-Driven Clause Learning

A CDCL solver running on a formula F decides variable assignments and propagates
values that follow from such assignments until a clause is falsified, at which point a
learned clause is added to the clause database D (where we always have F ⊆ D) and
the search backtracks. A key concept is the current partial assignment maintained by
the solver together with some book-keeping why variables were set this way, which we
refer to as the trail. This is a sequence s = (x1= b1/∗, x2= b2/∗, . . . , x`= b`/∗) where
all variables are distinct and where ∗ = d indicates that the assignment is a decision
and ∗= C that it was propagated by the clause C . We write s≤ j and s< j to denote the
subsequences that are the prefixes of length j and j − 1 of s, respectively. We denote the
empty trail by ε.

The decision level of an assignment x j= b j/∗ is the number of decision assignments
in s≤ j . The decision level of a (non-empty) trail is that of its last assignment. Identifying
a trail s with the partial assignment it defines, we write C�s to denote the clause C
restricted by s, which is the trivially true clause if s satisfies C and otherwise C with all
literals falsified by s removed, and this notation is extended to sets of clauses by taking
unions. If a trail s falsifies a clause C , we say that C is asserting if it has a unique variable
at the maximum decision level of s. If so, the second largest decision level represented
in C is the assertion level of C .

182 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

A trail s = (x1= b1/∗, . . . , x`= b`/∗) is legal with respect to a formula F and clause
database D ⊇ F if the following holds:

• D�s<` does not contain the empty clause;

• if the jth element of s is x j= b j/d, then D�s< j
does not contain a unit clause;

• if the jth element of s is x j= b j/C , then C is contained in D and has the property
that C�s< j

is unit and is satisfied by setting x j = b j .

This captures properties that must hold during CDCL search, and so in what follows
trails are implicitly required to be legal unless otherwise specified.

At each point in time, the solver is in a CDCL state (F,D, s), where at the beginning
D = F and s = ε. It is convenient to describe the solver as being in one of the four
modes Default (where it starts), Unit, Conflict, or Decision, where transitions are
performed as described below (guided by plug-in components that specify the detailed
behaviour; also to be discussed in what follows):

Default If s falsifies a clause in D, the solver moves to Conflict, otherwise it checks
that all variables in F have been assigned, and in that case the solver halts and
outputs SAT together with the assignment s. Otherwise, if D�s contains a unit
clause, the solver transits to Unit mode. If none of the previous cases applies, the
solver uses its restart policy to decide whether to restart, i.e., to set s = ε and to
move to Default. At last, if none of the others cases applies, solver uses its clause
database reduction policy to decide whether to shrink D to D′ (D, where D′ must
still contain F and all clauses mentioned in the current trail s, after which it moves
to Decision.

Conflict If s has decision level 0, the solver outputs UNSAT. Otherwise it applies the
learning scheme to derive an asserting clause C and then backjumps by updating
the state to (F,D∪{C}, s′) (where s′ is the prefix of s that contains all assignments
with decision level less than or equal to the assertion level of C), and shifts to
Unit mode.

Unit The solver uses the unit propagation scheme to pick a clause C in D such that
C�s is unit, extends s with the assignment x= b/C that satisfies C�s, and moves to
Default mode.

Decision The solver uses the decision scheme to determine an assignment x = b/d
with which to extend the trail and moves to Default mode.

We say that a CDCL state (F,D, s) is stable if, when solver is in Default mode, it
causes neither a conflict, a unit propagation nor to output SAT. We say it is a conflict
state if it causes a move from Default to Conflict. We remark that CDCL solvers
typically apply restarts and database reductions only in the first stable state after a

D.2. MODELLING CDCL AS A PROOF SYSTEM 183

conflict. However, it is not hard to see that from a proof complexity point of view the
solver does not get any stronger by allowing these steps to be performed at any stable
state, and since this simplifies the description we have done so above.

In order to obtain a concrete CDCL implementation, one needs to instantiate the
components referred to above. Let us briefly discuss how this can be done.

For the clause learning scheme the assumption is that the clause is derivable in
resolution from the clause falsified (the conflict clause) and the clauses causing unit
propagations (the reason clauses) and that the learned clause is always asserting. For our
upper bounds we use the 1UIP learning scheme from [187], which is simply a trivial
resolution derivation from the conflict clause and the reason clauses processed in reverse
order up to the first point when there remains only one variable of maximal decision
level in the clause.3

The restart policy determines when the solver should clear the trail and start over
from the beginning (but keeping the clause database as it is). From a theoretical point of
view adding more frequent restarts can only make the solver more powerful. Hence, in
order to obtain the strongest possible result we want to prove our upper bounds on CDCL
with a strict no-restarts policy and our lower bounds in a setting with no restrictions on
restarts.

If there is more than one unit clause that can propagate in Unit mode, the unit
propagation scheme determines in which order the clauses are chosen. Typically this
will depend somewhat randomly on low-level implementation details, and therefore
we try to prove our upper and lower bounds for the settings when the order chosen is
maximally unhelpful and maximally helpful, respectively.

The decision scheme is used to choose the next variable to assign when there are
no unit propagations. The dominant heuristic in practice is VSIDS [139], but for our
theoretical analysis we follow [13, 152] by allowing the decisions to be chosen externally
by a helpful oracle and fed to the solver.

The database reduction policy, finally, regulates when and how to forget learned
clauses. Making this aspect explicit is the main difference between our work and
[13, 152]—the latter papers crucially need the unrealistic assumption that no learned
clauses may ever be erased. In principle, here one could plug in, say, the literal block
distance (LBD) heuristic in [16] to decide which clauses to throw away or keep, but in
this work we will let this, too, be part of the external input provided to construct a CDCL
proof.

D.2.3 Formalizing CDCL as a Proof System

In order to construct a proof system corresponding to CDCL, we will simply let the
proofs be execution traces that contain enough information to allow efficient verification
that they are consistent with the detailed description of the CDCL model above. More

3In fact, our results hold for any UIP scheme, but for simplicity we focus on 1UIP, which is anyway
dominant in practice.

184 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

formally, we say that a CDCL trace π is an ordered sequence of the following types of
elements:

• decisions x i= b/d;

• unit propagations x i= b/C (with reason C);

• learned clauses addC/σC (with conflict analysis σC);

• deletions of clauses delC;

• restarts R.

Given a CDCL model with components as above partially or fully specified, a trace π
is legal, or is a CDCL proof , if it is consistent with an execution of the CDCL model as
described in Section D.2.2.

To verify a trace we start the CDCL solver in state (F, F,ε) in Default mode and
then traverse the sequence π, updating the state as we go along. If the next element is
a decision x i= b/d, then the solver should be in Decision mode and the assignment
should be consistent with the decision scheme, or should at least lead to a legal trail if
the decision scheme is not specified. For a unit propagation x i= b/C the solver should
be in Unit mode and x i = b should be propagated by C under the current trail, and
should be the propagation chosen by the propagation scheme if specified. For addC/σC

the solver should be in Conflict mode and C should be an asserting clause obtained
by the resolution derivation σC from the conflict and reason clauses in the current trail,
where σC complies with the requirements of the learning scheme if specified. Deletions
of clauses delC and restarts R should only happen in Default mode and should be
consistent with their respective policies if provided (where, at a minimum, no clause on
the trail may be forgotten).

We say that a CDCL trace is a CDCL proof of unsatisfiablity or CDCL refutation of F
if it is legal and makes the CDCL solver output UNSAT, and that it is a CDCL proof of
satisfiablity if the output is SAT. It should be clear that if the components specified are
efficiently computable, then CDCL traces are efficiently verifiable and constitute a proof
system in the sense of [66] (and since all traces we construct will be legal, we will
sometimes use the words “trace” and “proof” as synonyms).

The time of a CDCL proof π is the number of elements in the sequence plus the sum
of the length of all conflict analysis resolution derivations σC , i.e., the total number of
variable decisions, propagations, and steps in conflict analysis. The space of the proof
at a given point in time is the number of learned clauses |D \ F |, i.e., the number of
statements addC/σC minus the number of statements delC up to that point, and the
space of a proof is obtained by taking the maximum over all time steps in it.

These measures are intended to capture the execution time and memory usage of
a CDCL solver execution described by the trace π, and in addition we want them to
translate to length and space bounds for resolution. This is indeed the case, but in order
to make a precise, formal statement we first need to discuss clause learning schemes.

D.2. MODELLING CDCL AS A PROOF SYSTEM 185

D.2.4 Conflict Graph and Learning Schemes

To define the learning schemes that we will discuss in the following sections we need to
introduce some concepts. The interested reader can find an extended discussion about
conflict analysis in [21].

The conflict graph of a conflict state is defined iteratively as follows. We begin with
two vertices labelled by the conflict literal and its negation. For each literal a in the
graph that is unit propagated with reason C , we add an edge from each literal in C \ {a}
(and possibly a new vertex) to a. For this construction we assume that the conflicting
clause propagates the opposite of the conflict literal.

For each cut in this directed graph that separates all decision literals from the two
conflict literals, we can collect the vertices from which the cut edges emanate and negate
all these literals to obtain a clause that is falsified by the current assignment and is
therefore a conflict clause that can be learned. The reason side contains the decisions
and the conflict side contains the conflicts.

A unique implication point (UIP) is a vertex that belongs to all paths from the last
decision literal to the two conflict literals. The clause induced by the cut whose conflict
side are the successors of a UIP is asserting. The 1UIP learning scheme learns the clause
induced by the UIP closest to the conflict literals. It is well-defined because there is
always at least one UIP: the last decision literal.

We will refer to a learning scheme that learns asserting clauses that come from a cut
in the conflict graph as a cutting learning scheme. 1UIP is clearly a cutting scheme. The
decision learning scheme, which learns the opposite of all decision literals in the current
assignment, is asserting but not necessarily cutting.

We say that a learning scheme is trivial if it produces clauses that can be derived
from the clause database using trivial resolution. All cutting learning schemes are trivial
[21].

D.2.5 From CDCL Proofs to Resolution Proofs

We now show that a CDCL refutation with a learning scheme that uses trivial resolution
to derive conflict clauses can be translated to a resolution refutation in essentially the
same time and space.

Theorem D.2.1. If there is a CDCL proof with some trivial learning scheme refuting a CNF
formula F in time τ and space s, then F has a resolution refutation of length at most τ and
space at most s+ 3.

Proof. Given a legal CDCL trace refuting F , we construct a resolution proof in the
following way. We list all the trivial resolution derivations of learned clauses in order,
but we omit occurrences of learned clauses, so that we use the last occurrence of a
learned clause at the end of a derivation as an input clause for the current derivation (see
Figure D.2). At the end we add a derivation of the empty clause from the last conflict.

186 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

w1 ∨w2 ∨ u1

u1 ∨ u2

w1 ∨w2 ∨ u1 ∨ u2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

w1 ∨w2

w1 ∨w2 ∨ u1

u1 ∨ u2

w1 ∨w2 ∨ u1 ∨ u2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

w1 ∨w2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

w1
d
=0 w2

d
=0 u1

d
=0

u2=1 | v1
d
=0 v2=1

w1
d
=0 w2

d
=0 |u1

d
=0

u2=1 v1=1 v2=0

w1
d
=0 w2

d
=0 u1=1

u2=0 | v1
d
=0 v2=1

w1
d
=0 |w2

d
=0 u1=1

u2=0 v1=1 v2=0

Figure D.2: Fragment of a CDCL proof translated into resolution. Dark blue clauses are
axioms, dark green clauses with a border are learned and added to the clause database,
and light green clauses are auxiliary. Upper boxes contain the trail at each conflict state.
Edges show resolution steps, and dashed edges are reasons for unit propagation.

We can prove that it is a legal refutation by forward induction over the learned
clauses in the derivation. Each partial derivation uses clauses in the database, all legally
derived by induction hypothesis.

The length of the resolution refutation is the sum of lengths of each derivation, which
we account for in the time of CDCL refutation, plus the length of the derivation of the
empty clause. Since every derivation uses reason clauses, the length of the last derivation
is at most the number of unit propagations.

To estimate the space of the refutation, we consider the partial derivation of the
clause learned in a conflict state (F,D, s). At each resolution step, one of the clauses
was in the clause database, and the other is either in the database or it was derived in
the previous step and will not be used again. The same applies for later derivations.
Therefore, for each resolution step t, all the clauses derived before step t that are
used strictly later are in the clause database. Furthermore, axioms are always restated
immediately before a derivation and we should not count them, so the upper bound
is actually |D \ F |. It only remains to count the clause derived at step t, and the two
clauses used to derive it. Thus, the space at step t is at most |D \ F |+ 3. Taking the
maximum over all steps gives precisely s+ 3.

D.3 Overview of Time-Space Trade-off Results

In this section we survey the kind of CDCL time-space trade-offs obtained in this paper,
and discuss some of the challenges that have to be overcome when establishing such
results.

D.3. OVERVIEW OF TIME-SPACE TRADE-OFF RESULTS 187

D.3.1 Statement of Trade-off Theorems

Our first set of trade-off results are for formulas defined in terms of pebble games as
described in [29]. Given a directed acyclic graph (DAG) G with source vertices S and
a unique sink vertex z, and with all non-sources having fan-in 2, we let every vertex
in G correspond to a variable and define the pebbling formula over G, denoted PebG , to
consist of the following clauses:

• for all s ∈ S, the unit clause s (source axioms),

• for all non-sources w with immediate predecessors u, v, the clause u ∨ v ∨ w
(pebbling axioms),

• for the sink z, the unit clause z (sink axiom).

See the formula in Figure D.3b defined in terms of the pyramid graph in Figure D.3a for
an illustration.

These formulas are not too interesting, since it is easy to see that they are solved
immediately by unit propagation, but if we replace each variable by an exclusive or of
two new, fresh variables, and then expand out to CNF we obtain a XORified pebbling
formula Peb⊕G as in Figure D.3c. Given the right kind of graphs, [28] showed that such
formulas have strong trade-offs between length and space in resolution, and we are able
to lift most of these results to CDCL. We give two examples of such results below.

TheoremD.3.1 (Robust trade-offs (informal)). There are XORified pebbling formulas Fn

of size Θ(n) such that:

• CDCL with 1UIP learning and no restarts can refute Fn in time O(n) and space
O(n/ log n) simultaneously.

• CDCL with 1UIP learning and no restarts can refute Fn in space O
�

(log n)2
�

and
time nO(log n) simultaneously.

• Any CDCL refutation of Fn in space o(n/ log n) requires time at least nΩ(log log n)

regardless of learning scheme and restart policy.

Theorem D.3.2 (Exponential trade-offs (informal)). There are XORified pebbling for-
mulas Fn of size Θ(n) such that:

• CDCL with 1UIP learning and no restarts can refute Fn in time O(n) and space
O
�

4
p

n
�

simultaneously.

• CDCL with 1UIP learning and no restarts can refute Fn in space O
�

8
p

n
�

and time
nO(8pn) simultaneously.

• Any CDCL refutation of Fn in space O
�

n1/4−ε
�

for ε > 0 requires exponential time
regardless of learning scheme and restart policy.

188 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

u v w

x y

z

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u∨ v ∨ x)
∧ (v ∨w∨ y)
∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction Peb
Π2
.

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2)
∧ (w1 ∨w2) ∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2)
∧ (w1 ∨w2) ∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)
∧ (v1 ∨ v2 ∨w1 ∨w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

(c) XORified pebbling formula Peb⊕
Π2
.

Figure D.3: Example pebbling formula for the pyramid of height 2.

D.3. OVERVIEW OF TIME-SPACE TRADE-OFF RESULTS 189

0 0

1

x

z

y

(a) Labelled triangle graph.

(x ∨ y)
∧ (x ∨ y)
∧ (x ∨ z)
∧ (x ∨ z)
∧ (y ∨ z)
∧ (y ∨ z)

(b) Corresponding Tseitin formula.

Figure D.4: Example Tseitin formula.

The other formula family considered in this paper are Tseitin formulas, which are
defined in terms of undirected graphs with vertices labelled 0/1 in such a way that the
total sum of all vertex labels is odd. The variables of the formula are the edges of the
graph. For every vertex we add a constraint saying that the parity of the number of
true edges incident to the vertex is equal to the vertex label. Summing over all vertices,
each edge is counted exactly twice and hence the total number of true edges must be
even. But this contradicts that the sum of the labels is odd, and thus the formulas are
unsatisfiable. Figure D.4b gives an example Tseitin formula generated from the labelled
graph in Figure D.4a.

Using Tseitin formulas over long, skinny grids, we can build on [23] to obtain the
following trade-off, which applies even for superlinear space.

Theorem D.3.3 (Superlinear space trade-offs (informal)). For a Tseitin formula Fw,`

over a grid graph with w rows and ` columns, 1≤ w≤ `1/4, and with double edges between
every two vertices at horizontal distance one or vertical distance one, it holds that

• CDCL with 1UIP learning and no restarts can refute Fw,` in time O(25w`) and space
O(22w).

• CDCL with 1UIP learning and no restarts can refute Fw,` in space O(w log(`)) and
time O

�

`O(w)
�

.

• For any CDCL refutation in time τ and space s, regardless of learning scheme and
restart policy, it holds that

τ=

�

2Ω(w)

s

�Ω
�

log log`
log log log`

�

.

D.3.2 Proof Techniques and Technical Challenges

All the trade-offs stated in Theorems D.3.1, D.3.2, and D.3.3 are known to hold for
resolution, and so by Theorem D.2.1 we immediately obtain that the lower bounds carry

190 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

over to CDCL. What we need to show in order to establish these theorems is that CDCL
can find proofs that match the upper bounds in resolution.

The general idea how we would like to do this is clear: given a resolution proof
π= (C1, C2, . . . , Cτ), we should force the CDCL solver to efficiently learn the clauses Ci

one by one, making sure at all times that the clause database size is comparable to the
space complexity of the resolution proof. This seems hard to do, however, and somewhat
ironically what causes trouble for us are the unit propagations that otherwise make CDCL
so efficient. To illustrate the problem, suppose that we have learned C ∨ x and D ∨ x
and now want to learn their resolvent C ∨ D. It would be nice to decide on all literals in
C ∨ D being false, after which we could get a conflict on x . But there might be other
clauses in the database that propagate literals to “wrong values” before we manage to
falsify all of C ∨ D, and if so the CDCL search will veer off in another direction and we
will not be able to learn this resolvent.

This highlights two technical difficulties that we need to be able to deal with:

• Not only do we have to decide on variables in the right order, but we have to make
sure that no other unexpected (and unwanted) propagations occur.

• In contrast to resolution, where having more clauses at your disposal never hurts,
keeping too many learned clauses in the clause database can actually hinder the
CDCL search. This is also a striking contrast to [13, 152], where a key technical
lemma is precisely that having more clauses in the database can only be helpful.

We do not know how to simulate general resolution efficiently with respect to length
and space simultaneously, even using ever so frequent restarts. And an additional problem
is that we want to know—in order to better understand basic CDCL reasoning with
unit propagation and conflict analysis—whether for the pebbling and Tseitin formulas
presented above CDCL can find efficient proofs even without restarts. This makes our
task substantially more complicated.

If we allow suitably frequent restarts, however, it is not too hard to show that CDCL
can efficiently simulate the “canonical” resolution proofs for these formulas. To give at
least some flavour of the technical arguments that will follow later in the paper when
we reason about the CDCL proof system, we conclude this section with a description of
how this result can be proven for pebbling formulas.

D.3.3 Pebbling Formula Upper Bound for CDCL with Restarts

A pebbling formula encodes the black pebble game played on a DAG G, where we start
with G being empty and want to finish with a pebble on the sink z. A vertex can be
pebbled if its predecessors have pebbles (vacuously true for sources), and pebbles can
always be removed. The time of a pebbling is the number of moves before z is reached
and the space is the maximum number of pebbles on vertices of G at any point.

Resolution can simulate such pebblings by deriving, whenever a vertex w is pebbled,
the two pebble clauses w1 ∨w2 and w1 ∨w2 saying that the exclusive or w1 ⊕w2 is true,

D.3. OVERVIEW OF TIME-SPACE TRADE-OFF RESULTS 191

Input: a black pebbling P
1 foreach (move,w) in P where w is not a source or the sink do
2 if move is Add then
3 HalfPebble (w, 0)
4 HalfPebble (w, 1)
5 else
6 delw1 ∨w2
7 delw1 ∨w2

8 PebbleSink

Figure D.5: Procedure Pebble (P)

and by erasing these clauses whenever a pebble is removed. For a source vertex the
pebble clauses are already available as source axioms in the formula (see Figure D.3c),
and it is not hard to show that resolution can efficiently propagate exclusive ors from
predecessors to successors. Once pebble clauses have been derived for the sink z,
contradiction immediately follows from the sink axioms.

We want to mimic this in CDCL as described in the algorithm Pebble in Figure D.5
producing a CDCL trace. For a pebble placement, we want to learn first w1 ∨ w2,
corresponding to “half of the pebble” on w, and then w1∨w2. How to do this is described
in the procedure HalfPebble in Figure D.6, where the notation x b for b ∈ {0,1} is used
as a compact way of denoting x1 = x and x0 = x .

When a pebble is placed on w in the pebbling, we let the CDCL solver make the
decisions (w1=0/d, w2=0/d) with the goal of learning w1 ∨w2. Then we decide values
for the variables of the predecessors u and v of w, and since there are clauses in memory
encoding u1 ⊕ u2 and v1 ⊕ v2 this will provoke repeated conflicts until finally the clause
w1 ∨w2 is learned. Since this only involves a constant number of variables, the time and
space required for this is constant, and our goal can be achieved, e.g., as described in
FindConflicts in Figure D.7.

But now we run into problems. At this point the CDCL solver will backjump to the
decision w1 = 0, where the learned clause w1 ∨w2 asserts w2 = 1. As the next step, we
want to generate conflicts that lead to the “second half” of the pebble w1 ∨ w2 being
learned, but there is no way this can happen since the decision w1 = 0 is on the trail
and the clause w1 ∨w2 is thus satisfied. Moreover, if the solver is not allowed to restart,
then this satisfying assignment is fixed on the trail, and no new conflict could possibly
cause a backjump to before this assignment. Therefore, the solver is forced to continue
the proof search elsewhere. This turns out to be a major obstacle, which we are able to
circumvent only by substantial extra work involving reordering the pebbling and using a
different algorithm. This will be a large part of the work in the rest of this paper as the
technical arguments are rather intricate.

192 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Input: A vertex w, a Boolean b
1 Decide w1= b/d
2 Decide w2= b/d
3 FindConflicts (w, b)
4 Learn w1−b

1 ∨w1−b
2 and assert w2=1− b/u

5 Restart R
6 foreach clause C ∈ D \ F such that |C |> 2 do
7 delC

Figure D.6: Procedure HalfPebble (w, b)

Input: A vertex w with predecessors u and v, a Boolean b
1 Decide u1=0/d
2 Propagate u2=1/u1 ∨ u2
3 Decide v1=0/d
4 Learn w1−b

1 ∨w1−b
2 ∨ u1 ∨ u2 ∨ v1

5 Assert v1=1/w1−b
1 ∨w1−b

2 ∨ u1 ∨ u2 ∨ v1

6 Learn w1−b
1 ∨w1−b

2 ∨ u1

7 Assert u1=1/w1−b
1 ∨w1−b

2 ∨ u1
8 Propagate u2=0/u1 ∨ u2
9 Decide v1=0/d

10 Learn w1−b
1 ∨w1−b

2 ∨ u1 ∨ u2 ∨ v1

11 Assert v1=1/w1−b
1 ∨w1−b

2 ∨ u1 ∨ u2 ∨ v1

Figure D.7: Procedure FindConflicts (w, b)

If we instead give the solver the option to restart at this point, it can clear the trail and
also forget all unnecessary clauses. This means that the decisions (w1=1/d, w2=1/d)
can be made, after which the clause w1 ∨ w2 is learned in the same way as above. To
conclude, we again trigger a restart and erase all auxiliary clauses that are no longer
needed.

Pebble removals are very straightforward to simulate: the only condition that could
stop us from erasing the clauses w1∨w2 and w1∨w2 is if they are reasons for propagated
literals on the trail, but since we have just made a restart the trail is empty. Formalizing
the arguments above, we obtain the following lemma.

Lemma D.3.4. If P is a black pebbling of G in space s and time τ, then there is a CDCL
proof of Peb⊕G with restarts using the 1UIP learning scheme and any unit propagation
scheme in space at most 2s+ 3 and time O(τ).

D.4. WORST-CASE UPPER BOUND 193

Proof. Given a pebbling P we generate a trace as described by the procedure Pebble.
Note that this procedure maintains the invariant that the pebble clauses for a non-source
vertex w are in the clause database if and only if there is a pebble on w. No other clauses
are in memory. The space bound follows from this invariant, and the time bound holds
by construction.

It remains to check that the trace thus generated is legal. Observe that the clauses
in memory only propagate if at least one variable from each vertex they mention is set.
Since the decision sequence mentions at most three vertices at the same time, we only
need to reason about clauses that mention these vertices.

The correctness of FindConflicts is straightforward to verify, since the order of unit
propagations can be seen to be uniquely determined. At the end of FindConflicts, the
assignments to w1 and w2 are decisions and all predecessor variables u1, u2, v1, v2 are set
by unit propagation. Since one of the conflicting clauses, a pebbling axiom, contains the
decision variables w1 and w2, they have to appear in any cut and therefore any conflict
clause. The remaining variables in the conflict graph have maximal decision level, so
they cannot appear in an asserting clause because w2 already appears. Therefore, we
learn the clause w1−b

1 ∨ w1−b
2 and assert w2=1− b/u. We only erase clauses after a

restart, so no erased clauses can be reasons for unit propagations. This concludes the
proof.

Figure D.8 is the result of running Pebble on a specific pebbling strategy on the
example formula from Figure D.3c, with resolution steps omitted.

D.4 Worst-case Upper Bound

The simulation by [152] shows that CDCL with unrestricted restarts can polynomially
simulate resolution. The authors only analyze time and assume that no learnt clause is
ever forgotten. However, it is not hard to come up with a clause deletion strategy that
gives an O(s · poly(n)) space bound, where s is the space of the resolution refutation
we simulate and n is the number of variables. Because the proof length is always at
least linear in n, the O(poly(n)) blowup is polynomial with respect to length. Space,
however, can be O(log n) or even O(1), so that the blowup is exponential. Therefore,
the simulation does not resolve the question of space-efficient simulation of resolution
with restarts.

To start acquainting ourselves with the CDCL proof system, let us demonstrate that
the worst-case behaviour for CDCL is the same as for resolution: any unsatisfiable CNF
formula can be refuted in exponential time and linear space simultaneously. We remark
that this result was already shown in [140]. Since the language used there is quite
different, however, we present a self-contained proof below for completeness.

194 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

1 x1=0/d
2 x2=0/d
3 u1=0/d
4 u2=1/u1 ∨ u2
5 v1=0/d
6 add x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1/σ
7 v1=1/x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
8 add x1 ∨ x2 ∨ u1/σ
9 u1=1/x1 ∨ x2 ∨ u1

10 u2=0/u1 ∨ u2
11 v1=0/d
12 add x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1/σ
13 v1=1/x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
14 add x1 ∨ x2/σ
15 x2=1/x1 ∨ x2
16 R
17 del x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
18 del x1 ∨ x2 ∨ u1
19 del x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
20 x1=1/d
21 x2=1/d
22 u1=0/d
23 u2=1/u1 ∨ u2
24 v1=0/d
25 add x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1/σ
26 v1=1/x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
27 add x1 ∨ x2 ∨ u1/σ
28 u1=1/x1 ∨ x2 ∨ u1
29 u2=0/u1 ∨ u2
30 v1=0/d
31 add x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1/σ
32 v1=1/x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
33 add x1 ∨ x2/σ
34 x2=0/x1 ∨ x2
35 R
36 del x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
37 del x1 ∨ x2 ∨ u1
38 del x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1
39 y1=0/d
40 y2=0/d
41 v1=0/d
42 v2=1/v1 ∨ v2
43 w1=0/d
44 add y1 ∨ y2 ∨ v1 ∨ v2 ∨w1/σ
45 w1=1/y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
46 add y1 ∨ y2 ∨ v1/σ
47 v1=1/y1 ∨ y2 ∨ v1
48 v2=0/v1 ∨ v2
49 w1=0/d
50 add y1 ∨ y2 ∨ v1 ∨ v2 ∨w1/σ
51 w1=1/y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
52 add y1 ∨ y2/σ

53 y2=1/y1 ∨ y2
54 R
55 del y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
56 del y1 ∨ y2 ∨ v1
57 del y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
58 y1=1/d
59 y2=1/d
60 v1=0/d
61 v2=1/v1 ∨ v2
62 w1=0/d
63 add y1 ∨ y2 ∨ v1 ∨ v2 ∨w1/σ
64 w1=1/y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
65 add y1 ∨ y2 ∨ v1/σ
66 v1=1/y1 ∨ y2 ∨ v1
67 v2=0/v1 ∨ v2
68 w1=0/d
69 add y1 ∨ y2 ∨ v1 ∨ v2 ∨w1/σ
70 w1=1/y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
71 add y1 ∨ y2/σ
72 y2=0/y1 ∨ y2
73 R
74 del y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
75 del y1 ∨ y2 ∨ v1
76 del y1 ∨ y2 ∨ v1 ∨ v2 ∨w1
77 z1=0/d
78 z2=0/z1 ∨ z2
79 x1=0/d
80 x2=1/x1 ∨ x2
81 y1=0/d
82 add z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1/σ
83 y1=1/z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1
84 add z1 ∨ z2 ∨ x1/σ
85 x1=1/z1 ∨ z2 ∨ x1
86 x2=0/x1 ∨ x2
87 y1=0/d
88 add z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1/σ
89 y1=1/z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1
90 add z1/σ
91 z1=1/z1
92 z2=1/z1 ∨ z2
93 x1=0/d
94 x2=1/x1 ∨ x2
95 y1=0/d
96 add z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1/σ
97 y1=1/z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1
98 add z1 ∨ z2 ∨ x1/σ
99 x1=1/z1 ∨ z2 ∨ x1

100 x2=0/x1 ∨ x2
101 y1=0/d
102 add z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1/σ
103 y1=1/z1 ∨ z2 ∨ x1 ∨ x2 ∨ y1
104 UNSAT

Figure D.8: Proof of the pebbling formula Peb⊕Π2

D.4. WORST-CASE UPPER BOUND 195

Theorem D.4.1. Let F be an unsatisfiable CNF formula on n variables. There is a CDCL
refutation of F without restarts and with any asserting learning scheme, unit propagation
scheme, and decision scheme in time O(n2n) and space at most n− 1.

Proof. We will let the CDCL solver use a very aggressive database reduction policy,
namely to erase as many clauses as possible from the database. This means that when
the database is reduced we delete all clauses except those that are reason clauses in the
current trail, and so in formal notation the clause database after a reduction step in state
(F,D, s) is

D′ = F ∪ {C | x= b/C ∈ s} . (D.4.1)

We first argue that the clause database contains at most n− 1 learned clauses at
every step. The computation begins with unit propagations at decision level 0. If there is
a conflict then the trace ends, otherwise the solver reaches a stable state. In this phase
we do not learn any clauses. Afterwards the clause database is pruned at each stable
state and keeps growing until the solver reaches the next stable state (or terminates).

Let (F,D, s) be the state of the solver right after an erasure step, and let d be the
decision level of s. By construction D\ F has at most one clause for each unit propagation
in the sequence s, therefore d + |D \ F | ≤ |s|. Observe that if |s|> n− 2 then F�s would
have either a unit or an empty clause. Since we are in a stable state, |s| ≤ n− 2.

Now consider an arbitrary state (F,D′, s′), and consider the state right after the most
recent erasure. Call such state (F,D, s), and let d be the decision level of s. After an
erasure, the solver does a decision step that increases the decision level to d + 1. Each
time the solver reaches Conflict mode the decision level decreases, and does not
increase anymore until the next stable state. So there can be at most d + 1 conflicts
which result in learning a clause (a conflict at level zero would just end the computation,
without changing the clause database). Thus |D′ \ F | ≤ d + 1+ |D \ F | ≤ n− 1 as we
wanted.

Finally we prove that the solver terminates in time O(n2n). Given a trail s we define
the string b(s) ∈ {0, 1}|s| by letting the coordinates be

b(s)i =

¨

0 if si is a decision

1 if si is a unit propagation
(D.4.2)

for 1≤ i ≤ |s|.
We establish the upper bound on time by exhibiting a subsequence of states such

that the corresponding subsequence b(s) is strictly increasing with respect to the lexico-
graphic order, and there are a constant number of states between any two states in the
subsequence. The length of a string b(s) is at most n, so the subsequence has length at
most 2n+1 − 1 and the time upper bound follows by recalling that a trivial resolution has
length at most n.

Consider a stable state (F,D, s). The solver applies an erasure and a decision, ending
in some state (F,D′, s′) where s′ = s ∪ (x = v/d). The string increases since b(s′) =

196 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

b(s)0 > b(s). If the state (F,D, s) causes a unit propagation, then the new state is
(F,D, s′) with b(s′) = b(s)1 > b(s). In the case of a conflict state (F,D, s) of decision
level d, the solver learns a clause C of assertion level d ′ < d (unless d = 0, in which
case the trace ends). The solver gets to state (F,D′, s′) where D′ = D ∪ {C} and s′ is
the prefix of s of decision level d ′, and then immediately unit propagates the asserting
literal. Thus the trail of the next state s′′ has b(s′′) = b(s′)1, while the prefix of length
|s′|+ 1 of b(s) is equal to b(s′)0 by construction, and so b(s′′)> b(s).

TheoremD.4.1 shows that CDCLwithout restarts can solve any formula in exponential
time and linear space. The simulation works with any decision heuristic and clause
learning scheme. It doesn’t give much insight in the power of CDCL compared to
resolution, though. Could CDCL without restarts simulate tree-like resolution, or even
regular resolution? Could it also simulate these with respect to space? These questions
are much more difficult, as we need to adapt the strategy to concrete refutations, and
show that the simulation is efficient compared to the refutation. Therefore, we consider
formula families instead of arbitrary CNFs and show simulation results of CDCL without
restarts for these families.

D.5 Trade-offs for Pebbling Formulas

In this section we discuss trade-offs between space and running time for CDCL refutations
of the formulas based on pebble games that we introduced in Section D.3. Let us start
with a brief review of those pebble games.

The black-white pebble game [67] is played by a single player on a DAG G with all
vertices having indegree at most 2 and with a single sink (i.e., a vertex with no outgoing
edges). At each step the player can either place or remove a pebble. A black pebble can
be placed on a vertex if all its predecessors have pebbles, and it can be removed at any
time. A white pebble can be placed at any time, but it can be removed from a vertex
only if all its predecessors contain pebbles. The game starts with the DAG being empty,
and the goal is to reach a position where there is a black pebble on the sink and the rest
of the graph contains no pebbles. We call a sequence of moves that reaches the goal a
complete pebbling. The time of a pebbling is the number of steps, and the space is the
maximum number of pebbles in G at any point in time during the pebbling. The black
pebble game [149] that we introduced in Section D.3 is a restricted version where only
black pebbles are allowed. The interested reader can find more information about pebble
games and a comparison of the various flavours of pebbling in the surveys [153, 146].

Recall that, given a DAG G, the XORified pebbling formula Peb⊕G is defined as follows.
For every vertex v ∈ V (G) there are two variables v1 and v2. There are clauses encoding
the following: for each source vertex of G, the parity of its variable pair is odd, for each
internal vertex, odd parity on all predecessors of the vertex implies odd parity on the
vertex itself, and the parity on the sink is even.

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 197

More precisely, if we denote as pred(v) the set of all predecessors of v (i.e., vertices
that have an outgoing edge toward v), the pebbling formula consists of the set of
constraints

v1 ⊕ v2 = 1 for each source v, (D.5.1a)
∧

u∈pred(v)

(u1 ⊕ u2 = 1)→ v1 ⊕ v2 = 1 for each internal vertex v, (D.5.1b)

z1 ⊕ z2 = 0 for the sink z, (D.5.1c)

expressed in CNF form. We refer to (D.5.1a) as source axioms, to (D.5.1b) as pebbling
axioms, and to (D.5.1c) as sink axioms.

It is straightforward to transform a black pebbling of G into a resolution proof for
Peb⊕G . For a vertex v, we call v1 ∨ v2 and v1 ∨ v2 the pebble clauses for v. We maintain
the invariant that in the resolution proof, we have in memory the pebble clauses for all
pebbled vertices. Each time a pebble is removed, we erase the corresponding pebble
clauses. Correctness of the simulation follows because we can derive the pebble clauses
for v from the pebble clauses for all its predecessors, and in a black pebbling, we can
only pebble a vertex when all its predecessors are pebbled. This simulation yields the
following lemma.

Lemma D.5.1 ([28]). If G has a black pebbling of time τ and space s, then Peb⊕G has a
resolution refutation of length O(τ) and clause space O(s).

In the other direction, it can be shown (although it is substantially more complicated)
that any resolution refutation in length L and space s of Peb⊕G can be converted to a
pebbling of G with asymptotically the same bounds on time and space, but this requires
the full black-white pebble game.

Theorem D.5.2 ([28]). From a resolution refutation of Peb⊕G of length L and clause space
s we can extract a black-white pebbling for G with time O(L) and space O(s).

D.5.1 Trade-offs with Restarts

As a warm-up, let us finish showing how to translate black pebblings into CDCL proofs
with unrestricted restarts. Recall that our plan in Section D.3 was to proceed in the
same way that we translate pebblings into resolution proofs. This is, for each pebbled
vertex v we keep the pebble clauses in memory, except if v is a source, in which case
these clauses are already source axioms of the pebbling formula.

Formally, we generate a CDCL trace using the following procedure. The trace is legal
for the 1UIP learning scheme, and we discuss how to use a more general scheme later
on.

HalfPebble sets the parity of a vertex to even and then learns the clause forbidding
that assignment. The example in Figure D.2 is actually the translation into resolution of
the trace generated by HalfPebble (w, 0).

198 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Procedure Pebble(P)
Input: a black pebbling P

1 foreach (move,v) in P where v is not a source or the sink do
2 if move is Add then
3 HalfPebble (v, 0)
4 HalfPebble (v, 1)
5 else
6 del v1 ∨ v2
7 del v1 ∨ v2

8 PebbleSink

Procedure HalfPebble(v, b)
Input: A vertex v, a boolean b

1 Decide v1= b/d
2 Decide v2= b/d
3 FindConflicts (v, b)
4 Learn v1−b

1 ∨ v1−b
2 and assert v2=1− b/u

5 Restart R
6 foreach clause C ∈ D \ F such that |C |> 2 do
7 delC

Procedure FindConflict(Case 1, w, b)
Input: A vertex w with predecessor u, a boolean b

1 Decide u1=0/d
2 Learn w1−b

1 ∨w1−b
2 ∨ u1 and assert u1=1/u

FindConflicts generates a conflict between an even vertex and its predecessors.
We need to distinguish two cases depending on whether the vertex we are learning has
one or two predecessors.

PebbleSink is a tweak of HalfPebble that accounts for propagations caused by sink
axioms.

Using the decision and clause erasure strategies in this procedure, we can establish
an analogue of Lemma D.5.1 as follows.

Lemma D.5.3. If P is a black pebbling of G in space s and time τ, then there is a CDCL
proof of Peb⊕G with restarts and any cutting learning scheme and unit propagation scheme
in space at most 2s+ 3 and time O(τ).

Proof. The procedure Pebble maintains the following invariant. A non-source vertex v

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 199

Procedure FindConflict(Case 2, w, b)
Input: A vertex w with predecessors u and v, a boolean b

1 Decide u1=0/d
2 Propagate u2=1/u1 ∨ u2
3 Decide v1=0/d
4 Learn w1−b

1 ∨w1−b
2 ∨ u1 ∨ u2 ∨ v1 and assert v1=1/u

5 Learn w1−b
1 ∨w1−b

2 ∨ u1 and assert u1=1/u
6 Propagate u2=0/u1 ∨ u2
7 Decide v1=0/d
8 Learn w1−b

1 ∨w1−b
2 ∨ u1 ∨ u2 ∨ v1 and assert v1=1/u

Procedure PebbleSink
1 Decide z1=0/d
2 Propagate yz=0/z1 ∨ z2
3 FindConflicts (z, 0)
4 Learn z1 and assert z1=1/u
5 Propagate yz=1/z1 ∨ z2
6 FindConflicts (z, 1)

has a pebble if and only if the pebbling clauses of v are in the clause database. No other
clauses are in memory. The bound on space follows from this invariant, and the bound
on time is by construction.

It remains to check that the trace is legal. Observe that the clauses we have in
memory only propagate if at least one variable from each vertex they mention is set.
Since the decision sequence mentions at most 3 vertices at the same time, we only need
to reason about clauses that mention only these vertices.

The correctness of FindConflicts is easy to verify. There is no choice of which
variable to propagate.

At the end of FindConflicts w1 and w2 are decisions, and all variables below are
set by unit propagation. Since one of the conflicting clauses, a pebbling axiom, contains
the decision variables w1 and w2, they appear in any cut and therefore any conflict
clause. The remaining variables in the conflict graph are of last decision level, so they
cannot appear in an asserting clause because w2 already appears. Therefore we learn
the clause w1−b

1 ∨w1−b
2 and assert w2=1− b/u.

We only erase clauses after a restart, so we are not erasing clauses involved in unit
propagation.

Finally, observe that PebbleSink is doing essentially the same as two calls to
HalfPebble, except that at line 4 there is exactly one decision, z1, so this is the clause
that we learn, and that at the end there is a conflict at level 0, so the proof ends.

To conclude the proof we need to argue that we can replace 1UIP by any cutting

200 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

learning scheme. The argument to determine that at the end of FindConflicts we
learn a pebble clause still works.

The remaining clauses that we learn are only used to unit propagate once, so learning
any clause that asserts the same literal will serve the same purpose. Since the decision
variable appears in a conflicting clause, it is the only possible asserting literal. Therefore
we can replace all lines of the form “Learn C and assert x= b/u” by “Learn L(F,D, s)
and assert x= b/u”, where L is a given learning scheme and x is the same variable.

D.5.2 Trade-offs without Restarts

In Section D.5.1, it was shown that CDCL with restarts can do a time and space efficient
simulation of any black pebbling. The upper bounds we claim in Section D.3 are for the
more challenging setting where CDCL is not allowed to restart, however. To establish
such results, we need to modify the proofs substantially.

Recall the state at line 4 of HalfPebble after learning the first pebble clause of
a vertex v. The vertex is set to odd, so there cannot be conflicts among v and its
predecessors, and we cannot learn the second pebble clause. Since we are not allowed
to restart, the search has to proceed elsewhere. It turns out that we can systematically
control the process of learning a clause, moving to another part of the graph, and
then learning the remaining clause. However, we have to settle for a restricted class of
pebblings and we have to impose some additional structure on them.

We do the conversion from standard pebblings to CDCL refutations in three steps.
First we convert the pebbling into a recursive form that suits our arguments better.
Unfortunately this conversion needs to be tailored for every graph. The next step is to
modify the pebbling to make it easier to simulate. This step is universal, but we need to
modify the underlying graph, therefore the formulas that we prove trade-offs for differ
slightly from those in [28]. The last step is to actually generate a CDCL trace from the
pebbling.

We are going to show the specific form of black pebbling that has an efficient trans-
lation in the CDCL proof system in Section D.5.3. In Section D.5.4 we are going to
explain the simulation itself. Finally in Section D.5.5 we will revisit graphs with known
time/space trade-offs and recast the time- and space-efficient pebblings of these graphs
into our new framework.

D.5.3 Binary Tree Pebbling

We can express our conditions more easily if we think of a pebbling recursively. Therefore
we first introduce the notion of binary tree pebbling as a useful language to represent
black pebbling strategies with a recursive structure.

In this section we denote by T a rooted binary tree with children ordered left and
right. We use the convention that a single child is the left child. We also assume that
G = (V, E) is a DAG with exactly one sink and such that each vertex has at most two

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 201

incoming edges. To avoid confusion between a DAG G and a tree T describing a pebbling
of G, we say that G has vertices, which we usually denote by u, v, w, and T has nodes,
which we denote by p, q, l, r.

The left postfix order of the nodes of a tree T is the total order (p1, p2, . . . , p|T |)
induced by a traversal of T that first visits the left subtree, then the right subtree (if
any), and then the root. We say that pi comes at time i in the traversal and we denote as
p < p′ the fact that a node p comes at an earlier time than node p′.

Definition D.5.4 (Binary tree pebbling). A binary tree pebbling of G is a binary tree T
whose nodes are labelled by vertices of G according to a label function ` and such that
the following holds:

1. if p is an internal node of T the label function ` forms a bijection between the
children of p and the predecessors of `(p) in G;

2. if p is a leaf of T , then either `(p) is a source vertex of G or there is an internal
node q < p such that `(p) = `(q); we call the latest such q the cache node for p.

The time of a binary tree pebbling is its order.

A binary tree pebbling corresponds to a generalized depth first search of G that starts
at the sink and that can mark a vertex as “visited” only if all its predecessors are maked
as “visited” and that, unlike standard DFS, can remove the “visited” mark at any stage of
the process. If the process reaches any such vertex again, it has to visit it again, as if it
had never reached it before.

The converse also holds: a standard depth first traversal corresponds to a pebbling
strategy where we remember all “visited” nodes. Indeed, consider the spanning tree
produced by a depth first traversal of a graph, except that instead of discarding a forward
edge, we add a new leaf labelled as the already visited node the edge is pointing to. It is
easy to verify that such binary tree is a pebbling and that its order is at most |V |+ |E|.

Proposition D.5.5. Every DAG has a binary tree pebbling of time at most |V |+ |E|.

Although we are more interested in the reverse direction, let us first show that that
binary tree pebblings are essentially black pebblings. We extract a pebbling from a binary
tree pebbling by traversing the tree in postorder and keeping a pebble on a vertex as
long as it is useful.

Definition D.5.6 (Node lifespan). The lifespan of a non-root internal node pi is the
maximal interval [i, j] such that p j is the parent of either pi or a non-source leaf whose
cache node is pi .

The lifespan of a leaf node pi is only interesting when `(pi) is a source of G, and it
is [i, j] where p j is the parent node of pi . If a leaf node pi is labelled by a non source
vertex of G we say by convention that its lifespan is the empty interval. The lifespan of
the root node is simply [|T |, |T |].

We say that some node pi is alive at time t if it has lifespan [i, j] with i ≤ t ≤ j.

202 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Definition D.5.7. The space of a binary pebbling tree T , denoted as space(T), is the
maximum number of nodes alive at time t for 1≤ t ≤ |T |.

Proposition D.5.8. If a DAG G has a binary tree pebbling T , then G has a black pebbling
with space space(T) and time at most 2|T |.

Proof. Consider a binary tree pebbling T and the corresponding left postfix order
(p1, p2, . . . p|T |). While we scan this sequence we build a pebbling of G as follows. At
time t we consider whether node pt has a lifespan [t, j] for some j ≥ t. In this case
we place a pebble on `(pt). Then, for each node pi with lifespan [i, t], we remove the
pebble on `(pi).

This pebbling has space exactly space(T) and achieves the goal to place a pebble
on the sink of G. At each node we place at most one pebble and we remove as many
pebbles as we place, so the number of moves is at most 2|T |. Now we show that it is
legal, i.e., for every node pt with parent pt ′ there is a pebble on `(pt) at least until time
t ′. This guarantees that every pebble placement is legal. If pt has a lifespan [t, s′] then
by definition s′ ≥ t ′. If pt has no lifespan it means that there is a previous internal node
ps with `(pt) = `(ps) with lifespan [s, s′] and s′ ≥ t ′.

Finally we discuss the strategy opposite to that in Proposition D.5.5: discard pebbles
as soon as possible.

Proposition D.5.9. Every DAG with depth d has a binary tree pebbling of time at most
2d+1 − 1 and space d + 2, in which all leaves are labelled by source vertices.

Proof. If the graph has depth 0 it consists of a single vertex and we are done. Otherwise
consider the sink vertex u and assume without loss of generality that it has two children,
v and w. The binary tree pebbling has the root node labelled by u, and two subtrees
of order 2d − 1 and space d + 1 each, obtained by considering the binary tree pebbling
of the subgraph of the ancestors of v and w, respectively. The total order of the tree is
2d+1 − 1 and the total space is d + 2 since the node at the root of the left subtree is the
only node in the left subtree which is alive during the whole visit of the right subtree.
When the root is visited, both its left and right children are alive, so the space must be
at least 3, but d + 2≥ 3 if d ≥ 1.

In order to do the translation from a pebbling strategy to a CDCL refutation we need
the binary tree pebbling to fulfill some further properties.

Definition D.5.10 (Robustness). We say that a binary tree pebbling T of graph G is
robust if satisfies the following additional properties.

1. Each internal node has exactly two children;

2. if p is an internal node of T , and l and r its left and right children, then for every
node q ∈ Tr it holds that `(l) /∈ {`(q)} ∪ predG(`(q)); and

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 203

3. if an internal node q is the right child of l, then q is not the cache node of any
non-source leaf in the subtree rooted in r.

Enforcing the robustness property is necessary but luckily not very problematic. We
will argue that is is possible to modify any graph G into a new graph r(G) so that any
binary tree pebbling T for G can be turned into a binary tree pebbling r(T) for r(G)
with negligible penalty in space and time.

We split every edge of the original graph in two, by adding a new vertex, and then
we add a new source vertex as a new predecessors of all vertices of incoming degree one
(this includes the vertices we just added to split the edges). Formally, the robust graph
is the following.

Definition D.5.11. We define r(G) = (V ′, E′ ∪ E′′) where V ′ = V ∪ E ∪ {∗} and

E′ = {(v, e), (e, v′) | e ∈ E and e = (v, v′)}
E′′ = {(∗, u) | u ∈ V and |pred(u)|= 1 or u ∈ E} .

z

v

u

w

z

evz

v

euv

u

ewz

w

∗

∗

∗ ∗

T = r(T) =

Figure D.9: Robust transform of a binary pebbling

Proposition D.5.12. For every black (resp. black-white) pebbling of G of time τ and space
s there is a black (resp. black-white) pebbling of r(G) of time O(τ) and space s + 2. For
every black (resp. black-white) pebbling of r(G) of time τ and space s there is a black (resp.
black-white) pebbling of G of time O(τ) and space s.

Proof. The transformation of a pebbling for G into a pebbling for r(G) is trivial. For the
opposite direction consider a pebbling for r(G), either black or black-white. We will

204 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

build a pebbling of G of the claimed length and space, translating pebbling moves in
r(G) into moves for G. First we remove vertex ∗ from r(G) to get a new graph r(G)′. A
vertex removal can only decrease pebbling length and space.

Now we transform the pebbling of r(G)′ into a pebbling of G, and we maintain
the invariants that: (a) whenever some vertex e = (v, v′) has a pebble in the original
pebbling, then v must be pebbled in the new pebbling; (b) if a vertex v, coming from
the original graph G, has a pebble, then it has a pebble also in the new pebbling; and (c)
the pebble on v is white only if there is a white pebble on v in the original pebbling.

When a white pebble is placed on vertex e we instead place a pebble on v, unless
it is already pebbled. When a black pebble is placed on vertex e we don’t do anything
since v must have been pebbled at that point. If a white pebble is placed on v in r(G)
we do the same in G unless there is already a black pebble there. If a black pebble is
placed on v in r(G) then in G we have a pebble on each predecessor of v. We can then
black pebble v in G as well (after removing any white pebble on the same vertex). If a
pebble is removed from v, we remove it from G only if in r(G) the vertices representing
all the outgoing edges of v in G are empty. If the pebble was white then it means that
predecessors of v in r(G) (and then in G) are pebbled. So we turn the pebble black. If e
is unpebbled and neither v nor any other e′ successors of v are pebbled in the original
pebbling, then in our pebbling we remove the pebble over v, which is black because v
does not have a pebble in the original pebbling.

This pebbling of G has no more pebbles than the one of r(G), and we always turn
one move over r(G) into O(1) moves on G.

Lemma D.5.13. For any binary tree pebbling T of G it is possible to efficiently build a
robust binary tree pebbling r(T) of r(G) with space O(space(T)) and time O(|T |).

Proof. We build a robust binary tree pebbling r(T) from T by first splitting edges in two
and then adding a node labelled by ∗ as the right child of every node of incoming degree
1, in a way that matches what we did for G in Definition D.5.11.

More specifically each edge e = (s, t) of T is substituted by the path of three nodes
s, pe, t, where s and t are the original nodes of T and pe is a new one, labelled by
(`(s),`(t)). If s was the left (resp. right) child of t then pe is the new left (resp. right)
child of t. In any case s is always the left child of pe. To complete the construction we
add a new right child node pv,∗, labelled by ∗, to any internal node v of T without a
right child. The order of r(T) is at most O(|T |) by construction.

To analyze the space of r(T) we observe a few simple facts from the construction:
(a) each of the labels of the new nodes of type pe occur only once; (b) the left postfix
order of T is the projection of r(T) over the nodes in V (T). These facts, together with
Definition D.5.6, imply that the lifespan of each p ∈ V (T) in the visit of r(T) contains
the projection of the lifespan of the same node p in the visit of T . Therefore no more
than space(T) nodes in V (T) can be simultaneously alive.

The new nodes pv,∗ are alive just until the next step. The lifespan of a node pe with
e = (p, q) ends no later than when q is visited. For comparison, in the left postfix order

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 205

Procedure Cleanup(p j)

1 foreach clause C ∈ D \ F \
⋃

p alive at time j scaffolding(p, j) do
2 delC

of T the lifespan of p ends no earlier than at the visit of q. Thus we can charge each
pe to the lifespan of p in the left postfix order of T . Since the mapping from pe to p is
injective, the total contribution of these nodes is space(T).

In the end we get that space(r(T)) = 2space(T) +O(1).
To conclude we need to show that r(T) is indeed robust. It is easy to see that the

new tree respects all conditions of Definition D.5.4 and that every internal node has two
children, but the other conditions in D.5.10 require an explicit proof.

Condition 2 is verified immediately for nodes for types pe and pu,∗ that have trivial
(or null) right subtrees. For an arbitrary node p labelled by a vertex u, its left child is
labelled by some vertex e which corresponds to an edge in G, and such label occur only
once in r(T), and in particular cannot occur in the right subtree of p. Furthermore, the
only node that has e as a predecessor is u, so e does not appear as a predecessor of a
node in the right subtree of p either.

With respect to condition 3, the only nodes that appear as right children are labelled
by ∗, which is not a cache node because it is a source, and by edges of G, which are not
cache nodes either because leaves are labelled after vertices in G.

D.5.4 CDCL Trace from a Tree Pebbling

In this section we consider a DAG G and a robust binary tree pebbling T for it. We want
to describe a CDCL proof that refutes Peb⊕G in time and space proportional to the time
and space of T , respectively.

We build the proof recursively by traversing the binary tree pebbling according to the
left postfix order. Ideally we would like to learn the pebble clauses for the label of each
visited node and keep such clauses for the lifespan of the node itself. As we argued, this
is not possible without restarts, but we roughly achieve this goal by learning the clauses
corresponding to some ancestors of the visited node within a fixed constant distance.
This results in a constant number of binary clauses per visited node.

More precisely, we define the scaffolding of a node p alive at time j as the set of
descendants of p that have a pebble at time j and are reachable from p by a path of nodes
that do not have a pebble. For instance, the scaffolding of a pebbled node is the node
itself, and the scaffolding of an unpebbled node whose two predecessors are pebbled
are its predecessors. We will ensure that the size of any scaffolding never exceeds 3.

Our deletion strategy is, after processing p j , to keep the scaffolding of each node
alive at time j and to erase every other clause.

206 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Procedure QuickVisit(Case 1, b, T)
Input: a robust binary tree pebbling T with root p.

1 Decide `(l)1=0/d
2 Propagate `(l)2=1/`(l)1 ∨ `(l)2
3 Decide `(r)1=0/d
4 Learn `(p)1−b

1 ∨ `(p)1−b
2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 and assert `(r)1=1/u

5 Learn `(p)1−b
1 ∨ `(p)1−b

2 ∨ `(l)1 and assert `(l)1=1/u
6 Propagate `(l)2=0/`(l)1 ∨ `(l)2
7 Decide `(r)1=0/d
8 Learn `(p)1−b

1 ∨ `(p)1−b
2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 and assert `(r)1=1/u

It is important to delete clauses in a timely manner, not only for keeping the size of
the clause database in shape but to avoid spurious unit propagations.

In the following text, we assume that T ′ is a subtree of T , with root p and children l
and q. We say that a node p is pebbled if the pebble clauses of `(p) are in the clause
database. We also assume the learning scheme to be 1UIP, and we appeal to the argument
in Section D.5.1 to show that this is without loss of generality.

To learn pebble clauses we will use two auxiliary procedures, DeepVisit and
QuickVisit. The former is defined recursively and it is the main component of our
CDCL refutation. The latter is the base case and only works for some specific trees of
constant size. A visit procedure starts with p set to even, sets some variables in T ′, and
ends with a conflict at the level of `(p)2 or earlier. It is the responsibility of the caller to
learn the appropriate clause.

We use QuickVisit in the following three cases, where we assume that p is not
pebbled.

1. l and r have a pebble.

2. r has a pebble, l does not, but it has two children, l1 and l2, that are pebbled.

3. l has a pebble, r does not, but it has two children, r1 and r2, that are pebbled.

Case 1 of QuickVisit is essentially FindConflicts from Section D.5.1 with the
notation adapted to binary pebbling.

In Case 2 we also generate a conflict with the predecessors of a node andwe pebble the
left node as a side-effect. First we learn the clause `(l)1∨`(l)2 using Case 1 QuickVisit,
analogously to HalfPebble. Then instead of restarting we generate a conflict earlier in
the trail, with the same goal of clearing the left subtree. Now we can apply Case 1 again
and learn `(l)1 ∨ `(l)2. Finally we generate another conflict and backjump.

Finally, Case 3 is essentially the same as Case 2, flipping the left and the right
subtrees.

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 207

Procedure QuickVisit(Case 2, b, T)
Input: a robust binary tree pebbling T with root p.

1 Decide `(l)1=0/d
2 Decide `(l)2=0/d
3 QuickVisit (Case 1, b = 0, Tl)
4 Learn `(l)1 ∨ `(l)2 and assert `(l)2=1/u
5 Decide `(r)1=0/d
6 Learn `(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 and assert `(r)1=1/u
7 Learn `(p)1 ∨ `(p)2 ∨ `(l)1 and assert `(l)1=1/u
8 Decide `(l)2=1/d
9 QuickVisit (Case 1, b = 1, Tl)

10 Learn `(l)1 ∨ `(l)2 and assert `(l)2=0/u
11 Decide `(r)1=0/d
12 Learn `(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 and assert `(r)1=1/u

The recursive procedure for large trees is DeepVisit. In order to learn the pebble
needed at some node p of the binary tree pebbling, we need to visit both subtrees
multiple times. The first time we visit each subtree we use DeepVisit which, as a side
effect, learns the pebbles of the nodes at a constant distance from p. Afterwards, since
a pebbled node behaves as a source, the subtrees become effectively of constant size.
We can use QuickVisit where appropriate to generate local conflicts and end with a
backjump.

Finally we pebble the root and start the recursive procedure in BinaryPebble.
We can now establish the technical lemma that is the main goal of this section.

Lemma D.5.14 (CDCL refutation). If T is a robust binary tree pebbling of a graph G,
then BinaryPebble (T) is a CDCL proof of Peb⊕G without restarts and with any cutting
learning scheme and unit propagation scheme in time O(|T |) and space at most O(space(T))

The number of steps in the trace is O(|T |) because QuickVisit always runs in
constant time and DeepVisit calls itself recursively at most once on each subtree.
Furthermore, all conflicts involve a constant number of variables, so all derivations are
of constant size as well.

To measure the space we need the following invariant.

Claim D.5.15. After we run DeepVisit on a subtree rooted in p, with left and right
children l and r, we store a pebble on l and on either r or its two children.

Claim D.5.16. The scaffolding of every node alive at time j has size at most 3.

Proof. Observe that the order in which DeepVisit processes nodes is the left postfix order
of T , except that some of the calls to DeepVisit actually result in calls to QuickVisit
on some constant size subtrees. Therefore every node alive at time j has been visited.

208 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Procedure DeepVisit(T)
Input: a robust binary tree pebbling T with root p.

1 If T meets the requirements use QuickVisit instead, otherwise go ahead.
2 Decide `(l)1=0/d
3 if `(l) is pebbled then
4 Propagate `(l)2=1/`(l)1 ∨ `(l)2
5 else
6 Decide `(l)2=0/d
7 DeepVisit (Tl)
8 Learn `(l)1 ∨ `(l)2 and assert `(l)2=1/u
9 Cleanup (l)

10 Decide `(r)1=0/d
11 if `(r) is not pebbled then
12 Propagate `(r)2=0/`(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 ∨ `(r)2
13 DeepVisit (Tr)

14 Learn `(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 and assert `(r)1=1/u
15 if `(r) is not pebbled then
16 Propagate `(r)2=1/`(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 ∨ `(r)2
17 Cleanup (r)
18 QuickVisit (Tr , b = 1)

19 Learn `(p)1 ∨ `(p)2 ∨ `(l)1 and assert `(l)1=1/u
20 if `(l) is pebbled then
21 Propagate `(l)2=1/`(l)1 ∨ `(l)2
22 else
23 Decide `(l)2=1/d
24 QuickVisit (Tl , b = 1)

25 Learn `(l)1 ∨ `(l)2 and assert `(l)2=0/u

26 Decide `(r)1=0/d
27 if `(r) is not pebbled then
28 Propagate `(r)2=0/`(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 ∨ `(r)2
29 QuickVisit (Tr , b = 0)

30 Learn `(p)1 ∨ `(p)2 ∨ `(l)2 ∨ `(l)1 ∨ `(r)1 and assert `(r)1=1/u
31 if `(r) is not pebbled then
32 Propagate `(r)2=1/`(p)1 ∨ `(p)2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 ∨ `(r)2
33 QuickVisit (Tr , b = 1)

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 209

Procedure BinaryPebble(T)
Input: a robust binary tree pebbling T with root p.

1 Decide `(p)1=0/d
2 Propagate `(p)2=0/`(p)1 ∨ `(p)2
3 DeepVisit (T)
4 Learn `(p)1 and assert `(p)1=1/u
5 QuickVisit (T , b = 1)

This proves that there are at most 6 times more pebbling clauses than alive nodes in
memory. The remaining learned clauses in the database are used for unit propagation.
QuickVisit involves a constant number of clauses, and propagations in DeepVisit only
occur because of pebble clauses, which we already accounted for, and pebbling axioms,
which are not learned. Putting all these observations together we have that during the
CDCL procedure we remember O(1) clauses per alive node, plus an additional O(1)
clauses. This amounts to space O(space(T)).

To conclude the proof of Lemma D.5.14 we have to show that the trace is legal.
Before a call to a visit procedure of T ′, the following invariants hold.

Claim D.5.17. The trail assigns all nodes in the path from the root of T to p to even, and
possibly their left siblings to odd. No other node is assigned.

Claim D.5.18. No other vertex labelled in T ′ has a variable assigned in the trail.

Proof. The nodes that are assigned in the trail do not appear in T ′ by conditions 2 and 3
of Definition D.5.10.

It is straightforward to check the propagations and conflicts listed in QuickVisit,
and in Claim D.5.20 we will show that these are the only that happen.

At the last conflict all variables below `(p)2 are set by unit propagation. If `(p)2= b/d
is a decision, since the conflicting clause `(p)1−b

1 ∨ `(p)1−b
2 ∨ `(l)1 ∨ `(l)2 ∨ `(r)1 ∨ `(r)2

contains the decision variables `(p)1 and `(p)2, they appear in any cut and therefore any
conflict clause. The remaining variables in the conflict graph are of last decision level, so
they cannot appear in an asserting clause because `(p)2 already appears. Therefore we
learn the clause `(p)1−b

1 ∨ `(p)1−b
2 and assert `(p)2=1− b/u. If `(p)2 is a propagation

we backjump to an earlier point.
In Case 2 we also learn clauses `(l)1 ∨ `(l)2 and `(l)1 ∨ `(l)2, so at the end of

QuickVisit the vertex `(l) is pebbled. Analogously, the vertex `(r) is pebbled in Case 3.
It is also easy to verify that the propagations and conflicts in DeepVisit are correct.

After line 14 both Tl and Tr have been visited, and both l and r are alive nodes when we
visit p. This means that we store pebble clauses for their four immediate predecessors in

210 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

the database, by induction hypothesis, therefore the subsequent calls to QuickVisit are
legal. At the end of the procedure we have the pebble clauses that we claim in D.5.15 in
the database. We learn the pebble clauses for `(l) in lines 8 and 25, and we learn the
pebble clauses for the children of `(r) in the call to QuickVisit at line 18.

There is a detail that we have swept under the carpet up to this point. We claimed
that the base case of DeepVisit is QuickVisit, but this is only the case if leaves are
pebbled; otherwise DeepVisit would try to access an empty tree.

Claim D.5.19. When we query whether a leaf is pebbled, the answer is yes.

Proof. Leaves labelled by source vertices are always pebbled. For a non-source leaf, we
only query its state when its cache node is alive, but there is some time during which a
node is alive and not pebbled. Consider a cache node q. We need to distinguish three
cases.

1. If q is the left child of a node p j , then q will have a pebble at time j. During that
time we visit the right subtree of p j , but by condition 2 of Definition D.5.10 `(q)
does not appear at all in that subtree.

2. If q is the right child of a node l, which is the left child of a node p j , then q will
have a pebble at time j. During that time we visit the right subtree of p j , but by
condition 3 of Definition D.5.10 `(q) does not appear as a leaf in that subtree.

3. If q is the right child of a node r, which is the right child of a node p j , then q will
have a pebble at time j and we will not visit any subtree during that time.

Finally we show that no other unit propagation or conflict occurs.

Claim D.5.20. All possible unit propagations and conflicts are listed in QuickVisit and
DeepVisit.

Proof. First we claim that all propagations and conflicts caused by pebble clauses, both
learned and source axioms, are accounted for. Indeed, whenever a variable xu is set, the
next step depends on whether u has a pebble. The remaining learned clauses are erased
as soon as they stop unit propagating, so they do not pose a problem either.

Regarding pebbling axioms, we show that when we visit a node p, only those axioms
with support in p and its predecessors cause conflicts. Consider an axiom in xu ⊕ yu =
1∧ xv ⊕ yv = 1→ xw ⊕ yw = 1 such that two of its nodes are set and do not satisfy the
axiom. We distinguish two cases.

1. u and v are set to odd.

2. u (or v) is set to odd and w to even.

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 211

In Case 1, by Claim D.5.17 and condition 2 of Definition D.5.10, u and v are not
the predecessors of any node in the current subtree. Therefore, w is not set and no
propagation happens.

In Case 2, since w is set to even, it is not pebbled, so by Claim D.5.19 it is an internal
node. By Claim D.5.17, the only reason v is not set is that it is the node that we are
currently visiting. Therefore, we account for propagations and conflicts.

D.5.5 CDCL Trade-offs for Pebbling Formulas

We obtain trade-offs for CDCL refutations from trade-offs between pebbling time and
pebbling space for DAGs. In particular our CDCL trade-offs will come from pebbling trade-
offs for (variants of) Carlson-Savage graphs [52, 53], stacks of superconcentrators [130]
and bit reversal graphs [130]. The upper bounds in this section apply to all CDCL systems
regardless of the learning scheme, as long as it is cutting, and without restarts. The
lower bounds apply to any CDCL system, regardless of the learning scheme and of the
restart policy.

Lemma D.5.21. Let G be some directed acyclic graph with indegree at most 2.

1. If G has a binary tree pebbling T then Peb⊕r(G) has a CDCL refutation without restarts,
with any cutting learning scheme of time O(|T |) and space O(space(T))

2. Given any CDCL refutation of Peb⊕r(G) of time τ and space s, we can extract a black-
white pebbling for G of time O(τ) and space O(s).

Proof. To prove item 1 we use Lemma D.5.13 to get a robust binary tree pebbling r(T)
for r(G) of time O(|T |) and space O(space(T)). Then Lemma D.5.14 immediately gives
the CDCL refutation Peb⊕r(G) of time O(|T |) and space O(space(T)). To prove item 2 we
observe that a CDCL refutation is indeed a resolution refutation, therefore we can use
Theorem D.5.2 to get a black-white pebbling for graph r(G) of time O(τ) and space
O(s). Using Proposition D.5.12 we obtain a black-white pebbling of G of time O(τ) and
space O(s) as well.

The first trade-off comes from stacks of superconcentrators, a graph family originally
defined in [130].

A DAG is a superconcentrator if it has m sources S = {s1, . . . , sm}, m sinks Z =
{z1, . . . , zm}, and for any subsets S′ ⊆ S and Z ′ ⊆ Z with |S′|= |Z ′| there are |S′| vertex
disjoint paths, each connecting one source in S′ to some sink in Z ′.

In literature there are efficient constructions of superconcentrators of indegree 2
with m sources and sinks, O(m) edges and depth O(log m), for every m= C · 2k where
C is a fixed value depending of the construction and k is a free parameter (see for
example [5]).

Let SC(1)m , . . . , SC(r)m denote r copies of an efficiently constructible superconcentrator
with m sources and sinks, with m = Θ(2k) for some k > 0, indegree 2, O(m) edges

212 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

and depth O(log m). The graph Φ(m, r) is constructed by placing these r copies on top
of one another, i.e., with the sinks of z j

1, z j
2, . . . , z j

m of SC(j)m connected to the sources
s j+1
1 , s j+1

2 , . . . , s j+1
m of SC(j+1)

m with edges (z j
i , s j+1

i) for i = 1, . . . , m and j = 1, . . . , r − 1.

Theorem D.5.22 (Trade-off for stack of superconcentrators). There exists an effi-
ciently constructible family of 3-CNF formulas Fn of size Θ(n) that have

• a CDCL refutation without restarts and with any cutting learning scheme in time
O(n) and space O(n/ log n) simultaneously;

• a CDCL refutation without restarts and with any cutting learning scheme in space
O((log n)2) and time nO(log n) simultaneously.

Moreover there exists a constant K > 0 such that any CDCL refutation in space s ≤ Kn/ log n
satisfies that time τ is at least nΩ(log log n), regardless of the learning scheme and of the restart
policy.

Proof. The formula family Fn for which we prove this theorem is Peb⊕Gn
, where we build

the graph Gn as follows. We first start with a stack of super concentrators Φ(m, r), where
we set the parameters m= Θ(n/ log n) and r = Θ(log n), and then we add an additional
binary tree on top to make the graph have a single sink. More specifically we put on top a
complete binary tree of depth log m where the sources are denoted sr+1

1 , sr+1
2 , . . . , sr+1

m and
the sink as z r+1

1 . The sinks of the topmost layer of the superconcentrator are connected
to this tree through edges (z r

i , sr+1
i). Let us denote this graph as bΦ(m, r) for the rest of

the proof.
In [130] it is shown that any black-white pebbling forΦ(m, r) that has space s ≤ m/20

requires time τ≥ m ·
�

rm
64s

�r
. Since any black-white pebbling for bΦ(m, r) induces a black-

white pebbling for Φ(m, r) the result holds for bΦ(m, r) too. In particular this means that
there is a constant K such that any black-white pebbling with space at most Kn/ log n
takes time at least nΩ(log log n).

We show two binary tree pebblings for bΦ(m, r): a time efficient one, with simultan-
eous time O(mr) = O(n) and space O(m) = O(n/ log n), and a space efficient one, with
simultaneous time mO(r) = nO(log n) and space O(r log m) = O((log n)2). After building
these binary tree pebblings we get the theorem by setting Gn to be r(bΦ(m, r)) and by
using Lemma D.5.21 on graph bΦ(m, r).

The space efficient construction is immediate since the depth of bΦ(m, r) is O(r log m)
and therefore the graph has a binary tree pebbling of the same depth by Proposi-
tion D.5.9. The time efficient binary tree pebbling T is the depth-first pebbling from
Proposition D.5.5, which has time O(mr). The pebbling is induced by a depth first
search, so there is at most one internal node labelled by each vertex. The rest of the
proof consists of showing that this binary tree pebbling has space O(m).

Consider, in the left postfix order of T , the interval between the first occurrence of a
sink of layer j, and a sink of layer j+1, say z j+1

i . Since all sources of layer j have already

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 213

s1 s2

γ1 γ2 γ3

Figure D.10: Base case Γ (3,1) for Carlson-Savage graph with 3 sinks.

been visited, no node with a label in layer j − 1 is alive. Since z j+1
i is the first node in

layer j + 1, no node with label in layer j + 2 or above has been visited and therefore
cannot be alive. Therefore the number of alive nodes is bounded by the number of nodes
in the binary tree with labels in layers j and j + 1, that is O(m).

Before moving to the next graph family we need to describe one of its components,
the pyramid graph, for which we also need some properties.

Definition D.5.23. The pyramid graph of height h (denoted as Πh) is a graph over
(h+ 1)(h+ 2)/2 vertices, indexed as (i, j) for 0≤ i ≤ j ≤ h. For i > 0 each vertex (i, j)
has two incoming edges from vertices (i−1, j−1) and (i−1, j). The sink vertex is (h, h).

The black-white pebbling price of a pyramid of height h is h/2+Θ(1) [123].

Proposition D.5.24. There is a binary tree pebbling for the pyramid of height h ≥ 1 of
time O(h2) and space h+ 2.

Proof. We build the tree by induction over h. The case h = 0 is immediate. For h > 0
consider the subgraph of the pyramid induced by the vertices (i, j) with j 6= h. This is
a pyramid graph of height h− 1 with sink (h− 1, h− 1). Consider the tree T ′ of this
pyramid. The tree T for Πh has root node ph labelled by (h, h), its left subtree is a copy
of T ′ and its right subtree is made by nodes ph−1, . . . , p0 and leaf nodes qh−2, . . . , q0,
where pi is labelled by (i, h) and qi is labelled by (i, h− 1), and for i > 0 the left and
right child of pi are, respectively, qi−1 and pi−1.

There is a bijection between the edges of T and the edges of Πh, therefore the size of
T is O(h2). To see that the cost of the tree is h+ 2 observe that in the left postfix order
visit of T , whenever the (unique) internal node labelled by (i, j) is visited it will be a
cache node only until the visit of (i + 1, j + 1), therefore the worst case is at the visit of
the (unique) node of T labelled by (1, h). In that moment the alive nodes are internal
nodes with labels (1, h), (i, h− 1) for 0≤ i ≤ h− 1 and the leaf labelled by (0, h).

The next trade-off result is based on Carlson and Savage graphs [52, 53]. We use a
slight adaptation of this construction, more suitable for proof complexity results, due
to [144]. The definition of this family of graphs is rather intricate, so we suggest that
the reader refers to the illustrations in Figures D.10 and D.11.

214 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

z1 γ1z2 γ2z3 γ3

Π
(1)
2r Π

(2)
2r Π

(3)
2r

Γ(3, r)

Figure D.11: Inductive definition of Carlson-Savage graph Γ (3, r + 1) with 3 spines and
sinks.

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 215

Definition D.5.25 (Carlson-Savage graphs [52, 53]). For positive integers c, r, the
graph family Γ (c, r), is defined by induction over r. The base case Γ (c, 1) is a DAG
consisting of two sources s1, s2 and c sinks γ1, . . . ,γc , with edges from both sources to
all sinks. The graph Γ (c, r + 1) has c sinks and is built from the following components:

• c disjoint copies Π(1)2r , . . . ,Π(c)2r of a pyramid (Definition D.5.23) of height 2r, where
we let z1, . . . , zc denote the pyramid sinks;

• one copy of Γ (c, r), for which we denote the sinks by γ1, . . . ,γc;

• c disjoint and identical spines of length λ = 2c2r. Each spine is a sequence of λ
vertices, denoted as v1, . . . , vλ, connected by edges (v`, v`+1) for `= 1, . . . ,λ− 1.

These components are connected through edges as follows.

• There are edges
�

z j , v`
�

to any vertex v` where `= 2c`′ + j for some integer `′.

• There are edges
�

γ j , v`
�

to any vertex v` where `= 2c`′+ c+ j for some integer `′.

Pebbling games on the Carlson-Savage graphs have strong time-space tradeoffs.
Specifically, in [144], it was shown that for any black-white pebbling of Γ (c, r) in space
s and time τ, if s ≤ r + k for some 0≤ k ≤ c/8, then

τ≥
�

c − 2k
4k+ 4

�r

r! . (D.5.2)

Theorem D.5.26 (Trade-off for arbitrarily slowly growing space). Let g(n) = ω(1)
be any arbitrarily slowly growing monotone function such that g(n) = O(n1/7) and fix any
ε > 0. There exists an efficiently constructible family of 3-CNF formulas Fn of size Θ(n)
that have

• a CDCL refutation without restarts and with any cutting learning scheme in time
O(n) and space O

�

3
p

n/g2(n)
�

simultaneously;

• a CDCL refutation without restarts and with any cutting learning scheme in space
O(g(n)) and time nO(g(n)) simultaneously.

Moreover any CDCL refutation of space O
��

n/g2(n)
�1/3−ε�

has superpolynomial time,
regardless of the learning scheme and of the restart policy.

Picking an appropriate function g, in this case g(n) = 8
p

n, the trade-off is even
exponential.

Corollary D.5.27. There exists an efficiently constructible family of 3-CNF formulas Fn of
size Θ(n) that have

• a CDCL refutation without restarts and with any cutting learning scheme in time
O(n) and space O

�

4
p

n
�

simultaneously;

216 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

• a CDCL refutation without restarts and with any cutting learning scheme in space
O
�

8
p

n
�

and time nO(8pn) simultaneously.

Moreover, for any ε > 0, any CDCL refutation of space O
�

n1/4−ε
�

has exponential time,
regardless of the learning scheme and of the restart policy.

Proof of Theorem D.5.26. The formula is based on the single sink version of the graph
Γ (c, r) from Definition D.5.25, which is the graph with a maximally unbalanced binary
tree on top. This graph is denoted as bΓ (c, r) and it is formally defined as follows. Let
γ1, . . . ,γc be the sinks of Γ (c, r); we add new vertices η2, . . . ,ηc , two edges

�

γ1,η2

�

,
�

γ2,η2

�

and then we add edge pairs
�

η j−1,η j

�

,
�

γ j ,η j

�

for j from 3 to c. Hence bΓ (c, r)
has a unique sink vertex ηc , it contains Γ (c, r) as an induced subgraph, and it has
Θ(cr3 + c3r2) vertices. The main part of the proof is to show that

• there is a binary tree pebbling for bΓ (c, r) of space 2r+1+3c and timeΘ(cr3+c3r2);

• there is a binary tree pebbling for bΓ (c, r) of space 2r + 2;

and that the inequality claimed in [144] (see Equation (D.5.2)) holds for bΓ (c, r) as well.
Regarding (D.5.2), we can just observe that any black-white pebbling of ηc induces a
black-white pebbling of Γ (c, r) within at most the same time and space.

To get the statement of the theorem we are going to apply Lemma D.5.21 to bΓ (c, r),
where we set r as r(n) = g(n) and c as c(n) = 3

p

n/g2(n), and we are going to set
Gn to be r(bΓ (c(n), r(n))). The size of the resulting formula Peb⊕Gn

= Peb⊕
r(bΓ (c(n),r(n)))

is

Θ(cr3+c3r2) = Θ(n), the space efficient CDCL refutation has space O(g(n)) and the time
efficient CDCL refutation has linear time and space O

�

3
p

n/g2(n)
�

, for g(n) = O(n1/7).
Now let’s fix k = c1−ε in (D.5.2) for some ε > 0 so that the space of the black-white
pebbling extracted by the refutation of Peb⊕

r(bΓ (c(n),r(n)))
, which is within a linear factor from

k, is less than c/8 for n large enough. Equation (D.5.2) and Lemma D.5.21 imply that

any CDCL refutation with space O
��

3
p

n/g2(n)
�1−ε�

has time
�

n/g2(n)
�Ω(g(n))

, which is
superpolynomial since g(n) =ω(1).

Now it remains to build the space efficient tree bT(s,r) and the time efficient tree
bT(τ,r) for bΓ (c, r). As intermediate step we describe, by induction on r, two binary tree
pebblings for the subgraph of Γ (c, r) constituted by all vertices from which a sink γ j is
reachable. The space efficient version of this intermediate construction is denoted as
T(s,r), and the time efficient one as T(τ,r). Since Γ (c, r) is symmetric with respect to the
permutation of its sink we will discuss the construction of T(s,r) and T(τ,r) with respect of
a generic sink.

The two base cases T(s,1) and T(τ,1) are the same. They have the root labelled by γ′

and its two children labelled by sources s1 and s2.
For the inductive case we consider an arbitrary sink γ′ of Γ (c, r + 1), and we build

the two trees T(s,r+1) and T(τ,r+1) for the subgraph of all vertices of Γ (c, r + 1) that can
reach γ′. We suggest to refer to Figure D.11 to follow the argument. We denote as

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 217

(v1, . . . , vλ) the sequence of the vertices in the spine that ends with sink γ′, so that z1 is
a predecessor of v1 and vλ is γ

′ itself.
We define the tree T(∗,r+1) so that its leftmost path backward from the root has length

λ and is labelled by the sequence of vertices (vλ, . . . , v1). The only child of the vertex
labelled by v1 is a leaf vertex labelled by z1. For 1 < ` ≤ λ the right child of the node
labelled by v` is a leaf node labelled by the corresponding predecessor of v` among
{z1, . . . , zc ,γ1, . . . ,γc}. For the sake of uniformity we give the definition of T(∗,1) too,
which is identical to T(τ,1) and to T(s,1). For 1≤ j ≤ c we denote as T Πj the binary tree

pebbling for the pyramid subgraph Π(j)2r given in Proposition D.5.24, which has time
O(r2) and space 2r + 2. Both the T(s,r) and T(τ,r) constructions have T(∗,r) as a starting
point, and the difference in the two constructions is in the subtrees that we attach to
their leaves.4

The space efficient construction T(s,r+1) from T(s,r). We start with T(∗,r+1) and we
attach to each leaf labelled z j a copy of T Πj . For each leaf labelled γ j we attach a copy of
the space efficient binary tree pebbling T(s,r) obtained by inductive hypothesis, namely
the space efficient tree for the subgraph of Γ (c, r) constituted by all vertices that can
reach γ j . We claim by induction on r that this construction has space at most 2r +1. For
r = 1 the space is 3 so we are within the limits. For r > 1 observe that when we visit
the right subtree of a node labelled by some vertex v`, the only node alive outside of
that subtree is the one labelled by v`−1. The space used by the total construction then
is one plus the maximum space among all subtrees attached to T(∗,r+1). The space for
each copy of T Πj is 2r + 2, and by induction the space for each copy of T(s,r) is 2r + 1.
Therefore the space for T(s,r+1) is 2r + 3 , and the inductive claim is proved.

The space efficient construction bT(s,r) from T(s,r). Now we can build the space
efficient binary tree of bΓ (c, r). The top part of the tree is an isomorphic copy of the tree
in bΓ (c, r) that connects the sinks γ1, . . . ,γc of Γ (c, r) to the new sink ηc , where nodes
are labelled by the corresponding vertices. To each node labelled by γ j we attach a new
copy of the space efficient tree T(s,r) for the corresponding sink. The final tree is a binary
tree pebbling for bΓ (c, r), and it has space 2r + 2, since one space unit is used for the top
part and each copy of T(s,r) has space 2r + 1.

The time efficient construction T(τ,r+1) from T(τ,r). In the time efficient construc-
tion we only attach subtrees to just the first few leaves in T(∗,r+1) so that later leaves
remain leaves in the final construction too, and use them as cache nodes. This makes
the tree smaller, but increases the space of the construction.

We consider the sequence of nodes (p′1, . . . , p′c , q1, . . . , qc , p1, . . . , pc) from T(∗,r+1) so
that, for each j ∈ [c], node p′j is the child labelled by z j of the node labelled by v j , node
q j is the child labelled by γ j of the node labelled by vc+ j and node p j is the child labelled
by z j of the node labelled by v2c+ j .

4Here we use the verb to attach in a very specific way. Given a leaf node p labelled by some vertex v and
a binary tree pebbling T with the root labelled by the same vertex v, we say that we attach T to the node p
by substituting p with T itself.

218 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

We will attach a subtree only to those 3c nodes. Any later occurrence of a leaf node
labelled by z j will use p j as cache node, and any later occurrence of a leaf labelled by γ j

will use q j as cache node.
We need to stress that p′1, . . . , p′c are not going to be cache nodes. This choice is made

because the left postorder needs to do a full visit of T(τ,r) between the visit of p′1, . . . , p′c
and the visit of any later node labelled by some z j . If such nodes were cached during
the recursive descent, the space of the tree would explode.

For this reason we are going to visit each pyramid Π(j)2r twice, namely for j ∈ [c] we
attach the tree T Πj to both p′j and p j . In this way p j is the last internal node to have
label z j , and it is going to be the cache node for all later nodes with that label. To node
q1 instead we attach a copy of the tree T(τ,r) built by induction, and for 2 ≤ j ≤ c we
attach to node q j a copy of T(∗,r), built by induction for the sink γ j .

The tree built so far is the final tree T(τ,r+1), and since it is more complex than the
space efficient one we will explicitly show its correctness.

To do that we need notation to refer to vertices in the subgraph Γ (c, r) contained
in Γ (c, r + 1), and notation to refer to nodes in the subtree T(τ,r) inside T(τ,r+1). We
recall that γ′ denotes our target sink in the graph Γ (c, r + 1), and that we denoted as
z j the sinks of the pyramids and as γ j the sinks of the copy of Γ (c, r) contained in the
recursive construction Γ (c, r + 1). When r > 1 we denote as z†

1, . . . , z†
c the sinks of the

pyramids (of height 2r − 2) inside the subgraph of Γ (c, r), and as γ†
1, . . . ,γ†

c the sinks of
its internal copy of Γ (c, r − 1). Furthermore we denote as p†

j the (unique) cache node in

T(τ,r) labelled by z†
j , and as q†

j the (unique) cache node in T(τ,r) labelled by γ†
j .

Let us now argue correctness.

Claim D.5.28. For each leaf node in T(τ,r) which is not labelled by a source vertex of Γ (c, r)
there is a corresponding cache node earlier in the tree.

Proof. Our proof is by induction on r. For r = 1 it is immediate. Let us assume that it
is true for r ≥ 1, we want to prove that each leaf node in T(τ,r+1) which is not labelled
by a source vertex of Γ (c, r + 1) there is a corresponding cache node earlier in the tree.
Subtrees T Πj are correct by construction, and the correctness of subtree T(τ,r) holds by
induction. The remaining non-source leaves in T(τ,r+1) are either the ones coming from
T(∗,r+1) to which we did not attach a subtree, or they are non-source leaf nodes inside the
(c−1) copies of T(∗,r) attached to p2, . . . , pc . In the first case the leaf is either labelled by
γ j or by z j and it comes later in the left postfix order than nodes q1, . . . , qc , p1, . . . , pc ,
one of them being its cache node. For r = 1 the leaves of all attached copies of T(∗,r) are
all labelled by sources s1 and s2. For r > 1 the leaves of all attached copies of T(∗,r) are
all labelled by vertices among γ†

1, . . . ,γ†
c , z†

1, . . . , z†
c , and earlier in the left postfix order,

T(τ,r+1) contains the subtree T(τ,r), which contains nodes q†
1, . . . , q†

c , p†
1, . . . , p†

c with the
same labels.

The size of the tree is estimated in the following claim.

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 219

Claim D.5.29. The number of internal vertices in T(τ,r) plus (c − 1) copies of T(∗,r) is at
most C times the number of edges in Γ (c, r), for some universal constant C > 0.

Proof. Our proof is again by induction on r. It is immediate for r = 1. Assume that the
claim holds for r ≥ 1, we prove it for r +1. Observe that T(τ,r+1) contains a copy of T(τ,r)
ending in γ1 plus (c − 1) copies of T(∗,r) ending in γ2, . . . ,γc , respectively. By inductive
hypothesis this accounts to at most C times the size of Γ (c, r). Furthermore T(τ,r+1)
contains one isomorphic copy of one spine from Γ (c, r + 1), while the other (c−1) spines
in Γ (c, r + 1) are accounted to the edges of the (c − 1) copies of T(∗,r+1) as in the claim.
Tree T(τ,r+1) also contains 2c binary tree pebblings for pyramid graphs of height 2r, each
of size at most C ′ times the size of the pyramid graph itself, for a universal constant
C ′ (see Proposition D.5.24). Let C be a universal constant larger than max{2C ′, 1} and
then the induction step follows.

We claim that the space of T(τ,r) is at most 2r+1+3c. The space is 3 for r = 1 so we
are within the bound. For the general claim we use the following inductive statement.

Claim D.5.30. During each moment of the visit of T(τ,r+1), the set of alive nodes union
the set of nodes in {q1, . . . , qc , p1, . . . , pc} already visited at that moment has size at most
2r + 3+ 3c.

Proof. We assume that either r = 1 or that the claim holds for T(τ,r) if r > 1.
Observe that the left postfix order visits the sequence of nodes labelled v` in order.

We divide the sequence in four segments: the first three have length c each, and the last
one is made by the rest of the sequence.

First segment. At the beginning we visit a copy of T Π1 using space 2r + 2, then the
node labelled by v1. At this point no node in this copy of T Π1 is alive anymore. The next
step is to visit the copy of T Π2 rooted in p′2, and then the node labelled by v2, and so on
up to T Πc . During the visit of some T Πj , the only other alive node is the one labelled by
v j−1. At some point we reach the node labelled by vc using the maximum space 2r + 3,
and that is the only alive node at that moment.

Second segment (I). If r = 1 then the visit of the subtree T(τ,r) is done in space
3. Otherwise we visit the subtree T(τ,r) in space 2r + 1 + 3c, passing through nodes
{q†

1, . . . , q†
c , p†

1, . . . , p†
c}, that stay alive. The root of this tree is q1, which is a cache node

for later nodes. During the visit of the subtree T(τ,r) the node labelled by vc is alive,
therefore we have maximum space so far equal to 2r + 2+ 3c, and the alive nodes are:
the node labelled by vc , node q1 and, when r > 1, {q†

1, . . . , q†
c , p†

1, . . . , p†
c}.

Second segment (II). The visit now proceeds up to the node labelled by v2c: we
visit each of the (c − 1) copies of T(∗,r) in order. If r = 1 then T(∗,1) is a node with two
leaf children, so three additional alive nodes are necessary. If r > 1 each of them is a
maximally unbalanced tree with leaves labelled by {γ†

1, . . . ,γ†
c , z†

1, . . . , z†
c } for which we

already have alive cache nodes, therefore only two additional alive nodes are necessary to
complete this phase. During the visit of the copy of T(∗,r) rooted in q j , the alives nodes are

220 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

q1, . . . , q j−1 from previous copies; the nodes {q†
1, . . . , q†

c , p†
1, . . . , p†

c} from recursion when
r > 1; the node labelled by vc+ j−1; and at most two additional nodes during the visit itself
(three if r = 1). The maximum space in this specific phase is at most 3+ 3c, and after
its conclusion the alive nodes are: the node labelled by v2c and q1, . . . , qc . In particular
after this moment we will not visit any node for which any of {q†

1, . . . , q†
c , p†

1, . . . , p†
c} is a

cache node.
Third segment. In the next phase we visit another series of the binary tree pebbling

for the pyramids, but this time their roots p1, . . . , pc are going to be cache nodes for later
non-source leaf nodes. For each j ∈ [c] we visit the copy of T Πj rooted in node p j while
nodes q1, . . . , qc , nodes p1, . . . , p j−1 and the node labelled by v2c+ j−1 are alive. The total
space in this phase is at most 2r + 3+ 2c.

Fourth segment. For each ` > 3c, we just visit v` in order, using cache nodes
{q1, . . . , qc , p1, . . . , pc}, with two additional alive nodes simultaneously.

In total we have that the number of alive nodes is always at most 2r + 3+ 3c, and
furthermore the nodes {q1, . . . , qc , p1, . . . , pc} are counted as alive from the moment they
are visited, until the end of the visit, as requested by the claim.

The time efficient construction bT(τ,r) from T(τ,r). Now we can build the time
efficient binary tree of bΓ (c, r). The top part of the tree is an isomorphic copy of the tree
in bΓ (c, r) that connects the sinks γ1, . . . ,γc of Γ (c, r) to the new sink ηc , where nodes
are labelled by the corresponding vertices. To the node labelled by γ1 we attach a copy
of the time efficient tree T(τ,r), while to each other node labelled by γ j with j > 1 we
attach a copy of T(∗,r). By Claim D.5.29 the time of bT(τ,r) is O(c) plus a constant times
the size of Γ (c, r), which is O(cr3 + c3r2) as desired. The left postfix visit of bT(τ,r) is
the composition of the visit of T(τ,r) plus the visit of the rest of the tree, which uses the
2c cache nodes q j and p j from T(τ,r). The rest of the visit can be done with a constant
number (i.e., 4) of additional alive nodes, so the space of bT(τ,r) is dominated by the one
for the visit of T(τ,r), and is 2r + 1+ 3c.

The last graph family we consider is the bit reversal graph from [130], which is made
by two paths of vertices, where each vertex in the bottom path is connected to a vertex
in the top path, according to a specific bijection (see Figure D.12).

Definition D.5.31 (Bit reversal graph). Fix k > 0 and let π be the permutation that
maps each integer 0≤ i < 2k written as its k bit binary representation into the number
that corresponds to the reverse of that binary representation. The bit-reversal graph
has 2 · 2k vertices, divided into two paths. The lower path is u0, . . . , u2k−1 where ui−1

is a predecessor of ui for 1 ≤ i < 2k. The upper path is v0, . . . , v2k−1 where vi−1 is a
predecessor of vi for 1 ≤ i < 2k. For i > 0, each vi has two predecessors, namely vi−1

and uπ(i). The only predecessor of v0 is u0.

Theorem D.5.32 ([130]). Fix n= 2 · 2k. Consider the bit reversal graph with n vertices
and any black-white pebbling of time t and s > 3. Then it holds that t ≥ n2

18s2 + 2n.

D.5. TRADE-OFFS FOR PEBBLING FORMULAS 221

u0

0000

v0

0000

u1

0001

v1

0001

u2

0010

v2

0010

u3

0011

v3

0011

u4

0100

v4

0100

u5

0101

v5

0101

u6

0110

v6

0110

u7

0111

v7

0111

u8

1000

v8

1000

u9

1001

v9

1001

u10

1010

v10

1010

u11

1011

v11

1011

u12

1100

v12

1100

u13

1101

v13

1101

u14

1110

v14

1110

u15

1111

v15

1111

Figure D.12: Bit reversal graph with k = 4.

Theorem D.5.33 (Trade-off for pebbling formulas over bit reversal graphs). There
exists an efficiently constructible family of 3-CNF formulas Fk of size n= Θ(2k) that have
a CDCL refutation without restarts and with any cutting learning scheme in space O(s)
and time O(n2/s) simultaneously, for every s = O(

p
n). Moreover, any CDCL refutation

simultaneously in space s ≤
p

n and time τ satisfies

τ= Ω
�

�n
s

�2�

, (D.5.3)

regardless of the learning scheme and of the restart policy.

Proof. The formula family Fk for which we prove this theorem is Peb⊕Gk
, where the graph

Gk is the robust version of the bit reversal graph in Definition D.5.31 with 2 · 2k vertices.
We will show that the bit reversal graph has a binary tree pebbling of space O(s) and

time O(n2/s). Since the appropriate trade-off for black-white pebbling also holds by
Theorem D.5.32, the result then follows by Lemma D.5.21.

We start with a chain of nodes p0, . . . , p2k−1 labelled respectively v0, . . . , v2k−1, and
connected so that for 0< i < 2k, pi−1 is the left child of pi . Each pi has a right child qi

labelled by vertex uπ(i). Let us further denote Ti, j for 0≤ i ≤ j < 2k as a tree made by a
single chain of j − i + 1 nodes labelled from the leaf to the root with vertices ui , . . . , u j

respectively. Notice that Ti,i is a tree containing a single node.
A trivial construction would be to attach to each node qi a tree T0,π(i). This produces a

binary tree pebbling for the bit reversal graph of time O(n2) and constant space. Another
simple construction would be to attach at node qi the tree T j,π(i) where j is the index
closest to π(i) so that label u j occur in one of the trees attached to some earlier pi′ with
i′ < i. In this construction instead all internal nodes labelled by some u j are indeed cache
nodes. The space of this tree is O(n) and its time is O(n) as well. For our construction
we do something in between of these two extremes: we divide the sequence 0, . . . , 2k−1
into s intervals of length 2k/s. Let L be the set of lower endpoints of the intervals. We use
the nodes in L as cache nodes and go back to the closest cache node each time. Formally,

222 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

we attach the tree T0,0 to p0, and for each 0< i < 2k, we attach Tsi ,π(i) to node pi , where
si is the closest cache node: if t i =max j<i π(j) is the rightmost vertex in the lower path
visited so far, then si =max{l ∈ L | l ≤ t i}. Therefore, the total number of cache nodes is
O(s). For the time bound, observe that a length ` tree Ti,i+`−1 adds `/(2k/s)−O(1) new
cache nodes. Because each cache node is added only once, (s/2k)

∑

`−O(2k)≤ s, so the
total path length is O((2k)2/s+ 2k). Therefore the total time of the whole construction
is O(n2/s+ n), which is O(n2/s) when s = O(

p
n).

D.6 Trade-offs for Tseitin formulas

In this section we show time-space trade-offs for CDCL refutations of Tseitin formulas,
which are formulas encoding a particular form of unsatisfiable linear systems of equations
mod 2. Let us give a formal definition of these formulas.

Definition D.6.1 (Tseitin formula). Let G = (V, E) be an undirected graph and χ : V →
{0,1} be a vertex charge function. Identify every edge e ∈ E with a variable xe that
gets value in {0,1} and let PARITY v,χ denote the CNF encoding of the parity constraint
∑

e3v xe = χ(v) (mod 2) for a vertex v ∈ V . Then the Tseitin formula over G with respect
to χ is Ts(G,χ) =

∧

v∈V PARITY v,χ .

When the degree of G is bounded by d, PARITY v,χ has at most 2d−1 clauses, all of
width at most d, and hence Ts(G,χ) is a CNF formula with at most 2d−1|V | clauses.
Again, we refer the reader to Figure D.4 for a small example of a Tseitin formula.

We say that a set of vertices U has odd (even) charge if
∑

u∈U χ(u) is odd (even). By a
simple counting argument one sees that Ts(G,χ) is unsatisfiable if V (G) has odd charge.

In this section we are interested in grid (multi-)graphs with double edges. A grid
graph of size w× ` has vertex set {(i, j) | 0≤ i < w, 0≤ j < `}. A grid graph wit double
edges has the following set of edges: for each vertex (y, x), if y < w− 1, there are two
vertical edges to (y+1, x) labelled evy,x , ev′y,x , and if x < `−1, there are two horizontal
edges to (y, x + 1) labelled ehy,x , eh′y,x .

For Tseitin formulas on grid graphs with double edges, trade-off results are know for
resolution refutations.

Theorem D.6.2 ([23]). Consider a Tseitin formula over a w× ` grid graph with double
edges, with odd charge function. It holds that

• the formula has a resolution refutation of length O(2O(w)`) and clause space O(2O(w)),

• the formula has a tree-like resolution refutation of length O(`O(w)) and clause space
O(w log(`)),

• if 1≤ w≤ `1/4, then if a resolution refutation has length L and clause space s,

L =

�

2Ω(w)

s

�Ω
�

log log`
log log log`

�

D.6. TRADE-OFFS FOR TSEITIN FORMULAS 223

The short resolution refutation follows a dynamic programming approach. During
the proof we maintain a subset of vertices and we keep in memory the clauses that
represent the sum of charges over that subset—equivalently, the sum over the border.
The proof ends when we show that an empty border has odd charge. We update the
subset by adding vertices ordered by column, so that the border has size at most w+ 1
and we can represent its sum in at most 2w clauses. Adding a vertex means resolving a
constant number of clauses with the clauses in memory, which gives a total length of
O(2ww`).

The small resolution refutation is the tree-like proof induced by a search tree. The
search tree performs a binary search along the columns, at each step querying the w
variables in the middle column and then recursively exploring the subgraph of odd
charge. The depth of this search tree is at most w(log(`) + 1), which yields a proof of
length O(`w) and space O(w log(`)).

Our goal is to find CDCL equivalents of these resolution proofs. In the next two
subsections, we show CDCL simulations of both proofs. We assume the 1UIP learning
scheme.

Theorem D.6.3 (CDCL simulation results for Tseitin). Consider the Tseitin formula
over a w× ` grid graph with double edges, with charge 1 in vertex (0,0) and charge 0 in
all other vertices. It holds that

• the formula has a time-efficient CDCL refutation with the 1UIP learning scheme of
time O(25w`) and space O(22w) simultaneously,

• the formula has a space-efficient CDCL refutation with the 1UIP learning scheme of
space O(w log`) and time O(`O(w)) simultaneously.

Moreover, if 1≤ w≤ `1/4, any CDCL refutation of space s has time

τ=

�

2Ω(w)

s

�Ω
�

log log`
log log log`

�

,

regardless of the learning scheme and of the restart policy.

In the proof of both simulations, we use the following notation. We denote the
variable corresponding to edge e also by e. We denote the set of vertices between x = l
and x = r by V[l,r] and the set of edges in the induced subgraph of V[l,r] by E[l,r]. Let
EH j =

⋃

0≤i<w{ehi, j , eh′i, j} denote the set of 2w horizontal edges between columns j
and j + 1, for 0 ≤ j < w− 1. Let EV j =

⋃

0≤i<w−1{evi, j , ev′i, j} denote the set of 2w− 2
vertical edges in column j, for 0≤ j < w. Let charge(S) =

⊕

e∈S v(e) denote the parity
of the set of variables S under the current assignment v, where v(e) = 1 corresponds to
assignment true to variable e and v(e) = 0 corresponds to false.

In the dynamic programming proof, we will learn the set of clauses saying that
charge(EH j) = 1 for all 0 ≤ j < w − 1. This linear equation is encoded using 22w−1

224 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

clauses. Each of these clauses rules out a single even charge assignment to EH j . Let L j

denote this set of clauses for EH j .
The main lemma we use is the following.

Lemma D.6.4. Consider a subgrid V[l,r] (0≤ l ≤ r ≤ w− 1). Suppose E[l,r] is unassigned
and both EHl−1 and EHr are assigned, unless l = 0 or r = `− 1. Let (`0,`1, . . . ,`2w−1)
denote the last 2w assignments. Suppose {var(`i) | 0≤ i < 2w} ∈ {EHl−1, EHr}, and let B
be the set of literals assigned true from (EHl−1 ∪ EHr) \ {var(`i) | 0≤ i < 2w} (B is empty
if l = 0 or r = `− 1).

Suppose that the only learnt clauses not being used as a reason are from the L j sets,
and that the restricted problem on V[l,r] would be satisfiable if any of the assignments to
EHl−1 ∪ EHr was inverted.

For each literal `i that is not a decision, denote its reason by Ci . Let Ri = Ci \
�

{¬` j | 0≤ j < i} ∪ {`i}
�

and suppose Ri ∩ V[l,r] = ;. Suppose at least one `i is a de-
cision and let k be the largest index such that `k is a decision. Assume the only possible
learnt clauses involving variables from V[l,r] are clauses from one of the L j .

Consider any CDCL trace setting only variables within E[l,r] until the first conflict that
causes the CDCL refutation to backtrack from `k (and possibly further). At this conflict,
CDCL with 1UIP learns the clause (¬`0 ∨ . . .∨¬`k) ∨

∨

i>k Ri ∨
∨

`∈B ¬` with asserting
literal ¬`k.

Proof. Consider the resolution derivation of the conflict clause derived, where the clauses
from the L j that were learnt before the trace began are axioms, and we expand the
derivation of clauses learnt during the trace. Observe that we never resolve over any of
the variables in EHl−1 or EHr , because these are part of the trail during the whole trace.

Suppose the asserting variable is one of the edges in E[l,r]. Then `k was not used in
the derivation; however, the conclusion does not hold if we invert `k: in that case, the
restricted problem is satisfiable, and we can flip any two variables for each double edge
in E[l,r] (note that this doesn’t falsify the clauses from the L j). But the derivation should
also be true for the restricted formula with `k inverted, so we obtain a contradiction.

Therefore the asserting variable must be one of `k,`k+1, . . . ,`2w−1. Because the
restricted formula V[l,r] would be satisfiable if any of the assignments to EHl−1 ∪ EHr

was inverted, for all border vertices of V[l,r] adjacent to the `i , we use at least one clause
from the charge axioms for these vertices, involving each `i . So 1UIP resolves over
`k+1, . . . ,`2w−1 and ends up with asserting variable `k.

D.6.1 Time-efficient proof

In this section, we show a CDCL simulation of the time-efficient proof. We learn all
the L j clause sets and try to do tree-like resolution otherwise. The simulation strategy
is given as a recursive procedure SolveDP(j) which produces a sequence of decisions
and forget commands. The initial call to generate this sequence is SolveDP(`− 2). The
clause deletion strategy will be to forget a learnt clause part of an L j when a forget

D.6. TRADE-OFFS FOR TSEITIN FORMULAS 225

command for this clause is encountered in the sequence; all other learnt clauses are
forgotten at the earliest stable state in which they do not occur as a reason anymore. We
use a procedure BF(L, cb) that takes as input a list of variables L and a callback function
cb, and tries all possibilities for the variables in L (generating a full binary tree of depth
|L|; variables in L are decided on in the order they appear in L), calling function cb at
each leaf in the tree (that is, for each assignment of L).

The strategy first assigns the variables in the order from x = w to x = 1 and then
learns the L j from x = 1 to x = w. In order to learn that charge(EH j) = 1, we try all
possible assignments such that charge(EH j) = 0 and derive UNSAT for the subproblem
on V[0, j]. For the first such assignment, we have to solve the whole subgrid V[0, j], but
as a result we learn L j−1, so that proving all other assignments UNSAT can be done
without assignments past column j − 1. In order to learn a clause from L j , the last
assignment to EH j must be a decision; if it is a propagation, variables from EH j+1 (used
to refute an assignment to EH j with odd charge) could be included in the conflict clause.
Therefore, we process the assignments such that for assignments with even charge, the
last assignment a decision. This is implemented by deciding the last variable such that
the total charge is 0. For example, if w= 3, the bitstrings for EH j are processed in the
following order. The first bit denotes the top-level decision in the tree; bold numbers
denote implications, the others decisions. 000, 001, 011, 010, 101, 100, 110, 111. Note
that the last variable is a decision in every other step, and that in these steps, the parity
of the bitstring is even. If the last variable is a decision, we learn a clause from L j;
otherwise, we use the assignment to EH j ∪ EH j+1 to prove UNSAT in EV j+1.

In the pseudocode, we denote by #trailingzeroes(i, n) the number of trailing zeroes
of the binary representation of i (0≤ i < 2n; it returns n for i = 0).

Lemma D.6.5. Suppose 0≤ j ≤ `− 2. If certain preconditions hold, calling SolveDP(j)
has time complexity (length of the trace) O(25w · (j + 1)), space complexity O(22w) and
results in a set of postconditions.

Preconditions:

• E[0, j+1] is unassigned and there are no learnt clauses involving variables from E[0, j+1].

• If j = `− 2, the trail is empty; otherwise, the last assignments on the trail are the
assignments to EH j+1 (all zeroes, and all decisions).

Postconditions:

• E[0, j+1] is unassigned.

• If j = `− 2, UNSAT is determined; otherwise, the clause
∨

x∈EH j+1
x is learnt, and

the only change to the trail is that the lowest decision is replaced by an implication of
∨

x∈EH j+1
x .

• All clauses in L j are learnt and remembered.

226 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Proof. The Tseitin formula restricted to the current assignment is unsatisfiable on V[0, j+1]
because, if j < `− 1, then charge(EH j+1) = 0 so the restricted formula on V[0, j+1] has
odd charge.

We bruteforce over EH j . This means creating a full binary tree of depth 2w− 1 over
the variables in EH j , except for the last one ehw−1, j . We set the variables in order of
increasing y . At each leaf of the tree, we call MainLoopDP(j). Because we want to learn
that charge(EH j) = 1, as explained above, we decide the last variable eh′w−1, j such that
charge(EH j) = 0 and learn a clause from L j by solving the inconsistent restricted formula
on V[0, j]. Then the last variable flips, charge(EH j) = 1 and we solve the inconsistent
restricted formula on V[j+1, j+1], that is, for EV j+1.

If j = 0, in the first part of MainLoopDP(0) we bruteforce over EV0. We state without
proof that only at the end of this bruteforce, we get a conflict beyond the assignments
to EV0, and then by Lemma D.6.4 with l = 0 and r = 0, we learn each clause from L0

(because B is empty and k = 2w− 1, that is, the last variable set in EH0 was a decision).
In the second part, we bruteforce over EV1. Again we state without proof that only at
the end of this bruteforce, we get a conflict beyond the assignments to EV1, and then by
Lemma D.6.4 with l = r = 1, backtracking on the EH0 set works as usual. At the end
of the last call to MainLoopDP(0), all literals in EH0 were implied, so if `= 1 we have a
top-level conflict and conclude UNSAT; otherwise, by Lemma D.6.4 with l = 0 and r = 1
we learn

∨

x∈EH1
x and the lowest decision is negated.

Now assume j > 0. For the first leaf, MainLoopDP(j) recurses to SolveDP(j−1). The
result of this recursive call, by induction, is to learn L j−1 and to learn the first clause
of L j as well. For all other leafs, MainLoopDP(j) bruteforces over EH j−1 except the last
edge, plus half the edges in EV j , one edge per edge pair. This is enough to discover
UNSAT because EH j−1 was learnt. Note that we skip the last edge of both EH j−1 and
EV j because these will be unit propagated (for EH j−1, this is because L j−1 is learnt; for
EV j , it is because all other edges incident to the same vertex were already assigned). We
state without proof that only at the end of this bruteforce, we get a relative top-level
conflict. By Lemma D.6.4 with l = 0 and r = j, we learn a clause from L j . In the second
part of MainLoopDP(j), we have charge(EH j) = 1, so EH j and EH j+1 (or the empty set
of edges adjacent to the last column if j = `− 2) have opposite parity and we discover
the conflict by bruteforcing over EV j+1. We state without proof that only at the end of
this bruteforce, we get a conflict beyond these assignments. Except for the last leaf, by
Lemma D.6.4, we backtrack in the intended way. For the last leaf, all assignments to
EH j are implications, by Lemma D.6.4 with l = 0 and r = j + 1, we learn

∨

x∈EH j+1
x ,

and the lowest decision is negated, except if j = `− 2, in which case we have a top-level
conflict and UNSAT is determined.

The time complexity: the non-recursive part of SolveDP(j) creates a search tree of
depth 2w, and calls MainLoopDP(j) at each leaf, generating another search tree of depth
at most 3w, so the time complexity is O(25w · (j + 1)). It can be verified that at most
one edge propagates at each node in all “brute force” trees, so the total cost of the unit
propagations is constant.

D.6. TRADE-OFFS FOR TSEITIN FORMULAS 227

The space complexity: no clauses are learnt before the recursive call to SolveDP(j−1).
Except for the L j , all clauses learnt during the “brute force” parts are used in a tree-like
manner and removed when we are in a stable state and they are not used as a reason
anymore. Except for the recursive call, we use O(w) variables, so the additional space of
other learnt clauses is O(w). So the space complexity is O(22w).

Procedure BF(L,callback)
Input: A list L0, L1, . . . , Ln−1, and a callback function callback

1 for i← 0,1, . . . , 2n − 1 do
2 for j← # trailingzeroes(i, n)− 1, . . . , 0 do
3 Decide Ln−1− j=0/d

4 callback()

Procedure MainLoopDP(j)
1 Decide eh′w−1, j=charge(EH j \ {eh′w−1, j})/d
2 if j = 0 then
3 BF ([ev0,0, . . . , evw−2,0],None)
4 else
5 if all variables in EH j are assigned zero then
6 SolveDP (j − 1)
7 else
8 BF ([eh0, j−1, eh′0, j−1, . . . , ehw−2, j−1, eh′w−2, j−1, ehw−1, j−1, ev0, j , . . . , evw−2, j],None)

9 Learn a clause from L j

10 Assert eh′w−1, j=1− charge(EH j \ {eh′w−1, j})/u
11 BF ([ev0, j+1, . . . , evw−2, j+1],None)

Procedure SolveDP(j)
1 BF ([eh0, j , eh′0, j , . . . , ehw−2, j , eh′w−2, j , ehw−1, j],MainLoopDP(j))
2 if j > 0 then Forget all clauses in L j−1

D.6.2 Space-efficient proof

In this section, we show a CDCL simulation of the space-efficient proof. The simula-
tion strategy is given as a recursive procedure SolveTreelike(l, r) which produces a
sequence of decisions.

The initial call to generate this sequence is SolveTreelike(0, w− 1). The clause
deletion strategy will be to forget a learnt clause at the earliest stable state in which they

228 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

do not occur as a reason anymore. We use the same procedure BF(L, cb) as described in
the time-efficient proof.

The strategy bruteforces over the middle column EHb(w−1)/2c, and then recursively
solves either V[0,b(w−1)/2c] or V[1+b(w−1)/2c,w−1] depending on which part has an odd total
charge.

Lemma D.6.6. Consider a subgrid V[l,r] (0≤ l ≤ r ≤ w− 1). Suppose V[l,r] is unassigned
and there are no learnt clauses containing variables within E[l,r]. Suppose we assign EHl−1

(if l > 0) and EHr (if r < `− 1) such that, in the resulting restricted Tseitin formula on
V[l,r], the sum of charges is odd in column l, and even in columns l + 1, . . . , r.

Then SolveTreelike(l, r) is a proof of UNSAT for the restricted problem and backtracks
beyond assignments to E[l,r].

Proof. If l = r, we state (without proof) that brute forcing over every other edge of
EV l constitutes an UNSAT proof with backtracking beyond assignments to EV l after the
last specified conflict. Otherwise, we first brute force over EHm. At each iteration of
MainLoopTreelike(l, r), we set the last edge in EHm such that charge(EHm) = 0. Then
we recursively call SolveTreelike(l, m). After executing SolveTreelike(l, m), we get
a conflict at the decision level of eh′w−1,m. By Lemma D.6.4, CDCL flips eh′w−1,m and doesn’t
backtrack further. Then charge(EHm) = 1 and we recursively call SolveTreelike(m+
1, r). Note that the restricted sum of charges in the vertices of column m+ 1 is now
odd, so the preconditions for the inductive step on [m + 1, r] hold. After executing
SolveTreelike(m+ 1, r), by Lemma D.6.4, CDCL backtracks in the intended way; for
the last leaf, all edges in EHm are implications, so backtracking to the assignment before
the recursive call occurs.

Procedure MainLoopTreelike(l,r)
1 m← b(l + r)/2c
2 Decide eh′w−1,m=charge(EH j \ {eh′w−1,m})/d
3 SolveTreelike (l, m)
4 Assert eh′w−1,m=1− charge(EH j \ {eh′w−1,m})/u
5 SolveTreelike (m+ 1, r)

Procedure SolveTreelike(l,r)
1 if l = r then
2 BF ([ev0,l , ev1,l , . . . , evw−2,l],None)
3 else
4 m← b(l + r)/2c
5 BF ([eh0,m, eh′0,m, . . . , ehw−2,m, eh′w−2,m, ehw−1,m],MainLoopTreelike (l,r))

D.7. CONCLUDING REMARKS 229

Theorem D.6.3 follows from the time-efficient and space-efficient refutations we just
discussed together with Theorem D.6.2.

D.7 Concluding Remarks

In this paper, we present a proof system that closely models conflict-driven clause learning
(CDCL) and yields natural measures not only of running time but also of memory usage
and number of restarts. To the best of our knowledge, previous papers considered either
zero restarts or very frequent restarts, and none of the models captured space. We
show that lower bounds on proof size and space in resolution carry over to this CDCL
proof system. Furthermore, we establish that currently known trade-offs between size
and space in resolution can be transformed into essentially equally strong trade-offs
between time and memory usage for CDCL, where the upper bounds are achieved by
CDCL without any restarts using the standard 1UIP clause learning scheme, and the
lower bounds apply even for arbitrarily frequent restarts and arbitrary clause learning
schemes.

The focus of our work is theoretical, namely to see if CDCL proof search is in principle
subject to the kind of trade-offs shown previously for the resolution proof system in
which it searches for proofs. Since the answer turns out to be yes, an interesting direction
for future work would be to investigate experimentally whether anything like these
time-space trade-offs show up also in practice (when variable decisions have to be made
constructively, typically using the VSIDS decision scheme).

Two other interesting problems are whether CDCL with 1UIP clause learning can
simulate general resolution efficiently with respect to both time and space (measuring
time only, a polynomial simulation follows from [152]), and whether CDCL with 1UIP
and without restarts can simulate or be separated from regular resolution. If one
believes that a separation should be more likely, a first step could be to revisit the
formulas in [45, 51] and study them in our more restrictive setting, which more closely
models actual CDCL search and hence might make proving lower bounds easier. It should
be said, though, that both of these problems still look like formidable challenges, but
one could hope that it would be possible to shed new light on them by focusing on a
model that better describes how CDCL proof search works.

A more specialized question along the same lines, but still quite intriguing, is what
can be said if VSIDS and phase saving is plugged into our CDCL model. The VSIDS
heuristic seems like an important part of what makes CDCL SAT solvers so successful in
practice, and yet there are also theoretical combinatorial formulas where it seems to be
less useful. It would be interesting if one could find explicit examples of formulas where
VSIDS in combination with phase saving goes provably wrong compared to the best
possible resolution proof, causing a large polynomial or even superpolynomial blow-up
in proof size.

230 PAPER D. TRADE-OFFS BETWEEN TIME AND MEMORY IN CDCL

Acknowledgements

We are grateful to the anonymous SAT conference reviewers for detailed comments that
helped improve the exposition in this paper.

The third author performed this work while at KTH Royal Institute of Technology,
and most of the work of the second and fourth author was done while visiting KTH. The
first, third, fifth, and sixth author were funded by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant
agreement no. 279611 as well as by Swedish Research Council grant 621-2012-5645.
The third author was also supported by the European Research Council under the
European Union’s Horizon 2020 Research and Innovation Programme / ERC grant
agreement no. 648276.

Paper E

Hardness of Approximation in PSPACE
and Separation Results for Pebble
Games

Siu Man Chan, Massimo Lauria, Jakob Nordström, and
Marc Vinyals

Full length version of the article published in Proceedings of the 56th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS ’15), October 2015, pp. 466–485.

Abstract

We consider the pebble game on DAGs with bounded fan-in introduced in [Pa-
terson and Hewitt ’70] and the reversible version of this game in [Bennett ’89], and
study the question of how hard it is to decide exactly or approximately the number
of pebbles needed for a given DAG in these games.

We prove that the problem of deciding whether s pebbles suffice to reversibly
pebble a DAG G is PSPACE-complete, as was previously shown for the standard
pebble game in [Gilbert, Lengauer and Tarjan ’80]. Via two different graph product
constructions we then strengthen these results to establish that both standard and
reversible pebbling space are PSPACE-hard to approximate to within any additive
constant. To the best of our knowledge, these are the first hardness of approximation
results for pebble games in an unrestricted setting (even for polynomial time).
Also, since [Chan ’13] proved that reversible pebbling is equivalent to the games
in [Dymond and Tompa ’85] and [Raz and McKenzie ’99], our results apply to
the Dymond–Tompa and Raz–McKenzie games as well, and from the same paper
it follows that resolution depth is PSPACE-hard to determine up to any additive
constant.

We also obtain a multiplicative logarithmic separation between reversible and
standard pebbling space. This improves on the additive logarithmic separation

231

232 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

previously known and could plausibly be tight, although we are not able to prove
this.

We leave as an interesting open problem whether our additive hardness of
approximation result could be strengthened to a multiplicative bound if the compu-
tational resources are decreased from polynomial space to the more common setting
of polynomial time.

E.1 Introduction

In the pebble game first studied by Paterson and Hewitt [149], one starts with an empty
directed acyclic graph (DAG) G with bounded fan-in (and which in this paper in addition
will always have a single sink) and places pebbles on the vertices according to the
following rules:

• If all (immediate) predecessors of an empty vertex v contain pebbles, a pebble
may be placed on v.

• A pebble may be removed from any vertex at any time.

The goal is to get a pebble on the sink vertex of G with all other vertices being empty,
and to do so while minimizing the total number of pebbles on G at any given time (the
pebbling price of G). This game models computations with execution independent of the
actual input. A pebble on a vertex indicates that the corresponding value is currently
kept in memory and the objective is to perform the computation with the minimum
amount of memory.

The pebble game has been used to study flowcharts and recursive schemata [149],
register allocation [171], time and space as Turing-machine resources [65, 104], and
algorithmic time-space trade-offs [58, 173, 168, 174, 176]. In the last 10–15 years,
there has been a renewed interest in pebbling in the context of proof complexity as
discussed in the survey [145] (although in this context one is often interested also in the
slightly more general black-white pebble game introduced in [67]), and pebbling has also
turned out to be useful for applications in cryptography [73, 8]. An excellent overview
of pebbling up to ca. 1980 is given in [153] and some more recent developments are
covered in the upcoming survey [146].

Bennett [31] introduced the reversible pebble game as part of a broader program [30]
to investigate possibilities to eliminate (or significantly reduce) energy dissipation
in logical computation. Another reason reversible computation is of interest is that
observation-free quantum computation is inherently reversible. In the reversible pebble
game, the moves performed in reverse order should also constitute a legal pebbling,
which means that the rules for pebble placement and removal become symmetric as
follows:

• If all predecessors of an empty vertex v contain pebbles, a pebble may be placed
on v.

E.1. INTRODUCTION 233

• If all predecessors of a pebbled vertex v contain pebbles, the pebble on v may be
removed.

Reversible pebblings of DAGs have been studied in [133, 126] and have been employed
to shed light on time-space trade-offs in reversible simulation of irreversible computation
in [132, 129, 183, 48]. In a different line of work Potechin [155] implicitly used the
reversible pebble game for proving lower bounds on monotone space complexity, with
the connection made explicit in the follow-up works [57, 81].

Another pebble game on DAGs that will be of interest in this paper is the Dymond–
Tompa game [74] played on a DAG G by a Pebbler and a Challenger. This game is played
in rounds, with both players starting at the sink in the first round. In the following
rounds, Pebbler places a pebble on some vertex of G after which Challenger either stays
at the current vertex or moves to the newly pebbled vertex. This repeats until at the end
of a round Challenger is standing on a vertex with all (immediate) predecessors pebbled
(or on a source, in which case the condition vacuously holds), at which point the game
ends. Intuitively, Challenger is challenging Pebbler to “catch me if you can” and wants
to play for as many rounds as possible, whereas Pebbler wants to “surround” Challenger
as quickly as possible. The Dymond–Tompa price of G is the smallest number r such that
Pebbler can always finish the game in at most r rounds. The Dymond–Tompa game has
been used to establish that for parallel time a speed-up by a logarithmic factor is always
possible [74], and in [182] it was shown that a slightly modified variant of this game
exactly characterizes parallelism in complexity classes like ACi , NC, and P, and can be
used to re-derive, for instance, Savitch’s theorem. Furthermore, collapses or separations
of these classes can in principle be recast (or discovered) as bounds on Dymond–Tompa
price. Interestingly, this characterization of parallelism extends to proof complexity as
well as discussed in [54].

A final game with pebbles that we want to just mention without going into any
details is the Raz–McKenzie game introduced in [158] to study the depth complexity of
decision trees solving search problems. The reason for bringing up the Dymond–Tompa
and Raz–McKenzie games is that it was shown in [54] that both games are actually
equivalent to the reversible pebble game. Hence, any bounds derived for the reversible
pebble game also hold for Dymond–Tompa price and Raz–McKenzie price.

The main focus of this paper is to study how hard it is to decide exactly or approx-
imately the pebbling price of a DAG. For the standard pebble game Gilbert et al. [88]
showed that given a DAG G and a positive integer s it is PSPACE-complete to determine
whether space s is sufficient to pebble G or not. It would seem natural to suspect that
reversible pebbling price should be PSPACE-complete as well, but the construction in [88]
cannot be used to show this.

Given that pebbling price is hard to determine exactly, an even more interesting
question is if anything can be said regarding the hardness of approximating pebbling
price. Although this seems like a very natural and appealing question, apparently next
to nothing has been known about this.

234 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Wu et al. [186] showed that “one-shot” standard pebbling price is hard to approximate
to within any multiplicative constant assuming the so-called Small Set Expansion (SSE)
hypothesis. In a one-shot pebbling one is only allowed to pebble each vertex once,
however, and this is a major restriction since the complexity now drops from PSPACE-
complete to NP-complete [171]. Note that containment in NP is easy to see since any
one-shot pebbling can be described concisely just by listing the order in which the vertices
should be pebbled (and it is easy to compute when a pebble is no longer needed and
can be removed). In contrast, in the general case pebbling strategies that are optimal
with respect to space can sometimes provably require exponential time.

One can also go in the other direction and study more general pebble games, such as
the AND/OR pebble game introduced by Lingas [134] in one of the works leading up
to [88]. Here every vertex is labelled AND or OR. For AND-vertices we have the usual peb-
bling rule, but for OR-vertices it is sufficient to just have one pebble on some predecessor
in order to be allowed to pebble the vertex. This game has a relatively straightforward
reduction from hitting set [80], which shows that it is hard to approximate to within a
logarithmic factor, but the reduction crucially depends on the OR-nodes.

We remark that hardness of approximation in PSPACE for other problems has been
studied in [63], but those techniques seem hard to adapt to pebble games since the
reduction from QBF to pebbling is inherently unable to preserve gaps.

Another problem that we study in the current paper is the relation between standard
pebbling price and reversible pebbling price. Clearly, the space needed to reversibly
pebble a graph is at least the space required in the standard pebble game. It is also
not hard to see that there are graphs that require strictly more pebbles in a reversible
setting: for a directed path on n vertices only 2 pebbles are needed in the standard
game, while it is relatively straightforward to show that the reversible pebbling space
is Θ(log n) [31, 133]. However, for “classic” graphs studied in the pebbling literature,
such as binary trees, pyramids, certain superconcentrators, and the worst-case graphs
in [151], the reversible and standard pebbling prices coincide asymptotically, and are
sometimes markedly closer than an additive logarithm apart.

This raises the question whether reversible and standard pebbling can be asymptot-
ically separated with respect to space. It might be worth pointing out in this context
that for Turing machines it was proven in [129] that any computation can be simulated
reversibly in exactly the same space. In the more restricted pebbling model, it was shown
in [126] that if the standard pebbling price of a DAG G on n vertices is s, then G can be
reversibly pebbled with at most s2 log n pebbles. Thus, if there is not only an additive but
also a multiplicative separation between standard and reversible pebbling price, such a
separation cannot be too large.

E.1.1 Our Results

We obtain the following results:

E.1. INTRODUCTION 235

1. We establish an asymptotic separation between standard and reversible pebbling
by exhibiting families of graphs {Gn}∞n=1 of size Θ(n)with a single sink and fan-in 2
which have standard pebbling price s(n) and reversible pebbling priceΩ(s(n) log n).
This construction works for any s(n) = O

�

n1/2−ε
�

with ε > 0 constant, where the
constant hidden in the asymptotic notation in the lower bound has a (mild)
dependence on ε.

2. We prove that determining reversible pebbling price is PSPACE-complete. That is,
given a single-sink DAG G of fan-in 2 and a parameter s, it is PSPACE-complete to
decide whether G can be reversibly pebbled in space s or not.

3. Finally, we present two different graph products (for standard and reversible
pebbling, respectively) that take DAGs Gi of size ni with pebbling price si for
i = 1, 2 and yield a DAG of size O

�

(n1+ n2)2
�

with pebbling price s1+ s2+ Kp (for
Kp = ±1 depending on the flavour of the pebble game). Combining these graph
products with the PSPACE-completeness results for standard pebbling in [88] and
reversible pebbling in item 2, we deduce that for any fixed K the promise problem
of deciding for a DAG G (with a single sink and fan-in 2) whether it can be pebbled
in space s or requires space s + K is PSPACE-hard in both the standard and the
reversible pebble game.

We need to provide more formal definitions before going into a detailed discussion
of techniques, but want to stress right away that a key feature of the above results is the
bounded fan-in condition. This is the standard setting for pebble games in the literature
and is also crucial in most of the applications mentioned above. Without this constraint
it would be much easier, but also much less interesting, to prove our results.1

Another aspect worth pointing out is that although the reversible pebble game is
weaker than the standard pebble game, it is technically muchmore challenging to analyze.
The reason for this is that a standard pebbling will always progress in a “forward sweep”
through the graph in topological order, and so one can often assume without loss of
generality that once one has pebbled through some subgraph the pebbling will never
touch this subgraph again. For a reversible pebbling this is not so, since any pebble placed
on any descendant of vertices in the subgraph will also have to be removed at some later
time, and this has to be done in reverse topological order. Therefore, in any reversible
pebbling there will be alternating phases of “forward sweeps” and “reverse sweeps,”
and these phases can also be interleaved at various levels. For this reason, controlling
the progress of a reversible pebbling is substantially more complicated. Despite the
additional technical difficulties, however, we consider the reversible pebble game to be

1The reason to emphasize this is that for unbounded fan-in the first author proved a PSPACE-completeness
result for reversible pebbling in [55], but this result uses simpler constructions and techniques that do not
transfer to the bounded fan-in setting. Another, somewhat related, example is that deciding space in the
black-white pebble game has also been shown to be PSPACE-complete for unbounded indegree in [102], but
there the unbounded fan-in can be used to eliminate the white pebbles completely, and again the techniques
fail to transfer to the bounded indegree case.

236 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

at least as interesting to study as the standard and black-white pebble games in view of
its tight connection with parallelism in circuit and proof complexity as described in [54].

E.1.2 Organization of This Paper

We present the necessary preliminaries in Section E.2 and then give a detailed overview
of our results in Section E.3. We prove an asymptotic separation between standard and
reversible pebbling in Section E.4. In Section E.5 we compute the exact price of some
classic graphs, trees and pyramids, that we use in Section E.6 to construct technical
gadgets. These play a key role in Section E.7, where we show that reversible pebbling is
PSPACE-complete. We detail the graph product for reversible pebbling in Section E.8
and its counterpart for standard pebbling in Section E.9. Some concluding remarks are
presented in Section E.10.

E.2 Preliminaries

All logarithms in this paper are base 2 unless otherwise specified. For a positive integer n
we write [n] to denote the set of integers {1,2, . . . , n}. We use Iverson bracket notation

JBK=

¨

1 if the Boolean expression B is true;

0 otherwise;
(E.2.1)

to convert Boolean values to integer values.

E.2.1 Boolean Formula Notation and Terminology

A literal a over a Boolean variable x is either the variable x itself or its negation x (a
positive or negative literal, respectively). A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals. A k-clause is a clause that contains at most k literals. A formula F in conjunctive
normal form (CNF) is a conjunction of clauses F = C1 ∧ · · · ∧ Cm. A k-CNF formula is a
CNF formula consisting of k-clauses. We think of clauses and CNF formulas as sets, so
that the order of elements is irrelevant and there are no repetitions.

A quantified Boolean formula (QBF) is a formula φ =Q1 x1 Q2 x2 . . . Qn xn F , where
F is a CNF formula over variables x1, . . . , xn and Q i ∈ {∀,∃} are universal or existential
quantifiers (i.e., the formula is in prenex normal form with all variables bound by
quantifiers). It was shown in [172] that it is PSPACE-complete to decide whether a
QBF is true or not (where we can assume without loss of generality that F is a 3-CNF
formula).

E.2.2 Graph Notation and Terminology

We write G = (V, E) to denote a graph with vertices V (G) = V and edges edgesG = E.
All graphs in this paper are directed acyclic graphs (DAGs). An edge (u, v) ∈ edgesG is

E.2. PRELIMINARIES 237

an outgoing edge of u and an incoming edge of v, and we say that u is a predecessor of v
and that v is a successor of u. We write predG(v) to denote the set of all predecessors
of v in G and succG(v) to denote all its successors. Vertices with no incoming edges are
called sources and vertices with no outgoing edges are called sinks. For brevity, we will
sometimes refer to a DAG with a unique sink as a single-sink DAG, and this sink will
usually be denoted z.

Taking the transitive closures of the predecessor and successor relations, we define
the ancestors ancG(v) of v to be the set of vertices that have a path to v and the descendants
descG(v) to be the set of vertices on some path from v. By convention, v is an ancestor and
descendant of itself. We write anc∗G(v) = ancG(v) \ {v} and desc∗G(v) = descG(v) \ {v} to
denote the proper ancestors and proper descendants of v, respectively. These concepts are
extended to sets of pairwise incomparable vertices by taking unions so that ancG(U) =
⋃

u∈U ancG(u), anc∗G(U) =
⋃

u∈U anc∗G(u), et cetera, where we say that the vertices in U
are pairwise incomparable when no vertex in the set is an ancestor of any other vertex
in the set. When the graph G is clear from context we will sometimes drop it from the
notation.

E.2.3 Standard and Reversible Pebble Games

A pebble configuration on a DAG G = (V, E) is a subset of vertices P ⊆ V . We consider
the following three rules for manipulating pebble configurations:

1. P′ = P ∪ {v} for v /∈ P such that predG(v) ⊆ P (a pebble placement on v).

2. P′ = P \ {v} for v ∈ P (a pebble removal from v).

3. P′ = P \ {v} for v ∈ P such that predG(v) ⊆ P (a reversible pebble removal from v).

A standard pebblingP from P0 to Pτ is a sequence of pebble configurations (P0,P1, . . . ,Pτ)
where each configuration is obtained from the preceding one by the rules 1 and 2 while in
a reversible pebbling rules 1 and 3 should be used. The time of a pebbling P = (P0, . . . ,Pτ)
is time(P) = τ, and the space is space(P) =max0≤t≤τ{|Pt |}.

We say that a pebbling is unconditional if P0 = ; and conditional otherwise. The
pebbling price PebG(P) of a pebble configuration P is the minimum space of any uncon-
ditional standard pebbling on G ending in Pτ = P, and we define the reversible pebbling
price RPebG(P) by taking the minimum over all unconditional reversible pebblings reach-
ing P. The pebbling price of a single-sink DAG G with sink z is Peb(G) = PebG({z}), and
the reversible pebbling price of G is RPeb(G) = RPebG({z}). We refer to such pebblings
as (complete) pebblings of G or pebbling strategies for G. Again, when G is clear from
context we can drop it from the notation, and from now on we will usually abuse notation
by omitting the curly brackets around singleton vertex sets.

For technical reasons, we will often be interested in distinguishing particular flavours
of reversible pebblings. Suppose that v is a vertex in G and that P = (P0 = ;,P1, . . . ,Pτ)
is a reversible pebbling. We will use the following terminology and notation:

238 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

• P is a visiting pebbling of v if v ∈ Pτ. The visiting price RPebV(v) of v is the minimal
space of any such pebbling.

• P is a surrounding pebbling of v if pred(v) ⊆ Pτ and the surrounding price RPebS(v)
is the minimal space of any such pebbling.

• P is a persistent pebbling of v if it is a reversible pebbling of v in the sense defined
before, i.e., such that Pτ = {v}. We will sometimes refer to RPeb(v) as the
persistent price of v to distinguish it from the visiting and surrounding prices.

We also define the visiting price for a single-sink DAG G with sink z as RPebV(G) =
RPebV

G(z) and the surrounding price as RPebS(G) = RPebS
G(z).

Note that because of reversibility we could obtain exactly the same visiting space
measure by defining a visiting pebbling of v to be a pebbling P = (P0,P1, . . . ,Pτ) such
that P0 = Pτ = ; and v ∈

⋃

0≤t≤τ Pt , and let the visiting price be the minimal space of
any such pebbling. This is because once we have reached a configuration containing v
we can simply run the pebbling backwards (because of reversibility) until we reach the
empty configuration again. We can therefore think of a pebbling as visiting v if there
is a pebble on v at some point but this pebble does not stay on v until the end of the
pebbling. In a persistent pebbling the pebble remains on v until all other pebbles have
been removed. A surrounding pebbling, finally, is a pebbling that reaches exactly the
point where a pebble could be placed on v, since all its predecessors are covered by
pebbles (i.e., v is “surrounded” by pebbles), but where v is not necessarily pebbled.

It is not hard to see that for a single-sink DAG G we have the inequalities

Peb(G)≤ RPebV(G) (E.2.2)

and
RPebS(G)≤ RPebV(G)≤ RPeb(G) . (E.2.3)

Perhaps slightly less obviously, we also have the following useful equality.

Proposition E.2.1. For any vertex v in a DAG G it holds that RPebS(v) = RPeb(v)− 1.

Proof. To see that RPeb(v)≤ RPebS(v)+1 consider a surrounding pebbling PS of space
RPebS(v). Let P∗ be the pebbling which first runs PS to surround v, then puts a pebble
on v, and finally runs the reverse of PS to “unsurround” v (while keeping the pebble
on v). Since P∗ is a persistent pebbling of space RPebS(v) + 1, the inequality follows.

We now prove that RPebS(v) ≤ RPeb(v)− 1. Consider a persistent pebbling P for
v of space RPeb(v). Let t be the last time that a pebble is put on v. Then vertex v is
surrounded at time t, and there is a pebble on v since time t. Let P≥t be the conditional
pebbling obtained from P after time t, with the modification that vertex v has no pebble
throughout P≥t , and let PR

≥t be this pebbling run in reverse. Then PR
≥t is a surrounding

pebbling in space at most RPeb(v)− 1, and the inequality follows.

E.2. PRELIMINARIES 239

E.2.4 The Dymond–Tompa and Raz–McKenzie Games

As described above, the Dymond–Tompa game on a single-sink DAG G is played in rounds
by two players Pebbler and Challenger. In the first round Pebbler places a pebble on the
sink z and Challenger challenges this vertex. In all subsequent rounds, Pebbler places
a pebble on an arbitrary empty vertex and Challenger chooses to either challenge this
new vertex (which we refer to as jumping) or to re-challenge the previously challenged
vertex (referred to as staying). The game ends when at the end of a round all the
(immediate) predecessors of the currently challenged vertex are covered by pebbles.2

The Dymond–Tompa price DT(G) of G is the maximal number of pebbles r needed for
Pebbler to finish the game, or expressed differently the smallest number r such that
Pebbler has a strategy to make the game end in at most r rounds regardless of how
Challenger plays.

Let us also for completeness describe the Raz–McKenzie game, which is also played
on a single-sink DAG G by two players Pebbler and Colourer. In the first round Pebbler
places a pebble on the sink z and Colourer colours it red. In all subsequent rounds,
Pebbler places a pebble on an arbitrary empty vertex and Colourer then colours this new
pebble either red or blue. The game ends when there is a vertex with a red pebble, while
all its predecessors in the graph have blue pebbles. The Raz–McKenzie price RM(G) of G
is the smallest number r such that Pebbler has a strategy to make the game end in at
most r rounds regardless of how Colourer plays.

The intuition for this game is that the vertices on the graphs have assigned values
true (blue) or false (red), with the condition that each vertex has value equal to the
conjunction of the values of its predecessors. Colourer claims that the sink is false, but
the above condition vacuously implies that all source vertices must be true. Colourer
loses when Pebbler discovers a violation of the condition. Pebbler wants to find the
violation as soon as possible, while Colourer wants to fool Pebbler for as long as possible.

In [54] the first author proved that the equalities

DT(G) = RM(G) = RPeb(G) (E.2.4)

hold for any single-sink DAG G, i.e., that the reversible pebbling price, the Dymond–
Tompa price and the Raz–McKenzie price all coincide. Thus, any result we prove for one
of these games is also guaranteed to hold for the other games. The above equalities are
very convenient in that they allow us to switch back and forth between the reversible
pebble game and the Dymond–Tompa game (or Raz–McKenzie game) when proving
upper and lower bounds, depending on which perspective is more suitable at any given
time. In particular, when proving lower bounds for reversible pebblings it is often helpful
to do so by devising good Challenger strategies in the Dymond–Tompa game. One
final technical remark in this context is that in all such strategies that we construct it
holds that Challenger will either stay or jump to an ancestor of the currently challenged

2We remark that our description follows [54] and thus differs slightly from the original definition in [74],
but the two versions are equivalent for all practical purposes.

240 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

vertex. Because of this we can assume without loss of generality that Pebbler only pebbles
vertices in the subgraph consisting of ancestors of the currently challenged vertex. If
Pebbler pebbles some vertex outside of this subgraph Challenger will just stay put on the
current vertex, and so Pebbler just wastes a round.

E.3 Overview of Results and Sketches of Proofs

In this section we give a detailed overview of our results and also sketch some of the main
ideas in the proofs. In the rest of the paper, we then provide all the missing technical
definitions and present the actual formal proofs.

E.3.1 Separation Between Standard and Reversible Pebbling

As mentioned in Section E.1, the strongest separation hitherto known between standard
and reversible pebbling is for the length-` path on vertices {v1, v2, . . . , v`+1} with edges
(vi , vi+1) for all i ∈ [`], which has a standard pebbling with 2 pebbles whereas reversible
pebblings require space Θ(log`) [31, 133]. We give a simple construction improving
this to a multiplicative logarithmic separation.

Theorem E.3.1. For any function s(n) = O
�

n1/2−ε
�

for ε > 0 constant there are DAGs
{Gn}∞n=1 of size Θ(n) with a single sink and fan-in 2 such that Peb(G) = O(s(n)) and
RPeb(G) = Ω(s(n) log n) (where the hidden constant depends linearly on ε).

A first observation is that if we did not have the bounded fan-in restriction, The-
orem E.3.1 would be very easy. In such a case we could just take the path of length `,
blow up every vertex vi to s vertices v1

i , . . . , vs
i , and add edges

�

v j
i , v j′

i+1

�

for all j, j′ ∈ [s],
so that we get a sequence of complete bipartite graphs Ks,s glued together as shown in
Figure E.1a. It is not hard to show that any reversible pebbling of this DAG would have
to do s parallel, synchronized pebblings of the paths

�

v j
1, v j

2, . . . , v j
`+1

	

for j ∈ [s], which
would require space Ω(s log`), whereas a standard pebbling would clearly only need
space O(s).

For bounded indegree it is not a priori clear what to do, however, or indeed whether
there should even be a multiplicative separation. But it turns out that one can actually
simulate a lower bound proof along the same lines as above by considering a layered
graph as in Figure E.1b, with s parallel paths of length up to ` and with every path
having an extra edge fanning out to its “neighbour path” above (or at the bottom for the
top row) at each level. We will refer to this construction as a road graph of length ` and
width s (where a path is a maximally narrow road of width 1). It is easy to verify that
the standard pebbling price of a road of width s ≥ 2 is s+2. We claim that the reversible
pebbling price is Ω

�

s log(`/s)
�

, from which Theorem E.3.1 follows.
To prove the reversible pebbling lower bound it is convenient to think instead in

terms of Challenger strategies in the Dymond–Tompa game. The idea is that Challenger
will stay put on the sink until Pebbler has pebbled enough vertices so that there are no

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 241

(a) Path blown up to sequence of K3,3-graphs.

(b) Road graph of length 9 and width 3.

Figure E.1: Modifications of path graphs to amplify difference between reversible and
standard pebbling price.

pebble-free paths from any source vertex to the sink. Intuitively, the cheapest way for
Pebbler to disconnect the graph is with a straight cut over some layer. When this happens,
Challenger looks at the latest pebbled vertex and compares the subgraph between the
sources and the cut with the subgraph between the cut and the sink. If more than half
of the graph is before the cut, Challenger jumps to the latest pebbled vertex. If not,
Challenger stays on the sink. This strategy is then repeated on a graph of at least half the
length. Since every cut by Pebbler requires s pebbles, Challenger can survive for roughly
s log` rounds (except that the rigorous argument is not quite this simple, and the slightly
smaller factor log(`/s) in the formal statement of the theorem is in fact inherent).

E.3.2 PSPACE-Completeness of Reversible Pebbling

Moving on to technically more challenging material, let us next discuss our PSPACE-
completeness result for reversible pebbling, which we restate here more formally for the
record.

Theorem E.3.2. Given a single-sink DAG G of fan-in 2 and a parameter s, it is PSPACE-
complete to decide whether G can be reversibly pebbled in space s or not. In more detail, given
a QBF φ =Q1 x1 Q2 x2 . . . Qn xn F , where F is a 3-CNF formula over variables x1, . . . , xn,
there is a polynomial-time constructible single-sink graph G(φ) of fan-in 2 and a polynomial-
time computable number γ(φ) such that RPeb

�

G(φ)
�

= γ(φ) + Jφ is falseK.

At a high level, our proof is similar to that in [88] for standard pebbling: we build
gadgets for variables, clauses, and universal and existential quantifiers, and then glue
them together in the right way so that pebbling through the gadgets corresponds to
verifying satisfying assignments for universally and existentially quantified subformulas
of the QBF φ. However, the execution of this simple idea is highly nontrivial even in [88],

242 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

and we run into several additional technical difficulties when we want to do an analogous
reduction for reversible pebbling.

For starters, since the difference in pebbling price for graphs G(φ) obtained from
true and false QBFs φ is just an additive 1, we need exact control over the pebbling
price of all components used in the reduction. For standard pebbling there is no problem
here—exact bounds on pebbling price are known for quite a wide selection of graphs—
but in the reversible setting this becomes an issue already for almost the simplest possible
graph: the complete binary tree of height h. An easy inductive argument shows that
the standard pebbling price of such a tree is exactly h+ 2. Since reversible pebblings
find paths more challenging than do standard pebblings, one could perhaps expect an
extra additive log h or so in the reversible pebbling bound. However, the asymptotically
correct bound turns out to be h+Θ(log∗ h) as shown in [126], and the upper and lower
bounds on the multiplicative constant obtained in that paper are far from tight.

The story is even worse for the workhorse of the construction in [88] (and many
other pebbling results), namely pyramids of height h, which have i vertices at level i for
i = 1, . . . , h+1, and where the jth vertex at level i has incoming edges from the jth and
(j + 1)st vertices at level i + 1. There is a very neat proof in [65] that the standard
pebbling price is again exactly h+ 2, but for reversible pebbling price nothing has been
known except that it has to be somewhere between h+ 2 and h+O(log∗ h) (where the
latter bound follows since any strategy for a complete binary tree of height h works for
any DAG of height h). As a crucial first step towards establishing Theorem E.3.2, we
exactly determine the reversible pebbling price of pyramids (and also binary trees).

Theorem E.3.3. For ∆ denoting a positive integer, let g be the function defined recursively
as

g(∆) =

¨

0 if ∆= 1;

2g(∆−1)+∆−2 + g(∆− 1) otherwise;

and let the inverse g−1 of this function be defined as

g−1(h) =min{∆ | g(∆)≥ h} .

Then the persistent pebbling price of a pyramid of height h, as well as of a complete binary
tree of height h, is h+ g−1(h), where g−1 is efficiently computable.

Even though Theorem E.3.3 is an important step, we immediately run into new
problems when trying to use it as a building block in our reduction for reversible pebbling.
In the standard pebble game a complete pebbling is any pebbling that reaches the sink.
For the reversible game there is a subtle distinction in that we can ask whether it is
sufficient to just reach the sink or whether the rest of the graph must also be cleared of
pebbles. As discussed in Section E.2, this leads to two different flavours of reversible
pebblings, namely persistent pebblings, which leave a pebble on the sink with the rest of
the graph being empty, and visiting pebblings, which just reach the sink (and can then be
thought to run in reverse after having visited the sink to clear the whole graph including

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 243

the sink from pebbles). The pebblings we actually care about are the persistent ones, but
we cannot rule out the possibility that subpebblings of gadgets are visiting pebblings.
Clearly, the difference in pebbling space is at most 1, but this is exactly the additive 1 of
which we cannot afford to lose control! To make things worse, for pyramids it turns out
that persistent and visiting pebbling prices actually do differ except in very rare cases.

Because of this, we have to build more involved graph gadgets for which we can
guarantee that visiting and persistent prices coincide. These gadgets are constructed in
two steps. First, we take a pyramid and append a path of suitable length, depending on
the height of the pyramid, to the pyramid sink, resulting in a graph that we call a teabag.
Second, we take such teabags of smaller and smaller size and stack them on top of one
another, which yields a graph that looks a bit like a Christmas tree. These Christmas
tree graphs are guaranteed to have the same pebbling price regardless of whether a
reversible pebbling is visiting or persistent.

With this in hand we are almost ready to follow the approach in the PSPACE-
completeness reduction for standard pebbling in [88]. The idea is that we want to
build gadgets for the quantifiers in a formula φ = ∀x∃y · · ·Qz F of specified pebbling
price so that the only way to pebble the graph G(φ) without using too much space is to
first pebble the gadget for ∀x , then ∃y , et cetera, in the correct order until all quantifier
gadgets have been pebbled. Once we get to the clause gadgets, we would like that the
pebbles in the quantifier gadgets are locked in place encoding a truth value assignment
to the variables, and that the only way to pebble through the clause gadgets without
exceeding the space budget is if every clause contains at least one literal satisified by
this truth value assignment.

In order to realize this plan, there remains one more significant technical obstacle to
overcome, however. To try to explain what the issue is, we need to discuss the PSPACE-
completeness reduction in [88] in slightly more detail. The way this reduction imposes
an order in which the quantifier gadgets have to be pebbled is that pyramid graphs are
included “at the bottom” of the gadgets (i.e., topologically first in order). The source
vertices of the quantifier gadgets all appear in such pyramids, and one has to pebble
through these pyramids to reach the rest of a gadget (where pebble placements encode
variable assignments as mentioned above).

In the first, outermost quantifier gadget the pyramids have large height. In the second
gadget the pyramid heights are slightly smaller, et cetera, down to the last, innermost
quantifier gadget where the pyramids have smallest height. In this way, the pyramids
are used to “lock up” pebbles and force a strict order of pebbling of the gadgets. It can
be shown that in order not to exceed the pebbling space budget, any pebbling strategy
has to start by pebbling the highest pyramids in the first gadget. If the pebbling starts
anywhere else in the graph, this will mean that there are already pebbles elsewhere in
the graph when the pebbling strategy reaches the first, highest pyramids in the outermost
quantifier, but if so the overall pebbling has to use up too much space to pebble through
this pyramid. One can also show that once the pyramids in the outermost quantifier
gadget have been pebbled, the pebbling cannot proceed until the next quantifier gadget

244 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

is pebbled. The pyramids in this gadget have smaller height, but there are also pebbles
stuck in place in the outermost gadget, meaning that pyramids must again be pebbled
in exactly the right order to stay within the space budget.

These properties can be used to normalize pebbling strategies in the standard pebble
game. Without loss of generality, one can assume that any strategy that starts pebbling
a pyramid in a gadget will complete this local pebbling in one go, leaving a pebble at
the sink of the pyramid, and will not place pebbles anywhere else until the pebbling of
the pyramid has been completed. Also, once a pyramid in a quantifier gadget has been
pebbled in this way, one can prove that it will never be pebbled again since there is now
at least one additional pebble at some vertex later in the topological order in the graph,
and a repeated pebbling of the pyramid in question would therefore exceed the space
budget. Thus, not only do the pyramids enforce that the gadgets are pebbled in the right
order—they also serve as single-entry access points to the gadgets, making sure that
each gadget is pebbled exactly once.

There is no hope of building gadgets with such properties in a reversible pebbling
setting. It is simply not true that a reversible pebbling will pebble through a subgraph
and then never return. Instead, as already discussed reversible pebblings will proceed in
alternating phases of interleaved “forward sweeps” and “reverse sweeps,” and subgraphs
will be entered also in reverse topological order. Therefore, it is not sufficient to add
“space-locking” subgraphs at the source vertices of the gadgets. Rather, we have to insert
“single-passage points” inside and in between the gadgets for quantifiers and clauses.
We obtain such subgadgets by further tweaking our Christmas tree construction so that
it can also connect two vertices in such a way that any pebbling has to “pay a toll” to go
through this subgraph. We cannot describe these gadgets, which we call turnpikes, in
detail here, but mention that the “space-locking” property that they have is that when
the entrance vertex is eliminated by having a pebble placed on that vertex, then the cost
of pebbling through the rest of the turnpike drops by 1. This is critically used in the
subgraph compositions described next.

Assuming the existence of the necessary technical subgraph constructions sketched
above, we can now describe the overall structure of our reduction from quantified Boolean
formulas to reversible pebbling (where all parameters shown in the figures are fixed
appropriately in the formal proofs). In the following figures we denote a Christmas tree
of (visiting and persistent) pebbling price r by the symbol in Figure E.2a, where we only
display the sink vertex. We denote the turnpike gadget just discussed by the symbol in
Figure E.2b. We write r to denote the toll parameter of the turnpike, where a turnpike
with toll r has persistent price r + 2, but only r + 1 if we do not count the source a as
part of the turnpike.

For every variable x i we have a variable gadget as shown in Figure E.3a, where we
think of a truth value assignment ρ as represented by pebbles on vertices { x̄ i , x ′i} when
ρ(x i) = false and on {x i , x̄ ′i} when ρ(x i) = true, as shown in Figures E.3b and E.3c,
respectively.

For every clause C j we have a clause gadget as depicted in Figure E.4a. The vertices

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 245

r

(a) Christmas tree.

a

b
r

(b) Turnpike.

Figure E.2: Legend for technical gadget building blocks.

x ′i

x i

ri

x̄ ′i

x̄ i

ri

(a) Variable gadget.

x ′i

x i

ri

x̄ ′i

x̄ i

ri

(b) false position.

x ′i

x i

ri

x̄ ′i

x̄ i

ri

(c) true position.

Figure E.3: Gadget for variable x i and pebble positions corresponding to truth value
assignments.

a j

b j

c j

u j

v j

p j

`′j,1

`′j,2

`′j,3

` j,1

` j,2

` j,3

β j

β j

β j

(a) Clause gadget.

z1

z2

d1

d2

d3 d4
e

r

r−1

r−2

(b) Conjunction gadget.

Figure E.4: Gadgets for clauses and CNF formulas.

labelled `′j,k and ` j,k in Figure E.4a are identified with the corresponding vertices for
the positive or negative literal ` j,k in the variable gadget in Figure E.3a. If ρ satisfies
a literal, then there is a pebble on the entrance vertex of the corresponding turnpike,
meaning that we can pebble through the gadget for a clause containing that literal with
one less pebble than if ρ does not satisfy the clause.

To build the subgraph corresponding to a 3-CNF formula F =
∧m

j=1 C j we join clause
gadgets sequentially using the conjunction gadget in Figure E.4b. For technical reasons
we start by joining a dummy graph with the first clause gadget, then we join the result
to the second clause gadget, and so on up to the mth clause of F . The resulting graph

246 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

x ′i

x i

ri

x̄ ′i

x̄ i

ri

fi gi

qi

qi−1

γi−5

(a) Existential quantifier gadget.

x ′i

x i

ri

x̄ ′i

x̄ i

ri

f ′i f̄ ′i

fi f̄i

gi ḡi

hi h̄i

qi

γi−6 γi−6

qi−1

γi−7 γi−7

(b) Universal quantifier gadget.

Figure E.5: Quantifier gadgets for variable x i .

has the property that if pebbles are placed on the variable gadgets according to an
assignment ρ that satisfies F , then the number of additional pebbles needed to pebble
the graph is one less than if the assignment is falsifying.

Finally we have one quantifier gadget for each variable. To describe this part of the
construction, we sort the variables indices in reverse order from the innermost to the out-
ermost quantifier and denote by φi the subformula with just the i innermost quantifiers,
so that φ0 = F =

∧m
j=1 C j , φi = Q i x i φi−1 for Q i ∈ {∀,∃}, and φ = φn. We construct

graphs G(i) := G(φi), starting with G(0) which is just the subgraph corresponding to
the CNF formula F . To construct G(i+1) from G(i) we add an existential gadget as in
Figure E.5a if x i is existentially quantified and a universal gadget as in Figure E.5b if x i

is universally quantified. An example of the full construction can be found in Figure E.6.
Given this construction we argue along the same lines as in in [88], although as

mentioned above there are numerous additional technical complications that we cannot
elaborate on in this brief overview of the proof. We show that given an assignment ρi

to {xn, . . . , x i+1}, the number of additional pebbles needed to pebble G(i) differs by 1
depending on whether φi is true under the assignment ρi or not. An existential gadget
can be optimally pebbled by setting x i to any value that satisfies φi−1. To pebble a
universal gadget one needs to assign x i to some value, pebble through the gadget, unset
x i and assign it to the opposite value, and finally pebble through the gadget again,
and both assignments to x i must yield satisfying assignments to φi−1 in order for the
pebbling not to go over budget. Proceeding by induction, we establish that the complete
graph G(n) can be pebbled within the specified space budget only if φ = φn is true, which

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 247

yields Theorem E.3.2.

E.3.3 PSPACE-Inapproximability up to Additive Constants

Let us conclude the detailed overview of our contributions by describing what is arguably
the strongest result in this paper, namely a strengthening of the PSPACE-completeness
of standard pebbling in [88] and of reversible pebbling in Theorem E.3.2 to PSPACE-
hardness results for approximating standard and reversible pebbling price to within any
additive constant K .

Theorem E.3.4. For any fixed positive integer K it is PSPACE-complete to decide whether
a single-sink DAG G with fan-in 2 has (standard or reversible) pebbling price at most s or
at least s+ K .

We remark that it would of course have been even nicer to prove multiplicative
hardness results. We want to stress again, though, that to the best of our knowledge
these are the first results ever for hardness of approximation of pebble games in a general
setting. The fact that these results hold even for PSPACE could perhaps be taken both
as an indication that it should be possible to prove much stronger hardness results for
algorithms limited to polynomial time, and as a challenge to do so.

We obtain Theorem E.3.4 by defining and analyzing two graph product constructions,
one for standard and one for reversible pebbling, which take two graphs and output
product graphs with pebbling price equal to the sum of the pebbling prices of the two
input graphs (except for an additive adjustment). These graph products can then be
applied iteratively K − 1 times to the graphs obtained by the reductions from QBFs. In
the next theorem we state the formal properties of these graph products.

Theorem E.3.5. Given single-sink DAGs Gi of fan-in 2 and size ni for i = 1,2, there are
polynomial-time constructible single-sink DAGs S(G1, G2) and R(G1, G2) of fan-in 2 and
size O

�

(n1 + n2)2
�

such that

• For standard pebbling it holds that Peb(S(G1, G2)) = Peb(G1) + Peb(G2)− 1.

• For reversible pebbling it holds that RPeb
�

R(G1, G2)
�

= RPeb(G1) +RPeb(G2) + 1.

In the remainder of this section we try to convey some of the flavour of the arguments
used to prove Theorem E.3.5 and to give a sense of some of the technical obstacles that
have to be overcome during the analysis. In what follows, we will mostly focus on the
reversible pebble game, since it is the technically more challenging and therefore also
the more interesting case. We will briefly discuss the product construction for standard
pebbling at the very end of the section. We will refer to G1 as the outer graph and G2 as
the inner graph in the graph products R(G1, G2) and S(G1, G2).

Intuitively, when taking the graph product of G1 and G2 the idea is to replace every
vertex v of the outer graph G1 with a (possibly slightly modified) copy of the inner
graph G2. We will refer to this copy as the v-block in the product graph. The edges

248 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

x ′1

x1

15

x̄ ′1

x̄1

15

f ′1 f̄ ′1

f1 f̄1

g1 ḡ1

h1 h̄1

q1

12 12

x ′2

x2

19

x̄ ′2

x̄2

19

f2 g2

q2

16

x ′3

x3

23

x̄ ′3

x̄3

23

f ′3 f̄ ′3

f3 f̄3

g3 ḡ3

h3 h̄3

q3

20 20

19 19
a1

b1

c1

u1

v1

p1

2

2

2

a2

b2

c2

u2

v2

p2

4

4

4

a3

b3

c3

u3

v3

p3

6

6

6

7

d1,1

d1,2 d1,3

d1,4

e1

2

1

0

d2,1

d2,2 d2,3

d2,4

e2

4

3

2

d3,1

d3,2 d3,3

d3,4

e3

6

5

4

11 11

Figure E.6: Example of QBF-to-DAG reduction for
∀x3∃x2∀x1(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3).

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 249

inside blocks are specified by the inner graph. For edges (u, v) ∈ edgesG1 in the outer
graph, we will need to connect the sink of the u-block to vertices in the v-block in some
way, and this is the crux of the construction.

A first naive approach would be to add an edge from the sink of the u-block to every
source vertex of the v-block (as shown in the graph product N in Figure E.7). Sadly,
this simple idea fails for both standard and reversible pebbling. It is not hard to find
examples showing that the pebbling price of N (G1, G2) is not a function of the pebbling
prices of G1 and G2.

A slightly more refined idea is to add edges from the sink of the u-block to all vertices
in the v-block (as in the graph T (G1, G2) in Figure E.7). While we can observe right
away that this idea is a non-starter, since it will blow up the fan-in of the product DAG
(and with no bounds on fan-in the gap amplification would be trivial), it turns out that
the analysis yields interesting insights for the graph product that we will actually use. We
will therefore employ this toy construction to showcase some of the ideas and technical
challenges that arise in the actual proof of Theorem E.3.5.

Recall that we want to prove that RPeb
�

T (G1, G2)
�

= s1+s2−1, where si = RPeb
�

Gi

�

for i = 1, 2. To reversibly pebble the product graph T (G1, G2) in at most this amount of
space we simulate a minimal space pebbling of G1, where pebble placement or removal
involving a vertex v of G1 invokes a complete pebbling (or unpebbling) of the copy of G2

corresponding to the v-block. This simulation uses at most s2 pebbles in the relevant
v-block and at most s1 − 1 pebbles on sinks of other blocks, i.e., no more than s1+ s2−1
pebbles in total.

Proving the lower bound RPeb
�

T (G1, G2)
�

≥ s1 + s2 − 1 is the difficult part. Here
the approach is to assume that we are given a complete pebbling PT of T (G1, G2) and
extract from it a pebbling strategy P for G1 with the hope that an expensive configuration
in P will also help us to pinpoint an expensive configuration in PT .

The most straightforward way to obtain a pebbling strategy P for G1 from PT would
be to make a vertex v in G1 contain a pebble or not depending only on the local pebble
configuration of the v-block in T (G1, G2). A natural idea is that v should get a pebble
if the v-block has a pebble on its sink and that this pebble should be removed from v
when the corresponding block has been emptied of pebbles. If we apply this reduction
to a pebbling PT of T (G1, G2) we obtain a valid pebbling of G1. The problem, however,
is that PT might locally be doing a visiting pebbling (as defined in Section E.2.3) of
the copy of G2 corresponding to the v-block as a way of moving pebbles on or off other
blocks. The consequence of this would be that a configuration of maximal space s1 in P
may result from a configuration in PT that uses space only s1 + s2 − 2, which is off by
one compared to what we need and hence destroys the gap in pebbling price that we
are trying to create.

If the visiting price of G2 is the same as its persistent price, then this problem does
not arise, but since this does not hold for graphs in general we need to argue more
carefully. It is true that a visiting pebbling of a copy of G2 might save one pebble as
compared to a persistent pebbling, but whenever the sink contains a pebble in a visiting

250 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

G2 =G1 =

N (G1, G2) = T (G1, G2) =

R(G1, G2) =

Figure E.7: Examples of graph products as applied to a pyramid of height 1 (denoted
G1) and a rhombus (denoted G2).

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 251

but not persistent pebbling we know that there must also be some other vertex in G2

that has a pebble (or else the pebbling would be persistent by definition). We need to
count such pebbles also in our analysis.

To this end, we make a distinction between blocks that have paid the persistent price
and the blocks that have paid the visiting price but not the persistent price. We say
that the copy of G2 corresponding to some v-block is visiting-locked, or just v-locked for
brevity, at some point in time if the current pebble configuration on its vertices requires
reversible pebbling space s2 − 1 to be reached, and that the v-block is persistent-locked
(or p-locked for short) if the configuration has reversible pebbling price s2.

We can now define a more refined way of projecting PT -configurations to P-con-
figurations as follows. If a v-block has paid the persistent price, we put a pebble on the
corresponding vertex v in G1. If a block has paid just the visiting price but not the persist-
ent price, then we might still put a pebble on v in G1, but we only do so if an additional
(and slightly delicate) technical condition3 holds for the pebbling configurations in the
blocks corresponding to predecessors of v. This technical condition is designed so that
with some additional work4 we are still able to extract a legal pebbling strategy for G1

by applying this projection. Furthermore, it will be the case that every pebbling move
on a vertex in the outer graph G1 is the result of the copy of G2 corresponding to some
v-block paying the persistent or visiting price.

The reversible pebbling P thus extracted will be a persistent pebbling of G1 by
construction, so it must contain a configuration with s1 pebbles. If this configuration was
reached because a block paid the persistent price, then that block contains s2 pebbles at
a time when at least s1 − 1 other blocks have at least 1 pebble each, which is the lower
bound that we are after. If the pebble configuration on G1 in P was reached because
a block paid the visiting price, however, then we are potentially still one pebble short.
This is where the additional technical condition mentioned above comes into play. This
condition on the predecessor blocks implies that we can find at least one other block
that also paid just the visiting price and therefore must contain two pebbles. Summing
up, we obtain one block that has at least s2 − 1 pebbles, another block that has at least
2 pebbles, and at least s1 − 2 additional blocks that contain at least 1 pebble each, and

3We do not want to get into too detailed a technical argument here, but just for the record pebble
configurations on T (G1, G2) can be projected to configurations on G1 in two stages as follows:

1. Let P ⊆ V (G1) consist of all vertices u such that the configuration on the u-block in T (G1, G2) is
persistent-locked.

2. Let P′ ⊆ V (G1) \ P consist of all vertices v such that (a) v is not already surrounded by P, and (b) the
configuration on the v-block in T (G1, G2) is visiting-locked.

With this notation, the projected pebble configuration on G1 is defined to be P∪ P′.
4One added technical complication that we have to take care of here is that when we apply our projection

to a pebbling PT of T (G1, G2) to obtain a sequence of pebble configurations on G1, this sequence need not
be a valid pebbling of G1. However, when the projected pebble configuration on G1 changes after a pebbling
move we can insert a legal pebbling sequence between the two projected configurations that passes through
all vertices of G1 corresponding to v-locked blocks, where pebbles are added in topological order and removed
in inverse topological order, and this local pebbling does not affect the overall argument.

252 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

so the lower bound holds in this case as well. (Incidentally, this second case is the one
where our first, naive, graph product N (G1, G2) fails.)

We already observed, however, that the construction T (G1, G2) does not get us very
far because it blows up the indegree of the resulting product graph. Therefore, in the
actual proof of Theorem E.3.5 we have to consider a different construction. Briefly, the
idea is to start with the graph T (G1, G2) but to bring the indegree down by splitting
each vertex w in every block into three vertices wext, wint, wout. All edges to w from
other blocks are routed to wext, all edges from within the block are routed to wint, and
finally we add edges from wext and wint to wout. This is the graph product R(G1, G2) that
we use to amplify differences in reversible pebbling price, and that is also illustrated
in Figure E.7. Now we have to prove that the ideas just outlined work for this new
construction where each vertex has been replaced by a small “cloud” of three vertices.
The proof of this is much more technically challenging than for the toy case discussed
above, and there is no room to go into details here.

At this point we want to switch gears a bit and briefly discuss an application in proof
complexity of the PSPACE-hardness result for reversible pebbling. Perhaps the most
well-studied proof system for proving the unsatisfiability of, or refuting, CNF formulas is
resolution (we do not give any formal definition here, referring instead to, for instance,
[170] for the necessary details). Every resolution proof can be represented as a DAG,
and the depth of this proof is the length of a longest path in this DAG. The resolution
depth of refuting an unsatisfiable CNF formula is the smallest depth of any resolution
proof for the formula. It was shown in [54] that computing the reversible pebbling price
of a graph of fan-in ` reduces to computing the resolution depth of a (`+1)-CNF formula,
and from this we can obtain the following corollary.

Corollary E.3.6. For any fixed positive integer K , it is PSPACE-complete to compute the
resolution depth of refuting 3-CNF formulas up to an additive error K .

Proof. Assuming that we can efficiently compute the resolution depth within an additive
error at most K , we show how to efficiently compute the reversible pebbling price of any
graph G within an additive error K + 1, contradicting Theorem E.3.4.

Letting z denote the unique sink of G, we consider a new graph G′ which is G
augmented with a new successor z′ of z (i.e., G′ = (V ∪ {z′}, E ∪ {(z, z′)}) in formal
notation). The reversible pebbling prices of G and G′ differ by at most one. For any
graph G, [54] exhibits an efficiently constructible unsatisfiable CNF formula FG that
requires resolution depth equal to the reversible pebbling price of G′. The width of the
formula is equal to the fan-in of G plus one, so the result holds for 3-CNFs.

Hence, if we could estimate the resolution depth of refuting FG , i.e., the reversible
pebbling price of G′, within error K, this would yield an estimate of the reversible
pebbling price of G to within error K + 1.

We wrap up this section by switching back to pebbling and describing the product
construction S(G1, G2) used to amplify standard pebbling price. In this construction we

E.3. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS 253

G2 =

G1 =

S(G1, G2) =

Figure E.8: Illustration of standard pebbling graph product S(G1, G2).

also replace every vertex of G1 with a copy of G2, but this time we append what we
refer to as a centipede graph to the sink of every copy. A centipede is a path where each
vertex but the source has an extra, unique predecessor. To connect the blocks, for every
edge (u, v) ∈ E(G1) we add edges from the sink of the u-centipede to every source of
the v-centipede. See Figure E.8 for an illustration.

Setting si = Peb
�

Gi

�

for i = 1, 2, we can pebble the graph product S(G1, G2) in
space s1+ s2−1 by simulating an optimal pebbling of G1: placing a pebble on a vertex v
of G1 is simulated by optimally pebbling the sink of the corresponding v-block, and
removing a pebble is simulated by removing the pebble on the sink.

This pebbling strategy is in fact optimal, and we can show this by projecting any stand-
ard pebbling PS of S(G1, G2) to a strategy P for G1. Each time any block in S(G1, G2)
contains s2 pebbles, we pebble all vertices in G1 whose predecessors have pebbles and
whose corresponding block in S has a pebble. When a block in S(G1, G2) becomes empty,
we remove the pebble from the corresponding vertex in G1. This projection has the
property that when the sink of a block is pebbled, the corresponding vertex in G1 is also
pebbled. Arguing similarly to in the reversible case, we show that a strategy PS for S
using s pebbles yields a strategy for G1 using s − s2 + 1 pebbles. Therefore, PS must
use space at least s1 + s2 − 1, and hence the graph product S(G1, G2) has the property

254 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

claimed in Theorem E.3.5.

E.4 Separation between Standard and Reversible Pebbling

In this section we discuss how the reversible pebbling price compares with the standard
one. A reversible pebbling is also a legal standard pebbling, but the opposite is not always
true. However it is possible to construct a reversible pebbling from a standard pebbling
of time τ that costs at most logτ times the price of the standard pebbling.

Theorem E.4.1 ([126]). If graph G has a standard pebbling of time τ and space p, then
G has reversible pebbling price at most pdlogτe.

Proof sketch. Let P = (P0, . . . ,Pτ) be a standard pebbling of G in space p. We show a
Pebbler strategy for the Dymond–Tompa game on G that allows Pebbler to win in at most
pdlogτe rounds. Since DT(G) = RPeb(G) this is sufficient. Pebbler keeps as an invariant
an interval [a, b] such that the challenged pebble is in Pb and all vertices in Pa are
pebbled but not challenged. Initially the interval is [0,τ], and the strategy proceeds by
bisection. At each bisection step Pebbler starts pebbling the vertices in the configuration
Pm, with m= (a+ b)/2, in any order. If Challenger jumps to a vertex v, then let t be the
smallest number such that a ≤ t and v ∈ Pt . Pebbler now plays in [a, t]. The interval
halves because t ≤ m. If Challenger stays in all moves, then Pebbler plays in [m, b] and
the interval also halves. When the interval becomes unit, the Pebbler invariant implies
that the move from Pa to Pb is precisely a placement on the challenged vertex. Therefore,
the predecessors of the challenged vertex are pebbled and the game ends. The game
considers at most dlogτe configurations of P and spends at most p rounds on each.

We already know that the difference between the standard and reversible pebbling
price is unbounded. For example the standard pebbling price for a path of length n is 2,
while its reversible pebbling price is Θ(log n). It follows that if a DAG G has depth d and
a standard pebbling of time τ and space p, then

max{p, log d} ≤ RPeb(G)≤ p logτ

We rule out the possibility of a simulation with only an additive loss. Indeed we show
a separation which is multiplicative in terms of the logarithm of the size of the graph.

Theorem E.4.2. For any function s(n) = O
�

n1/2−ε
�

where ε > 0 is constant there are
DAGs {Gn}∞n=1 of size Θ(n) with a single sink and fan-in 2 such that Peb(G) = O(s(n))
and RPeb(G) = Ω(s(n) log n) (where the hidden constant depends linearly on ε).

The graphs that we use to witness the separation are the chains or “wide paths”. A
chain of width w and length ` is a graph with `+1 layers, each having w vertices, where
the i-th vertex of a layer has two incoming edges from the i and i + 1-th vertices of the

E.4. SEPARATION BETWEEN STANDARD AND REVERSIBLE PEBBLING 255

Figure E.9: Road graph of length 9 and width 3.

previous layer (modulo w). The layers are indexed from 0 (the layer of the sources) to `
(the layer of the sinks).

Since we want single sink graphs, we define a road of width w and length ` to be a
chain of width w and length `−w+1 plus a pyramid of height w−1, where we identify
the sinks of the chain with the sources of the pyramid. The layers are indexed in the
same way as in the chain.5

By pebbling each layer in order, we get a standard pebbling of a road of width w
which uses w+ 2 pebbles. The reversible pebbling of a road depends on its length: a
road of width w and length ` has a reversible pebbling price O(w log`). The idea is to
simulate in parallel w copies of the reversible pebbling of the path of length `, which has
price O(log`). We prove Theorem E.4.2 by choosing for each n a road of width w= s(n)
and length `= n/w, and showing that this pebbling is essentially optimal.

A blocking set for a vertex set T ⊆ V (G) is a subset of vertices B ⊆ V (G) such that
every path from any source to any vertex in T must contain a vertex in B. We also say
that B blocks T . A blocking set for all sinks of a directed acyclic graph G is also called a
blocking set of G. We say that B is a minimal blocking set if no subset of B is a blocking
set.

A chain of width w has blocking sets with w vertices, all in the same layer. It turns
out that if a minimal blocking set has vertices in multiple layers then it must be larger
than that. We say that a blocking set spreads over d layers when a and b are the lowest
and the highest layers that the blocking set intersects, respectively, and d = b− a+ 1.

Lemma E.4.3. A minimal blocking set of a chain that spreads over d layers has size at
least d +w− 1.

Proof. Consider such a minimal blocking set B. Sort the layers of the chain from 0
(sources) to ` (sinks) and let a and b be the first and last layers with vertices in B, so
that d = b− a+ 1. If a = b then B must contain w vertices and the Lemma holds. For
the rest of the proof we assume a < b.

Define f (i) to be the number of vertices at layer i that can reach a sink without
passing through a vertex in B (and are not in B themselves). By definition and minimality

5Equivalently, a road of length ` and width w≤ ` is an induced subgraph of a chain of length ` and width
w. Fix one arbitrarily sink s in the chain: the subgraph induced by vertices in anc(s) is indeed a road of length
` and width w.

256 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

we get that f (i) = 0 for all layers i ≤ a; 0 < f (i) < w for all layers a < i ≤ b and
f (i) = w for i > b.

Now we compute the intersection between B and each layer. All vertices at layer b
can reach the sink unless they are in B, therefore B must have w− f (b) elements at the
last layer. We claim that that B contains at least f (i + 1)− f (i) + 1 vertices from layer i,
for a ≤ i < b.

Indeed, consider the set of the f (i + 1) vertices at layer i + 1 that can reach a sink,
and define Ni to be the set of their predecessors in layer i. Since 0< f (i+1)< w, there
are at least f (i + 1) + 1 vertices in Ni .

A vertex in the i-th layer can reach a sink if and only if it is in Ni and not blocked
by B. Since we assumed that exactly f (i) of them can reach a sink, it must be that
|Ni | − f (i) vertices are blocked by B right on layer i, i.e., they are contained in B. Thus
the intersection between B and layer i is |Bi | ≥ |Ni | − f (i) = f (i + 1)− f (i) + 1.

Using these facts we get that

|B|=
b
∑

i=a

|Bi | ≥ w− f (b) +
b−1
∑

i=a

f (i + 1)− f (i) + 1= w+ f (a) + (d − 1) = d +w− 1 .

We need to generalize Lemma E.4.3 to a road in order to handle blocking sets within
the pyramid part.

Lemma E.4.4. A minimal blocking set of a road that spreads over d layers has size at least
d + q− 1, where q is the width of the topmost layer.

Proof. If the blocking set is located on a single layer the lemma follows immediately.
Otherwise the proof is very similar to the one of Lemma E.4.3, except that the intersection
between B and its last layer b has size at least q− f (b).

Now we prove the lower bound in Theorem E.4.2

Lemma E.4.5. The reversible pebbling price of a road of width w and length ` is at least
w log(`/w)/2.

Proof. We give a Challenger strategy by induction over ` that lasts for w log(`/w)/2
moves. Furthermore, the strategy stays as long as the sink is connected to the sources.
The base case is a road of length `≤ w−1, i.e., a pyramid of height `, in which case the
lemma holds vacuously.

We say that a directed path in the graph is semiopen when there are no pebbles on it
except for its last vertex. A semiopen path from a vertex to itself is a single vertex with a
pebble on it.

During the game Challenger focuses on a subgraph of the road, and keeps the following
invariant at every round: there is a semiopen path from the sink of this subgraph to the

E.4. SEPARATION BETWEEN STANDARD AND REVERSIBLE PEBBLING 257

currently challenged pebble. This concretely means that if Pebbler places a pebble inside
the subgraph then Challenger plays according to its strategy for that subgraph. Instead
if the new pebble blocks the semiopen path between the currently challenged pebble
and the sink of the subgraph, Challenger jumps to the new pebble—essentially making
the path shorter.

If at some round Challenger focuses on a subgraph, in later rounds Challenger will
never challenge a vertex which is neither in the subgraph nor in the semiopen path
between its sink and the current challenge.

Let us now give the strategy for playing inside the subgraph. As long as the sink of
the subgraph is connected to the sources, Challenger stays. If the sink is disconnected
from the sources by a blocking set, Challenger decides to jump or to stay depending on
the position of the blocking set. Before describing how Challenger decides, we describe
how the strategy continues in both cases.

We consider a minimal blocking set B and note that the last pebbled vertex u is in any
blocking set. Indeed, there is a path from the sources to the sink that only has pebbles
at u and at the sink, otherwise the sink would have already been blocked.

We first consider the strategy after Challenger decides to jump. Let v be the vertex in
the semiopen path from the sources to u at the layer immediately before all the vertices
in B. From now on Challenger focuses on the subgraph induced by the ancestors of v,
which is a road. This road is not blocked, has no vertex in the blocking set B, and there
is a semiopen path from v to the challenged pebble u.

If Challenger decides to stay, it focuses on the road with sources at the layer im-
mediately after all vertices in B. Again, this road is not blocked, it is disjoint from the
blocking set B, and there is a semiopen path from its sink to the currently challenged
pebble.

It remains to describe how Challenger decides to jump or to stay. If the last layer of
the blocking set has width q < w, then by Lemma E.4.4 it has size at least q+ d − 1. In
this case Challenger jumps and focuses on a road of length `− (q+ d − 2). Let DT(w,`)
be the Dymond–Tompa price of a road of width w and length `. Overall the Challenger
strategy lasts for

|B|+DT(w,`− (q+ d − 2))

≥ q+ d − 1+w log((`− (q+ d − 2))/w)/2≥ w log(`/w)/2 (E.4.1)

steps.

Otherwise the blocking set B has size at least w+ d − 1≥ w for some d ≥ 1 and by
Lemma E.4.3 it spreads over at most d layers, where a is the lowest and b is the highest,
with d = b− a+ 1 and m= (a+ b)/2. If m≤ `/2, Challenger stays and focuses on the
road of length `− b− 1 obtained considering only the vertices at the layers from b+ 1

258 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

to `. Overall the Challenger strategy lasts for

|B|+DT(w, b− 1)≥ w+ d − 1+w log((b− 1)/w)/2 (E.4.2)

≥ w+ d − 1+w log((`− d − 1)/2w)/2 (E.4.3)

= w/2
�

log((`− d − 1)/2w) + 2+ 2(d − 1)/w
�

(E.4.4)

≥ w/2
�

log(`/2w) + 1
�

= w log(`/w)/2 (E.4.5)

steps. If m > `/2, Challenger jumps and focuses on a road of length a − 1 obtained
considering one vertex at layer a− 1 which is connected to the sources, and taking all
vertices which have a path toward such vertex. Overall the Challenger strategy lasts for

|B|+DT(w, a− 1)≥ w+ d − 1+w log((a− 1)/w)/2

≥ w+ d − 1+w log((`− d − 1)/2w)/2≥ w log(`/w)/2 (E.4.6)

steps.

Note that Theorem E.4.2 follows if the road width is w = s(n) and the length is
`= n/w because w log(`/w) = w log(n/w2) = Θ(w log n) if w= O

�

n1/2−ε
�

.

E.5 Tight Bounds for Trees and Pyramids

In this section we show matching upper and lower bounds for the persistent pebbling
price of complete binary trees and pyramids. Asymptotically tight results for trees were
given in [126]. The pyramid graph of height h has a vertex for every pair (i, j) with
0≤ i ≤ j ≤ h. The sources are the vertices (0, j) for j ≥ 0, the sink is the vertex (h, h),
and every vertex (i, j) for i < h has one outgoing edge going left to vertex (i + 1, j) if
j > i and one outgoing edge going right to vertex (i + 1, j + 1) if j < h. A pyramid can
be obtained from a complete binary tree of height h by identifying together some of
its vertices, in such a way that the left and right predecessors of two vertices that get
identified, get pairwise identified as well. For this reason an upper bound for binary
trees also holds for the pyramids, and a lower bound for pyramids also holds for binary
trees.

In the following, let p = h +∆ be the persistent price of a pyramid. A pyramid
of height h has standard pebbling price h+ 2 [65], which means that in the standard
pebbling only two extra pebbles are needed compared to the height of the pyramid. In a
similar fashion ∆ can be interpreted as the extra space needed by persistent pebbling,
with respect to pyramind height. We want to estimate the height of the pyramid that
has persistent pebbling with at most ∆ extra pebbles.

Definition E.5.1. Consider∆ ∈ N+ and let g(∆) be the function defined by the following
recursion,

g(∆) =

¨

0 if ∆= 1

2g(∆−1)+∆−2 + g(∆− 1) otherwise.

E.5. TIGHT BOUNDS FOR TREES AND PYRAMIDS 259

We define its inverse as
g−1(h) =min{∆ | g(∆)≥ h}.

We show that g(∆) is the maximum height of a pyramid that can be persistently pebbled

using∆ pebbles on top of h. Observe that g(∆) = Ω(22···
2

︸︷︷︸

∆

), therefore g−1(h) = O(log∗ h).

Proposition E.5.2. We can compute g−1(h) in time (log h)O(1) and space O(log h).

Proof. If h= 0 then g−1(0) is 1 by definition. If h> 0 then we need to find the smallest
∆> 1 such that h≥ g(∆). We start from ∆ := 2 and go upward. At each step we keep
in memory the value g(∆− 1), which is smaller than h, and we test the condition

h< g(∆) equivalent to blog(h− g(∆− 1))c< g(∆− 1) +∆− 2 .

The latter test can be achieved in time in log h by checking the length of the bit repres-
entation of h− g(∆−1). If the test fails we output∆ otherwise we store the value g(∆),
we fix∆ :=∆+1 and we continue. We can do the whole computation by storing at most
4 numbers less than h, each step is polynomial in the length of the binary representation
of the numbers involved, and we need to do at most O(log∗ h) steps.

Theorem E.5.3. The persistent pebbling price of a binary tree of height h and a pyramid
of height h is h+ g−1(h).

To prove the theorem we need the exact value of the persistent pebbling price of
paths.

Lemma E.5.4 (Path graphs [133]). The persistent pebbling price of a path of length h
(i.e., with h+ 1 vertices) is blog(h)c+ 2.

Lemma E.5.5 (Upper bound for binary trees). The persistent pebbling price of a com-
plete binary tree of height h≤ g(∆) is at most h+∆.

Proof. We are going to prove the lemma by induction over h. For the base case we
observe that a binary tree of height 0 can be pebbled with 1 pebbles. For the general
case we assume the statement of the lemma for height i < h, and we show that the
surrounding pebbling price of the complete binary tree of height h is at most h+∆− 1.
Proposition E.2.1 immediately implies the lemma for height h.

Let us denote the root by vh and the right child of vi by vi−1. The strategy is as follows.
First we persistently pebble the left child of vi for i from h down to k := g(∆−1)+1, in
this order. By the induction hypothesis (i − 1) +∆ pebbles are enough to persistently
pebble the left child of vi , and there are h− i pebbles left on the rest of the graph from
previous steps. So we are within the bound h− 1+∆, and after the last step we have
h− (k− 1) pebbles on the tree.

260 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Then we persistently pebble vk−1, the right child of vk. Since k− 1 = g(∆− 1), by
induction hypothesis (k− 1)+ (∆− 1) pebbles are enough and we are within the bound.
Let j := h− k+ 1. So far we used j + 1= h− k+ 2 pebbles.

Finally we surround the sink of path (vk, vk+1, . . . , vh), which has j vertices, using
blog(j−1)c+1 pebbles. Observe that by construction j−1= h−k ≤ g(∆)−g(∆−1)−1<
2g(∆−1)+∆−2, hence we have the bound blog(j − 1)c < g(∆− 1) +∆− 2. Counting the
total number of pebbles in the graph gives

�

h− k+ 2
�

+ blog(j − 1)c+ 1≤
�

h− g(∆−
1) + 1

�

+
�

g(∆− 1) +∆− 3
�

+ 1= h+∆− 1 pebbles.

We prove the lower bound for a slight generalization of pyramids in order to obtain
a lower bound on the visiting price in addition to the persistent price.

Definition E.5.6. An (h,`)-teabag is the union of a pyramid of height h and a path of
length `, where we identify the sink of the pyramid and the source of the path.

Observe that an (h, 0)-teabag is a pyramid.
For the lower bound we will also need the following basic fact about pyramids. Recall

that a blocking set is a subset of vertices B ⊆ V (G) such that every path from any source
to the sink must contain a vertex in B. Also recall that a directed path in the graph is
semiopen when there are no pebbles on it except for its last vertex.

Proposition E.5.7 ([65]). Consider a blocking set B on a pyramid of height h; consider
a vertex v at level k such that there is a path between v and the sink whose intersection
with B is at most {v}. Let U be the set of vertices in the sub-pyramid rooted at v. Then
|B \ U | ≥ h− k.

Proof. Pick an arbitrary path which starts at vertex v, reaches the pyramid sink and does
not intersect B anywhere other than in v. Denote such path as (vk, vk+1, . . . , vh) where
vk is another name for v and vh is the sink. Each vi is at height i in the pyramid. On
pyramids there is a natural notion for edges to go either left or right. For each i > k we
define the path Pi as follows: if edge (vi−1, vi) goes right then Pi is the unique path that
starts at a source vertex, always goes left, and ends at vi; if edge (vi , vi−1) goes left then
Pi is the unique path that starts at a source vertex, always goes right, and ends at vi . It is
easy to verify that none of Ph, . . . , Pk+1 intersects any of the vertices in U , and that these
paths are all pairwise vertex disjoint. Since B is a blocking set it must contain one vertex
for each Pi and the proposition follows.

Lemma E.5.8. The persistent pebbling price of the (h,`)-teabag is at least h+∆+ 1 if
either of the following holds:

• h> g(∆),

• h> g(∆− 1) and ` > g(∆)− h.

E.5. TIGHT BOUNDS FOR TREES AND PYRAMIDS 261

Proof. We define a Challenger strategy for the Dymond–Tompa game by induction over
h and ` in this order. Furthermore this strategy stays on the sink until Pebbler blocks the
graph. For the base case h= 0, the statement is trivial.

Assume that the last Pebbler move blocks the graph, meaning that the currently
pebbled vertices form a blocking set, and fix B to be a minimal one. The vertex v pebbled
at that round must be in B. We have two cases depending on k the layer of vertex v.

• Case k > g(∆− 1): Challenger jumps to v. The pebble on v blocks the sources
from the sink, so there must be a semiopen path between v and a source. Let U
be the set of pebbles contained in the vertices of Pv , the subgraph of predecessors
of v (notice that v ∈ U). Consider a new game on Pv , in which the first actions of
Pebbler are to pebble U \ {v} in any order, while Challenger stays on v. The set
U \ {v} does not block the subgraph. If k ≥ h then the new sub-game ends in at
least h+∆ steps, and the total number of rounds is at least 1+ h+∆. Otherwise
v is inside the pyramid, and the new sub-game ends in k +∆ steps. We use
Proposition E.5.7 to claim that |B \ U | ≥ h− k. So in total the rounds in the game
are at least

1
︸︷︷︸

challenge to sink

+ |B \ U |
︸ ︷︷ ︸

outside Pv

+ k+∆
︸ ︷︷ ︸

subgame on Pv

≥ h+∆+ 1 .

• Case k ≤ g(∆−1): there is a path of length h−k+` from v to the sink having only
a pebble on each end. So any optimal Pebbler strategy must contain a strategy for
playing on the semiopen path of length h− k+`−1 from one unpebbled successor
of v to the sink. Fix q = blog(h− k+ `− 1)c, the sub-game on the path of length
h− k+ `− 1 lasts at least q+ 2 rounds (see Lemma E.5.4). The initial challenge
on the sink of the graph is part of this sub-game, but all moves on B are not, so
the total number of rounds is

|B|
︸︷︷︸

blocking set

+ q+ 2
︸︷︷︸

subgame on path

≥ h− k+ 1
︸ ︷︷ ︸

blocking set

+ g(∆− 1) +∆
︸ ︷︷ ︸

subgame on path

≥ h+∆+ 1 .

The bound on |B| holds because Proposition E.5.7 on vertex v implies |B \ {v}| ≥
h−k. The bound on q+2 holds because by hypothesis h−k+`−1≥ g(∆)−g(∆−1),
which implies that q ≥ blog(g(∆)− g(∆− 1))c ≥ g(∆− 1) +∆− 2.

Corollary E.5.9 (Lower bound for pyramids). The persistent pebbling price of a pyramid
of height h> g(∆−1) is at least h+∆. The visiting price of a pyramid of height h= g(∆)
is at least h+∆.

Proof. Lemma E.5.8 claims the first statement. The second one holds because if the
pyramid of height g(∆) had visiting price h+∆− 1, then the (g(∆), 1)-teabag would
have persistent pebbling price h+∆, which contradicts Lemma E.5.8.

262 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

E.6 Technical Constructions

In order to discuss lower bounds on pebbling price we need to identify expensive pebbling
configurations, namely the configurations that are expensive to reach from the empty
configuration. We will often use the reverse direction, i.e., that the empty configuration
cannot be reached without passing through an expensive configuration.

Definition E.6.1. A configuration P is v-locked if RPebG(P) = RPebV(G). A configuration
P is p-locked if RPebG(P) = RPeb(G).

E.6.1 Christmas Tree Construction

This section builds on the pyramid graphs to provide a graph Tr with equal visiting and
persistent prices r for every r ∈ N+. As a preliminary step we show a graph Gp with
persistent price p for every p ∈ N+.

Lemma E.6.2 (Modified Pyramids). There is a family of graphs {Gp}p∈N+ such that

1. RPeb(Gp) = p;

2. Gp has in-degree at most two and a unique sink; and

3. Gp is polynomial-time computable given p, and Gp has at most p2 nodes.

Proof. The value of g−1(h), which is the extra pebbling price of pyramids with respect
to the height, increases only when h = g(∆) + 1. Therefore the persistent pebbling
price of a pyramid increases by 1 unless h= g(∆) + 1, in which case it increases by 2.
If p = h+ g−1(h) for some h ∈ N we let Gp be the pyramid graph of height h. In this
way Gp is defined for every p > 0, unless p = h+ g−1(h) + 1 for some h= g(∆). In this
case we let Gp be the (h, 1)-teabag which, by Lemmas E.5.5 and E.5.8, has persistent
pebbling price p = h+ g−1(h) + 1.

We want a polynomial-time computable family of graphs {Tr}r∈N+ with matching
visiting price and persistent price, i.e., RPebV(Tr) = RPeb(Tr) = r. The idea is to stack
up r appropriately chosen graphs, so that any visiting or persistent pebbling strategy
has to spend one pebble per graph.

We will use r graphs from the family {Gp}p∈N+ where each Gp has persistent pebbling
price p, as constructed in Lemma E.6.2. The resulting graph is a stack of modified
pyramids of increasing sizes. If there is justice in this world, the resulting graph should
be called a Christmas Tree; though a graph theorist may have a hard time calling this a
“tree”.

Construction E.6.3 (Christmas Tree). Let {Gp}p∈N+ be given as in Lemma E.6.2. Given
r ∈ N+, construct a graph Tr := (V, E) as follows. Its vertex set V := V 1tV 2t· · ·tV r is a
disjoint union of r layers, where for 1≤ t < r the t th layer is a copy of Gr−t with vertices

E.6. TECHNICAL CONSTRUCTIONS 263

G1 Layer r

G1 Layer r − 1

G2 Layer r − 2

...

Gr−1 Layer 1

Figure E.10: Illustration of a Christmas Tree in Construction E.6.3.

V t := V (Gr−t), and the top-most layer is another copy of G1 with vertices V r := V (G1).
Its edge set E := Eintra t Einter consists of intra- and inter-layer edges. The intra-layer
edges Eintra := E1 t E2 t · · · t E r come from the corresponding copies of Gp, i.e., for
1≤ t < r the edges on the t th layer E t are copies of E(Gr−t) and and the edges on the
top-most layer E r are copies of E(G1). The inter-layer edges Einter connect, for each
1 ≤ t ≤ r − 2, the sink of the subgraph at layer t with all sources of the subgraphs at
layer t + 1 and t + 2, and also connect the sink of the copy of G1 at layer r − 1 with the
sources of the copy of G1 at layer r.

Lemma E.6.4 (Christmas Tree). The family of graphs {Tr}r∈N+ satisfies

1. RPebV(Tr) = RPeb(Tr) = r;

2. Tr has in-degree at most two and a unique sink; and

3. Tr is polynomial-time computable given r, and Tr has at most r3.

Proof. For Item 3, note that each of the r layers has at most r2 nodes.
For Item 2, if v is a node in Tr we have two cases depending on whether v is some

layer’s source node or not. If it is, then at most two inter-layer edges from lower layers
point to v, and no intra-layer edge does. If v is not a source on any layer then only two
intra-layer edges point to it, since all Gp have fan-in at most 2. The only sink of Tr is the
sink of layer r.

To see that RPebS(Tr)≤ r − 1, and thus that RPeb(Tr)≤ r, persistently pebble the
sink node of Gr−t on layer t, for t from 1 to r − 1, keeping only the pebbles on the sinks

264 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

of the previous layers. To persistently pebble layer t takes r − t pebbles, assuming there
is a pebble on each of the sinks of the t − 1 lower layers, so in total r − 1 pebbles suffice.
Note that G1 is a single node, hence when the sinks of the lower layers are all pebbled
the sink of Tr is surrounded. The bound RPeb(Tr)≤ r follows by Proposition E.2.1.

To see that RPebV(Tr)≥ r, we argue that when visiting layer r there is a v-locked
pebble configuration on each of the previous layers (see Definition E.6.1). In particular,
any layer with a pebble on the sink has a v-locked configuration and if a configuration
is v-locked, then it contains a pebble. Given a pebbling configuration on Tr , for the
rest of this proof we say that layer t is v-locked if the configuration, restricted to the
corresponding subgraph, is v-locked for the subgraph.

Claim E.6.5 (Christmas Tree Locker). Consider any pebbling that uses less than r
pebbles. In such a pebbling, whenever some layer (t − 1) and layer t contain some pebbles,
for 2≤ t ≤ r, then layers 1, . . . , t − 2 are all v-locked.

Proof. The claim is true for t = 2 vacuously, establishing the base case. When t > 2,
consider a time that layer t starts to have a pebble: a source node on layer t is pebbled,
hence there are pebbles on the sink nodes of layers t − 1 and t − 2. Thus layers t − 1
and t − 2 are v-locked and each has a pebble. Induction hypothesis (on t − 1) further
says that layer η is v-locked for any 1≤ η < t −2. As long as there are pebbles on layers
t and t − 1, all lower layers remain v-locked: for 1≤ η≤ t − 2, to unlock layer η takes
RPebV(Gr−η) ≥ RPebS(Gr−η) = r −η− 1 ≥ r − t + 1 pebbles (recall Equation (E.2.3)),
but there are t − 1 pebbles on layers other than η, which cannot be done with less than
r pebbles.

Assume for some r ≥ 2, the sink node of layer r is pebbled using less than r pebbles.
When a source node of layer r is pebbled, there is a pebble on the sink node of layer
r − 1. Claim E.6.5 shows that there is a pebble on layer η for 1≤ η≤ r − 2, for a total
of r pebbles, contradicting that less than r pebbles are used. This shows RPebV(Tr)≥ r
for r ≥ 2, and the case for r = 1 is obvious. In the end we get that

r ≤ RPebV(Tr)≤ RPeb(Tr) = RPebS(Tr) + 1≤ r (E.6.1)

by Equation (E.2.3) and Proposition E.2.1, which gives Item 1.

E.6.2 Molding

Given a graph G we want to construct a graph M(G) with a special source s and a single
sink, such that any pebbling that visits the sink must go through a configuration with at
least RPebV(M(G)) pebbles, one of which is on vertex s.

Construction E.6.6 (Molding). Given a graph G, we construct a graph M(G) as follows.
For every vertex v ∈ V (G), we add to M(G) two vertices vin and vout, and a directed edge
(vin, vout). Also, for every edge (u, v) ∈ E(G), we add to M(G) a corresponding edge

E.6. TECHNICAL CONSTRUCTIONS 265

s

Figure E.11: Example of Construction E.6.6: molding of a pyramid of height 1.

(uout, vin). Finally we add to M(G) a special new vertex s that we connect to all vertices
vout, i.e., for every v ∈ V (G) we add edge (s, vout) to M(G). Formally, V (M(G)) := {s} t
�

vin, vout : v ∈ V (G)
	

and E(M(G)) := E1 t E2 t E3, where E1 :=
�

(vin, vout) : v ∈ V (G)
	

,
E2 :=

�

(uout, vin) : (u, v) ∈ E(G)
	

and E3 :=
�

(s, vout) : v ∈ V (G)
	

.

By construction, if G has in-degree at most two and a unique sink then so does M(G).

Lemma E.6.7 (Molding). Given a graph G, the graph M(G) has the following properties.

1. RPeb
�

M(G)
�

≤ RPeb(G) + 2; and

2. For any visiting pebbling P ′ = 〈P′0,P′1, . . . ,P′τ〉 of M(G), there is a configuration P ′b
(for some 0≤ b ≤ τ) using at least RPebV(G) + 2 pebbles and containing s.

Proof. For Item (1), fix any persistent pebbling P of G. Simulate the pebbling P as a
persistent pebbling P ′ of M(G) as follows. First, pebble the special source s of M(G)
in P ′. Afterwards, whenever there is a move in P to pebble a node v ∈ V (G), make a
phase of three moves in P ′: pebble vin, pebble vout, unpebble vin. Similarly, whenever
there is a move in P to unpebble a node v ∈ V (G), make a phase of three moves in
P ′: pebble vin, unpebble vout, unpebble vin. If the current configuration in P is P, and
the configuration in P ′ at the end of a phase is P′, then P ′ maintains the invariant
that P′ = {s} ∪

�

vout : v ∈ P
	

. As a result, P ′ is a legal pebbling on M(G): whenever
vin is pebbled or unpebbled, all its predecessors pred(vin) =

�

uout : u ∈ pred(v)
	

have
pebbles in P′, since pred(v) have pebbles in P; whenever vout is pebbled or unpebbled,
its predecessors s and vin have pebbles. If we add a final move in P ′ to unpebble s, then
P ′ persistently pebbles M(G). Note that whenever P pebbles or unpebbles v ∈ V (G) to
get to configuration P, the simulating pebbling P ′ uses at most two more pebbles to get
to P′, namely s and vin. Hence RPeb

�

M(G)
�

≤ RPeb(G) + 2.
For Item (2), we start with a visiting pebbling P ′ = 〈P′0,P′1, . . . ,P′τ〉 of M(G) and

we construct a visiting pebbling P of G. We now define two projection operators that
turn pebble configurations for M(G) into configurations for G. Let projout(P′t) :=

�

v ∈
V (G) : vout ∈ P′t

	

be the projection of P′t to V (G) via vout, and projany(P′t) :=
�

v ∈
V (G) : vin ∈ P′t or vout ∈ P′t

	

be the projection of P′t to V (G) via vin or vout. By definition
projout(P′t) ⊆ projany(P′t). Whenever a vertex of M(G) is pebbled or unpebbled during a
pebbling step from P′t to P

′
t+1,

266 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

(i) if the vertex is the special source s, then both projout(P′t) = projout(P′t+1) and
projany(P′t) = projany(P′t+1);

(ii) if the vertex is vin for some vertex v ∈ V (G), then projout(P′t) = projout(P′t+1) but
projany(P′t) may differ from projany(P′t+1); and

(iii) if the vertex is vout for some vertex v ∈ V (G), then projany(P′t) = projany(P′t+1) but
projout(P′t) 6= projout(P′t+1).

To construct P, we analyze in order each configuration P′t in P ′. Depending on how
the sequences of projout(P′t) and projany(P′t) evolve, we may append new configurations
to P. In the following η is the index of the last configuration added to P and t is the
configuration of P ′ under analysis. We maintain the following invariants:

(a) projout(P′t) ⊆ Pη; and

(b) for any v in projany(P′t)4Pη it holds that pred(v) ⊆ projout(P′t).

Initially at t = 0 and η = 0, P′t = projout(P′t) = projany(P′t) = Pη = ;, so the invariant
holds for t = 0. Consider a pebbling move in P ′ from P′t to P

′
t+1.

(I) If projany(P′t) = projany(P′t+1) and projout(P′t) = projout(P′t+1) the construction does
not append any new Pη and the invariant is preserved.

(II) If projany(P′t) 6= projany(P′t+1) then we are in case (ii) above, so projout(P′t) does not
change and some node vin is pebbled or unpebbled. Hence the current configuration
P′t ⊇ pred(vin) =

�

uout : u ∈ pred(v)
	

, thus projout(P′t) ⊇ pred(v). The construction
does not append a new Pη and the invariant is preserved.

(III) If projout(P′t) 6= projout(P′t+1) then we are in case (iii) above, so projany(P′t) does
not change and some node vout is pebbled or unpebbled. The construction appends
to P the two sequences of moves (“Eras”) described below. After each move
projany(P′t)4Pη gets smaller. Note that for any u ∈ projany(P′t)4Pη, the invariant
gives pred(u) ⊆ projout(P′t) ⊆ Pη, so they can be pebbled or unpebbled in Pη.

Unpebble Era while Pη \ projany(P′t) 6= ;, pick any u ∈ Pη \ projany(P′t), and
unpebble u in P (increment η := η+1 and then set Pη := Pη−1 \ {u}). Since
projout(P′t) ⊆ projany(P′t), u /∈ projout(P′t) and the invariant is preserved at
time t.

Pebble Era while projany(P′t) \Pη 6= ;, pick any u ∈ projany(P′t) \Pη, and pebble u
in P (increment η := η+ 1 and then set Pη := Pη−1 ∪ {u}). The invariant is
preserved at time t.

At the end of the two sequences, projout(P′t+1) ⊆ projany(P′t+1) = projany(P′t) = Pη,
so the invariant now holds also at time t + 1.

E.6. TECHNICAL CONSTRUCTIONS 267

We complete the proof of Item (2). For any visiting pebbling P ′ of M(G), the corres-
ponding pebbling P is a visiting pebbling of G by invariant (a), thus some constructed
configuration Pη has at least RPebV(G) pebbles. The configuration has been appended to
P in case (III) above, and without loss of generality we can assume it is either at the be-
ginning of an “unpebble era” or at the end of a “pebble era”, since the number of pebbles
in Pη decreases in the former and increases in the latter. Since the beginning of an
“unpebble era” other than the first is also the end of a “pebble era”, we can furthermore
assume the latter. This means that for some t we have projany(P′t) = projany(P′t+1) = Pη,
so either the corresponding configuration P′t (when vout is unpebbled) or P′t+1 (when vout

is pebbled) has at least RPebV(G) + 2 pebbles, including s, vin and vout. This completes
Item (2).

E.6.3 Turnpikes

As an application of molding (Construction E.6.6) we show a construction that controls
the visiting price of a node, and that allows us to construct gadgets for the components
of a quantified boolean formula.

Construction E.6.8 (Turnpike). For any non-negative integer r we define the turnpike
of toll r from a to b (represented by Fig. E.12) as follows. If r = 0 then the turnpike
just joins the vertices a and b with an edge (a, b). If r > 0 let Tr be the graph having
RPebV(Tr) = RPeb(Tr) = r given by Lemma E.6.4. The turnpike of toll r from a to b
is the graph M(Tr), identifying a with the special source s in M(Tr), and identifying b
with the unique sink in M(Tr).

a b
r

Figure E.12: Turnpike of toll r from a to b.

Let G be any graph that contains a turnpike of toll r from a to b. Call the nodes
R̃ := ancG(b) \ ancG(a) to be properly in the turnpike, and call the nodes R := R̃∪{a} to
be in the turnpike. The turnpike construction is sensitive to whether the pebble on node
a is counted, i.e., whether the pebbling prices are restricted to R or to R̃.

Lemma E.6.9 (Turnpike). We have RPebR(b) = RPebV
R (b) = r + 2 and RPebR̃(b) =

RPebV
R̃
(b) = r + 1.

Proof. RPebR(b)≤ r+2 and RPebR̃(b)≤ r+1 by (the proof of) Item (1) of Lemma E.6.7
(since pebbles outside of R or of R̃ are not counted), and RPebV

R (b) ≥ r + 2 and
RPebV

R̃
(b)≥ r + 1 by Item (2) of Lemma E.6.7.

268 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

The fact that RPebR(b) and RPebR̃(b) do not differ by more than one holds not only
for turnpikes but for any graph.

Lemma E.6.10 (Source Difference). Consider regions R1 and R2 such that R1 = R2\{s2}
for some source s2 of R2 (i.e., pred(s2)∩ R2 = ;). We have

RPebR1
(v) ≤ RPebR2

(v) ≤ RPebR1
(v) + 1

RPebV
R1
(v) ≤ RPebV

R2
(v) ≤ RPebV

R1
(v) + 1

RPebS
R1
(v) ≤ RPebS

R2
(v) ≤ RPebS

R1
(v) + 1 .

E.7 PSPACE-Completeness

In this section we give all details of the construction in Theorem E.3.2, restated in the
following theorem, and its full proof.

Theorem E.7.1. Given a quantified 3-CNF φ, there is a polynomial-time constructible
graph G(φ) and a polynomial-time computable number γ(φ) such that RPeb

�

G(φ)
�

=
γ(φ) + Jφ is falseK.

Let x1 . . . xn be the variables of φ. We sort the variables from the innermost to the
outermost quantifier and denote by φi the quantified 3-CNF with just the i innermost
quantifiers, namely φ0 =

∧m
j=1 C j , φi =Q i x iφi−1 for Q ∈ {∀,∃}, and φ = φn. For each

φi we consider the gadget G(φi), where G(φ0) is built as defined in Construction E.7.24
and each G(φi) for i ∈ [n] is built according to either Construction E.7.26 or Construc-
tion E.7.31, depending on the ith innermost quantifier. Furthermore we fix the sequence
of integers {γi}ni=0 where γ0 := 2m+ 7, γi := 3+ γ(i−1) if the ith innermost quantifier is
existential, and γi = 5+ γ(i−1) if the ith innermost quantifier is universal. To analyze the
gadgets for the subformulas we need the next definition.

Definition E.7.2. A region is an induced subgraph of the final gadget G(φ) (or of
component gadgets as we build up the final gadget). We slightly abuse notation and
refer to a region by a subset of vertices; for example, given a subset of vertices Ř of a
gadget G, we use RPebŘ(G), RPeb

V
Ř
(G) and RPebS

Ř
(G) to denote the different pebbling

prices over the subgraph of G induced on Ř.

With these notations and definitions in place, Theorem E.7.1 follows immediately
from the next lemma when i is equal to n. In this case ρ and Ř, as stated in the lemma,
are respectively the empty assignment and the full graph G(φ). In the proof of the
lemma we refer to definitions, lemmas and constructions that we will present in full
details in the coming subsections.

Lemma E.7.3 (Main Lemma). Fix an arbitrary 0≤ i ≤ n and let

• ρ be an assignment to all but the first i variables;

E.7. PSPACE-COMPLETENESS 269

• S be the canonical set of ρ according to Definition E.7.11;

• Ř be the subset of vertices of G(φi) defined as V (G(φi)) \ anc(S).

It holds that
RPebŘ

�

G(φi)
�

= γi + Jφi�ρ is falseK . (E.7.1)

Proof. When i = 0, the gadget G(φ0) is the CNF gadget from Construction E.7.24 and
the base case follows immediately by Lemma E.7.25, where βm = 2m. When i > 0,
consider the two possible extensions of ρ that assign x i , namely ρ0 := ρ ∪ {x i = 0}
and ρ1 := ρ ∪ {x i = 1}. Consider also the corresponding canonical sets S0, S1 and the
regions Ř0 := V (G(φ(i−1))) \ anc(S0) and Ř1 := V (G(φ(i−1))) \ anc(S1). By induction it
holds that

• RPebŘ0

�

G(φ(i−1))
�

= γ(i−i) + Jρ0 falsifies φ(i−1)K

• RPebŘ1

�

G(φ(i−1))
�

= γ(i−1) + Jρ1 falsifies φ(i−1)K

so the hypothesis of Lemmas E.7.37 and E.7.30 holds. Whenφi = ∀x iφi−1 Lemma E.7.37
gives that

RPeb
�

G(φi)
�

= 5+ γ(i−i) + Jρ0 falsifies φ(i−1) or ρ1 falsifies φ(i−1)K, (E.7.2)

and φi = ∃x iφ(i−1) Lemma E.7.30 gives that

RPeb
�

G(φi)
�

= 3+ γ(i−i) + Jρ0 falsifies φ(i−1) and ρ1 falsifies φ(i−1)K . (E.7.3)

Equations (E.7.2) and (E.7.3) are equivalent, for the respective quantifier type, to
Equation (E.7.1).

E.7.1 Literal Gadget

Lemma E.6.4 allows us to create an edge (u, v) with RPeb(v) = RPeb(u) + 1 = r + 1
given any r ∈ N+. This is used for constructing gadgets for literals (represented as
Figure E.13).

Construction E.7.4 (Literal Gadget). Fix a literal ` and an integer r ∈ N+. Let Tr be
the graph having RPebV(Tr) = RPeb(Tr) = r given by Lemma E.6.4. The literal gadget
of price r for `, is denoted as L`(r). To construct it, take a copy of Tr and call its sink `′.
Then add a new node, named ` as the corresponding literal, and add the edge (`′,`).

Lemma E.7.5 (Literal Gadget). In L`(r), RPeb(`)− 1= RPeb(`′) = RPebV(`′) = r.

Proof. Note that visiting node `′ is equivalent to surrounding node `. Hence RPeb(`)−
1 = RPebS(`) = RPebV(`′) = RPeb(`′) = r by Equation (E.2.3), Proposition E.2.1, and
Lemma E.6.4.

270 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

`′

`

r

Figure E.13: Literal gadget of price r for `.

We associate pebbling configurations on L := Lr(`) with truth value true, false or
∗ (undefined) as follows.

Definition E.7.6 (Literal Position). Fix a literal gadget L := Lr(`). Given a pebbling
configuration P, say node `′ is v-locked on ancL(`′) if RPebL(P) = RPebV(`′) = r (when
restricted to ancL(`′)); that is, if the empty configuration cannot be reached without
entering a configuration which has r pebbles. Given a pebbling configuration on L, say
literal ` is in

• true position, if node ` has a pebble and node `′ is not v-locked;

• false position, if node `′ is v-locked; and

• ∗ position, if node ` has no pebble and node `′ is not v-locked.

A transition of literal ` is a change of position for ` (for instance from true position to
false position, or from false position to ∗ position) due to a pebble move. Finally, we
identify certain canonical positions with configurations on L as follows:

• the canonical true position is the configuration where only node ` has a pebble;

• the canonical false position is the configuration where only node `′ has a pebble;
and

• the canonical ∗ position is the empty configuration.

Clearly, the canonical true position (resp. canonical false position, canonical ∗
position) is indeed a true position (resp. false position, ∗ position).

Lemma E.7.7 (Literal Transition). Fix a literal gadget L := Lr(`).

1. it is impossible to transition directly from ∗ position to true position, and vice versa;
and

2. at a transition, there are r pebbles on ancL(`′).

E.7. PSPACE-COMPLETENESS 271

Proof. Note that node `′ is v-locked on any configuration with a pebble on node `′. To
change from ∗ position to true position, node ` needs to be pebbled, and hence node `′

must have a pebble at some time. At that time, node `′ is v-locked, so the configuration
is in false position. This gives Item (1).

Hence the only valid transitions are from ∗ position to false position (or its reverse),
and from false position to true position (or its reverse). In any of these, node `′ needs
to switch between locked and unlocked status, which requires a configuration with r
pebbles on ancL(`′) by definition of v-locked. This gives Item (2).

E.7.2 Variable Gadget

Let ri ∈ N+ be an integer to be specified later, which is associated with the ith variable
x i .

Inspired by previous works [88, 102, 55] truth values are represented using the
gadget in Figure E.14.

Construction E.7.8 (Variable Gadget). For the variable x i , its variable gadget G(x i) is
constructed as the disjoint union two literal gadgets of price ri , one for literal x i and
one for literal x̄ i .

x ′i

x i

ri

x̄ ′i

x̄ i

ri

Figure E.14: Variable x i .

For the gadget G := G(x i), its nodes are V (G) := AncG({x i , x̄ i}).

Definition E.7.9 (Variable Position). Fix a variable gadget G := G(x i) consisting of
literal gadgets L1 := Lri

(x i) and L0 := Lri
(x̄ i). We identify certain canonical positions

with configurations on G as follows:

• the canonical true position is the configuration where only nodes x i and x̄ ′i have
pebbles;

• the canonical false position is the configuration where only nodes x ′i and x̄ i have
pebbles; and

• the canonical ∗ position is the empty configuration.

Lemma E.7.10 (Variable Assignment). Variable x i can be put into one among canonical
true and canonical false positions using at most ri + 1 pebbles.

272 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Proof. To put variable x i in canonical true position, persistently pebble node x i , then
persistently pebble x̄ ′i . It can be done with ri + 1 pebbles by Lemma E.7.5. A symmetric
argument shows that x i can be put in canonical false position with ri + 1 pebbles.

As we will see in later sections, the design of the quantifier gadgets would ensure that
any pebbling strategy would effectively associate truth value via the canonical positions.
This motivates the following definition.

Definition E.7.11 (Canonical Nodes). Given a partial assignment ρ : [n] → {true,
false,∗}, the canonical nodes of variable x i under ρ are

• {x i , x̄ ′i} if ρ(i) = true;

• {x ′i , x̄ i} if ρ(i) = false; and

• {} if ρ(i) = ∗.

Note that if ρ(i) 6= ∗, then there are two pebbles on the ancestors of the canonical
nodes of x i . For example, if ρ(i) = true, then there is a pebble on anc(x i) and a pebble
on anc(x̄ ′i).

In general, we consider a partial assignment on variables ρ : [n]→ {true,false,∗}
as a partial assignment on literals:

• if variable x i is assigned true under ρ (i.e., ρ(i) = true), then literal x i is
assigned true and literal x̄ i is assigned false;

• if variable x i is assigned false under ρ (i.e., ρ(i) = false), then literal x i is
assigned false and literal x̄ i is assigned true;

• if variable x i undefined under ρ (i.e., ρ(i) = ∗), then literal x i is ∗ and literal x̄ i

is ∗.

As we will argue later, the design of the quantifier gadgets would ensure that “invalid
variable assignments” would not be a problem: for example, the two literals of the
same variable cannot be put into the true position at the same time (for instance
Claim E.7.29); also, it does not help to put the two literals of the same variable into
the false position at the same time, and each variable will be assigned eventually
(Lemmas E.7.28 and E.7.34).

The canonical nodes (of a partial assignment) are useful for defining certain regions
over different component gadgets in the overall construction.

E.7. PSPACE-COMPLETENESS 273

E.7.3 Clause Gadget

Let β j ≥ 2 be an integer to be specified later, which is associated with the jth clause C j .
The gadget for the jth clause, C j = ` j,1 ∨ ` j,2 ∨ ` j,3, uses as a component the turnpike
gadget which is described in Construction E.6.8. Its skeleton is shown in Figure E.15
(the literal gadgets are simplified in Figure E.15 for a cleaner diagram). Assume that
the literals ` j,1,` j,2,` j,3 are over distinct variables.

Construction E.7.12 (Clause Gadget). Assume that for each variable x i , 1≤ i ≤ n we
have the corresponding variable gadget G(x i), i.e., two literal gadgets for x i and x̄ i .
For the jth clause C j , its clause gadget G(C j) is constructed as follows. Create nodes
a j , b j , c j , u j , v j , p j , and edges

(a j , u j), (b j , u j), (b j , v j), (c j , v j), (u j , p j), (v j , p j). (E.7.4)

Finally, add three turnpikes of toll β j , from ` j,1 to a j , from ` j,2 to b j , and from ` j,3 to c j

(where the nodes ` j,1,` j,2,` j,3 are the ones from the corresponding literal gadgets).

Note that in Figure E.15 the six nodes ` j,1, `
′
j,1, ` j,2, `

′
j,2, ` j,3, and `

′
j,3 come from the

variable gadgets corresponding to the variables in literals ` j,1, ` j,2 and ` j,3. Recall the
definitions of canonical nodes in Definition E.7.11. For example, if literal ` j,1 is in true
position, literals ` j,2,` j,3 false position, then their canonical nodes are ` j,1,`′j,2,`′j,3.

a j

b j

c j

u j

v j

p j

`′j,1

`′j,2

`′j,3

` j,1

` j,2

` j,3

β j

β j

β j

Figure E.15: Clause j.

In this subsection, focus on the gadget G := G(C j) constructed for the jth clause C j .
The gadget G behaves like a disjunction in the sense that at least one literal is assigned
true if, and only if, β j + 3 additional pebbles are needed to surround p j .

Lemma E.7.13 (True Clause, upper bound). Fix a partial assignment ρ. Assume none
of the literals ` j,1,` j,2,` j,3 is assigned ∗, and at least one of them is assigned true. Let S j be
their canonical nodes. Consider the region R j := ancG(p j) \ ancG(S j) beyond the canonical
nodes. Then RPebS

R j
(p j)≤ β j + 3.

Proof. Note that the jth clause gadget is symmetric in the three literals ` j,1,` j,2,` j,3 when
restricting attention to AncG({a j , b j , c j}) \ Anc∗G({`

′
j,1,`′j,2,`′j,3}). If at least one of the

274 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

literals ` j,1,` j,2,` j,3 is assigned true, we claim that it takes at most β j + 3 pebbles over
R j to leave pebbles only on {a j , b j , c j}; afterwards p j can be surrounded by pebbling u j

and v j (note that β j + 3≥ 2
︸︷︷︸

u j ,v j

+ 3
︸︷︷︸

a j ,b j ,c j

= 5).

To prove the claim, note that if ` j,1 is assigned true, then the intersection of R j

with the turnpike from ` j,1 to a j is precisely the nodes properly in the turnpike; if ` j,1 is
assigned false, then the intersection is precisely the nodes in the turnpike. This holds sim-
ilarly for literals ` j,2 and ` j,3. By symmetry over AncG({a j , b j , c j})\Anc∗G({`

′
j,1,`′j,2,`′j,3}),

assume ` j,1 is assigned true, and each of ` j,2, ` j,3 is assigned true or false. Consider
the following strategy to place three pebbles on {a j , b j , c j}, where pebbles outside of R j

are not counted:

1. Persistently pebble the turnpike from ` j,2 to b j . It takes at most β j + 2 pebbles
over R j by Lemma E.6.9.

2. Persistently pebble the turnpike from ` j,3 to c j . Now only b j and c j have pebbles
over R j . It takes at most β j + 2

︸ ︷︷ ︸

anc(c j)

+ 1
︸︷︷︸

b j

= β j + 3 pebbles over R j by Lemma E.6.9.

3. Persistently pebble the turnpike from ` j,1 to a j . Since ` j,1 is outside of R j , it takes
at most β j+1 pebbles over the intersection of the turnpike and R j by Lemma E.6.9,
for a total of β j + 1

︸ ︷︷ ︸

anc(a j)

+ 2
︸︷︷︸

b j ,c j

= β j + 3 pebbles. Now a j , b j and c j have pebbles.

Lemma E.7.14 (False Clause, lower bound). Fix a partial assignment ρ. Assume all of
the literals ` j,1, ` j,2 and ` j,3 are assigned false. Let S j := {`′j,1,`′j,2,`′j,3} be their canonical
nodes. Consider the region R j := ancG(p j) \ ancG(S j) beyond the canonical nodes. Then
RPebS

R j
(p j)≥ β j + 4.

Proof. Note that G consists of a pyramid whose sources are attached to three turnpikes.
Since all literals are assigned false, the intersection of R j with each of the turnpike is
precisely the nodes in the turnpike.

Fix an induced subgraph F ⊆ G (for instance F = the turnpike from ` j,1 to a j) having
a unique sink. Say a pebbling configuration on F is v-locked if RPebF (P) = RPebV(F),
that is if in order to reach the empty configuration it is necessary to pass through a
configuration with RPebV(F) pebbles. In particular, any configuration with a pebble on
the sink of F is v-locked on F . Also, if a configuration is v-locked on F , then there is a
pebble on F . Given a pebbling configuration on G, say a j (resp. b j , c j) is v-locked if the
configuration is v-locked on the turnpike from ` j,1 to a j (resp. from ` j,2 to b j , from ` j,3

to c j).
With locking in mind, consider a “projected” configuration on the pyramid defined

as follows. Given a pebbling configuration P on G, its projection to the pyramid is
proj(P) :=

�

{u j , v j , p j} ∩P
�

∪
�

t ∈ {a j , b j , c j} : t is v-locked under P
	

. Note that given a

E.7. PSPACE-COMPLETENESS 275

strategy on G, its (configuration-wise) projection to the pyramid is a legal strategy on
the pyramid.

We are interested in the truncated paths π̆ on the pyramid (i.e., source to sink paths
excluding the sink, which are in bijection to the edges (a j , u j), (b j , u j), (b j , v j), (c j , v j)),
and in particular whether they are blocked under proj(P). A truncated path π̆ is blocked
under proj(P) if π̆∩ proj(P) 6= ;.

Consider a strategy on G to surround p j . Its projection to the pyramid is a strategy
on the pyramid to surround p j . At the beginning, all truncated paths on the pyramid are
not blocked; at the end, all truncated paths are blocked. Consider the first time that all
truncated paths on the pyramid are blocked: in the strategy projected on the pyramid,
this must be the result of pebbling a source node a j , b j , or c j . By symmetry (in the rest
of this argument), assume a j is pebbled, then there are at least two more pebbles on
the pyramid in the projected configuration. Since a j is being pebbled in the projected
strategy, a j is getting v-locked on G (i.e., restricting attention to the turnpike from ` j,1

to a j , there are as many pebbles as the visiting price of the turnpike), accounting for
β j + 2 pebbles in the intersection of R j and the turnpike to a j by Lemma E.6.9. The two
other pebbles in the projected strategy each account for one more pebble over R j , for a
total of β j + 4 pebbles.

The lower bound shown in Lemma E.7.14 holds for clauses which are falsified. We
now prove a weaker lower bound on the surrounding price for the satisfied clauses,
which matches the upper bound.

Lemma E.7.15 (Any Clause, lower bound). Fix a partial assignment ρ. Assume none
of literals ` j,1, ` j,2, or ` j,3 is assigned ∗. Let S j be their canonical nodes. Consider the region
R j := ancG(p j) \ ancG(S j) beyond the canonical nodes. Then RPebS

R j
(p j)≥ β j + 3.

Proof. Follow the proof of Lemma E.7.14 to define v-locked, projection to the pyramid,
truncated paths on the pyramid, and blocking on the pyramid. The only difference is
that, since some literal can be assigned true, the intersection of R j with some of the
turnpike can be the nodes properly in the turnpike.

Consider a strategy on G to surround p j . Its projection to the pyramid is a strategy
on the pyramid to surround p j . As in the proof of Lemma E.7.14, consider the first time
that all truncated paths on the pyramid are blocked, which in the projected strategy must
be the result of pebbling a source node, say, a j . And there are at least two more pebbles
on the pyramid in the projected configuration. Since a j is being pebbled in the projected
strategy, a j is getting v-locked on G (i.e., restricting attention to the turnpike from ` j,1

to a j , there are as many pebbles as the visiting price of the turnpike), accounting for
β j +1 pebbles in the intersection of R j and the turnpike to a j by Lemma E.6.9 (note that
node ` j,1 may be outside of R j if literal ` j,1 is in true position). The two other pebbles
in the projected strategy each account for one more pebble over R j , for a total of β j + 3
pebbles.

276 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Assuming that the literal gadgets are in the position corresponding to ρ, we represent
“whether ρ falsifies C j” through an increase in the persistent price of the sink of the
corresponding gadget, i.e., if ρ satisfies C j , then the persistent price would be a certain
number (β j + 4); but if ρ falsifies C j , then the persistent price would be one plus that
number (β j + 5). The difference in pebbling prices can be succintly expressed using the
Iverson bracket notation Jρ falsifies C jK.

Corollary E.7.16 (Clause Gadget). Fix a partial assignment ρ. Assume none of literals
` j,1, ` j,2, or ` j,3 is assigned ∗. Let S j be their canonical nodes. Consider the region R j :=
ancG(p j)\ancG(S j) beyond the canonical nodes. Then RPebR j

(p j) = β j+4+Jρ falsifies C jK.

Proof. If ρ satisfies C j , i.e., at least one literal is assigned true, then RPebR j
(p j) = β j+4

because persistent price is one plus surrounding price (Proposition E.2.1), and the upper
bound (Lemma E.7.13) matches the lower bound (Lemma E.7.15). If ρ falsifies C j ,
i.e., all literals are assigned false, then RPebR j

(p j) = β j + 5 because it has to increase
(Lemma E.7.14) but not by more than one (Lemma E.6.10).

E.7.4 Conjunction Gadget

To construct a gadget for the conjunction of m clauses, it suffices to repeatedly compose a
gadget for the conjunction two smaller gadgets, using the conjunction gadget represented
in Figure E.16.

Construction E.7.17 (Conjunction Gadget). Assume two gadgets G1 and G2 with
unique sinks are constructed. Construct the conjunction gadget of weight r of G1 and G2,
denoted Λr(G1, G2), as follows. Call z1 the sink of G1, z2 the sink of G2. Construct nodes
d1, d2, d3, d4, e, and edges (d1, d3), (d2, d3), (d4, e). Add a turnpike of toll r from z1 to
d1, a turnpike of toll r − 1 from z2 to d2, and a turnpike of toll r − 2 from d3 to d4.

z1

z2

d1

d2

d3 d4
e

r

r−1

r−2

Figure E.16: Conjunction gadget of weight r of G1 and G2.

For the gadget G := Λr(G1, G2), the nodes in the gadget are V (G) = anc(e) \
�

anc∗(z1)∪ anc∗(z2)
�

. We want to analyze pebbling prices restricted to a certain region
Ř (in the final gadget containing the conjunction gadgets) which will be a superset of
the nodes of G.

E.7. PSPACE-COMPLETENESS 277

Lemma E.7.18 (True Conjunction). Fix a region Ř where Ř ⊇ V (G). If RPebŘ(z1)≤ r+1
and RPebŘ(z2)≤ r, then RPebS

Ř
(e)≤ r + 2.

Proof. Consider the following strategy to visit d4 (equivalently, surround e) using at
most r + 2 pebbles:

• Persistently pebble z1, persistently pebble the turnpike from z1 to d1, persistently
unpebble z1. Now d1 has a pebble. Over Ř, the first sub-step takes at most r + 1
pebbles, the second sub-step takes at most r + 2 pebbles by Lemma E.6.9, and the
third sub-step takes at most (r + 1)

︸ ︷︷ ︸

anc(z1)

+ 1
︸︷︷︸

d1

= r + 2 pebbles.

• Persistently pebble z2, persistently pebble the turnpike from z2 to d2, persistently
unpebble z2. Now d1 and d2 have pebbles. Over anc(d2) ∩ Ř, the first sub-step
takes at most r pebbles, the second sub-step most (r − 1) + 2= r + 1 pebbles by
Lemma E.6.9, and the third sub-step takes at most r

︸︷︷︸

anc(z2)

+ 1
︸︷︷︸

d2

pebbles. Over Ř,

this step takes at most r + 1
︸︷︷︸

anc(d2)

+ 1
︸︷︷︸

d1

= r + 2 pebbles.

• Pebble d3, persistently pebble the turnpike from d3 to d4. Now d1, d2, d3, d4 have
pebbles. Over Ř′ :=

�

anc(e)∩ Ř
�

\
�

anc(d1)∪ anc(d2)
�

, the first sub-step takes 1
pebble, the second sub-step takes at most (r − 2) + 2= r pebbles by Lemma E.6.9.
Over Ř, this step takes at most r

︸︷︷︸

Ř′

+ 2
︸︷︷︸

d1,d2

pebbles.

Lemma E.7.19 (Any Conjunction). Fix a region Ř where Ř ⊇ V (G). We have the follow-
ing:

1. RPebS
Ř
(e)≥ r + 2; and

2. if RPebŘ(z1)≤ r + 2 and RPebŘ(z2)≤ r + 1, then RPebS
Ř
(e)≤ r + 3.

Proof. For Item (1), note that any strategy to surround e must visit d1, and RPebV
Ř
(d1)≥

r + 2 by Lemma E.6.9.
Item (2) follows from the proof of Lemma E.7.18 to visit d4 (equivalently, surround

e):

1. persistently pebble z1, persistently pebble the turnpike from z1 to d1, persistently
unpebble z1. Now d1 has a pebble. This step takes at most r + 3 pebbles over Ř.

2. persistently pebble z2, persistently pebble the turnpike from z2 to d2, persistently
unpebble z2. Now d1 and d2 have pebbles. This step takes at most r + 3 pebbles
over Ř.

278 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

3. pebble d3, persistently pebble the turnpike from d3 to d4. Now d1, d2, d3, d4 have
pebbles. This step takes at most r + 2 pebbles over Ř.

Lemma E.7.20 (False Conjunction). Fix a region Ř where Ř ⊇ V (G). We have the
following:

1. if RPebŘ(z1)≥ r + 2, then RPebS
Ř
(e)≥ r + 3; and

2. if RPebŘ(z2)≥ r + 1, then RPebS
Ř
(e)≥ r + 3.

Proof. Fix a turnpike T ⊆ G, say from s to z (for instance if T is the turnpike from
z1 to d1, then s = z1 and z = d1). Say a pebbling configuration on T is s-locked if
the pebbles cannot be cleared without using RPebV

Ř
(T) pebbles including one on s

(when restricted to T); that is, if the empty configuration cannot be reached without
entering a configuration which has RPebV

Ř
(T) pebbles and contains s. In particular, any

configuration with a pebble on the sink of T is s-locked on T by Lemmas E.6.7 and E.6.9.
Also, if a configuration is s-locked on T , then there is a pebble on some node properly in
the turnpike (there is a pebble on V (T) \ {s}). Given a pebbling configuration on G, say
d1 (resp. d2, d4) is s-locked if the configuration is s-locked on on the turnpike from z1 to
d1 (resp. from z2 to d2, from d3 to d4).

Fix an induced subgraph F ⊆ G having a unique sink v (for instance F = anc(z1) and
v = z1). Say a pebbling configuration on F is p-locked if RPebF (P) = RPebŘ(F); this is
if the pebbles cannot be cleared without using RPebŘ(F) pebbles (when restricted to
F). In particular, the configuration with just a single pebble on v over Ř is p-locked on
F . Also, if a configuration is p-locked on F , then there is a pebble on F ∩ Ř. Given a
pebbling configuration on G, say z1 (resp. z2) is p-locked if the configuration is p-locked
on anc(z1) (resp. anc(z2)).

Claim E.7.21 (s-locked implies p-locked). Fix any turnpike T on G, say of toll r from
s to z. Assume RPebŘ(s) ≥ r + 2. In any pebbling that uses at most r + 2 pebbles over
anc(z)∩ Ř, if z is s-locked then s is p-locked.

Proof. Assume z starts to get s-locked. By definition of s-locked, there are r + 2 pebbles
on the turnpike T , and s has one of the pebbles. Since at most r + 2 pebbles are used
over Ř, only s has pebble over anc(s) ∩ Ř, so s is p-locked. Until z is not s-locked,
there is one pebble properly in the turnpike (i.e., over V (T) \ {s}). Since unlocking s
requires RPebŘ(s)≥ r+2 pebbles over anc(s)∩ Ř, until z stops being s-locked, s remains
p-locked.

Fix a strategy to surround node e, which at some time t3 must pebble or unpebble d3.
At time t3, both node d1 and node d2 have pebbles, hence both node d1 and node d2 are
s-locked. At the beginning, both node d1 and node d2 are not s-locked. Let t1 (resp. t2)
be the earliest time before time t3 such that node d1 (resp. d2) remains s-locked between
time t1 and time t3. Thus node d1 (resp. d2) is s-locked at time t1 (resp. t2).

E.7. PSPACE-COMPLETENESS 279

Claim E.7.22 (s-locked). If the pebbling uses at most r + 2 pebbles over Ř to surround e,
then

(i) t1 < t2; and

(ii) at time t2, there is exactly one pebble over anc(d1)∩ Ř.

Proof. For Item (i), if t2 < t1, then at time t1 there is a pebble on the turnpike from z2

to d2 (as node d2 is already s-locked), and there are r + 2 pebbles on the turnpike from
z1 to d1 by definition of s-locked, for a total of r + 3 pebbles over Ř.

For Item (ii), there is at least one pebble on the turnpike from z1 to d1 as node d1

is already s-locked, and there is at most one pebble over anc(d1)∩ Ř since there are at
least (r − 1) + 2= r + 1 pebbles on the turnpike from z2 to d2 by definition of s-locked,
and we assumed that at most r + 2 pebbles are used over Ř.

For Item (1), assume RPebŘ(z1) ≥ r + 2. If at most r + 2 pebbles are used over Ř
to surround node e, then Claim E.7.22 shows that at time t2, node d1 is s-locked (as
t1 < t2), and there is exactly one pebble on anc(d1)∩ Ř. Since RPebŘ(z1)≥ r+2 and the
turnpike from z1 to d1 has toll r, Claim E.7.21 says that when node d1 is s-locked (which
is the case at time t2), node z1 is p-locked. Therefore at time t2, there are two pebbles
over anc(d1)∩ Ř: one properly on the turnpike from z1 to d1 (since d1 is s-locked); and
one on anc(z1)∩ Ř (since z1 is p-locked). This contradiction shows that RPebS

Ř
(e)≥ r+3.

For Item (2), assume RPebŘ(z2)≥ r + 1. Fix a strategy using at most r + 2 pebbles
over Ř to surround node e, i.e., to visit node d4. At the end, node d4 is s-locked; at the
beginning, node d4 is not s-locked. Let t4 be the earliest time such that node d4 remains
s-locked since t4 until the end. Thus node d4 is s-locked at time t4.

Redefine t3 if necessary, assume it is the last time before t4 such that node d3 is
pebbled or unpebbled. Then time t1 and time t2 are defined (as above) relative to this
t3, giving t1 < t2 < t3 < t4 (the first inequality is by Claim E.7.22).

Note that at time t3, node d3 is being pebbled: to see this, we know that at time t4,
the turnpike from d3 to d4 is being s-locked, so there is a pebble on node d3 by definition
of s-locked. Since there is no pebble move on node d3 after time t3 and before time t4,
it follows that d3 is being pebbled at time t3, and there is a pebble on node d3 between
time t3 and time t4.

We know that both node d1 and node d2 are s-locked at time t3. In fact, they remain
s-locked between time t3 and time t4: to see this, note that to make node d1 not s-locked
takes r + 2 pebbles over anc(d1)∩ Ř, but there are two pebbles outside this region (one
on the turnpike from z2 to d2, and one on d3), which cannot be done with at most r + 2
pebbles over Ř. Likewise, note that to make node d2 not s-locked takes (r−1)+2= r+1
pebbles over anc(d2) ∩ Ř, but there are two pebbles outside this region (one on the
turnpike from z1 to d1, and one on d3), which cannot be done with at most r +2 pebbles
over Ř. Therefore, node d1 is s-locked from time t1 to time t4, and node d2 is s-locked
from time t2 to time t4.

280 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

At time t1, the turnpike from z1 to d1 is getting s-locked, so by definition of s-locked
there are r + 2 pebbles on the turnpike. By assumption, at most r + 2 pebbles are
used over Ř, so there is no pebble over anc(d2)∩ Ř at time t1. Restrict attention to the
sub-strategy P ′ between time t1 and time t4. In the sub-strategy P ′, node d1 remains
s-locked, so at most (r + 2)− 1 = r + 1 pebbles can be used over anc(d2) ∩ Ř. Since
RPebŘ(z2)≥ (r − 1) + 2 and the turnpike from z1 to d1 has toll r − 1, Claim E.7.21 says
that when node d2 is s-locked, node z2 is p-locked. At time t4,

• node d1 is s-locked, so there is a pebble properly in the turnpike from z1 to d1;

• node d2 is s-locked, hence node z2 is p-locked, so there is a pebble properly in the
turnpike from z2 to d2, and a pebble over anc(z2)∩ Ř; and

• there are (r − 2) + 2= r pebbles in the turnpike from d3 to d4.

This accounts for 1 + 2 + r = r + 3 pebbles over Ř. This contradiction shows that
RPebS

Ř
(e)≥ r + 3.

Recall that we are going to represent the unsatisfiability of a clause by increased
persistent prices, i.e., let q j be the condition that clause C j is satisfied, and q̄ j be its
negation, then RPebŘ j

(p j) = β j + 4+ Jq̄ jK by Corollary E.7.16.

Corollary E.7.23 (Conjunction Gadget). Fix a region Ř where Ř ⊇ V (G). Assume that
for some conditions q1 and q2 if holds that RPebŘ(z1) = r + 1+ Jq̄1K and RPebŘ(z2) =
r + Jq̄2K. Then RPebŘ(e) = r + 3+ Jq1 ∧ q2K.

Proof. If both q1 and q2 are true, then RPebŘ(e) = r +3 because persistent price is one
plus surround price (Proposition E.2.1), and the upper bound (Lemma E.7.18) matches
the lower bound (Item (1) of Lemma E.7.19). If q1 or q2 is false, then RPebŘ(e) = r+4
because the lower bound increases (Lemma E.7.20) to match the new upper bound
(Item (2) of Lemma E.7.19).

E.7.5 CNF Gadget

Assume Γ = C1 ∧ C2 ∧ · · · ∧ Cm is a conjunction of m clauses. Let Γk :=
∧

1≤ j≤k C j be the
conjunction of the first k clauses. We will construct a gadget Fk := G(Γk) for Γk with
increasing k by successive conjunction of two smaller gadgets, then the CNF gadget for
Γ is G(Γ) = G(Γm).

For 1≤ j ≤ m, let β j := 2 j, then β j ≥ 2.

Construction E.7.24 (CNF Gadget). Assume for each clause C j , 1 ≤ j ≤ m, a clause
gadget G(C j) is constructed. Let Γk :=

∧

1≤ j≤k C j be the conjunction of the first k clauses
when 0≤ k ≤ m. Construct a partial CNF gadget Fk for increasing k as follows. Construct
F0 := T7 as the graph with RPebV(T7) = RPeb(T7) = 7 given by Lemma E.6.4. Then for
1≤ k ≤ m, construct Fk := Λβk

�

Fk−1, G(Ck)
�

be the conjunction gadget of weight βk of

E.7. PSPACE-COMPLETENESS 281

the previous partial CNF gadget (Fk−1) and the gadget of clause k (G(Ck)). The CNF
gadget G(Γ) for Γ is Fm.

For the gadget G := G(Γ), the nodes in the gadget V (G) contains the nodes of F0 = T7,
the nodes of all clause gadgets G(C j), and the nodes of all intermediate conjunction
gadgets.

Lemma E.7.25 (CNF Gadget). Let ρ be an assignment, and let S be the canonical nodes
in all variable gadgets according to ρ (Definition E.7.11). Let Ř := V (G) \ anc(S) be the
region beyond the canonical nodes of ρ. Then RPebŘ(Fm) = βm + 7+ Jρ falsifies Γ K.

Proof. For 1 ≤ j ≤ m, let q j be the condition that clause j (C j) is satisfied by ρ. For
0 ≤ k ≤ m, let q′k be the condition that the first k clauses (Γk) are satisfied by ρ. We
show by induction that RPebŘ(Fk) = βk + 7+ Jq̄′kK.

When k = 0, Γk is satisfied vacuously, so q′0 is true. The base case holds as
RPebŘ(F0) = RPeb(T7) = 7.

For the general case 1≤ k ≤ m, plug r = βk+4 into Corollary E.7.23. Since induction
hypothesis gives RPebŘ(Fk−1) = βk−1+7+Jq̄′k−1K= βk+5+Jq̄′k−1K, and Corollary E.7.16
gives RPebŘ

�

G(Ck)
�

= βk + 4+ Jq̄kK, it follows that RPebŘ(Fk) = βk + 7+ Jq̄′kK, because
q′k = q′k−1 ∧ qk.

E.7.6 Existential Quantifier Gadget

Assume that we already have the gadget G(φi−1) and that the ith inner-most quantifier
is existential, i.e., Q i = ∃. This quantifier refers to x i , we set the parameter ri := γi − 2
for the corresponding variable gadget. We construct G(φi) as follows.

Construction E.7.26 (Existential Quantifier Gadget). Let qi−1 denote the sink of the
previous quantifier gadget G(φi−1). Construct nodes fi , gi , qi , and edges (x i , gi), (x̄ i , gi),
(fi , qi), (gi , qi). Add a turnpike of toll γi − 5 from qi−1 to fi .

For the gadget G := G(φi), the nodes in the gadget V (G) contains the nodes in the
previous gadget V

�

G(φi−1)
�

, the new nodes fi , gi , qi and the nodes in the turnpike from
qi−1 to fi .

Lemma E.7.27 (Existential Upper Bound). Assume Lemma E.7.3 holds for i − 1.

1. If φi �ρ is true, then RPebS
Ř
(qi)≤ γi − 1.

2. If φi �ρ is false, then RPebS
Ř
(qi)≤ γi .

Proof. For Item (1), by assumptionφi �ρ = ∃x iφi−1 �ρ is true, so there is an assignment
of x i to true or to false to satisfyφi−1, i.e.,φi−1 �ρ1

is true orφi−1 �ρ0
is true. Assume

the former by symmetry. Since φi−1 �ρ1
is true, by the assumption that Lemma E.7.3

holds for i − 1, we have RPebŘ1
(qi−1) = γi−1 = γi − 3. Consider the following strategy

to surround qi with at most γi − 1 pebbles over Ř:

282 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

x ′i

x i

ri

x̄ ′i

x̄ i

ri

fi gi

qi

qi−1

γi−5

Figure E.17: Existentially quantified variable ∃x i .

(i) Put x i into the canonical true position with ri+1= γi−1 pebbles by Lemma E.7.10.
Now node x i and node x̄ ′i have pebbles;

(ii) Persistently pebble node qi−1 using at most γi − 3 pebbles over the new region Ř1.
Now x i , x̄ ′i and qi−1 have pebbles. Over the old region Ř, at most (γi−3)+2= γi−1
pebbles are used (this step is legal as Ř= Ř1 ∪

�

anc(x i)∪ anc(x̄ ′i)
�

and x i and x̄ i

have pebbles);

(iii) Persistently pebble the turnpike from qi−1 to fi . Now x i , x̄ ′i , qi−1 and fi have
pebbles. At most (γi−5)+2= γi−3 pebbles are used over the turnpike (including
the pebble on node qi−1) by Lemma E.6.9, so at most (γi − 3)+ 2= γi − 1 pebbles
are used over Ř; and

(iv) Pebble node x̄ i then node gi . Now the six nodes x i , x̄ ′i , x̄ i , qi−1, fi , gi have pebbles.

For Item (2), since φi−1 �ρ1
is false, by the assumption that Lemma E.7.3 holds for

i−1, we have RPebŘ1
(qi−1) = γi−1+1= (γi −3)+1= γi −2. We run the same strategy

as in Item (1) to surround qi , using at most γi pebbles over Ř (only Step (ii) uses one
more pebble).

Lemma E.7.28 (Existential Lower Bound). Assume Lemma E.7.3 holds for i − 1.

1. RPebS
Ř
(qi)≥ γi − 1.

2. If RPebS
Ř
(qi)≤ γi − 1, then φi �ρ is true.

Proof. Fix a strategy to surround qi using at most γi − 1 pebbles over Ř. At the end,
there is a pebble on the turnpike from qi−1 to fi , and there is a pebble on gi . Let t2 be
the earliest time such that since t2 there is at least one pebble on the turnpike from qi−1

to fi . Let t3 be the earliest time such that since t3 there is a pebble on gi .

E.7. PSPACE-COMPLETENESS 283

At time t3, node gi is being pebbled, so both nodes x i and x̄ i have pebbles, and none
of literal x i or x̄ i is in ∗ position. Let t0 (resp. t1) be the last time before time t3 such
that literal x̄ i (resp. literal x i) has a transition (Definition E.7.6). Note that neither literal
x̄ i nor x i can have a transition after time t3: to make a transition for literal x̄ i (resp. x i)
takes ri = γi − 2 pebbles on the ancestors of node x̄ ′i (resp. x ′i) by Lemma E.7.7, but
there is a pebble on the other literal gadget, i.e., on Lri

(x i) (resp. Lri
(x̄ i)), and there is

a pebble on gi , which cannot be done with at most γi − 1 pebbles over Ř. So time t0

(resp. t1) is in fact the last time that literal x̄ i (resp. x i) has a transition, and literal x̄ i

(resp x i) is not in ∗ position since t0 (resp. t1).
Assume t0 < t1 by symmetry (in the rest of this argument).

Claim E.7.29 (Clearance). At time t1, there is no pebble over Ř0 = Ř\
�

anc(x ′i)∪anc(x̄ i)
�

.

Proof. At time t1, there is a transition of literal x i , accounting for ri = γi − 2 pebbles
on anc(x ′i) by Lemma E.7.7. And there is a pebble on the other literal gadget Lri

(x̄ i),
because literal x̄ i is not in ∗ position. This accounts for at least γi −1 pebbles over Ř.

The proof of Claim E.7.29 establishes Item (1).
By Claim E.7.29, we know that since time t1 literal x i is not in true position, hence

in false position. As there is no transition of literals x̄ i or x i after time t1, there is a
pebble on anc(x̄ i) and a pebble on anc(x ′i) since time t1. Over the region Ř0, there are
at most (γi −1)−2= γi −3 pebbles since time t1. Note that region Ř0 is associated with
the (i − 1)-assignment ρ0.

By Claim E.7.29, we have t0 < t1 < t2, where t2 is defined (in the first paragraph of
this proof) as the earliest time since which there is at least one pebble on the turnpike
from qi−1 to fi . Note that at time t2 − 1 there is no pebble on the turnpike from qi−1 to
fi , but at the end there is a pebble on fi . The sub-strategy since time t2−1 visits fi when
restricted to the turnpike from qi−1 to fi , so by Lemma E.6.7, there is a time t4 after t2

such that there are (γi − 5) + 2= γi − 3 pebbles over the turnpike, including one pebble
on qi−1. As a result, over the region Ř0 ∩ anc(qi−1), there is only one pebble at time t4,
which is on node qi−1. The sub-strategy from time t1 to t4 persistently pebble node qi−1

over the region Ř0 ∩ anc(qi−1) using γi − 3= γi−1 pebbles, so RPebŘ0

�

G(φi−1)
�

≤ γi−1.
By the assumption that Lemma E.7.3 holds for i − 1, we know φi−1 �ρ0

is true. As a
result, ∃x iφi−1 �ρ = φi �ρ is true, giving Item (2).

Lemma E.7.30 (Existential Quantifier Gadget). Assume that Lemma E.7.3 holds for
i − 1. We have RPebŘ

�

G(φi)
�

= γi + Jφi �ρ is falseK.

Proof. Since persistent price is one plus surrounding price (Proposition E.2.1), it suf-
fices to show that RPebS

Ř

�

G(φi)
�

= γi − 1 + Jφi �ρ is falseK. If φi �ρ is true, then

RPebS
Ř

�

G(φi)
�

= γi − 1, as the upper bound (Lemma E.7.27) matches the lower bound

(Lemma E.7.28). If φi �ρ is false, then RPebŘ

�

G(φi)
�

= γi , as the upper bound
(Lemma E.7.27) matches the lower bound (Lemma E.7.28).

284 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

E.7.7 Universal Quantifier Gadget

Assume that we already have the gadget G(φi−1) and that the ith inner-most quantifier
is existential, i.e., Q i = ∀. This quantifier refers to x i , we set the parameter ri := γi − 3
for the corresponding variable gadget. We construct G(φi) as follows.

Construction E.7.31 (Universal Quantifier Gadget). Let qi−1 denote the sink of the
previous quantifier gadget G(φi−1). Construct nodes f ′i , f̄ ′i , fi , f̄i , gi , ḡi , hi , h̄i , qi , and
edges (x i , f ′i), (x̄

′
i , f ′i), (fi , hi), (gi , hi), (x̄ i , f̄ ′i), (x

′
i , f̄ ′i), (f̄i , h̄i), (ḡi , h̄i), (hi , qi), (h̄i , qi).

Add a turnpike of toll γi−6 from f ′i to fi , a turnpike of toll γi−6 from f̄ ′i to f̄i , a turnpike
of toll γi − 7 from qi−1 to gi , and a turnpike of toll γi − 7 from qi−1 to ḡi .

x ′i

x i

ri

x̄ ′i

x̄ i

ri

f ′i f̄ ′i

fi f̄i

gi ḡi

hi h̄i

qi

γi−6 γi−6

qi−1

γi−7 γi−7

Figure E.18: Universally quantified variable ∀x i .

For the gadget G := G(φi), the nodes in the gadget V (G) contains the nodes in the
previous gadget V

�

G(φi−1)
�

, the new nodes f ′i , f̄ ′i , fi , f̄i , gi , ḡi , hi , h̄i , qi , and the nodes
in the four turnpikes.

Lemma E.7.32 (One-Sided Upper Bound). Assume Lemma E.7.3 holds for i − 1.

1. If φi−1 �ρ1
is true, then using at most γi − 2 pebbles over Ř, we can leave pebbles on

nodes x i , x̄ ′i , fi , qi−1, gi .

2. If φi−1 �ρ0
is true, then using at most γi − 2 pebbles over Ř, we can leave pebbles on

nodes x̄ i , x ′i , f̄i , qi−1, ḡi .

3. If φi−1 �ρ1
is false, then using at most γi − 1 pebbles over Ř, we can leave pebbles on

nodes x i , x̄ ′i , fi , qi−1, gi .

E.7. PSPACE-COMPLETENESS 285

4. If φi−1 �ρ0
is false, then using at most γi − 1 pebbles over Ř, we can leave pebbles on

nodes x̄ i , x ′i , f̄i , qi−1, ḡi .

Proof. For Item (1), since φi−1 �ρ1
is true, by the assumption that Lemma E.7.3 holds

for i−1, we have RPebŘ1
(qi−1) = γi−1 = γi −5. Consider the following strategy to leave

pebbles on x i , x̄ ′i , fi , qi−1, gi using at most γi − 2 pebbles over Ř:

(i) Put x i into the canonical true position with ri+1= γi−2 pebbles by Lemma E.7.10.
Now node x i and node x̄ ′i have pebbles;

(ii) Pebble f ′i , persistently pebble the turnpike from f ′i to fi , then unpebble f ′i . Now x i ,
x̄ ′i and fi have pebbles. Over the turnpike from f ′i to fi , at most (γi−6)+2= γi−4
pebbles are used by Lemma E.6.9. Over Ř, at most (γi −4)+ 2

︸︷︷︸

x i , x̄
′
i

= γi −2 pebbles

are used.

(iii) Persistently pebble node qi−1 using at most γi − 5 pebbles over the new region Ř1.
Now x i , x̄ ′i , fi and qi−1 have pebbles. Over the old region Ř, at most γi − 5

︸ ︷︷ ︸

Ř1

+ 3
︸︷︷︸

x i , x̄
′
i , fi

=

γi − 2 pebbles are used (this step is legal since Ř= Ř1 ∪
�

anc(x i)∪ anc(x̄ ′i)
�

and
since x i and x̄ i have the only pebbles on anc(x i)∪ anc(x̄ ′i));

(iv) Persistently pebble the turnpike from qi−1 to gi . Now x i , x̄ ′i , fi , qi−1 and gi have
pebbles. Over the turnpike from qi−1 to gi , at most (γi − 7) + 2= γi − 5 pebbles
are used by Lemma E.6.9. Over Ř, at most (γi − 5) + 3

︸︷︷︸

x i , x̄
′
i , fi

= γi − 2 pebbles are

used.

Item (2) is symmetric to Item (1).
For Item (3), since φi−1 �ρ1

is false, by the assumption that Lemma E.7.3 holds for
i−1, we have RPebŘ1

(qi−1) = γi−1+1= (γi −5)+1= γi −4. We run the same strategy
as in Item (1) to leave pebbles on x i , x̄ ′i , fi , qi−1, gi , using at most γi − 1 pebbles over Ř
(only Step (iii) uses one more pebble).

Item (4) is symmetric to Item (3).

Lemma E.7.33 (Universal Upper Bound). Assume Lemma E.7.3 holds for i − 1.

1. If φi �ρ is true, then RPebS
Ř
(qi)≤ γi − 1.

2. If φi �ρ is false, then RPebS
Ř
(qi)≤ γi .

Proof. For Item (1), by assumption φi �ρ = ∀x iφi−1 �ρ is true, so assigning x i to true
and to false both satisfy φi−1, i.e., φi−1 �ρ1

is true and φi−1 �ρ0
is true. Consider the

following strategy to surround qi with at most γi − 1 pebbles over Ř:

286 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

(i) Run Item (1) of Lemma E.7.32 to pebble nodes x i , x̄ ′i , fi , qi−1, gi , using at most
γi − 2 pebbles over Ř.

(ii) Pebble hi . Now the six nodes x i , x̄ ′i , fi , qi−1, gi , hi have pebbles.

(iii) Run the reverse of Item (1) of Lemma E.7.32 to remove pebbles from nodes x i ,
x̄ ′i , fi , qi−1, gi . Now node hi has a pebble. Over Ř, at most γi − 2+ 1

︸︷︷︸

hi

= γi − 1

pebbles are used.

(iv) Run Item (2) of Lemma E.7.32 to pebble nodes x̄ i , x ′i , f̄i , qi−1, ḡi . Now the six
nodes hi , x̄ i , x ′i , f̄i , qi−1, ḡi have pebbles. Over Ř, at most γi − 2+ 1

︸︷︷︸

hi

= γi − 1

pebbles are used.

(v) Pebble h̄i to surround qi . Seven nodes have pebbles.

For Item (2), we run the same strategy as in Item (1) to surround qi , using at most
γi pebbles over Ř (each of Steps (i), (iii), (iv) may use one more pebble by Items (3) and
(4) of Lemma E.7.32).

Lemma E.7.34 (Universal Lower Bound). Assume Lemma E.7.3 holds for i − 1.

1. RPebS
Ř
(qi)≥ γi − 1.

2. If RPebS
Ř
(qi)≤ γi − 1, then φi �ρ is true.

Proof. Fix a strategy to surround qi using at most γi − 1 pebbles over Ř. Let Ř f :=
{hi} ∪ anc(fi) \ anc∗(f ′i) be the region to augment hi to the turnpike from f ′i to fi , and
Ř f̄ := {h̄i} ∪ anc(f̄i) \ anc∗(f̄ ′i) be the region to augment h̄i to the turnpike from f̄ ′i to
f̄i . At the end, the region Ř f has a pebble (on hi) and the region Ř f̄ has a pebble (on
h̄i). Let t1 (resp. t0) be the earliest time such that since time t1 (resp. t0) the region Ř f

(resp. Ř f̄) has pebble.
Assume t0 < t1 by symmetry (in the rest of this argument). At time t1−1, there is no

pebble on Ř f , and there are pebbles on nodes x i and x̄ ′i (so that node f ′i can be pebbled
at time t1). Hence literal x̄ i is in false position, and literal x i is not in ∗ position. Note
that there is no transition of literals x i or x̄ i since time t1: to make a transition for literal
x i (resp. x̄ i) takes ri = γi − 3 pebbles over anc(x ′i) (resp. anc(x̄ ′i)) by Lemma E.7.7, but
there is a pebble on Ř f̄ , a pebble on Ř f , and a pebble on the other literal gadget Lri

(x̄ i)
(resp. Lri

(x i)); thus a transition cannot be done with at most γi − 1 pebbles over Ř. As
such, there is a pebble on anc(x i) and a pebble on anc(x̄ ′i) since time t1.

Because node fi must be visited before node hi can be pebbled, by Lemma E.6.9, at
some later time t2 > t1 there are (γi − 6) + 2= γi − 4 pebbles on the turnpike from f ′i

E.7. PSPACE-COMPLETENESS 287

to fi . At time t2 over Ř, there are at least

γi − 4
︸ ︷︷ ︸

Ř f \{hi}

+ 1
︸︷︷︸

Ř f̄

+ 2
︸︷︷︸

Anc({x i , x̄
′
i})

= γi − 1 (E.7.5)

pebbles, giving Item (1).
At time t2, there is no pebble on {hi}∪ Řg where Řg := anc(gi) \Anc({x i , x̄ ′i}), as all

γi − 1 pebbles over Ř are on Ř f \ {hi}, Ř f̄ or Anc({x i , x̄ ′i}) by (E.7.5). Over Ř \ Řg , there
are at least

1
︸︷︷︸

Ř f

+ 1
︸︷︷︸

Ř f̄

+ 2
︸︷︷︸

Anc({x i , x̄
′
i})

= 4

pebbles since time t2, so at most (γi − 1)− 4 = γi − 5 pebbles over Řg . Because node
gi must be visited before node hi can be pebbled, by Lemma E.6.7, at some later time
t3 > t2 there are (γi − 7) + 2= γi − 5 pebbles on the turnpike from qi−1 to gi , including
one on node qi−1. Recall the region Ř1 = Ř \

�

anc(x i)∪ anc(x̄ ′i)
�

that is associated with
the (i−1)-assignment ρ1. At time t3, there is only one pebble over Ř1∩anc(qi−1), which
is on node qi−1. The sub-strategy from time t2 to t3 persistently pebble node qi−1 over
the region Ř1 ∩ anc(qi−1) using γi − 5 = γi−1 pebbles, so RPebŘ1

�

G(φi−1)
�

≤ γi−1. By
the assumption that Lemma E.7.3 holds for i − 1, we know φi−1 �ρ1

is true.
We claim that at time t2, node h̄i has a pebble (by modifying the argument in the

previous paragraph). Let Řh :=
�

{hi} ∪ anc(gi)
�

\ anc(qi−1) be nodes properly in the
turnpike from qi−1 to gi plus hi , and Řh̄ :=

�

{h̄i}∪anc(ḡi)
�

\anc(qi−1) be nodes properly
in the turnpike from qi−1 to ḡi plus h̄i .

Claim E.7.35 (Persistence). At time t2, node h̄i has a pebble.

Proof. For otherwise, at time t2, there is no pebble on Řh or Řh̄, as all γi −1 pebbles over
Ř are on Ř f \ {hi}, Ř f̄ \ {h̄i} or anc({x i , x̄ ′i}) by (E.7.5). Let t3 (resp. t4) be the earliest
time such that since time t3 (resp. t4) the region Řh (resp. Řh̄) has pebble.

Claim E.7.36 (No Double Persistence). Since t3, there are at least two pebbles over
Ř f ∪ Řh.

Proof. Note that Ř f consists of the turnpike from f ′i to fi plus node hi , and Řh consists
of nodes properly in the turnpike from qi−1 to gi plus node hi .

Fix an induced subgraph F ⊆ G (for instance F = the turnpike from f ′i to fi) having
a unique sink. Say a pebbling configuration P is v-locked on F if RPebF (P) = RPebV(F);
this is if the pebbles cannot be cleared without using RPebV(F) pebbles (when restricted
to F). In particular, any configuration with a pebble on the sink of F is v-locked on F .
Also, if a configuration is v-locked on F , then there is a pebble on F . Given a pebbling
configuration on G, we say that fi (resp. gi) is v-locked if the configuration is v-locked
on the turnpike from f ′i to fi (resp. from qi−1 to gi).

288 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Assume for contradiction that at some time t7 ≥ t3 there is only one pebble over
Ř f ∪ Řh, which must be on hi by the inclusion-exclusion principle. Let t5 be the earliest
time before t7 such that there is a pebble on node hi from t5 to t7. We know t0 < t1 <

t3 < t5 < t7. At time t5 node hi is pebbled, so node gi and node fi each has a pebble,
and both are v-locked. At time t7, nodes properly in the two turnpikes have no pebbles,
and nodes gi and fi are not v-locked. Let t6 be the earliest time after t5 such that one of
the turnpikes is not v-locked, then t5 < t6 < t7.

• If the turnpike from f ′i to fi stops being v-locked at time t6, then at time t6−1 there
are (γi − 6) + 2= γi − 4 pebbles over the turnpike from f ′i to fi by Lemma E.6.9.
Over Ř, there are

γi − 4
︸ ︷︷ ︸

turnpike from f ′i to fi

+ 1
︸︷︷︸

turnpike from qi−1 to gi

+ 1
︸︷︷︸

hi

+ 1
︸︷︷︸

Ř f̄

+ 2
︸︷︷︸

Anc({x i , x̄
′
i})

= γi + 1

pebbles, contradicting that at most γi − 1 pebbles are used over Ř.

• If the turnpike from qi−1 to gi stops being v-locked at time t6, then at time t6 − 1
there are (γi − 7) + 2 = γi − 5 pebbles over the turnpike from qi−1 to gi by
Lemma E.6.9. Over Ř, there are

γi − 5
︸ ︷︷ ︸

turnpike from qi−1 to gi

+ 1
︸︷︷︸

turnpike from f ′i to fi

+ 1
︸︷︷︸

hi

+ 1
︸︷︷︸

Ř f̄

+ 2
︸︷︷︸

Anc({x i , x̄
′
i})

= γi

pebbles, contradicting that at most γi − 1 pebbles are used over Ř.

Assume t3 < t4 by symmetry (in the rest of Claim E.7.35). At time t4−1, there is no
pebble on Řh̄. By Lemma E.6.9, at some later time t5 > t4 there are (γi −7)+2= γi +5
pebbles on the turnpike from qi−1 to ḡi . Over Ř, there are at least

γi − 5
︸ ︷︷ ︸

turnpike from qi−1 to ḡi

+ 2
︸︷︷︸

Ř f ∪Řh

+ 1
︸︷︷︸

Ř f̄

+ 2
︸︷︷︸

Anc({x i , x̄
′
i})

= γi

pebbles, contradicting that at most γi − 1 pebbles are used over Ř.

Claim E.7.35 shows that there is a pebble on h̄i at time t2, hence there is no pebble
on the turnpike from f̄ ′i to f̄i by (E.7.5). Let t3 be the earliest time before t2 such that
the only pebble on Ř f̄ is on h̄i , and let t6 be the earliest time before t3 such that h̄i has a
pebble from time t6 to t3. At time t3, there are pebbles on nodes x ′i and x̄ i (so that node
f̄ ′i can be unpebbled at time t3 − 1), hence literal x i is in false position, and literal x̄ i is
not in ∗ position. Note that there is no transition of literals x i or x̄ i between time t6 and
t3−1: to make a transition for literal x i (resp. x̄ i) takes ri = γi −3 pebbles over anc(x ′i)
(resp. anc(x̄ ′i)) by Lemma E.7.7, but there is a pebble on h̄i , a pebble on Ř f̄ \ {h̄i}, and

E.8. PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING 289

a pebble on the other literal gadget Lri
(x̄ i) (resp. Lri

(x i)); thus a transition cannot be
done with at most γi − 1 pebbles over Ř. As such, there is a pebble on anc(x ′i) and a
pebble on anc(x̄ i) between time t6 and t3.

At time t6, node ḡi and node f̄i each has a pebble (so that node h̄i can be pebbled at
time t6−1). At time t3, the turnpike from f̄ ′i to f̄i has no pebble. By Lemma E.6.9, there
is a time t4 between t6 and t3 such that there are (γi − 6) + 2= γi − 4 pebbles on the
turnpike from f̄ ′i to f̄i . We know t6 < t4 < t3 < t2. At time t4 over Ř, there are at least

γi − 4
︸ ︷︷ ︸

Ř f̄ \{h̄i}

+ 1
︸︷︷︸

h̄i

+ 2
︸︷︷︸

Anc({x ′i , x̄ i})

= γi − 1 (E.7.6)

pebbles.
At time t4, there is no pebble on Ř ḡ where Ř ḡ := anc(ḡi) \Anc({x ′i , x̄ i}), as all γi − 1

pebbles over Ř are on Ř f̄ or anc({x i , x̄ ′i}) by (E.7.6). Over Ř \ Ř ḡ , there are at least

1
︸︷︷︸

Ř f̄ \{h̄i}

+ 1
︸︷︷︸

h̄i

+ 2
︸︷︷︸

Anc({x ′i , x̄ i})

= 4

pebbles between time t6 and t3 − 1, so at most (γi − 1)− 4 = γi − 5 pebbles over Ř ḡ .
Because node ḡi is visitied at time t6 and the turnpike from qi−1 to ḡi has no pebble at
time t4, by Lemma E.6.7, at some time t5 between t6 and t4 there are (γi−7)+2= γi−5
pebbles on the turnpike from qi−1 to ḡi , including one on node qi−1. Recall the region
Ř0 = Ř \

�

anc(x ′i)∪ anc(x̄ i)
�

that is associated with the (i − 1)-assignment ρ0. At time
t5, there is only one pebble over Ř0 ∩ anc(qi−1), which is on node qi−1. The (reverse
of the) sub-strategy from time t5 to t4 persistently pebble node qi−1 over the region
Ř0∩anc(qi−1) using γi−5= γi−1 pebbles, so RPebŘ0

�

G(φi−1)
�

≤ γi−1. By the assumption
that Lemma E.7.3 holds for i − 1, we know φi−1 �ρ0

is true.
As a result, ∀x iφi−1 �ρ = φi �ρ is true, giving Item (2).

Lemma E.7.37 (Universal Quantifier Gadget). Assume that Lemma E.7.3 holds for
i − 1. We have RPebŘ

�

G(φi)
�

= γi + Jφi �ρ is falseK.

Proof. Since persistent price is one plus surrounding price (Proposition E.2.1), it suf-
fices to show that RPebS

Ř

�

G(φi)
�

= γi − 1 + Jφi �ρ is falseK. If φi �ρ is true, then

RPebS
Ř

�

G(φi)
�

= γi − 1, as the upper bound (Lemma E.7.33) matches the lower bound

(Lemma E.7.34). If φi �ρ is false, then RPebŘ

�

G(φi)
�

= γi , as the upper bound
(Lemma E.7.33) matches the lower bound (Lemma E.7.34).

E.8 Product Construction for Reversible Pebbling

The part of the proof of Theorem E.3.4 that deals with reversible pebbling uses as a black
box the construction in Theorem E.3.5 for reversible pebbling. Now we state it again
and we give its full proof.

290 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Theorem E.8.1. Given two graphs G1 and G2, there is a polynomial-time constructible
graph R(G1, G2) of size 3|G1| · |G2| with reversible pebbling price RPeb

�

R(G1, G2)
�

=
RPeb(G1) +RPeb(G2) + 1.

We want to construct a graph R to inherit structures from two graphs, which are
called respectively the exterior graph G1 and the interior graph G2. Intuitively, for every
node in G1, we will construct a block with the structure of G2: in each such block, for
every node in G2 we create a cell of three nodes, where different cells are connected
according to the exterior graph G1 and the interior graph G2.

G2 =

G1 =

R(G1, G2) =

Figure E.19: Example of Construction E.8.2: product of a pyramid of height 1 and a
rhombus.

Construction E.8.2 (Product for reversible pebbling). Fix two graphs G1 and G2, and
denote z2 as the unique sink of G2. Construct a graph R := R(G1, G2) as follows. For
every node (v1, v2) ∈ V (G1)× V (G2), create three nodes (v1, v2)out, (v1, v2)ext, (v1, v2)int.
Add an edge from the exterior node to the output node, i.e., from node (v1, v2)ext to
(v1, v2)out; add an edge from the interior node to the output node, i.e., from node
(v1, v2)int to (v1, v2)out. The exterior node supports the structure of the exterior graph
G1, in the sense that for every predecessor w1 of v1 in G1, we create an edge from the
sink the w1-block of G2, i.e., from node (w1, z2)out to node (v1, v2)ext. The interior node

E.8. PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING 291

supports the structure of the interior graph G2, in the sense that for every predecessor
w2 of v2 in G2, we create an edge from the output node of w2, i.e., from node (v1, w2)out

to node (v1, v2)int.
Formally, V (R) :=

�

(v1, v2)out, (v1, v2)ext, (v1, v2)int : v1 ∈ V (G1), v2 ∈ V (G2)
	

, and

E(R) := Eout t Eext t Eint, where Eout :=
¦

�

(v1, v2)ext, (v1, v2)out

�

,
�

(v1, v2)int, (v1, v2)out

�

:

v1 ∈ V (G1), v2 ∈ V (G2)
©

, Eext :=
¦

�

(w1, z2)out, (v1, v2)ext

�

: v1 ∈ V (G1), v2 ∈ V (G2),

w1 ∈ predG1
(v1)

©

, and Eint :=
¦

�

(v1, w2)out, (v1, v2)int

�

: v1 ∈ V (G1), v2 ∈ V (G2), w2 ∈

predG2
(v2)

©

.

Clearly, if G1 and G2 each has in-degree at most two and a unique sink, then so does
the resulting graph R. Note that the graph R partitions into |V (G1)| blocks, namely, for
each v1 ∈ V (G1), the v1-block is the subgraph ofR induced over the node set

�

(v1, v2)out,
(v1, v2)ext, (v1, v2)int : v2 ∈ V (G2)

	

. Each such block further partitions into |V (G2)| cells,
namely, in the v1-block, for each v2 ∈ V (G2), the (v1, v2)-cell is the subgraph of the
v1-block induced over the node set

�

(v1, v2)out, (v1, v2)ext, (v1, v2)int

	

.
Finally, given a configuration P′ on R, say the v1-block (resp. the (v1, v2)-cell) is

surrounded if any exterior node of the v1-block (resp. the interior node of the (v1, v2)-cell)
is surrounded in P′. Note that the v1-block is surrounded iff every exterior node of the
v1-block is surrounded.

Lemma E.8.3 (Upper Bound). RPeb
�

R(G1, G2)
�

≤ RPeb(G1) +RPeb(G2) + 1.

Proof. Fix a persistent pebbling P1 of G1 using RPeb(G1) pebbles, and a persistent
pebbling P2 of G2 using RPeb(G2) pebbles. We will construct a persistent pebbling P ′ of
R(G1, G2) using RPeb(G1) +RPeb(G2) + 1 pebbles.

We claim that the persistent price of each block ofR is at most RPeb(G2)+2. For any
v1 ∈ V (G1), to persistently pebble the v1-block (assuming the v1-block is surrounded),
simulate P2 as follows: whenever P2 pebbles a node v2 ∈ V (G2), the simulating pebbling
has a phase to persistently pebble the (v1, v2)-cell, and whenever P2 unpebbles a node
v2 ∈ V (G2), then the simulating pebbling has a phase to persistently unpebble the (v1, v2)-
cell. If the current configuration in P2 is P, and the configuration in the simulating
pebbling at the end of a phase is P′, then the simulating pebbling maintains the phase-
invariant that P′ =

�

(v1, v2)out : v2 ∈ P
	

. Note that the simulating pebbling is legal: since
the pebbling P2 is legal, when v2 is pebbled or unpebbled it is surrounded in the current
configuration P, so the (v1, v2)-cell is surrounded in the simulating configuration P′

and the interior node can be pebbled or unpebbled; and we assume that the v1-block is
surrounded, so the exterior node can be pebbled or unpebbled. The simulating pebbling
uses at most two more pebbles (on the exterior node and the interior node of each cell),
for at most RPeb(G2) + 2 pebbles over the v1-block.

Then the resulting graph R(G1, G2) can be persistently pebbled by simulating P1

as follows. Whenever P1 pebbles a node v1 ∈ V (G1), the simulating pebbling P ′ has a

292 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

stage to persistently pebble the v1-block; whenever P1 unpebbles a node v1 ∈ V (G1),
the simulating pebbling P ′ has a stage to persistently unpebble the v1-block. If the
current configuration in P1 is P, and the configuration in the simulating pebbling P ′

at the end of a stage is P′, then the simulating pebbling maintains the stage-invariant
that P′ =

�

(v1, z2)out : v1 ∈ P
	

. Note that the simulating pebbling P ′ is legal: since the
pebbling P1 is legal, when v1 is pebble or unpebbled it is surrounded in the current
configuration P, so the v1-block is surrounded in the simulating configuration P′, so the
v1-block can be persistently pebbled or unpebbled in a stage of P ′. When the v1-block is
pebbled or unpebbled in a stage of P ′, there are at most RPeb(G1)− 1 pebbles on other
blocks of R, and there are at most RPeb(G2) + 2 pebbles in the v1-block, for a total of
RPeb(G1) +RPeb(G2) + 1 pebbles.

To prove the lower bound we extract simultaneous pebblings of G1 and G2 from
any pebbling of R and use the known pebbling prices of G1 and G2 to argue that some
configuration needs many pebbles. We do so by projecting a pebbling of R into G1 and
G2 as the skeleton of a pebbling and then filling the gaps between configurations with a
legal sequence of pebbling moves.

Lemma E.8.4 (Lower Bound). RPeb
�

R(G1, G2)
�

≥ RPeb(G1) +RPeb(G2) + 1.

Proof. Fix any persistent pebbling P ′ = (P′0,P′1, . . . ,P′τ) of R(G1, G2). For every v1 ∈
V (G1), we are going to simulate a pebbling P v1 on G2 based (essentially) on the con-
figurations of P ′ over the v1-block. From the family of pebblings {P v1}v1∈V (G1), we then
simulate a persistent pebbling P on G1.

In more detail, for each v1 ∈ V (G1) we define a mapping Intv1 : R → G2 and we
view the sequence of configurations (Intv1(P′t))t∈[0,τ] as the skeleton of a pebbling of G2.
We fill the gaps between configurations according to the algorithm described below to
obtain a legal pebbling P v1 . Similarly we define a mapping Ext : R→ G1 to construct
the pebbling P on G1.

To describe the mappings we need some definitions. Given a configuration P′ in
P ′ of R(G1, G2), its projection to the output (resp. exterior, interior) nodes of the v1-
block is projv1

out(P′) :=
�

v2 ∈ V (G2) : (v1, v2)out ∈ P′
	

(resp. projv1
ext(P′) :=

�

v2 ∈ V (G2) :
(v1, v2)ext ∈ P′

	

, projv1
int(P

′) :=
�

v2 ∈ V (G2) : (v1, v2)int ∈ P′
	

).
The closure clos(P′) ⊆ V

�

R(G1, G2)
�

is the smallest set of nodes containing P′ that
is closed under pebble placements on interior or output nodes; equivalently, clos(P′)
can be generated by the following algorithm: Start with P′, while there is a node v ∈
V
�

R(G1, G2)
�

which is an interior node v = (v1, v2)int or an output node v = (v1, v2)out

such that v is surrounded by, but not in, the subset of nodes having pebbles, pebble v.
Note that the closure of a v1-block does not depend on other blocks as they are connected
only through exterior nodes.

For brevity, given a graph G and a subset U ⊆ V (G) of vertices, denote unsurG(U) :=
{v ∈ V (G) : predG(v) 6⊆ U} as the subset of nodes in G not surrounded by U .

The block mapping is Iw1
�

P′
�

:= projw1
out(P′)∪

�

projw1
int(P

′)∩ unsurG2

�

projw1
out(P′)

�

�

E.8. PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING 293

We define the interior mapping Intw1(P′) to be Iw1
�

P′
�

if the w1-block is surrounded,
and Iw1

�

clos(P′)
�

if the w1-block is not surrounded.
Given a configuration P′, its persistent projection (p-projection) is projP(P′) :=

�

v1 ∈
V (G1) : Intv1(P′) is p-locked

	

, and its visiting projection (v-projection) is projV (t) :=
�

v1 ∈ V (G1) : Intv1(P′) is v-locked
	

.

Finally the exterior mapping is Ext(P′) := projP(P′)∪
�

projV (P′)∩unsurG1

�

projP(P′)
�

�

.

We abuse the notation for mappings from configurations in P ′ and write f (t) to
mean f (P′t). In addition we define Pv1(t) = Intv1(P′t) and P(t) = Ext(P′t). Note that
there can be multiple pebble moves between, say, P(t − 1) and P(t).

We construct the pebblings {P v1}v1∈V (G1) and P according to Algorithm E.8.8, which
are legal by Claim E.8.9. Note thatP is a persistent pebbling of G1: Pw1(τ) = Iw1

�

clos(τ)
�

,
which is ; if w1 is not the sink of G1, and {z2} if w1 is the sink of G1, so P(τ) = Ext(τ) =
{z1}, the sink of G1. Then the lower bound follows from Claim E.8.13.

The algorithm to construct the remaining configurations in the pebblings {P v1}v1∈V (G1)
and P, given P ′, is essentially to insert and remove missing pebbles in topological order
whenever two configuration are different, and make such a pebbling go through a
specific configuration in the exterior case. We give an explicit description below and in
Claim E.8.9 we prove that it is equivalent to this implicit description.

Definition E.8.5 (Reasonable pebbling). Given a configuration P, a set of vertices to
pebble T+ and a set of vertices to unpebble T−, the reasonable pebbling is the following
pebbling:

• start with P;

• for each v ∈ T+ in a topological order, pebble v;

• for each v ∈ T− in a reverse topological order, unpebble v.

Furthermore, the reasonable pebbling between two configurations P1, P2 is the reason-
able pebbling with P= P1, T+ = P2 \ P1, and T− = P1 \ P2.

Claim E.8.6 (Legality). Assume P, T+, T− ⊆ V (G) are given. If for every v ∈ T+ ∪ T−, we
have predG(v) ⊆ P∪ T+, then the reasonable pebbling is legal.

Proof. For any v ∈ T+, right before v is pebbled, we know predG(v) have pebbles since
predG(v) ⊆ P∪ T+ and the pebble placement on T+ proceeds in a topological order. So
all pebble placements on T+ are legal.

For any v ∈ T−, right before v is unpebbled, we know predG(v) have pebbles since
predG(v) ⊆ P ∪ T+ and the pebble placement on T− proceeds in a reverse topological
order. So all pebble removals on T− are legal.

294 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

Corollary E.8.7 (Legality). Assume P1,P2 ⊆ V (G) are given. Assume the sets T+ :=
P2 \P1 and T− := P1 \P2 satisfy that for every v ∈ T+∪T− = P14P2, we have predG(v) ⊆
P1 ∪ T+ = P1 ∪ P2, then the reasonable pebbling over P1, T+, T− is legal.

Proof. Apply Claim E.8.6 on P1, T+, T−.

Algorithm E.8.8. As Claim E.8.9 shows, we only need to consider the case when an
output node (v1, v2)out is pebbled or unpebbled to get to P′t in P ′. In this case we run
the following steps in sequence:

(a) if the v1-block is surrounded in P′t , we insert the reasonable pebbling between
Iv1
�

t − 1
�

and Iv1
�

t
�

into P v1 .

(b) if v2 = z2,

(i) if (v1, v2)out is pebbled to get to P′t in P ′, for each successor w1 of v1 such that
the w1-block is surrounded in P′t , we insert the reasonable pebbling between
Iw1
�

clos(t − 1)
�

and Iw1
�

t
�

into Pw1 .

(ii) if (v1, v2)out is unpebbled to get to P′t in P ′, for each successor w1 of v1 such
that the w1-block is surrounded in P′t−1, we insert the reasonable pebbling
between Iw1

�

t − 1
�

and Iw1
�

clos(t)
�

into Pw1 .

(c) if Ext(t − 1) 6= Ext(t), let D := projV (t − 1)∪ projV (t). We insert the reasonable
pebbling with T+ := D \ Ext(t − 1), and T− := D \ Ext(t) into P.

Claim E.8.9 (Correctness). The pebblings {P v1}v1∈V (G1) and P are legal.

Proof. At the beginning t = 0, we know P′0 = ;, so for any w1 ∈ V (G1) we have
Iw1
�

0
�

= ; and Iw1
�

clos(0)
�

= ;, matching Pw1(0) = ;. Also projP(0) = ; = projV (0),
and P(0) = ;= Ext(0).

For any two consecutive configurations we show that either they are the same or the
algorithm inserted a reasonable pebbling between them, which is legal by Claim E.8.11.

When t > 0, if an exterior node or an interior node is pebbled or unpebbled to get
to P′t in P ′, fix any w1 ∈ V (G1). Note that the w1-block is surrounded in P′t−1 iff it is
surrounded in P′t .

If the w1-block is surrounded, then projw1
out(·) is the same at P′t−1 and P

′
t , and projw1

int(·)∩
unsurG2

�

projw1
out(·)

�

is also the same at P′t−1 and P′t because a node being pebbled or
unpebbled must be surrounded, and the predecessors of an interior node are output
nodes. Hence Pw1(t − 1) = Iw1

�

t − 1
�

= Iw1
�

t
�

= Pw1(t).
Otherwise the w1-block is not surrounded, then the pebble move is not on any exterior

node in the w1-block, hence clos(·) is the same at P′t−1 and P′t over the w1-block, so
Iw1
�

clos(·)
�

is also the same at P′t−1 and P′t .
Since Ext(·) only depends on {Pv1(t)}v1∈V (G1), it holds that Pt−1 = Pt as well.
Focus on the case when an output node (v1, v2)out is pebbled or unpebbled to get to

P′t in P ′, fix any w1 ∈ V (G1).

E.8. PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING 295

• If w1 6= v1 and either w1 is not a successor of v1 or v2 6= z2, note that the w1-block
is surrounded in P′t−1 iff it is surrounded in P′t . Since P

′
t−1 = P

′
t over the w1-block,

we have Iw1
�

t − 1
�

= Iw1
�

t
�

and Iw1
�

clos(t − 1)
�

= Iw1
�

clos(t)
�

.

• If w1 = v1, then the w1-block is surrounded in P′t−1 iff it is surrounded in P′t . If
the w1-block is not surrounded, since the pebble move is not on any exterior node
in the w1-block, we have clos(·) is the same at P′t−1 and P′t over the w1-block, so
Iw1
�

clos(·)
�

is also the same at P′t−1 and P′t .

Otherwise the w1-block is surrounded and Step (a) inserts a reasonable pebbling
into Pw1 .

• If w1 is a successor of v1 and v2 = z2 the w1-block cannot be surrounded in both
P′t−1 and P′t .

If the w1-block is unsurrounded in both P′t−1 and P′t , since P
′
t−1 = P

′
t over the

w1-block, we have Iw1
�

clos(t − 1)
�

= Iw1
�

clos(t)
�

.

Otherwise w1 is surrounded in exactly one of P′t−1 and P′t and Step (b) inserts a
reasonable pebbling into Pw1 .

Finally, Step (c) inserts a reasonable pebbling into P as needed.

Claim E.8.10 (Exterior Symmetry). In Step (c), we have Ext(t−1)∪T+ = D = Ext(t)∪
T−.

Proof. Since projP(t) ⊆ projV (t), by definition we have Ext(t) = projP(t)∪
�

projV (t)∩

unsurG1

�

projP(t)
�

�

⊆ projV (t) ⊆ D and likewise Ext(t − 1) ⊆ projV (t − 1) ⊆ D.

Claim E.8.11 (Legality). All reasonable pebblings are legal.

Proof. At Step (a) an output node (v1, v2)out is pebbled or unpebbled to get to P′t in
P ′ and the v1-block is surrounded, hence Pv1(t − 1) = Iv1

�

t − 1
�

. By Corollary E.8.7 it
suffices to show that for w2 ∈ Iv1

�

t
�

4 Iv1
�

t−1
�

, we have predG2
(w2) ⊆ Iv1

�

t
�

∪ Iv1
�

t−1
�

.

Recall Iv1
�

·
�

= projv1
out(·)∪

�

projv1
int(·)∩ unsurG2

�

projv1
out(·)

�

�

.

Assume w2 ∈ Iv1
�

t
�

\ Iv1
�

t − 1
�

, reversing the roles of t − 1 and t otherwise. If
w2 ∈ projv1

out(t) \ Iv1
�

t − 1
�

, then w2 ∈ projv1
out(t) \ projv1

out(t − 1), i.e., w2 = v2 and
(v1, w2)out is being pebbled to get to P′t in P ′. Since P ′ is legal, (v1, w2)int has a pebble
in P′t−1, i.e., w2 ∈ projv1

int(t − 1), so w2 is surrounded by projv1
out(t − 1) ⊆ Iv1

�

t − 1
�

as
needed.

Otherwise w2 ∈
�

projv1
int(t) ∩ unsurG2

�

projv1
out(t)

�

�

\ Iv1
�

t − 1
�

, since projv1
int(t) =

projv1
int(t − 1), we know w2 ∈ unsurG2

�

projv1
out(t)

�

but w2 /∈ unsurG2

�

projv1
out(t − 1)

�

,

296 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

so w2 is a successor of v2 and (v1, v2)out is being unpebbled to get to t in P ′ and
predG2

(w2) ⊆ projv1
out(t − 1) ⊆ Iv1

�

t − 1
�

as needed.
At Step (b)(i) an output node (v1, v2)out is pebbled to get to P′t in P ′, and w1 is a

successor of v1 such that the w1-block is surrounded in P′t . Note that the w1-block is not
surrounded in P′t−1, so P

w1(t − 1) = Iw1
�

clos(t − 1)
�

. Since the pebble move to get to P′t
in P ′ is not in the w1-block, we have Iw1

�

clos(t − 1)
�

= Iw1
�

clos(t)
�

. By Corollary E.8.7
it suffices to show that for w2 ∈ Iw1

�

t
�

4 Iw1
�

clos(t)
�

, we have predG2
(w2) ⊆ Iw1

�

t
�

∪
Iw1
�

clos(t)
�

.

• Assume w2 ∈ Iw1
�

t
�

\Iw1
�

clos(t)
�

. Since projw1
out(t) ⊆ projw1

out(clos(t)) ⊆ Iw1
�

clos(t)
�

,

it follows that w2 ∈
�

projw1
int(t) ∩ unsurG2

�

projw1
out(t)

�

�

\ Iw1
�

clos(t)
�

, and since

projw1
int(t) ⊆ projw1

int(clos(t)), we know that w2 is surrounded by projw1
out(clos(t)) ⊆

Iw1
�

clos(t)
�

as needed.

• Assume w2 ∈ Iw1
�

clos(t)
�

\ Iw1
�

t
�

. We claim that w2 ∈ projw1
int(clos(t)): if w2 ∈

�

projw1
int(clos(t))∩ unsurG2

�

projw1
out(clos(t))

�

�

\ Iw1
�

t
�

, then we are done; otherwise

w2 ∈ projw1
out(clos(t)) \ Iw1

�

t
�

, then w2 /∈ projw1
out(t) and thus by definition of clos(·)

we have w2 ∈ projw1
int(clos(t)) as claimed. Now if w2 ∈ projw1

int(t), then w2 is
surrounded by projw1

out(t) ⊆ Iw1
�

t
�

as needed; otherwise w2 /∈ projw1
int(t), then from

w2 ∈ projw1
int(clos(t)) and by definition of clos(·) we have w2 is surrounded by

projw1
out(clos(t)) ⊆ Iw1

�

clos(t)
�

as needed.

To see that Step (b)(ii) is legal, note that it is the reverse of Step (b)(i).
At Step (c) an output node (v1, v2)out is pebbled or unpebbled to get to P′t in P ′. By

Claim E.8.6 it suffices to show that for w1 ∈
�

D \ Ext(t − 1)
�

∪
�

D \ Ext(t)
�

, we have
predG1

(w1) ⊆ Ext(t − 1)∪ T+ = D, where the last equality is due to Claim E.8.10. Recall

that Ext(·) = projP(·)∪
�

projV (·)∩ unsurG1

�

projP(·)
�

�

and D = projV (t − 1)∪ projV (t).

Fix any w1 ∈
�

D\Ext(t−1)
�

∪
�

D\Ext(t)
�

. Swap the roles of t and t−1 if necessary,
we can assume w1 ∈ D \ Ext(t). If w1 ∈ projV (t) \ Ext(t), then w1 is surrounded by
projP(t) ⊆ Ext(t) ⊆ D as needed.

Otherwise w1 ∈ projV (t − 1) \ projV (t), in particular Pw1(t − 1) 6= Pw1(t), so w1 ∈
{v1}∪succG1

(v1) by design of the algorithm. Note that it suffices to show that the w1-block
is surrounded in P′t−1 or in P

′
t : if the w1-block is surrounded in P′, for any u1 ∈ predG1

(w1)
the sink z2 of the inner graph G2 satisfies z2 ∈ proju1

out(P′) ⊆ Iu1
�

P′
�

⊆ Intu1(P′), so
u1 ∈ projV (P′) ⊆ D as needed. If w1 = v1, then in Step (a) the w1-block is surrounded
in P′t as needed. Otherwise w1 ∈ succG1

(v1), then in Step (b) the w1-block is surrounded
in P′t (in Step (b)(i)) or in P′t−1 (in Step (b)(ii)) as needed.

Claim E.8.12 (No Spurious Projections). For any w1 ∈ V (G1) and w2 ∈ V (G2), if w2

has a pebble in any configuration of Pw1 created between time t−1 and time t, i.e., between
Pw1(t − 1) and Pw1(t), then the (w1, w2)-cell has a pebble both in P′t−1 and in P′t in P ′.

E.8. PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING 297

Proof. Let us reword the claim. Define projw1
any(P

′) := projw1
out(P′)∪projw1

ext(P′)∪projw1
int(P

′),
note that projw1

any(t − 1) = projw1
any(t), and we want to show Pw1(t − 1)∪ T w1

+ ⊆ projw1
any(t).

Note that for any P′ and w1 ∈ V (G1) we have Iw1
�

P′
�

⊆ projw1
any(P

′). Moreover, we

have Iw1
�

clos(P′)
�

⊆ projw1
any(P

′): for any w2 ∈ Iw1
�

clos(P′)
�

, if w2 ∈ projw1
out(clos(P′)),

then either w2 ∈ projw1
out(P′) ⊆ projw1

any(P
′) as needed, or w2 /∈ projw1

out(P′), then by
definition of clos(·) we have w2 ∈ projw1

ext(P′) ⊆ projw1
any(P

′) as needed. Otherwise

w2 ∈ projw1
int(clos(P′))∩ unsurG2

�

projw1
out(clos(P′))

�

, then it follows that w2 ∈ projw1
int(P

′) ⊆
projw1

any(P
′) as needed; for otherwise w2 /∈ projw1

int(P
′), thus by definition of clos(·) we have

predG2
(w2) ⊆ projw1

out(clos(P′)), which contradicts w2 ∈ unsurw1

�

projw1
out(clos(P′))

�

.

To prove the claim it is enough to recall that the set Pw1(t−1)∪T w1
+ equals Iw1

�

Pt−1

�

∪
Iw1
�

Pt

�

in Step (a) because the w1-block is surrounded, it equals Iw1
�

clos(Pt−1)
�

∪Iw1
�

Pt

�

in Step (b)(i)), and it equals Iw1
�

Pt−1

�

∪ Iw1
�

clos(Pt)
�

in Step (b)(ii). All three sets are
contained in projw1

any(t) by the previous paragraph.

Claim E.8.13 (Legal implies Lower Bound). Assume that the pebblings {P v1}v1∈V (G1)
and P are legal, and P is a persistent pebbling of G1. Then there is a configuration P′

β
in

P ′ of R(G1, G2) having at least RPeb(G1) +RPeb(G2) + 1 pebbles.

Proof. Since P is a legal persistent pebbling of G1, there is a configuration Pb having at
least RPeb(G1) pebbles. By definition of the algorithm Pb is created in Step (c) when an
output node (v1, v2)out is pebbled or unpebbled to get to P′t in P ′, so the configuration
Pb is between P(t − 1) and P(t). Let P′

β
be P′t if the output node (v1, v2)out is pebbled,

and P′t−1 if the output node (v1, v2)out is unpebbled, then P′β = P
′
t−1 ∪ P

′
t .

Note that for any u1 ∈ Pb we know that between Pu1(t − 1) and Pu1(t), some
configuration in Pu1 is not empty, because u1 ∈ Ext(t − 1)∪ Ext(t) ⊆ D = projV (t − 1)∪
projV (t). It follows from Claim E.8.12 that there is at least one pebble in every u1-block
of P′

β
.

If projP(t −1) 6= projP(t), that is if there is w1 ∈ projP(t −1)4projP(t), then we are
done. Since exactly one of Pw1(t − 1) and Pw1(t) is p-locked, there is a configuration
between them having at least RPeb(G2) pebbles, and by Claim E.8.12 at least RPeb(G2)
cells of the w1-block have pebbles. Summing up, in P′

β
, there are

RPeb(G2)
︸ ︷︷ ︸

w1 block

+RPeb(G1)− 1
︸ ︷︷ ︸

other blocks

cells having pebbles, and among them the (v1, v2)-cell has three pebbles, for a total of
RPeb(G1) +RPeb(G2) + 1 pebbles as needed.

Assume that projP(t − 1) = projP(t) instead. Recall Ext(·) = projP(·) ∪
�

projV (·) ∩

unsurG1

�

projP(·)
�

�

. In Step (c) we know Ext(t − 1) 6= Ext(t), therefore at least one
of D+ := Ext(t) \ Ext(t − 1) and D− := Ext(t − 1) \ Ext(t) is not empty. Swap t and

298 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

t − 1 if necessary, by their symmetry in the rest of this lemma, assume D− 6= ;. Fix
w1 ∈ D− = Ext(t − 1) \ Ext(t).

Since projP(t − 1) \ Ext(t) ⊆ projP(t − 1) \ projP(t) = ;, we can assume that w1 ∈
�

projV (t − 1)∩ unsurG1
(projP(t − 1))

�

\ Ext(t).
In particular w1 ∈

�

projV (t − 1) \ projV (t)
�

∩ unsurG1
(projP(t)). Let u1 ∈ predG1

(w1)
be such that u1 /∈ projP(t − 1) = projP(t).

Now w1 ∈ projV (t − 1) \ projV (t), and as in the proof of Claim E.8.11, we know that
the w1-block is surrounded in P′t−1 or in P′t . This implies that the sink of the u1-block
(u1, z2)out has a pebble, and so z2 ∈ Pu1(t − 1) or z2 ∈ Pu1(t). But u1 is not in the
p-projection at either time, so there is some other pebble other than z2 in Pu1(t − 1) and
Pu1(t). By Claim E.8.12, at least 2 cells of the u1-block have pebbles.

Since w1 ∈ projV (t − 1) \ projV (t), exactly one of Pw1(t − 1) and Pw1(t) is v-locked
so there is a configuration of Pw1 between them having at least RPebV(G2) pebbles, and
by Claim E.8.12 at least RPebV(G2) cells of the w1-block have pebbles. Summing up, in
P′
β
, there are

RPebV(G2)
︸ ︷︷ ︸

w1 block

+ 2
︸︷︷︸

u1 block

+RPeb(G1)− 2
︸ ︷︷ ︸

other blocks

≥ RPeb(G1) +RPeb(G2)− 1

cells having pebbles, and among them the (v1, v2)-cell has three pebbles, for a total of
RPeb(G1) +RPeb(G2) + 1 pebbles as needed.

The product construction does not work for the standard black pebbling: there
is no single constant C such that for any two graphs G1 and G2, Peb(R(G1, G2)) =
Peb(G1) + Peb(G2) + C .

Indeed, if we take G1 and G2 to be the singleton graph, which has pebbling price 1,
the product construction is the pyramid of height 1, which has pebbling price 3. This
gives a value of 1 for C .

If we take G1 and G2 to be the path of length 1, which has pebbling price 2, the
product construction has pebbling price 4. This gives a value of 0 for C .

If we take G1 and G2 to be the pyramid of height 1, which has pebbling price 3, the
product construction has pebbling price 5. An optimal strategy is to pebble the sinks of
the two G2 copies corresponding to sources in G1, then pebble all the exterior nodes of
the remaining copy of G2, unpebble the sinks and finish the pebbling. This gives a value
of −1 for C .

E.9 Product Construction for Standard Pebbling

The part of the proof of Theorem E.3.4 that deals with standard pebbling uses as a black
box the construction in Theorem E.3.5 for standard pebbling. Now we state it again and
we give its full proof.

E.9. PRODUCT CONSTRUCTION FOR STANDARD PEBBLING 299

Theorem E.9.1. Given two graphs G1 and G2 of standard pebbling price at least 3, there
is a polynomial-time constructible graph S(G1, G2) of size |G1|(2|G1|+ |G2|) with standard
pebbling price Peb(S(G1, G2)) = Peb(G1) + Peb(G2)− 1.

For the rest of the section we fix G1 and G2 to be two single sink directed acyclic
graphs, with sinks z1 and z2, respectively. We set p1 := Peb(G1) and p2 := Peb(G2), and
we assume that p2 is at least 3.

Construction E.9.2 (Product for standard pebbling). A centipede of length ` is a path
of length ` where all nodes but the source have an extra predecessor. Formally, it is the
graph with vertices {r0, . . . , r`}, {s1, . . . , s`} and edges {(ri−1, ri) : i ∈ [`]} ∪ {(si , ri) : i ∈
[`]}.

As the first step we define the graph Ĝ2 from G2 as follows: Ĝ2 is the union of G2

and of a centipede of length |G1|, where we identify the sink of G2 with the vertex r0 of
the centipede. Observe that the pebbling price of Ĝ2 is max(3, p2) = p2.

The graph S(G1, G2) is as follows. For every vertex v1 of G1 we make a copy of Ĝ2,
which we call the v1-block. Then, for every edge (u1, v1) in G1, we add edges from the sink
of the u1-block to all the sources of the centipede in the v1-block. Formally, S(G1, G2) is
the graph with vertices {(v1, v2) : v1 ∈ V (G1), v2 ∈ V (Ĝ2)} and edges {((v1, u2), (v1, v2)) :
v1 ∈ V (G1), (u2, v2) ∈ E(G2)}, {((u1, r|G1|), (v1, si)) : (u1, v1) ∈ E(G1), i ∈ [|G1|]}.

Lemma E.9.3. The standard pebbling price of S(G1, G2) is at most p1 + p2 − 1.

Proof. To pebble S(G1, G2)we simulate a strategy for pebbling G1 with p1 pebbles. When
a pebble is placed in v1, we pebble the sink of the v1-block using a strategy for Ĝ2 in p2

pebbles. When a pebble is removed from v1, we remove the pebble from the sink of the
v1-block. When we put a pebble in some v1-block there are at most p1 − 1 other non
empty blocks and they all have exactly one pebble, therefore this strategy for S(G1, G2)
is within the pebbling limit.

Lemma E.9.4. The standard pebbling price of S(G1, G2) is at least p1 + p2 − 1.

Proof. Given a pebbling PS = (PS0 ,PS1 , . . . ,PSτ) for the graph S(G1, G2) we construct a
pebbling P for G1 in such a way that if the space of PS is less than p1 + p2 − 1 then P
has space less than p1, which is impossible.

In particular for any configuration PSt in PS , we build a sequence P[t] of pebbling
configurations for G1, such that the final pebbling P of G1 is the concatenation of
P[0],P[1], . . . ,P[τ]. While we build these sequences of configurations, we say that a
vertex v1 ∈ V (G1) is active if in the last configuration built so far v1 does not have a
pebble while all of its predecessors do.

If PSt follows from a pebbling removal after which some v1-block of S(G1, G2) becomes
empty then P[t] is the pebbling step that removes the pebble present on v1, if any,
otherwise P[t] is the empty sequence.

300 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

G2 =

G1 =

S(G1, G2) =

Figure E.20: Example of Construction E.9.2: product of a pyramid of height 1 and a
rhombus.

If PSt is the result of a pebble placement after which some v1-block of S(G1, G2)
contains p2 pebbles, then P[t] performs the following pebbling steps: place a pebble on
each empty vertex w1 ∈ V (G1) such that

1. the w1-block of S(G1, G2) contains a pebble in PSt ; and

2. w1 is active.

This process is repeated until there is no vertex in V (G1) that meets both conditions. In
particular a pebbling placement in the pebbling PS can cause a long chain of pebbling
placements in P.

Pebbling P is a legal standard pebbling of G1 since removals are always legal, and
pebbling placements are only done on active vertices by construction.

Claim E.9.5. Assume the pebbling PS uses at most p1 + p2 − 1 pebbles. If there is a pebble
on (v1, r|G1|) in P

S
t , then there is a pebble on v1 at the end of P[t].

Proof. We prove the claim by induction over a topological order of G1. Consider the
earliest time t1 such that PS has p2 pebbles in the v1-block and there is a pebble in the

E.10. CONCLUDING REMARKS 301

v1-block during the whole interval [t1, t]. Such a time exists because the v1-block is a
copy of Ĝ2, and p2 pebbles are necessary to pebble its sink.

If v1 is active at any point during the construction of P[t1], then v1 is pebbled in that
sequence and it is not removed afterwards. This is always the case if v1 is a source of G1.

If v1 is not active we assume that Claim E.9.5 holds for all its predecessors. Time
t1 is the first time when there are p2 pebbles in the v1-block since it has been empty.
Therefore none of the successors of (v1, z2) in the v1-block has a pebble. Also, since at
most p1−1< |G1| pebbles are outside the G2 part of the v1-block, some vertex (v1, si) in
the centipede part of the v1-block has no pebble.

So far we discovered that at time t1 there is a path (v1, si), (v1, ri), (v1, ri+1), . . . ,
(v1, r|G1|) with no pebbles, and that at time t vertex (v1, r|G1|) has a pebble. Then it
must be the case that vertex (v1, si) is pebbled at some time t2 where t1 < t2 < t, and
furthermore at time t2 there must be pebbles on (u1, r|G1|) and (w1, r|G1|), where u1 and
w1 are the predecessors of v1 in graph G1. By induction hypothesis u1 and w1 have a
pebble at the end of P[t2], so v1 is active at that point and, since the v1-block is not
empty, it gets a pebble. Such pebble stays in place at least until the end of P[t].

We can finally prove Lemma E.9.4. Assume for the sake of contradiction that PS

uses strictly less than p1 + p2 − 1 pebbles. Pebbling P is a legal pebbling of G1 which
pebbles the sink z1, because of Claim E.9.5 and the fact that PS pebbles vertex (z1, r|G1|).
Consider a configuration in which P reaches its maximum number of pebbles. This
configuration is at the end of a sequence P[t] corresponding to a pebble placement in
PS that causes some v1-block to have p2 pebbles, since this is the only case in which a
sequence P[t] adds pebbles.

The corresponding configuration PSt has p2 pebbles in the v1-block and at most
p1−2 other non empty blocks by assumption. Empty blocks in PSt corresponds to empty
vertices in P[t] by construction, so there are at most p1 − 1 pebbles in all configurations
in P[t]. This contradicts the fact that Peb(G1) = p1.

Observe that the only point where we used the fact that the length of a centipede
is |G1| is to claim that there is one source without a pebble, so any length u≥ Peb(G1)
would suffice. Since in general it is PSPACE-hard to compute Peb(G1), we settle for the
trivial upper bound |G1|.

E.10 Concluding Remarks

In this paper, we study the pebble game first introduced in [149] as well as the more
restricted reversible pebble game in [31], where by [54] the latter game is also equivalent
to the Dymond–Tompa game [74] and the Raz–McKenzie game [158].

We establish that it is PSPACE-hard to approximate standard and reversible pebbling
price up to any additive constant. To the best of our knowledge, these are the first
hardness of approximation results for such pebble games, even for polynomial time. It

302 PAPER E. HARDNESS OF APPROXIMATION IN PSPACE FOR PEBBLE GAMES

would be very interesting to show stronger inapproximability results for pebbling price
under stronger assumptions. On the one hand, we are only able to show additive hardness,
but on the other hand our results hold for arbitrary algorithms using a polynomial amount
of memory. It seems reasonable to believe that the problem should become much harder
for algorithms restricted to polynomial time, but showing this seems like a challenging
task—in some sense, it appears that pebbling might be so hard a problem that it is even
hard to prove that it is hard.

Another challenging problem is to prove approximation hardness, or even just
PSPACE-completeness, for the black-white pebble game [67] modelling nondetermin-
istic computation. This game is a strict generalization of the standard (black) pebble
game, and so intuitively it should be at least as hard, but the added option of placing
nondeterministic white pebbles anywhere in the graph completely destroys locality and
makes the reduction in [88] break down. Hertel and Pitassi [102] showed a PSPACE-
completeness result in the nonstandard setting when unbounded (and very large) fan-in
is allowed. Essentially, the large fan-in makes it possible to lock down almost all pebbles
in one place at a time (namely on the predecessors of a large fan-in vertex to be pebbled)
and to completely rule out any use of white pebbles, reducing the whole problem to black
pebbling (although this reduction, it should be stressed, is far from trivial). This approach
does not work for bounded fan-in graphs, however, which is the standard setting studied
in the 1970s and 80s and the setting that could potentially have interesting applications
in, for instance, proof complexity.

We also show in this paper that standard black pebbling is asymptotically stronger
than reversible pebbling by exhibiting families of DAGs over n vertices which have
standard pebblings in space s but for which the reversible pebbling price is Ω(s log n).
Since any DAG on n vertices with standard pebbling price s can be reversibly pebbled in
space O(s2 log n), our separation is at most a linear factor (in s ≤ n) off from the optimal.
It would be interesting to determine how large the separation can be. We do not rule
out the possibility that the separation we give might in fact be asymptotically optimal.

Acknowledgements

We are grateful to Anna Gál, Yuval Filmus, Toniann Pitassi, and Robert Robere for stim-
ulating discussions on the topic of pebble games. A special thanks goes to Mladen Mikša,
who participated in the initial stages of this work but somehow managed to avoid the
pebbling addiction that seized the rest of us. . .

The first author performed part of this work while at Princeton University. The
second, third and fourth authors were funded by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant
agreement no. 279611. The third author was also supported by Swedish Research
Council grants 621-2010-4797 and 621-2012-5645.

Bibliography

[1] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14(4):
417–433, 1994. Preliminary version in FOCS ’88.

[2] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM Journal on Computing, 31(4):
1184–1211, 2002. Preliminary version in STOC ’00.

[3] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial
calculus: Non-binomial case. Proceedings of the Steklov Institute of Mathematics,
242:18–35, 2003. Available at http://people.cs.uchicago.edu/~razborov/
files/misha.pdf. Preliminary version in FOCS ’01.

[4] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable
unless W[P] is tractable. SIAM Journal on Computing, 38(4):1347–1363, October
2008. Preliminary version in FOCS ’01.

[5] Noga Alon and Michael Capalbo. Smaller explicit superconcentrators. Internet
Mathematics, 1(2):151–163, 2003.

[6] Noga Alon and Joel Spencer. The probabilistic method. Wiley-Interscience, 2nd
edition, 2000.

[7] Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-
hard functions. In Proceedings of the 36th Annual International Cryptology Confer-
ence (CRYPTO ’16), pages 241–271, August 2016.

[8] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Proceedings of the 47th Annual ACM Symposium on
Theory of Computing (STOC ’15), pages 595–603, June 2015.

[9] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and
their cumulative memory complexity. Technical Report 2016/875, Cryptology
ePrint Archive, September 2016.

[10] Ian Anderson. Combinatorics of Finite Sets. Oxford University Press, 1987.

303

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf

304 BIBLIOGRAPHY

[11] A. E. Andreev. On a method for obtaining lower bounds for the complexity of
individual monotone functions. Soviet Mathematics Doklady, 31(3):530–534,
1985. English translation of a paper in Doklady Akademii Nauk SSSR.

[12] Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, May 2008.
Preliminary version in CCC ’03.

[13] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning al-
gorithms with many restarts and bounded-width resolution. Journal of Artificial
Intelligence Research, 40:353–373, January 2011. Preliminary version in SAT ’09.

[14] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation
as a proof system. In Proceedings of the 10th International Conference on Principles
and Practice of Constraint Programming (CP ’04), volume 3258 of Lecture Notes in
Computer Science, pages 77–91. Springer, 2004.

[15] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be
maximally long. ACM Transactions on Computational Logic, 17:19:1–19:30, May
2016. Preliminary version in CCC ’14.

[16] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
SAT solvers. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’09), pages 399–404, July 2009.

[17] Tomáš Balyo, Marijn J.H. Heule, and Matti Järvisalo. SAT competition 2016:
Recent developments. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI ’17), pages 5061–5063, February 2017.

[18] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[19] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in res-
olution: Superpolynomial lower bounds for superlinear space. SIAM Journal on
Computing, 45(4):1612–1645, August 2016. Preliminary version in STOC ’12.

[20] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplification in proof
complexity. In Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing (STOC ’10), pages 87–96, June 2010.

[21] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence
Research, 22:319–351, December 2004. Preliminary version in IJCAI ’03.

BIBLIOGRAPHY 305

[22] Paul Beame and Ashish Sabharwal. Non-restarting SAT solvers with simple
preprocessing can efficiently simulate resolution. In Proceedings of the 28th
National Conference on Artificial Intelligence (AAAI ’14), pages 2608–2615. AAAI
Press, July 2014.

[23] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for
polynomial calculus. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC ’13), pages 813–822, May 2013.

[24] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version in STOC ’02.

[25] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in
resolution. Random Structures and Algorithms, 23(1):92–109, August 2003.
Preliminary version in CCC ’01.

[26] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation
of tree-like and general resolution. Combinatorica, 24(4):585–603, September
2004.

[27] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’08), pages 709–718,
October 2008.

[28] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium
on Innovations in Computer Science (ICS ’11), pages 401–416, January 2011.

[29] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in
STOC ’99.

[30] Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17(6):525–532, November 1973.

[31] Charles H Bennett. Time/space trade-offs for reversible computation. SIAM
Journal on Computing, 18(4):766–776, August 1989.

[32] Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike Molloy, and
Paul Wollan. Space proof complexity for random 3-CNFs. Technical Report
1503.01613, arXiv.org, April 2015.

[33] Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs
for resolution. In Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming (ICALP ’16), volume 55 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 57:1–57:14, July 2016.

306 BIBLIOGRAPHY

[34] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, February 2009.

[35] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of
Chicago, 1937.

[36] Béla Bollobás. The isoperimetric number of random regular graphs. European
Journal of Combinatorics, 9:241–244, 1988.

[37] Béla Bollobás and Imre Leader. Edge-isoperimetric inequalities in the grid. Com-
binatorica, 11:299–314, 1991.

[38] Ilario Bonacina. Total space in resolution is at least width squared. In Proceedings
of the 43rd International Colloquium on Automata, Languages and Programming
(ICALP ’16), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 56:1–56:13, July 2016.

[39] Ilario Bonacina and Nicola Galesi. A framework for space complexity in algebraic
proof systems. Journal of the ACM, 62(3):23:1–23:20, June 2015. Preliminary
version in ITCS ’13.

[40] Ilario Bonacina, Nicola Galesi, and Neil Thapen. Total space in resolution. In
Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’14), pages 641–650, October 2014.

[41] Ilario Bonacina, Nicola Galesi, and Neil Thapen. Total space in resolution. SIAM
Journal on Computing, 45(5):1894–1909, October 2016. Preliminary version in
FOCS ’14.

[42] María Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes
proofs with small coefficients. Journal of Symbolic Logic, 62(3):708–728, Septem-
ber 1997. Preliminary version in STOC ’95.

[43] María Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the
relative complexity of resolution refinements and cutting planes proof systems.
SIAM Journal on Computing, 30(5):1462–1484, 2000. Preliminary version in
FOCS ’98.

[44] María Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resol-
ution. Computational Complexity, 10(4):261–276, December 2001. Preliminary
version in FOCS ’99.

[45] María Luisa Bonet, Sam Buss, and Jan Johannsen. Improved separations of regular
resolution from clause learning proof systems. Journal of Artificial Intelligence
Research, 49:669–703, 2014.

BIBLIOGRAPHY 307

[46] R. B. Boppana and M. Sipser. The complexity of finite functions. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science. Volume A: Algorithms
and Complexity, pages 757–804. MIT Press, 1990.

[47] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Gröbner-
basis computations with Boolean polynomials. Journal of Symbolic Computation,
44(9):1326–1345, September 2009.

[48] Harry Buhrman, John Tromp, and Paul Vitányi. Time and space bounds for revers-
ible simulation. Journal of physics A: Mathematical and general, 34:6821–6830,
2001. Preliminary version in ICALP ’01.

[49] Samuel R. Buss and Peter Clote. Cutting planes, connectivity and threshold logic.
Archive for Mathematical Logic, 35:33–63, 1996.

[50] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas:
Resolution refinements that characterize DLL-algorithms with clause learning.
Logical Methods in Computer Science, 4(4:13), December 2008.

[51] Samuel R. Buss and Leszek Kołodziejczyk. Small stone in pool. Logical Methods
in Computer Science, 10:16:1–16:22, June 2014.

[52] David A. Carlson and John E. Savage. Graph pebbling with many free pebbles
can be difficult. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC ’80), pages 326–332, 1980.

[53] David A. Carlson and John E. Savage. Extreme time-space tradeoffs for graphs
with small space requirements. Information Processing Letters, 14(5):223–227,
1982.

[54] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Annual IEEE
Conference on Computational Complexity (CCC ’13), pages 133–143, June 2013.

[55] Siu Man Chan. Pebble Games and Complexity. PhD thesis, University of California
at Berkeley, 2013.

[56] Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness
of approximation in PSPACE and separation results for pebble games (Extended
abstract). In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’15), pages 466–485, October 2015.

[57] SiuMan Chan and Aaron Potechin. Tight bounds formonotone switching networks
via Fourier analysis. Theory of Computing, 10:389–419, October 2014. Preliminary
version in STOC ’12.

308 BIBLIOGRAPHY

[58] Ashok K. Chandra. Efficient compilation of linear recursive programs. In Proceed-
ings of the 14th Annual Symposium on Switching and Automata Theory (SWAT ’73),
pages 16–25, 1973.

[59] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay.
Composition and simulation theorems via pseudo-random properties. Technical
Report TR17-014, Electronic Colloquium on Computational Complexity (ECCC),
January 2017.

[60] Vašek Chvátal. Edmond polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4(1):305–337, 1973.

[61] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal
of the ACM, 35(4):759–768, October 1988.

[62] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[63] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W Shor. Probabilistic-
ally checkable proof systems and nonapproximability of PSPACE-hard functions.
Chicago Journal of Theoretical Computer Science, 1995, October 1995. Preliminary
version in STOC ’93.

[64] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing (STOC ’71), pages
151–158, 1971.

[65] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer
and System Sciences, 9(3):308–316, 1974. Preliminary version in STOC ’73.

[66] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[67] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polyno-
mial time recognizable languages. Journal of Computer and System Sciences, 13
(1):25–37, 1976. Preliminary version in STOC ’74.

[68] William Cook, Collette Rene Coullard, and György Turán. On the complexity
of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November
1987.

[69] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[70] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

BIBLIOGRAPHY 309

[71] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited
interaction hinders real communication (and what it means for proof and circuit
complexity). In Proceedings of the 57th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’16), pages 295–304, October 2016.

[72] Scott Diehl, Dieter van Melkebeek, and Ryan Williams. An improved time-space
lower bound for tautologies. Journal of Combinatorial Optimization, 22(3):
325–338, October 2011. Preliminary version in COCOON ’09.

[73] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In
Proceedings of the 25th Annual International Cryptology Conference (CRYPTO ’05),
volume 3621 of Lecture Notes in Computer Science, pages 37–54. Springer, August
2005.

[74] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by
synchronous parallel machines. Journal of Computer and System Sciences, 30(2):
149–161, April 1985. Preliminary version in STOC ’83.

[75] Jan Elffers, Jakob Nordström, Karem Sakallah, and Laurent Simon. Seeking
practical CDCL insights from theoretical SAT benchmarks. Pragmatics of SAT
Workshop, 2016.

[76] Paul Erdős, Ronald L. Graham, and Endre Szemerédi. On sparse graphs with
dense long paths. Technical report, Stanford University, 1975.

[77] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information
and Computation, 171(1):84–97, 2001. Preliminary versions of these results
appeared in STACS ’99 and CSL ’99.

[78] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals.
Towards an understanding of polynomial calculus: New separations and lower
bounds (Extended abstract). In Proceedings of the 40th International Colloquium
on Automata, Languages and Programming (ICALP ’13), volume 7965 of Lecture
Notes in Computer Science, pages 437–448. Springer, July 2013.

[79] Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil
Thapen. Space complexity in polynomial calculus. SIAM Journal on Computing,
44(4):1119–1153, August 2015. Preliminary version in CCC ’12.

[80] Yuval Filmus, Jakob Nordström, Toniann Pitassi, and Yu Wu. Unpublished note,
2010.

[81] Yuval Filmus, Toniann Pitassi, Robert Robere, and Stephen A Cook. Average
case lower bounds for monotone switching networks. In Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’13), pages
598–607, November 2013.

310 BIBLIOGRAPHY

[82] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S.
Kulikov. A better-than-3n lower bound for the circuit complexity of an explicit
function. In Proceedings of the 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’16), pages 89–98, October 2016.

[83] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random
CNFs are hard for cutting planes. Technical Report TR17-045, Electronic Col-
loquium on Computational Complexity (ECCC), March 2017.

[84] Lance Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and
System Sciences, 60(2):337–353, April 2000. Preliminary version in CCC ’97.

[85] Péter Frankl. A new short proof for the Kruskal–Katona theorem. Discrete
Mathematics, 48(2):327–329, February 1984.

[86] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for polyno-
mial calculus. ACM Transactions on Computational Logic, 12:4:1–4:22, November
2010.

[87] Nicola Galesi, Pavel Pudlák, and Neil Thapen. The space complexity of cutting
planes refutations. In Proceedings of the 30th Annual Computational Complexity
Conference (CCC ’15), volume 33 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 433–447, June 2015.

[88] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling
problem is complete in polynomial space. SIAM Journal on Computing, 9(3):
513–524, August 1980. Preliminary version in STOC ’79.

[89] John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on graphs.
Technical Report STAN-CS-78-661, Stanford University, 1978. Available at http:
//infolab.stanford.edu/TR/CS-TR-78-661.html.

[90] Andreas Goerdt. The cutting plane proof system with bounded degree of falsity.
In Proceedings of the 5th Workshop on Computer Science Logic (CSL ’91), pages
119–133, October 1991.

[91] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In
R.L. Graves and P. Wolfe, editors, Recent Advances in Mathematical Programming,
pages 269–302. McGraw-Hill, New York, 1963.

[92] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zucker-
man. Rectangles are nonnegative juntas. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC ’15), pages 257–266, June 2015.

[93] Mika Göös, T.S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized
communication vs. partition number. Technical Report TR15-169, Electronic
Colloquium on Computational Complexity (ECCC), October 2015.

http://infolab.stanford.edu/TR/CS-TR-78-661.html
http://infolab.stanford.edu/TR/CS-TR-78-661.html

BIBLIOGRAPHY 311

[94] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zucker-
man. Rectangles are nonnegative juntas. SIAM Journal on Computing, 45(5):
1835–1869, 2016. Preliminary version in STOC ’15.

[95] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block
sensitivity. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC ’14), pages 847–856, May 2014.

[96] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication
vs. partition number. In Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’15), pages 1077–1088, October 2015.

[97] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting
for BPP. Technical Report TR17-053, Electronic Colloquium on Computational
Complexity (ECCC), March 2017.

[98] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39
(2-3):297–308, August 1985.

[99] Armin Haken and Stephen A. Cook. An exponential lower bound for the size of
monotone real circuits. Journal of Computer and System Sciences, 58(2):326–335,
1999.

[100] Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for
XOR functions. In Proceedings of the 57th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’16), pages 282–288, October 2016.

[101] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause
learning can effectively P-simulate general propositional resolution. In Proceedings
of the 23rd National Conference on Artificial Intelligence (AAAI ’08), pages 283–290,
July 2008.

[102] Philipp Hertel and Toniann Pitassi. The PSPACE-completeness of black-white
pebbling. SIAM Journal on Computing, 39(6):2622–2682, April 2010. Preliminary
version in FOCS ’07.

[103] Edward A. Hirsch, Arist Kojevnikov, Alexander S. Kulikov, and Sergey I. Nikolenko.
Complexity of semialgebraic proofs with restricted degree of falsity. Journal on
Satisfiability, Boolean Modeling and Computation, 6:53–69, 2008. Preliminary
version in SAT ’05 and SAT ’06.

[104] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal
of the ACM, 24(2):332–337, April 1977. Preliminary version in FOCS ’75.

[105] Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone circuits, and inter-
polation. Technical Report TR17-042, Electronic Colloquium on Computational
Complexity (ECCC), March 2017.

312 BIBLIOGRAPHY

[106] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time-space trade-offs in proof complexity
(Extended abstract). In Proceedings of the 44th Annual ACM Symposium on Theory
of Computing (STOC ’12), pages 233–248, May 2012.

[107] Harry B. Hunt III, Madhav V. Marathe, and Richard Edwin Stearns. Generalized
CNF satisfiability problems and non-efficient approximability. In Proceedings of
the 9th Annual IEEE Conference on Structure in Complexity Theory (Structures ’94),
pages 356–366, June 1994.

[108] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration
bounds. In Proceedings of the 13th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems and 14th International Work-
shop on Randomization and Computation (APPROX-RANDOM ’10), pages 617–631,
2010.

[109] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal
of Computer and System Sciences, 62(2):367–375, March 2001. Preliminary
version in CCC ’99.

[110] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower
bounds for tree-like cutting planes proofs. In Proceedings of the 9th Annual IEEE
Symposium on Logic in Computer Science (LICS ’94), pages 220–228, July 1994.

[111] Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. Lower bounds for the polynomial
calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):
127–144, 1999.

[112] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random graphs. Wiley-
Interscience, 2000.

[113] Jan Johannsen. Lower bounds for monotone real circuit depth and formula size
and tree-like cutting planes. Information Processing Letters, 67(1):37–41, July
1998.

[114] Jan Johannsen. Depth lower bounds for monotone semi-unbounded fan-in circuits.
RAIRO-Theoretical Informatics and Applications, 35(3):277–286, 2001.

[115] Stasys Jukna. Extremal Combinatorics with Applications in Computer Science.
Springer, 2nd edition, 2011.

[116] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný. Relating
proof complexity measures and practical hardness of SAT. In Proceedings of the
18th International Conference on Principles and Practice of Constraint Programming
(CP ’12), volume 7514 of Lecture Notes in Computer Science, pages 316–331.
Springer, October 2012.

BIBLIOGRAPHY 313

[117] Balasubramanian Kalyanasundaram and George Schnitger. On the power of
white pebbles. Combinatorica, 11(2):157–171, June 1991. Preliminary version
in STOC ’88.

[118] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265,
1990. Preliminary version in STOC ’88.

[119] Gyula O. H. Katona. A theorem of finite sets. In Theory of Graphs, pages 187–207.
Akadémiai Kiadó, 1968.

[120] George Katsirelos, Ashish Sabharwal, Horst Samulowitz, and Laurent Simon. Res-
olution and parallelizability: Barriers to the efficient parallelization of SAT solvers.
In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI ’13),
July 2013.

[121] Jeong Han Kim and Nicholas C. Wormald. Random matchings which induce
Hamilton cycles, and hamiltonian decompositions of random regular graphs.
Journal of Combinatorial Theory B, 81:20–44, 2001.

[122] Maria Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On
monotone formulae with restricted depth. In Proceedings of the 16th Annual ACM
Symposium on Theory of Computing (STOC ’84), pages 480–487, 1984.

[123] Maria M. Klawe. A tight bound for black and white pebbles on the pyramid.
Journal of the ACM, 32(1):218–228, January 1985. Preliminary version in
FOCS ’83.

[124] Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. Journal of Symbolic Logic, 62(2):
457–486, June 1997.

[125] Jan Krajíček. Interpolation by a game. Mathematical Logic Quarterly, 44:450–458,
1998.

[126] Richard Královič. Time and space complexity of reversible pebbling. RAIRO –
Theoretical Informatics and Applications, 38(02):137–161, April 2004.

[127] Joseph B. Kruskal. The number of simplices in a complex. In Richard Bell-
man, editor, Mathematical Optimization Techniques, pages 251–278. University of
California Press, 1963.

[128] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge Univer-
sity Press, 1997.

314 BIBLIOGRAPHY

[129] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals
deterministic space. Journal of Computer and System Sciences, 60(2):354–367,
April 2000.

[130] Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on
time-space trade-offs in a pebble game. Journal of the ACM, 29(4):1087–1130,
October 1982. Preliminary version in STOC ’79.

[131] Leonid A. Levin. Universal’nye zadachi perebora. Problemy Peredachi Informatsii,
9(3):115–116, 1973. In Russian.

[132] Ming Li, John Tromp, and Paul Vitányi. Reversible simulation of irreversible
computation. Physica D: Nonlinear Phenomena, 120:168–176, September 1998.

[133] Ming Li and Paul Vitányi. Reversibility and adiabatic computation: Trading time
and space for energy. Proceedings of the Royal Society of London, Series A, 452
(1947):769–789, April 1996.

[134] Andrzej Lingas. A PSPACE-complete problem related to a pebble game. In
Proceedings of the 5th Colloquium on Automata, Languages and Programming
(ICALP ’78), pages 300–321, 1978.

[135] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in
the decision tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132,
1995. Preliminary version in FOCS ’91.

[136] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999. Preliminary version in ICCAD ’96.

[137] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game
on graphs. Theoretical Computer Science, 13(3):315–322, 1981.

[138] M. Morgenstern. Existence and explicit constructions of q+1 regular Ramanujan
graphs for every prime power q. Journal of Combinatorial Theory, Series B, 62(1):
44–62, 1994.

[139] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[140] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland proced-
ure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

BIBLIOGRAPHY 315

[141] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited.
SIAM Journal on Computing, 22(1):211–219, February 1993. Preliminary version
in STOC ’91.

[142] Jakob Nordström. Narrow proofs may be spacious: Separating space and width
in resolution. SIAM Journal on Computing, 39(1):59–121, May 2009. Preliminary
version in STOC ’06.

[143] Jakob Nordström. A simplified way of proving trade-off results for resolution.
Information Processing Letters, 109(18):1030–1035, August 2009. Preliminary
version in ECCC report TR07-114, 2007.

[144] Jakob Nordström. On the relative strength of pebbling and resolution. ACM
Transactions on Computational Logic, 13(2):16:1–16:43, April 2012. Preliminary
version in CCC ’10.

[145] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs.
Logical Methods in Computer Science, 9:15:1–15:63, September 2013.

[146] Jakob Nordström. New wine into old wineskins: A survey of some pebbling
classics with supplemental results. Manuscript in preparation. To appear in
Foundations and Trends in Theoretical Computer Science. Current draft version
available at http://www.csc.kth.se/~jakobn/research/, 2017.

[147] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and
length in resolution. Theory of Computing, 9:471–557, May 2013. Preliminary
version in STOC ’08.

[148] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge
coloring via an extension of the Chernoff-Hoeffding bounds. SIAM Journal on
Computing, 26(2):350–368, 1997.

[149] Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Record
of the Project MAC Conference on Concurrent Systems and Parallel Computation,
pages 119–127, 1970.

[150] Wolfgang J. Paul and Rüdiger Reischuk. On alternation II. A graph theoretic
approach to determinism versus non-determinism. Acta Informatica, 14(4):
391–403, 1980. Preliminary version in GITCS ’79.

[151] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a
game on graphs. Mathematical Systems Theory, 10:239–251, 1977.

[152] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT
solvers as resolution engines. Artificial Intelligence, 175:512–525, February 2011.
Preliminary version in CP ’09.

http://www.csc.kth.se/~jakobn/research/

316 BIBLIOGRAPHY

[153] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research
Center, 1980. in Proceedings of the 5th IBM Symposium on Mathematical
Foundations of Computer Science, Japan.

[154] Nicholas Pippenger and Leslie G. Valiant. Shifting graphs and their applications.
Journal of the ACM, 23:423–432, July 1976.

[155] Aaron Potechin. Bounds on monotone switching networks for directed connectiv-
ity. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’10), pages 553–562, October 2010.

[156] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic, 62(3):981–998, September 1997.

[157] Anup Rao and Amir Yehudayoff. Communication complexity. Manuscript in
preparation, 2016.

[158] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Com-
binatorica, 19(3):403–435, March 1999. Preliminary version in FOCS ’97.

[159] Alexander A. Razborov. Lower bounds for the monotone complexity of some
Boolean functions. Soviet Mathematics Doklady, 31(2):354–357, 1985. English
translation of a paper in Doklady Akademii Nauk SSSR.

[160] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7(4):291–324, December 1998.

[161] Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity.
Journal of the ACM, 63:16:1–16:14, April 2016.

[162] Alexander A. Razborov. On the width of semi-algebraic proofs and algorithms.
Technical Report TR16-010, Electronic Colloquium on Computational Complexity
(ECCC), January 2016.

[163] Alexander A. Razborov. Proof complexity and beyond. ACM SIGACT News, 47(2):
66–86, June 2016.

[164] Søren Riis. Independence in Bounded Arithmetic. PhD thesis, University of Oxford,
1993.

[165] Arnold Rosenbloom. Monotone real circuits are more powerful than monotone
boolean circuits. Information Processing Letters, 61(3):161–164, February 1997.

[166] Rahul Santhanam. Lower bounds on the complexity of recognizing SAT by Turing
machines. Information Processing Letters, 79(5):243–247, September 2001.

[167] John E. Savage. Models of Computation: Exploring the Power of Computing.
Addison-Wesley, 1998. Available at http://www.modelsofcomputation.org.

http://www.modelsofcomputation.org

BIBLIOGRAPHY 317

[168] John E. Savage and Sowmitri Swamy. Space-time tradeoffs for oblivious interger
multiplications. In Proceedings of the 6th International Colloquium on Automata,
Languages and Programming (ICALP ’79), pages 498–504, 1979.

[169] Georg Schnitger. On depth-reduction and grates. In Proceedings of the 24th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’83), pages
323–328, November 1983.

[170] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic
Logic, 13(4):417–481, December 2007.

[171] Ravi Sethi. Complete register allocation problems. SIAM Journal on Computing,
4(3):226–248, September 1975.

[172] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential
time (preliminary report). In Proceedings of the 5th Annual ACM Symposium on
Theory of Computing (STOC ’73), pages 1–9, 1973.

[173] Sowmitri Swamy and John E. Savage. Space-time trade-offs on the FFT-algorithm.
Technical Report CS-31, Brown University, 1977.

[174] Sowmitri Swamy and John E. Savage. Space-time tradeoffs for linear recursion.
Mathematical Systems Theory, 16(1):9–27, 1983.

[175] Neil Thapen. A trade-off between length and width in resolution. Technical
Report TR14-137, Electronic Colloquium on Computational Complexity (ECCC),
October 2014.

[176] Martin Tompa. Time-space tradeoffs for computing functions, using connectivity
properties of their circuits. In Proceedings of the 10th annual ACM symposium on
Theory of computing (STOC ’78), pages 196–204, 1978.

[177] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):
209–219, January 1987.

[178] Leslie G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4(3):348–355, March 1975.

[179] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Proceed-
ings of the 6th International Symposium on Mathematical Foundations of Computer
Science (MFCS ’77), pages 162–176, September 1977.

[180] Allen Van Gelder. Pool resolution and its relation to regular resolution and DPLL
with clause learning. In Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR ’05), volume 3835
of Lecture Notes in Computer Science, pages 580–594. Springer, 2005.

318 BIBLIOGRAPHY

[181] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related
problems. Foundations and Trends in Theoretical Computer Science, 2(3):197–303,
October 2007.

[182] H. Venkateswaran and Martin Tompa. A new pebble game that characterizes
parallel complexity classes. SIAM Journal on Computing, 18(3):533–549, June
1989. Preliminary version in FOCS ’86.

[183] Ryan Williams. Space-efficient reversible simulations. Technical report,
Cornell University, 2000. Available at http://web.stanford.edu/~rrwill/
spacesim9_22.pdf.

[184] Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers.
Computational Complexity, 17(2):179–219, May 2008. Preliminary version in
CCC ’07.

[185] Nicholas C. Wormald. Models of random regular graphs. In Surveys in Combinat-
orics, pages 239–298. Cambridge University Press, 1999.

[186] YuWu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of treewidth
and related problems. Journal of Artificial Intelligence Research, 49:569–600, April
2014.

[187] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in Boolean satisfiability solver. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’01),
pages 279–285, November 2001.

http://web.stanford.edu/~rrwill/spacesim9_22.pdf
http://web.stanford.edu/~rrwill/spacesim9_22.pdf

	Contents
	Thesis
	Introduction
	Background
	Pebbling
	Proof Systems
	Formula Reference
	Resolution
	Polynomial Calculus
	Cutting Planes
	Conflict Driven Clause Learning
	Communication Complexity

	Contributions
	Space in Polynomial Calculus
	Trade-offs in Cutting Planes
	Cumulative Space
	Trade-offs in CDCL
	Inapproximability of Pebbling

	Conclusion

	Included Papers
	Towards an Understanding of Polynomial Calculus
	Introduction
	Preliminaries
	Overview of Results and Sketches of Some Proofs
	PCR Space Lower Bounds From Resolution Width
	Formulas With Small Proofs May Require Large Space
	PCR Space Lower Bounds for Tseitin Formulas
	Cycle Partitions of Random Regular Graphs
	Current Techniques and the Functional Pigeonhole Principle
	Concluding Remarks
	PCR Space Lower Bounds from Extendible Families

	How Limited Interaction Hinders Real Communication
	Introduction
	Preliminaries and Proof Overview
	From Proofs to Communication Protocols
	From Real Communication to Parallel Decision Trees
	From Parallel Decision Trees to Dymond–Tompa Games
	Dymond–Tompa Trade-offs
	Upper Bounds for Size and Space
	Putting the Pieces Together
	Exponential Separation of the Monotone AC Hierarchy
	Concluding Remarks

	Cumulative Space in Black-White Pebbling and Resolution
	Introduction
	Pebbling Results Overview
	Cumulative Space for the Resolution Proof System
	Pebbling Cumulative Space Lower Bounds and Trade-offs
	Reduction from Pebbling to Resolution
	Concluding Remarks

	Trade-offs Between Time and Memory in CDCL
	Introduction
	Modelling CDCL as a Proof System
	Overview of Time-Space Trade-off Results
	Worst-case Upper Bound
	Trade-offs for Pebbling Formulas
	Trade-offs for Tseitin formulas
	Concluding Remarks

	Hardness of Approximation in PSPACE for Pebble Games
	Introduction
	Preliminaries
	Overview of Results and Sketches of Proofs
	Separation between Standard and Reversible Pebbling
	Tight Bounds for Trees and Pyramids
	Technical Constructions
	PSPACE-Completeness
	Product Construction for Reversible Pebbling
	Product Construction for Standard Pebbling
	Concluding Remarks

