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Abstract. We study planning problems where the transition function is
described by a learned binarized neural network (BNN). Theoretically, we
show that feasible planning with a learned BNN model is NP -complete,
and present two new constraint programming models of this task as
a mathematical optimization problem. Experimentally, we run solvers
for constraint programming, weighted partial maximum satisfiability,
0–1 integer programming, and pseudo-Boolean optimization, and observe
that the pseudo-Boolean solver outperforms previous approaches by one
to two orders of magnitude. We also investigate symmetry handling for
planning problems with learned BNNs over long horizons. While the
results here are less clear-cut, we see that exploiting symmetries can
sometimes reduce the running time of the pseudo-Boolean solver by up to
three orders of magnitude.

Keywords: Automated planning · Binarized neural networks ·
Mathematical optimization · Pseudo-Boolean optimization · Cutting
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1 Introduction

Automated planning is the reasoning side of acting in Artificial Intelligence [23].
Planning automates the selection and ordering of actions to reach desired states
of the world. An automated planning problem represents the real-world dynamics
using a model of the world, which can either be manually encoded [7,13,14,20,
24], or learned from data [1,2,12,29]. In this paper, we focus on the latter.

Automated planning with deep neural network (DNN) learned state tran-
sition models is a two stage data-driven framework for learning and solving
planning problems with unknown state transition models [28]. The first stage of
the framework learns the unknown state transition model from data as a DNN.
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The second stage of the framework plans optimally with respect to the learned
DNN model by solving an equivalent mathematical optimization problem (e.g.,
a mixed-integer programming (MIP) model [28], a 0–1 integer programming
(IP) model [25,26], or a weighted partial maximum satisfiability (WP-MaxSAT)
model [25,26]). In this paper, we focus on the theoretical, mathematical mod-
elling and the experimental aspects of the second stage of the data-driven frame-
work where the learned DNN is a binarized neural network (BNN) [16].

We study the complexity of feasible automated planning with learned BNN
transition models under the common assumption that the learned BNN is fully
connected, and show that this problem is NP -complete. In terms of mathematical
modelling, we propose two new constraint programming (CP) models that are
motivated by the work on learning BNNs with CP [33]. We then conduct two
sets of experiments for the previous and our new mathematical optimization
models for the learned automated problem. In our first set of experiments, we
focus on solving the existing learned automated problem instances using off-
the-shelf solvers for WP-MaxSAT [6], MIP [17], pseudo-Boolean optimization
(PBO) [10] and CP [17]. Our results show that the PBO solver RoundingSat [10]
outperforms the existing baselines by one to two orders of magnitude. In our
second set of experiments, we focus on the challenging task of solving learned
automated planning problems over long planning horizons. Here, we study and
test the effect of specialized symmetric reasoning over different time steps of the
learned planning problem. Our preliminary results demonstrate that exploiting
this symmetry can significantly reduce the overall runtime of the underlying
solver (i.e., RoundingSat) by upto three orders of magnitude. Overall, with this
paper we make both theoretical and practical contributions to the field of data-
driven automated planning with learned BNN transition models.

In the next section we formally define the planning problem using binarized
neural network (BNN) transitions functions. In Sect. 3 we define a 0–1 integer
programming (IP) model that will solve the planning problem given a learned
BNN. In Sect. 4 we show that the feasibility problem is NP -complete. In Sect. 5
we give two constraint programming models for the solving the planning prob-
lem. In Sect. 6 we discuss a particular symmetry property of the model, and
discuss how to take advantage of it. In Sect. 7 we give experimental results.
Finally, in Sect. 8 we conclude and discuss future work.

2 Planning with Learned BNN Transition Models

We begin by presenting the definition of the learned automated planning problem
and the BNN architecture used for learning the transition model from data.

2.1 Problem Definition

A fixed-horizon learned deterministic automated planning problem [25,28] is a
tuple Π̃ = 〈S,A,C, T̃ , V,G,R,H〉, where S = {s1, . . . , sn} and A = {a1, . . . , am}
are sets of state and action variables for positive integers n,m with domains
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Ds1 , . . . , Dsn
and Da1 , . . . , Dam

respectively, C : Ds1 × · · · × Dsn
× Da1 × · · · ×

Dam
→ {true, false} is the global function, T̃ : Ds1 × · · · × Dsn

× Da1 × · · · ×
Dam

→ Ds1 × · · · × Dsn
denotes the learned state transition function, and R :

Ds1 × · · · × Dsn
× Da1 × · · · × Dam

→ R is the reward function. Further, V
is a tuple of constants 〈V1, . . . , Vn〉 ∈ Ds1 × · · · × Dsn

that denotes the initial
values of all state variables, G : Ds1 × · · · × Dsn

→ {true, false} is the goal state
function, and H ∈ Z

+ is the planning horizon.
A solution to (i.e., a plan for) Π̃ is a tuple of values Āt = 〈āt

1, . . . , ā
t
m〉 ∈

Da1 ×· · ·×Dam
for all action variables A over time steps t ∈ {1, . . . , H} such that

T̃ (〈s̄t
1, . . . , s̄

t
n, āt

1, . . . , ā
t
m〉) = 〈s̄t+1

1 , . . . , s̄t+1
n 〉 and C(〈s̄t

1, . . . , s̄
t
n, āt

1, . . . , ā
t
m〉) =

true for time steps t ∈ {1, . . . , H}, Vi = s̄1i for all si ∈ S and
G(〈s̄H+1

1 , . . . , s̄H+1
n 〉) = true. An optimal solution to Π̃ is a solution such that

the total reward
∑H

t=1 R(〈s̄t+1
1 , . . . , s̄t+1

n , āt
1, . . . , ā

t
m〉) is maximized.

It is assumed that the functions C,G,R and T̃ are known, that C,G can be
equivalently represented by a finite set of linear constraints, that R is a linear
expression and that T̃ is a learned binarized neural network [16]. Next, we give
an example planning problem where these assumptions are demonstrated.

Example 1. A simple instance of a learned automated planning problem Π̃ is as
follows.

– The set of state variables is defined as S = {s1} where s1 ∈ {0, 1}.
– The set of action variables is defined as A = {a1} where a1 ∈ {0, 1}.
– The global function C is defined as C(〈s1, a1〉) = true when s1 + a1 ≤ 1.
– The value of the state variable s1 is V1 = 0 at time step t = 1.
– The goal state function G is defined as G(〈s1〉) = true if and only if s1 = 1.
– The reward function R is defined as R(〈s1, a1〉) = −a1.
– The learned state transition function T̃ is in the form of a BNN, which will

be described below.
– A planning horizon of H = 4.

A plan (assuming the BNN described later in Fig. 1) is ā1
1 = 1, ā2

1 = 1, ā3
1 = 1,

ā4
1 = 0 with corresponding states s̄11 = 0, s̄21 = 0, s̄31 = 0, s̄41 = 0, s̄51 = 1. The

total reward for the plan is −3. ��

2.2 Binarized Neural Networks

Binarized neural networks (BNNs) are neural networks with binary weights
and activation functions [16]. As a result, BNNs can learn memory-efficient
models by replacing most arithmetic operations with bit-wise operations. The
fully-connected BNN that defines the learned state transition function T̃ , given
L layers with layer width Wl in layer l ∈ {1, . . . , L}, and a set of neurons
J(l) = {u1,l, . . . , uWl,l}, is stacked in the following order.
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Fig. 1. Learned BNN with two layers L = 2 for the problem in Example 1. In this
example learned BNN, the input layer J(1) has neurons u1,1 and u2,1 representing s1
and a1, respectively. The node n2,1 represents batch normalization for neuron u2,1.
Given the parameter values w1,1,l = 1, w2,1,l = −1, μ1,2 = 0, σ2

1,2 = 2, ε1,2 = 2,
γ1,2 = 3 and βj,l = 1, the input x1,2 to neuron u1,2 is calculated according to the
formula specified in Sect. 2.2.

Input Layer. The first layer consists of neurons ui,1 ∈ J(1) that represent the
domain of the learned state transition function T̃ . We will assume that the
domains of action and state variables are binary, and let neurons u1,1, . . . , un,1 ∈
J(1) represent the state variables S and neurons un+1,1, . . . , un+m,1 ∈ J(1) rep-
resent the action variables A. During the training of the BNN, binary values 0
and 1 of action and state variables are represented by −1 and 1, respectively.

Batch Normalization Layers. For layers l ∈ {2, . . . , L}, Batch Normaliza-
tion [18] transforms the weighted sum of outputs at layer l − 1 in 	j,l =∑

i∈J(l−1) wi,j,lyi,l−1 to inputs xj,l of neurons uj,l ∈ J(l) using the formula

xj,l = �j,l−μj,l√
σ2
j,l+εj,l

γj,l + βj,l, where yi,l−1 denotes the output of neuron ui,l−1 ∈
J(l − 1), and the parameters are the weight wi,j,l, input mean μj,l, input vari-
ance σ2

j,l, numerical stability constant εj,l, input scaling γj,l, and input bias βj,l,
all computed at training time.

Activation Layers. Given input xj,l, the deterministic activation function yj,l

computes the output of neuron uj,l ∈ J(l) at layer l ∈ {2, . . . , L}, which is 1 if
xj,l ≥ 0 and −1 otherwise. The last activation layer consists of neurons ui,L ∈
J(L) that represent the codomain of the learned state transition function T̃ . We
assume neurons u1,L, . . . , un,L ∈ J(L) represent the state variables S.

The proposed BNN architecture is trained to learn the function T̃ from data
that consists of measurements on the domain and codomain of the unknown state
transition function T : Ds1 × · · · × Dsn

× Da1 × · · · × Dam
→ Ds1 × · · · × Dsn

.
An example learned BNN for the problem of Example 1 is visualized in Fig. 1.
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Fig. 2. The visualization of bias computation B(1, 2) for neuron u1,2 ∈ J(2) in the
example learned BNN presented in Fig. 1.

3 0–1 Integer Programming Model for the Learned
Planning Problem

In this section, we present the 0–1 integer programming (IP) model from [25,26]
previously used to solve learned automated planning problems. A 0–1 IP model
can be solved optimally by a mixed-integer programming (MIP) solver (as was
previously investigated [25,26]). Equivalently, this can be viewed as a pseudo-
Boolean optimization (PBO) model to be solved using a PBO solver, since all
the variables are 0–1 or equivalently Boolean.

Decision Variables. The 0–1 IP model uses the following decision variables:

– Xi,t encodes whether action ai ∈ A is executed at time step t ∈ {1, . . . , H}
or not.

– Yi,t encodes whether we are in state si ∈ S at time step t ∈ {1, . . . , H + 1}
or not.

– Zi,l,t encodes whether neuron ui,l ∈ J(l) in layer l ∈ {1, . . . , L} is activated
at time step t ∈ {1, . . . , H} or not.

Parameters. The 0–1 IP model uses the following parameters:

– w̄i,j,l is the value of the learned BNN weight between neurons ui,l−1 ∈ J(l−1)
and uj,l ∈ J(l) in layer l ∈ {2, . . . , L}.

– B(j, l) is the bias of neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}. Given the values
of normalization parameters μ̄j,l, σ̄2

j,l, ε̄j,l, γ̄j,l and β̄j,l, the bias is computed

as B(j, l) =
⌈

β̄j,l

√
σ̄2
j,l+ε̄j,l

γ̄j,l
− μ̄j,l

⌉

. The visualization of the calculation of the

bias B(j, l) is presented in Fig. 2.
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Constraints. The 0–1 IP model has the following constraints:

Yi,1 = Vi ∀si∈S (1)
G(〈Y1,H+1, . . . , Yn,H+1〉) = true (2)
C(〈Y1,t, . . . , Yn,t,X1,t, . . . , Xm,t〉) = true ∀t∈{1,...,H} (3)
Yi,t = Zi,1,t ∀si∈S,t∈{1,...,H} (4)
Xi,t = Zi+n,1,t ∀ai∈A,t∈{1,...,H} (5)
Yi,t+1 = Zi,L,t ∀si∈S,t∈{1,...,H} (6)
(
B(j, l) − |J(l−1)|)(1−Zj,l,t

) ≤ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (7)
(
B(j, l)+|J(l−1)|+1

)
Zj,l,t − 1 ≥ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (8)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}
at time step t ∈ {1, . . . , H} is equal to

∑
ui,l−1∈J(l−1) w̄i,j,l(2·Zi,l−1,t−1)+B(j, l).

In the above model, constraints (1) set the initial value of every state variable.
Constraints (2)–(3) enforce the global constraints (i.e., constraints represent-
ing C) and the goal constraints (i.e., constraints representing G). Constraints
(4)–(6) map the input and output layers of the learned BNN to the correspond-
ing state and action variables. Finally, constraints (7)–(8) model the activation
of each neuron in the learned BNN, where the decision variable Zj,l,t ∈ {0, 1}
represents the output of neuron uj,l ∈ J(l) at time step t ∈ {1, . . . , H} using the
expression (2 · Zj,l,t − 1) ∈ {−1, 1}.

Objective Function. The 0–1 IP model has the objective function

max
H∑

t=1

R(〈Y1,t+1, . . . , Yn,t+1,X1,t, . . . , Xm,t〉), (9)

which maximizes the total reward accumulated over time steps t ∈ {1, . . . , H}.

Example 2. The 0–1 IP (or the equivalent PBO) model that is presented in this
section can be solved to find an optimal plan to the instance that is described
in Example 1. The optimal plan is āt

1 = 0 for all time steps t ∈ {1, 2, 3, 4}, and
the total reward for the optimal plan is 0. ��

4 Theoretical Results

In this section, we establish the NP -completeness of finding feasible solutions to
learned planning problems.

Theorem 1. Finding a feasible solution to a learned planning problem Π̃ with
a fully-connected batch normalized learned BNN T̃ is an NP-complete problem.

Proof. We begin by showing that Π̃ is in NP. Given the values Āt of action
variables A for all time steps t ∈ {1, . . . , H} and the initial values Vi of state
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Fig. 3. Visualization of the NP-hardness proof by a reduction from a 3-CNF for-
mula φ =

∧q
j=1 cj to the learned planning problem Π̃. In the first layer, two neurons

u2i,1, u2i+1,1 ∈ J(1) together represent the Boolean variable zi from the formula φ.
When variable zi does not appear in clause ck, the weights w̄2i,k,2, w̄2i+1,k,2 are set
so the input to neuron uk,2 ∈ J(2) is cancelled out (i.e., case (a) of step (7)). In the
remaining cases, the weights w̄2i,j,2, w̄2i+1,j,2 are set to ensure the input to neuron
uj,2 ∈ J(2) is positive if and only if the respective literal that appears in clause cj
evaluates to true (e.g., case (c) of step (7) is visualized).

variables si ∈ S, the learned BNN T̃ can predict the values S̄t = 〈s̄t
1, . . . , s̄

t
n〉 ∈

Ds1 × · · · × Dsn
of all state variables S for all time steps t ∈ {2, . . . , H + 1} in

linear time in the size of the BNN and the value of the planning horizon H.
We proceed by showing that Π̃ is in NP -hard by a reduction from 3-SAT.

Let φ be a 3-CNF formula such that φ =
∧q

j=1 cj for some positive integer q.
Further let z1, . . . , zr denote the (Boolean) variables that appear in the formula φ
for some positive integer r. As visualized in Fig. 3, we define the learned planning
problem Π̃ to represent any 3-CNF formula φ as follows:

1. Planning horizon H = 1.
2. State variable S = {s1}.
3. Action variables A = {a1, . . . , a2r}.
4. The global function C is true if and only if a2i−1 = a2i for all i ∈ {1, . . . , r}.
5. Neurons J(1) = {u1,1, . . . , u1+2r,1} in the first layer.
6. Neurons J(2) = {u1,2, . . . , uq,2} in the second layer. Each neuron ui,2 ∈ J(2)

is normalized so that B(i, 2) = 3.
7. Set the learned weights between neurons u2i,1, u2i+1,1 ∈ J(1)\u1,1 and uj,2 ∈

J(2) according to the following rules. (a) If zi does not appear in clause cj ,
set w̄2i,j,2 = 1, w̄2i+1,j,2 = −1, (b) else if the negation of zi appears in clause
cj (i.e., ¬zi), set w̄2i,j,2 = w̄2i+1,j,2 = −1, (c) else, set w̄2i,j,2 = w̄2i+1,j,2 = 1.

8. Neuron J(3) = {u1,3} in the third layer. Neuron u1,3 is normalized such
that B(1, 3) = −q.

9. Set the learned weights w̄i,1,3 = 1 between ui,2 ∈ J(2) and u1,3 ∈ J(3).
10. The goal state function G is defined as G(〈1〉) = true and G(〈0〉) = false.
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In the reduction presented above, step (1) sets the value of the planning
horizon H to 1. Step (2) defines a single state variable s1 to represent whether
the formula φ is satisfied (i.e., s1 = 1) or not (i.e., s1 = 0). Step (3) defines
action variables a1, . . . , a2r to represent the Boolean variables z1, . . . , zr in the
formula φ. Step (4) ensures that the pairs of action variables a2i−1, a2i that
represent the same Boolean variable zi take the same value. Step (5) defines
the neurons in the first layer (i.e., l = 1) of the BNN. Step (6) defines the
neurons in the second layer (i.e., l = 2) of the BNN. Each neuron ui,2 ∈ J(2)
represents a clause ci in the formula φ, and the input of each neuron ui,2 is
normalized so that B(i, 2) = 3. Step (7) defines the weights between the first
and the second layers so that the output of neurons u2i,1, u2i+1,1 ∈ J(1) only
affects the input of the neurons uj,2 ∈ J(2) in the second layer if and only if the
Boolean variable zi appears in clause cj . When this is not the case, the output
of neurons u2i,1, u2i+1,1 are cancelled out due to the different values of their
weights, so that w̄2i,j,2 + w̄2i+1,j,2 = 0. Steps (6) and (7) together ensure that for
any values of V1 and w̄1,j,2, neuron uj,2 ∈ J(2) is activated if and only if at least
one literal in clause cj evaluates to true.1 Step (8) defines the single neuron in
the third layer (i.e., l = 3) of the BNN. Neuron u1,3 ∈ J(3) predicts the value of
state variable s1. Step (9) defines the weights between the second and the third
layers so that the neuron u1,3 ∈ J(3) activates if and only if all clauses in the
formula φ are satisfied. Finally, step (10) ensures that the values of the actions
constitute a solution to the learned planning problem Π̃ if and only if all clauses
are satisfied. ��

5 Constraint Programming Models for the Learned
Planning Problem

In this section, we present two new constraint programming (CP) models to solve
the learned automated planning problem Π̃. The models make use of reification
rather than restricting themselves to linear constraints. This allows a more direct
expression of the BNN constraints.

5.1 Constraint Programming Model 1

Decision Variables and Parameters. The CP model 1 uses the same set of deci-
sion variables and parameters as the 0–1 IP model previously described in Sect. 3.

1 Each neuron uj,2 that represents clause cj receives seven non-zero inputs (i.e., one
from state and six from action variables). The bias B(j, 2) is set so that the activation
condition holds when at least one literal in clause cj evaluates to true. For example,
the constraint −2 + w̄1,j,2V1+B(j, 2) ≥ 0 represents the case when exactly one literal
in clause cj evaluates to true where the terms −2 and w̄1,j,2V1 represent the inputs
from the six action variables and the single state variable, respectively. Similarly, the
constraint −6 + w̄1,j,2V1 + B(j, 2) < 0 represents the case when all literals in clause
cj evaluate to false and the activation condition does not hold.
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Constraints. The CP model 1 has the following constraints:

Constraints (1)−(6)
(In(j, l, t) ≥ 0) = Zj,l,t ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (10)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}
at time step t ∈ {1, . . . , H} is equal to

∑
ui,l−1∈J(l−1) w̄i,j,l(2·Zi,l−1,t−1)+B(j, l).

In the above model, constraint (10) models the activation of each neuron in the
learned BNN by replacing constraints (7)–(8).

Objective Function. The CP model 1 uses the same objective function as the
0–1 IP model previously described in Sect. 3.

5.2 Constraint Programming Model 2

Decision Variables. The CP model 2 uses the Xi,t and Yi,t decision variables
previously described in Sect. 3.

Parameters. The CP model 2 uses the same set of parameters as the 0–1 IP
model previously described in Sect. 3.

Constraints. The CP model 2 has the following constraints:

Constraints (1)−(6)
(In(j, l, t) ≥ 0) = Expr j,l,t ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (11)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}
at time step t ∈ {1, . . . , H} is equal to

∑
ui,l−1∈J(l−1) w̄i,j,l(2 · Expr i,l−1,t − 1) +

B(j, l), and output expression Expr j,l,t represents the binary output of neuron
uj,l ∈ J(l) in layer l ∈ {2, . . . , L} at time step t ∈ {1, . . . , H}. In the above
model, constraint (11) models the activation of each neuron in the learned BNN
by replacing the decision variable Zj,l,t in constraint (10) with the expression
Expr j,l,t The difference between an integer variable and an expression is that
during solving the solver does not store the domain (current set of possible
values) for an expression. Expressions allow more scope for the presolve of CP
Optimizer [17] to rewrite the constraints to a more suitable form, and allow the
use of more specific propagation scheduling.

Objective Function. The CP model 2 uses the same objective function as the
0–1 IP model that is previously described in Sect. 3.

6 Model Symmetry

Examining the 0–1 IP (or equivalently the PBO) model, one can see the bulk
of the model involves copies of the learned BNN constraints over all time steps.
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These constraints model the activation of each neuron (i.e., constraints (4)–(8))
and constrain the input of the BNN (i.e., constraint (3)). The remainder of the
model is constraints on the initial and goal states (i.e., constraints (1)–(2)). So
if we ignore the initial and goal state constraints, the model is symmetric over
the time steps. Note that this symmetry property is not a global one: the model
is not symmetric as a whole. Rather, this local symmetry arises because subsets
of constraints are isomorphic to each other. Because of this particular form
of symmetry, the classic approach of adding symmetry breaking predicates [5]
would not be sound, as this requires global symmetry.

Instead, we exploit this symmetry by deriving symmetric nogoods on-the-
fly. If a nogood is derived purely from constraints (3)–(8), and if a sufficiently
small subset of time steps was involved in its derivation, then we can shift the
time steps of this nogood over the planning horizon, learning a valid symmetric
nogood. To track which constraints a nogood is derived from, we use the SAT
technique of marker literals lifted to PBO. Each constraint is extended with
some marker literal, which, if true, enforces the constraint, and if false, trivially
satisfies it. During the search, these marker literals are a priori assumed true, so
we are solving essentially the same problem, but the nogood learning mechanism
of the PBO solver ensures the marker literal of a constraint appears in a nogood
if that constraint was required in the derivation of the nogood.

By introducing marker literals Lt for all time steps t ∈ {1, . . . , H} for con-
straints (3)–(8) and an extra “asymmetric” marker literal L∗ for constraint (2)
and the constraints originating from bounding the objective function, and then
treating all initial state constraints as markers, we can track if only constraints
(3)–(8) were involved in the derivation of a nogood, and if so, for which time
steps. When we find that the constraints involved in creating a nogood only refer
to constraints from time steps l to u, then we know that symmetric copies of
these nogoods are also valid for time steps l + Δ to u + Δ for all −l < Δ < 0,
0 < Δ ≤ H − u. Our approach to exploiting symmetry is similar to the ones
proposed for bounded model checking in SAT [30,31].

Example 3. Marker literals are used to “turn on” the constraints and they are
set to true throughout the search. For example constraint (8) becomes

Lt → (B(j, l) + J(l − 1) + 1)Zj,l,t − 1 ≥ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H}

or equivalently, the binary linear constraint

M(1−Lt)+(B(j, l)+J(l−1)+1)Zj,l,t−1 ≥ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H}

with M chosen large enough so that the constraint trivially holds if Lt = 0. ��
We consider two ways of symmetric nogood derivation:

– All: whenever we discover a nogood that is a consequence of constraints from
time steps l to u, we add a suitably renamed copy of the nogood to the
variables for time steps l + Δ to u + Δ for all −l < Δ < 0, 0 < Δ ≤ H − u,
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Fig. 4. Cumulative number of problems solved by IP (blue), WP-MaxSAT (red), CP1
(green), CP2 (black) and PBO (orange) models over 27 instances of the problem Π̃
within the time limit. (Color figure online)

– Propagate: we consider each possible Δ above, but only add the renamed
nogood if it will immediately propagate or fail, similar to a SAT symmetric
clause learning heuristic [8].

Finally, we denote Base as the version of RoundingSat that does not add the
symmetric nogoods.

Example 4. Consider the problem in Example 1. Assume we generate a nogood
X1,1 ∨ Y1,1 ∨ ¬X1,2, which is a consequence only of constraints for the BNNs for
time steps 1 and 2. The actual generated nogood is then ¬L1∨¬L2∨X1,1∨Y1,1∨
¬X1,2 which illustrates that it depends only on the constraints in time steps 1
and 2. We can then add a symmetric copy ¬L2 ∨ ¬L3 ∨ X1,2 ∨ Y1,2 ∨ ¬X1,3 for
time steps 2 and 3, as well as ¬L3 ∨ ¬L4 ∨ X1,3 ∨ Y1,3 ∨ ¬X1,4 for steps 3 and 4.
These new constraints must be correct, since the BNN constraints for time steps
t ∈ {1, 2, 3, 4} are all symmetric. The marker literals are added so that later
nogoods making use of these nogoods also track which time steps were involved
in their generation. Using All we add both these nogoods, using Propagate we
only add those that are unit or false in the current state of the solver. ��

7 Experimental Results

In this section, we present results on two sets of computational experiments.
In the first set of experiments, we compare different approaches to solving the
learned planning problem Π̃ with mathematical optimization models. In the
second set of experiments, we present preliminary results on the effect of deriving
symmetric nogoods when solving Π̃ over long horizons H.

7.1 Experiments 1

We first experimentally test the runtime efficiency of solving the learned planning
problem Π̃ with mathematical optimization models using off-the-shelf solvers.
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Fig. 5. Pairwise runtime comparison between WP-MaxSAT, CP1 and CP2 models over
27 instances of problem Π̃ within the time limit.

All the existing benchmark instances of the learned planning problem Π̃ (i.e., 27
in total) were used [26]. We ran the experiments on a MacBookPro with 2.8 GHz
Intel Core i7 16GB memory, with one hour total time limit per instance. We used
the MIP solver CPLEX 12.10 [17] to optimize the 0–1 IP model, MaxHS [6]
with underlying CPLEX 12.10 linear programming solver to optimize the WP-
MaxSAT model [26], and CP Optimizer 12.10 [17] to optimize the CP Model 1
(CP1) and the CP Model 2 (CP2). Finally, we optimized a pseudo-Boolean
optimization (PBO) model, which simply replaces all binary variables in the 0–1
IP model with Boolean variables, using RoundingSat [10].

In Fig. 4, we visualize the cumulative number of problems solved by all five
models, namely: IP (blue), WP-MaxSAT (red), CP1 (green), CP2 (black) and
PBO (orange), over 27 instances of the learned planning problem Π̃ within one
hour time limit. Figure 4 clearly highlights the experimental efficiency of solving
the PBO model. We find that using the PBO model with RoundingSat solves all
existing benchmarks under 1000 s. In contrast, we observe that the 0–1 IP model
performs poorly, with only 19 instances out of 27 solved within the one hour time
limit. The remaining three models, WP-MaxSAT, CP1 and CP2, demonstrate
relatively comparable runtime performance, which we explore in more detail
next.

In Figs. 5a, 5b and 5c, we present scatter plots comparing the WP-MaxSAT,
CP1 and CP2 models. In each figure, each dot (red) represents an instance of
the learned planning problem Π̃ and each axis represents a model (i.e., WP-
MaxSAT, CP1 or CP2). If a dot falls below the diagonal line (blue), it means
the corresponding instance is solved faster by the model represented by the y-axis
than the one represented by the x-axis. In Fig. 5a, we compare the two CP models
CP1 and CP2. A detailed inspection of Fig. 5a shows a comparable runtime
performance on the instances that take less than 1000 s to solve (i.e., most dots
fall closely to the diagonal line). In the remaining two instances that are solved by
CP2 under 1000 s, CP1 runs out of the one hour time limit. These results suggest
that using expressions instead of decision variables to model the neurons of the
learned BNN allows the CP solver to solve harder instances (i.e., instances that
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PBO vs. WP-MaxSAT PBO vs. CP1 PBO vs. CP2

Fig. 6. Pairwise runtime comparison between PBO, and WP-MaxSAT, CP1 and CP2
models over 27 instances of problem Π̃ within the time limit.

take more than 1000 s to solve) more efficiently. In Figs. 5b and 5c, we compare
CP1 and CP2 against the WP-MaxSAT model, respectively. Both figures show
a similar trend on runtime performance; the CP models close instances that
take less than 1000 s to solve by one to two orders of magnitude faster than the
WP-MaxSAT model, and the WP-MaxSAT model performs comparably to the
CP models on the harder instances. Overall, we find that WP-MaxSAT solves
one more and one less instances compared to CP1 and CP2 within the one hour
time limit, respectively. These results suggest that the WP-MaxSAT model pays
a heavy price for the large size of its compilation when the instances take less
than 1000 s to solve, and only benefits from its SAT-based encoding for harder
instances.

Next, we compare the runtime performance of WP-MaxSAT, CP1 and CP2
against the best performing model (i.e., PBO) in more detail in Figs. 6a, 6b and
6c. These plots show that the PBO model significantly outperforms the WP-
MaxSAT, CP1 and CP2 models across all instances. Specifically, Fig. 6a shows
that the PBO model is better than the previous state-of-the-art WP-MaxSAT
model across all instances by one to two orders of magnitude in terms of runtime
performance. Similarly, Figs. 6b and 6c show that the PBO model outperforms
both CP models across all instances, except in one and two instances, respec-
tively, by an order of magnitude.

It is interesting that the 0–1 IP model works so poorly for the MIP solver,
while the equivalent PBO model is solved efficiently using a PBO solver. It seems
that the linear relaxations used by the MIP solver are too weak to generate useful
information, and it ends up having to fix activation variables in order to reason
meaningfully. In contrast, it appears that the PBO solver is able to determine
some useful information from the neuron constraints without necessarily fixing
the activation variables—probably since it uses integer-based cutting planes rea-
soning [4] rather than continuous linear programming reasoning for the linear
expressions—and the nogood learning helps it avoid repeated work.
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Fig. 7. Cumulative number of problems solved for Base (blue), Propagate (red) and
All (black) models over 21 instances of the problem Π̃ within the time limit. (Color
figure online)

Base vs. Propagate Base vs. All Propagate vs. All

Fig. 8. Pairwise runtime comparison between Base, Propagate and All models over 21
instances of problem Π̃ within the time limit.

7.2 Experiments 2

We next evaluate the effect of symmetric nogood derivation on solving the
learned planning problem Π̃ over long horizons H. For these experiments, we
generated instances by incrementing the value of the planning horizon H in the
benchmark instances in Sect. 7.1, and used the same hardware and time limit
settings. We modified the best performing solver RoundingSat [10] to include
symmetry reasoning as discussed in Sect. 6.

In Fig. 7, we visualize the cumulative number of problems solved for all three
versions of RoundingSat, namely Base (blue), Propagate (red), and All (black),
over 21 instances of the learned planning problem Π̃ over long horizons H within
one hour time limit. Figure 7 demonstrates that symmetric nogood derivation can
improve the efficiency of solving the underlying PBO model. We find that Prop-
agate solves the most instances within the time limit. A more detailed inspection
of the results further suggests that between the remaining two version of Round-
ingSat, All solves more instances faster compared to Base.
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Next, in Figs. 8a, 8b and 8c, we explore the pairwise runtime comparisons of
the three versions of RoundingSat in more detail. In Figs. 8a and 8b, we com-
pare Propagate and All against Base, respectively. It is clear from these scatter
plots that Propagate and All outperform Base in terms of runtime performance.
Specifically, in Fig. 8b, we find that All outperforms Base by up to three orders
of magnitude in terms of runtime performance. Finally, in Fig. 8c, we compare
the two versions of RoundingSat that are enhanced with symmetric nogood
derivation. A detailed inspection of Fig. 8c reveals that All is slightly faster than
Propagate in general.

8 Related Work, Conclusions and Future Work

In this paper, we studied the important problem of automated planning with
learned BNNs, and made four important contributions. First, we showed that
the feasibility problem is NP -complete. Unlike the proof presented for the task
of verifying learned BNNs [3], our proof does not rely on setting weights to zero
(i.e., sparsification). Instead, our proof achieves the same expressivity for fully
connected BNN architectures, without adding additional layers or increasing
the width of the layers, by representing each input with two copies of action
variables. Second, we introduced two new CP models for the problem. Third, we
presented detailed computational results for solving the existing instances of the
problem. Lastly, we studied the effect of deriving symmetric nogoods on solving
new instances of the problem with long horizons.

It appears that BNN models provide a perfect class of problems for pseudo-
Boolean solvers, since each neuron is modelled by pseudo-Boolean constraints,
but the continuous relaxation is too weak for MIP solvers to take advantage of,
while propagation-based approaches suffer since they are unable to reason about
linear expressions directly. PBO solvers directly reason about integer (0–1) linear
expressions, making them very strong on this class of problems.

Our results have the potential to improve other important tasks with learned
BNNs (and other DNNs), such as automated planning in real-valued action and
state spaces [27,35,36], decision making in discrete action and state spaces [21],
goal recognition [11], training [33], verification [9,15,19,22], robustness evalua-
tion [32] and defenses to adversarial attacks [34], which rely on efficiently solv-
ing similar problems that we solve in this paper. The derivation of symmetric
nogoods is a promising avenue for future work, in particular, if a sufficient num-
ber of symmetric nogoods can be generated. Relating the number of derived
symmetric nogoods to the wall-clock speed-up of the solver or the reduction of
the search tree might shed further light on the efficacy of this approach.
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