
Practically Feasible Proof Logging for
Pseudo-Boolean Optimization
Wietze Koops #Ñ

Lund University, Sweden
University of Copenhagen, Denmark

Daniel Le Berre #Ñ

Univ. Artois, CNRS, UMR 8188 CRIL, France

Magnus O. Myreen # Ñ

Chalmers University of Technology, Sweden
University of Gothenburg, Sweden

Jakob Nordström # Ñ

University of Copenhagen, Denmark
Lund University, Sweden

Andy Oertel #Ñ

Lund University, Sweden
University of Copenhagen, Denmark

Yong Kiam Tan # Ñ

Institute for Infocomm Reseach (I2R), A*STAR, Singapore
Nanyang Technological University, Singapore

Marc Vinyals # Ñ

University of Auckland, New Zealand

Abstract
Certifying solvers have long been standard for decision problems in Boolean satisfiability (SAT),
allowing for proof logging and checking with very limited overhead, but developing similar tools
for combinatorial optimization has remained a challenge. A recent promising approach covering a
wide range of solving paradigms is pseudo-Boolean proof logging, but this has mostly consisted of
proof-of-concept works far from delivering the performance required for real-world deployment.

In this work, we present an efficient toolchain based on VeriPB and CakePB for formally verified
pseudo-Boolean optimization. We implement proof logging for the full range of techniques in the
state-of-the-art solvers RoundingSat and Sat4j, including core-guided search and linear programming
integration with Farkas certificates and cut generation. Our experimental evaluation shows that
proof logging and checking performance in this much more expressive paradigm is now quite close to
the level of SAT solving, and hence is clearly practically feasible.

2012 ACM Subject Classification Theory of computation → Logic and verification; Mathematics of
computing → Combinatorial optimization

Keywords and phrases proof logging, certifying algorithms, combinatorial optimization, certification,
pseudo-Boolean solving, 0–1 integer linear programming

Digital Object Identifier 10.4230/LIPIcs.CP.2025.42

Supplementary Material Software (RoundingSat): https://gitlab.com/MIAOresearch/software/
roundingsat

archived at swh:1:rev:7116cbc7c228335d7a828fc9086639e4321fd5d1
Software (Sat4j): http://www.sat4j.org/

archived at swh:1:rev:adda8a7c5414b89b6f8ca1b5452c17526296104f
Software (VeriPB): https://gitlab.com/MIAOresearch/software/VeriPB

archived at swh:1:rev:9dbb658ffb8d88815c3f3d8ff7fcefd6c6fc43db

© Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam
Tan, and Marc Vinyals;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 42; pp. 42:1–42:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wietze.koops@cs.lth.se
https://wkoops.github.io/
https://orcid.org/0000-0001-9945-1992
mailto:leberre@cril.fr
https://www.cril.fr/~leberre/
https://orcid.org/0000-0003-3221-9923
mailto:myreen@chalmers.se
https://www.cse.chalmers.se/~myreen/
https://orcid.org/0000-0002-9504-4107
mailto:jn@di.ku.dk
https://jakobnordstrom.se
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://aoertel.de
https://orcid.org/0000-0001-9783-6768
mailto:yongkiam.tan@ntu.edu.sg
https://tanyongkiam.github.io/
https://orcid.org/0000-0001-7033-2463
mailto:marc.vinyals@auckland.ac.nz
https://marcvinyals.gitlab.io
https://doi.org/10.4230/LIPIcs.CP.2025.42
https://gitlab.com/MIAOresearch/software/roundingsat
https://gitlab.com/MIAOresearch/software/roundingsat
https://archive.softwareheritage.org/swh:1:rev:7116cbc7c228335d7a828fc9086639e4321fd5d1
http://www.sat4j.org/
https://archive.softwareheritage.org/swh:1:rev:adda8a7c5414b89b6f8ca1b5452c17526296104f
https://gitlab.com/MIAOresearch/software/VeriPB
https://archive.softwareheritage.org/swh:1:rev:9dbb658ffb8d88815c3f3d8ff7fcefd6c6fc43db
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

Software (CakePB): https://gitlab.com/MIAOresearch/software/cakepb
archived at swh:1:rev:b29b4e967413ee4e8c3dcb1bbc78bd0d508d6817

Dataset (Experiments): https://zenodo.org/records/15628604

Funding Wietze Koops: Wallenberg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation
Daniel Le Berre: BLaSST ANR-21-CE25-0010
Magnus O. Myreen: Swedish Research Council grant 2021-05165
Jakob Nordström: Swedish Research Council grants 2016-00782 and 2024-05801 and Independent
Research Fund Denmark grant 9040-00389B
Andy Oertel: Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation
Yong Kiam Tan: Singapore NRF Fellowship Programme NRF-NRFF16-2024-0002
Marc Vinyals: UoA FoS RDF 3729031

Acknowledgements We would like to acknowledge earlier work on RoundingSat by Jan Elffers,
Jo Devriendt, and Stephan Gocht, and on Sat4j by Anthony Blomme and Romain Wallon, including
preliminary contributions to proof logging. We are most grateful to Benjamin Bogø for useful
feedback and for helping us to fix a bug in the proof logging code developed for this paper. Different
subsets of the authors wish to thank the participants of the Dagstuhl workshops 22411 Theory
and Practice of SAT and Combinatorial Solving and 23261 SAT Encodings and Beyond for several
stimulating discussions. The first, fourth, and fifth authors also gratefully acknowledge that they have
benefitted greatly from being part of the Basic Algorithms Research Centre (BARC) environment in
Copenhagen financed by the Villum Investigator grant 54451. The computational experiments were
enabled by resources provided by LUNARC at Lund University.

1 Introduction

Combinatorial search and optimization is a major success story in computer science, and
the dramatic improvements in performance of combinatorial solvers over the last couple
of decades allow them to be used for solving large-scale real-world problems in model
checking [10], cryptanalysis [54], planning [64], kidney allocation for transplants [11, 12],
protein design [2, 44], and many other application domains. But modern solvers are highly
complex pieces of software, using sophisticated combinations of intelligent inference algorithms
driven by intricate heuristics, and it is well documented that even the most mature state-of-
the-art combinatorial solvers sometimes return “solutions” that do not satisfy the constraints,
or erroneously claim infeasibility or optimality [1, 14, 20, 37]. Such errors could potentially
have serious consequences for applications where correctness is a non-negotiable demand,
and in more complex settings, where combinatorial solvers are used to solve subproblems,
seemingly innocuous off-by-one mistakes can snowball into huge overall errors.

The Boolean satisfiability (SAT) community has pioneered the concept of certifying
solvers as the most successful approach to date to address this problem. Certifying solvers
do not only produce an answer, but also use proof logging to generate a machine-verifiable
mathematical proof that this answer is correct. Many different SAT proof logging formats
such as RUP [43], TraceCheck [9], GRIT [22], and LRAT [21] have been developed, with
DRAT [46, 47, 71] established as the de facto standard; for the past decade, proof logging
has been compulsory in the main track of the SAT competitions [63].

A big part of the success of SAT proof logging is that it is at the same time very easy to
implement and very efficient to check. In the DRAT format, all that is required for proof
logging is (essentially) for the solver to print the clauses it learns, meaning that the overhead

https://gitlab.com/MIAOresearch/software/cakepb
https://archive.softwareheritage.org/swh:1:rev:b29b4e967413ee4e8c3dcb1bbc78bd0d508d6817
https://zenodo.org/records/15628604

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:3

of proof generation can be kept very small (say, less than 10% of solving time). Yet proof
checkers are so fast that the time spent on verifying solver claims is within an order of
magnitude of solving time, and can sometimes be made as efficient as solving at the price of
adding additional proof details as in LRAT proofs [61]. Many SAT proof formats also come
with formally verified proof checking backends [21, 22, 51, 66], meaning that the correctness
of the final verdict is guaranteed by state-of-the-art formal verification techniques.

Inspired by the success of SAT proof logging, over the years there have been numerous
attempts to develop proof logging in other combinatorial solving communities such as
constraint programming [28, 60, 69], mixed integer programming [18, 30], satisfiability
modulo theories (SMT) solving [3, 4, 8, 48, 65], model counting [15, 17, 36], and automated
planning [33, 34, 58]. However, most of these attempts have run into the problem that it
is hard to design simple proof systems that can support the full range of solver reasoning
techniques used. And if one instead provides specialized proof rules for different techniques,
then proof systems quickly become very complex, making efficient proof checking challenging.

In the last few years, pseudo-Boolean (PB) reasoning with 0–1 linear constraints has
emerged as a simple and yet expressive proof logging approach for a wide range of solving
paradigms and techniques such as SAT-based optimization (MaxSAT) [5, 6, 49], subgraph
solving [38, 39, 40], constraint programming [31, 41, 55, 56, 57], automated planning [27],
and dynamic programming [23]. Although having a single, unified proof logging method for
a large number of seemingly very different combinatorial paradigms appears quite attractive,
the actual performance in terms of proof generation and checking has remained at a proof-of-
concept stage, far from what would be required for deployment in production-grade software.
It seems fair to say that no combinatorial optimization paradigm has been able to deliver
proof logging with the efficiency corresponding to what is available for SAT decision problems.

In this work, we present—to the best of our knowledge, for the first time—highly efficient
and practical certified solving for a combinatorial optimization problem, thus going beyond the
decision problems considered in SAT solving. Using the pseudo-Boolean proof system VeriPB
together with the formally verified backend CakePB, we provide a toolchain for linear pseudo-
Boolean optimization with fully formally verified conclusions. We show how to implement
proof logging for the state-of-the-art pseudo-Boolean solvers RoundingSat [25, 26, 32] and
Sat4j [52], covering the full range of advanced techniques used in these solvers. For the main
bottleneck in previous pseudo-Boolean proof logging works, namely proof checking, we can
now provide formally verified conclusions within a factor 20 of the solving time, getting close
to the overhead factor of 9 traditionally required in the SAT competitions—this is orders of
magnitude faster than even the unverified proof checking in prior work.

To provide some perspective on why our work is a nontrivial contribution, let us briefly
explain how SAT proof logging works and why a similar approach is not possible for pseudo-
Boolean solving. The workhorse of SAT proof logging is so-called reverse unit propagation
(RUP) [43, 68]. If SAT conflict analysis produces a clause, say, C

.= x1 ∨ x2 ∨ x3, from the
current constraint database C, then in order to verify the correctness of this derivation it is
sufficient to assert the negation ¬C

.= x1 ∧ x2 ∧ x3 and check that so-called unit propagation
on the constraint database C leads to contradiction.

The concept of RUP can be generalized to pseudo-Boolean constraints [31], where it
means achieving integer bounds consistency, but RUP checks are not sufficient to certify
pseudo-Boolean solving. At the risk of getting a bit technical, consider the constraints

C1
.= 2x + 2y + 2z + u + v ≥ 5 (1)

C2
.= 2x + 2y + 2z + u + v ≥ 5 (2)

CP 2025

42:4 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

and suppose that a pseudo-Boolean solver decides to set x = 0. Then the constraint C1
propagates y = z = 1, which leads to a conflict with C2. Division-based pseudo-Boolean
conflict analysis now weakens away u and v from C1 to get 2x + 2y + 2z ≥ 3, divides by 2 to
obtain x + y + z ≥ 2, and finally multiplies this constraint by 2 and adds to C1 to learn

C3
.= u + v ≥ 3 . (3)

It is easy to see that this learned constraint can never be satisfied for {0, 1}-valued variables,
and so the solver has derived contradiction and can terminate.

The details of the conflict analysis above are not too important, but the crucial observation
is that the learned constraint C3 cannot be verified by RUP, because none of the constraints
C1, C2, or ¬C3

.= u + v ≤ 2 causes any unit propagations. A more expensive check would
be to compute if the linear programming relaxation of these constraints yields an empty
polytope—this would be another way of showing that C3 follows from C1 and C2. But such
a check also fails here, since x = y = z = 1

2 and u = v = 1 is a fractional solution satisfying
C1, C2, and ¬C3. The point of this technical detour is to illustrate that SAT-style RUP
proof logging cannot be expected to work for pseudo-Boolean solvers, but instead we have to
provide much more explicit, syntactic, information about how solvers infer constraints.

Implementing proof logging for the state-of-the-art solvers RoundingSat and Sat4j presents
further challenges. In addition to pseudo-Boolean conflict analysis, which maps very naturally
to pseudo-Boolean reasoning steps, RoundingSat uses a number of more advanced techniques
for which it is much less obvious how to express the reasoning in terms of pseudo-Boolean proof
rules. In other cases, the natural proof logging approach turns out to lead to performance
issues, which have to be circumvented by using more complex solutions. Sat4j does not cause
as many problems in terms of different reasoning techniques, but has a much larger codebase
developed over more than two decades. Adding proof generation to this codebase, and finding
all the different places where the solver might, for instance, perform minor simplifications
of constraints that do not really change anything in terms of semantics but cause syntactic
checks to detect unexplained changes and fail, is highly nontrivial.

Our formally verified proof checking is performed in two stages, as is also commonly done
for SAT solving. In the first stage, the unverified checker VeriPB elaborates the proof to a
more restrictive format for which no search or propagation is required. This elaborated proof
is then checked by the formally verified backend CakePB. We have made significant efforts
to identify bottlenecks in proof elaboration and formal checking, and this work is a big part
of the explanation for why the whole verified proof checking workflow is now so efficient.

The rest of this paper is organized as follows. After reviewing the basics of pseudo-
Boolean reasoning and proof logging in Section 2, we discuss proof logging for advanced
solving techniques in Sections 3 and 4. In Section 5 we report on our work on optimizing the
proof logging and checking pipeline. We present our experimental evaluation in Section 6 and
provide some concluding remarks in Section 7. Some additional technical details regarding
our proof logging derivations are provided in Appendices A and B.

2 Preliminaries

We start with a condensed review of pseudo-Boolean reasoning, referring the reader to [13, 42]
for more details on VeriPB and to [16] for more on proof systems in general. This is followed
by a brief description of the concrete syntax and semantics of VeriPB proofs.

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:5

2.1 Pseudo-Boolean Reasoning and the Cutting Planes Proof System
We work exclusively with Boolean variables, i.e., variables taking values 0 or 1. A literal ℓ

over a variable x is either x or its negation x = 1− x. By a pseudo-Boolean (PB) constraint
we mean an inequality of the form C

.=
∑

i aiℓi ≥ A, where ai and A are integers (and where
we write .= to denote syntactic equality). We can assume without loss of generality that
constraints are written in normalized form [45] with all coefficients ai and the degree A being
non-negative, and all literals being over distinct variables. A pseudo-Boolean formula is a
conjunction F

.=
∧

j Cj of pseudo-Boolean constraints.
A substitution ω is a function from variables to literals or 0 or 1. We extend the domain

of substitutions to literals in the natural way by respecting the meaning of negation. For
a constraint C

.=
∑

i aiℓi ≥ A, we define C↾ω
.=

∑
iaiω(ℓi) ≥ A as the constraint where

we perform the substitution specified by ω (and simplify the resulting constraint). For a
formula F , we define F↾ω

.=
∧

j Cj↾ω. We sometimes write ℓ1 7→ ℓ2 for ω(ℓ1) = ℓ2 when the
substitution ω is clear from context or immaterial.

An assignment α is a substitution that maps literals to {0, 1} only. A partial assignment
can also leave literals ℓi untouched by mapping ℓi to itself. A partial assignment ρ extends
another partial assignment σ if ρ agrees with σ on all literals that σ maps to {0, 1}, i.e.,
if σ(ℓ) ∈ {0, 1} implies ρ(ℓ) = σ(ℓ). A (partial) assignment α satisfies a constraint C

.=∑
i aiℓi ≥ A if

∑
α(ℓi)=1 ai ≥ A (note that we assume here that C is written in normalized

form). An assignment satisfies a formula F
.=

∧
j Cj if it satisfies all its constraints, in which

case we call it a solution. The decision problem for the pseudo-Boolean formula F is to
determine whether F has a solution. In an optimization problem, we are additionally given
an integer linear objective f

.=
∑

i wiℓi that we want to minimize over all solutions to F .
We view the cutting planes proof system [19] as operating on pseudo-Boolean constraints

in normalized form. Our derivation rules, which all preserve solutions, are as follows. We
can always introduce the literal axiom ℓi ≥ 0 for any literal ℓi. Given two constraints
C1

.=
∑

i aiℓi ≥ A and C2
.=

∑
i biℓi ≥ B, we can add them to obtain C1 + C2

.=
∑

i(ai +
bi)ℓi ≥ A + B. For a positive integer c, we can multiply C1

.=
∑

i aiℓi ≥ A by c to get
c · C1

.=
∑

i(cai)ℓi ≥ cA, or divide by c and round to get
∑

i

⌈
ai

c

⌉
ℓi ≥

⌈
A
c

⌉
. Finally, we can

saturate a constraint
∑

i aiℓi ≥ A to obtain
∑

i min{ai, A}ℓi ≥ A.
The slack of a normalized constraint C

.=
∑

i aiℓi ≥ A with respect to a partial assign-
ment ρ is the sum of the coefficients of all non-falsified literals minus the degree, i.e.,

slack (
∑

i aiℓi ≥ A; ρ) =
∑

ρ(ℓi)̸=0 ai −A , (4)

and measures how close ρ is to falsifying C. If slack (C; ρ) < 0, then C is conflicting under ρ

and no extension of ρ can satisfy C. If ρ does not assign ℓi but 0 ≤ slack (C; ρ) < ai, then we
say that C propagates ℓi under ρ, since any extension of ρ that satisfies C must set ℓi = 1.

A unit constraint (or just unit) is a constraint ℓ ≥ 1. During unit propagation on F

under ρ, we iteratively extend ρ by assigning to 1 all literals ℓi that are propagated by a
constraint in F until either no further literals propagate or some constraint in F is conflicting.
In the latter case, we say that F propagates to conflict under ρ. The negation of a constraint
C

.=
∑

i aiℓi ≥ A is
∑

i aiℓi ≤ A− 1, which rewritten to normalized form becomes

¬C
.=

∑
i aiℓi ≥

∑
i ai −A + 1 . (5)

It is easy to verify that adding C and ¬C yields the contradictory constraint 0 ≥ 1. We say
that F implies C by reverse unit propagation (RUP) if F ∧ ¬C propagates to conflict (in
which case it is clear that any solution to F must also satisfy C).

CP 2025

42:6 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

2.2 VeriPB Syntax and Semantics
We next discuss the syntax and semantics of the VeriPB implementation [70] in more detail.
The reader should be advised, however, that the presentation is streamlined and simplified
to cover precisely the subset of the VeriPB system that is needed for this paper.

VeriPB maintains a database of constraints C, where each constraint can be referred
to using a constraint ID that is a positive integer (assigned consecutively as the derivation
proceeds, with the first IDs 1, 2, . . . , S identified with the S pseudo-Boolean constraints in
the input formula). In our VeriPB code examples we will use displayed math equation labels
as constraint IDs for ease of reference, so that the constraint

C6
.= 2x1 + 5x2 + x3 ≥ 4 (6)

is referred to using constraint ID 6. To make it easier to refer to constraints, they can also
be assigned @-labels that refer to their integer IDs when they are derived.

Cutting planes derivations are written in reverse Polish notation prefixed by pol. VeriPB
uses ~ to represent negation, xi and ~xi for the literal axioms xi ≥ 0 and xi ≥ 0, and +, *, d,
and s for addition, multiplication, division, and saturation, respectively. In addition, VeriPB
supports literal weakening (denoted by w), which eliminates a term aℓ from a constraint by
adding a · (ℓ ≥ 0) (where we note that ℓ and ℓ cancel to leave an additive 1 when added since
ℓ + ℓ = 1 must always hold). To illustrate all of what has been said so far, the line

@newconstr pol 6 s ~x2 2 * + x3 w 2 d x1 + x2 ≥ 1 (7)

first saturates constraint C6 (yielding 2x1 + 4x2 + x3 ≥ 4), then takes the literal axiom
x2 ≥ 0, multiplies it by 2 and adds it (yielding 2x1 + 2x2 + x3 ≥ 2), then weakens on x3 by
adding the literal axiom x3 ≥ 0 (yielding 2x1 + 2x2 ≥ 1), and finally divides by 2. The end
result is the constraint x1 + x2 ≥ 1, which is stored in the constraint database with the next
available ID 7, and the (optional) label @newconstr functions as an alias for this number in
the rest of the proof. In our example derivations, we write out the derived constraint on the
right for clarity, but stating this constraint is not part of the VeriPB syntax for pol lines.

Reverse unit propagation (RUP) steps can be annotated with information about which
constraints propagate to contradiction, as in LRAT [21], or stated without such information,
as in DRAT [71]. Thus, the line

rup +1 x2 >= 1 ; 6 x2 ≥ 1 (8)

derives x2 ≥ 1 after successful unit propagation to conflict on {2x1 + 5x2 + x3 ≥ 4, x2 ≥ 1},
i.e., the constraint 6 together with the negation of x2 ≥ 1. Without the annotation 6,
VeriPB would instead propagate on the full constraint database and the negation of x2 ≥ 1
(which will always work, but might be less efficient). VeriPB also supports simple syntactic
implication ia, which checks whether a specified constraint C can be derived from a single
constraint in the database by adding literal axioms and saturating. A constraint ID can be
added as an annotation to specify which concrete constraint syntactically implies C.

All derivation rules described so far are convenient shorthands for cutting planes deriva-
tions, but VeriPB also has two strengthening rules for deriving non-implied constraints that
are guaranteed not to change the satisfiability status or optimal value of the input. We will
not need the dominance-based strengthening rule in this paper, and so we ignore it and focus
instead on the redundance-based strengthening, or redundance for short. A constraint C is
inferred by redundance by specifying a witness substitution ω and proving the implication

C ∪ {¬C} ⊨ (C ∪ {C})↾ω ∪ {f↾ω ≤ f} (9)

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:7

by providing cutting planes subproofs of all constraints on the right-hand side (which we
refer to as proof obligations). In practice, many of these subproofs can be omitted since
VeriPB will infer them automatically by, e.g, RUP or syntactic implication. As an example,
if y1 is a fresh variable that has not appeared in the derivation before, then we can define y1
to imply 2x1 + x2 + x3 ≥ 3 by the derivation step

red +3 ~y1 +2 x1 +1 x2 +1 x3 >= 3 ; y1 -> 0 3y1 + 2x1 + x2 + x3 ≥ 3 (10)

introducing the constraint (10), which has the intended meaning since y1 = 1 clearly forces
the inequality 2x1 + x2 + x3 ≥ 3 to hold. This derivation step is valid since the witness
ω = {y1 7→ 0} only affects the new constraint 3y1 + 2x1 + x2 + x3 ≥ 3, which it fixes to true,
and all other proof obligations are identical to the premises on the left-hand side or vacuous.
In general, any subproofs required are provided after the witness specification delimited by
begin and end. In case only one proof obligation needs an explicit proof and this proof only
uses one constraint from C, we will refer to that constraint as the justification.

When the witness is empty, the redundance rule allows to derive a constraint C using
proof by contradiction. Namely, in this case one of the required implications to prove is
C ∪ {¬C} ⊨ C, which since C + ¬C

.= 0 ≥ 1 is equivalent to deriving contradiction.
Solutions to the input formula F can be specified using the sol rule, which checks if the

specified assignment is a valid solution. For an optimization problem with objective function
f

.=
∑

i wiℓi to be minimized, the soli rule also adds a solution-improving constraint∑
i wiℓi ≤ −1 +

∑
i wi · α(ℓi) (11)

to the constraint database (but in normalized form), which enforces that all future solutions
will yield a better objective value than α.

A VeriPB proof for the decision problem for F should establish either satisfiability by
logging a solution to F or else unsatisfiability by deriving contradiction (in the form of a
constraint that has negative slack with respect to the empty assignment). For a (feasible)
optimization problem, a proof that the optimal value of the objective f lies in the interval
[LB, UB] should log a solution α to F achieving f(α) = UB and derive a constraint f ≥ LB.

3 Proof Logging for Linear Programming Integration

Proof logging for the basic conflict-driven search in the pseudo-Boolean solvers RoundingSat
and Sat4j is relatively straightforward, since both solvers use the cutting planes proof
system for their conflict analysis. However, RoundingSat is tightly integrated with a linear
programming (LP) solver [25], which adds extra complications as explained in this section.

Most aspects of the LP reasoning in RoundingSat can be expressed in terms of (positive)
linear combinations of constraints and can therefore be logged directly with pol lines, and
Chvátal-Gomory cut generation is the same as cutting planes division. However, mixed-
integer rounding (MIR) cuts [53] are not natively supported by the VeriPB proof system, and
the cut generation procedure turns inequalities into equalities by introducing non-Boolean
integral slack variables, which cannot be directly expressed in the proof system.

As shown in [25], the MIR cut with divisor d ∈ N+ applied to
∑

i aiℓi ≥ A yields∑
i

(
min {ai mod d, A mod d}+

⌊ai

d

⌋
(A mod d)

)
ℓi ≥

⌈A

d

⌉
(A mod d) , (12)

which is in general stronger than the constraint∑
i

(⌈ai

d

⌉
(A mod d)

)
ℓi ≥

⌈A

d

⌉
(A mod d) (13)

CP 2025

42:8 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

that we obtain by cutting planes division from
∑

i aiℓi ≥ A with divisor d and then multiplying
by A mod d, which we call the multiplier of the MIR cut. To see this, note that when
0 < ai mod d < A mod d, (12) has a smaller coefficient for the literal ℓi than (13).

We illustrate with an example how MIR cuts are generated in RoundingSat. As input,
consider the two constraints

C14
.= 4x1 + 7x2 + 5x3 + 3x5 ≥ 9 , (14)

C15
.= 3x1 + 2x2 + 2x4 ≥ 3 , (15)

and suppose that the multipliers are λ14 = 1 and λ15 = 4, the divisor is d = 5, and
P = {x1, x4} is the set of variables on which we partially weaken (i.e., add literal axioms to
reduce the coefficients to the largest multiple of the divisor d). For purposes of computation,
we introduce an integral slack variable sj ≥ 0 for each constraint Cj to obtain the equalities

C ′
14

.= 4x1 + 7x2 + 5x3 + 3x5 − s14 = 9 , (16)
C ′

15
.= 3x1 + 2x2 + 2x4 − s15 = 3 . (17)

We take the linear combination∑
jλjC ′

j
.= 16x1 + 15x2 + 5x3 + 8x4 + 3x5 − s14 − 4s15 = 21 (18)

and continue working on the greater-than-or-equal part of this equality. Partially weakening
on x1 and x4 by adding x1 ≥ 0 and 3 · (x4 ≥ 0) yields

15x1 + 15x2 + 5x3 + 5x4 + 3x5 − s14 − 4s15 ≥ 17 . (19)

Next, we apply a MIR cut with divisor d = 5 to get the inequality

6x1 + 6x2 + 2x3 + 2x4 + 2x5 − s15 ≥ 8 . (20)

For later use, we note that the multiplier of this MIR cut is H = (−3) mod 5 = 2. To obtain
the final cut, we subtract C ′

15 to cancel the integral slack variable s15, which yields

3x1 + 4x2 + 2x3 + 2x5 ≥ 5 . (21)

Our formal VeriPB derivation of the MIR cut (21) is a proof by contradiction starting from
the negation of this constraint, which is

3x1 + 4x2 + 2x3 + 2x5 ≥ 7 . (22)

We first add λ14 = 1 times C14, but we postpone adding C15. Intuitively, this is done in
order to be able to compensate for the subtraction later. In general, we add λjCj for all j

such that λj ≤ H, where H is the multiplier of the MIR cut. This results in the constraint

x1 + 3x2 + 3x3 + x5 ≥ 5 . (23)

Next, we partially weaken on the variables in P , to reduce their coefficients to the largest
smaller multiple of d−H = 3. In this case, we add x1 ≥ 0, which yields

3x2 + 3x3 + x5 ≥ 4 . (24)

Now we divide by d−H = 3, add H = 2 times this to (22), and finally add C15, which yields
the sequence of constraints

x2 + x3 + x5 ≥ 2 (25)
3x1 + 2x2 ≥ 5 (26)

2x4 ≥ 3 (27)

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:9

ending with contradiction, establishing correctness of the cut (21). In general, we add
(d− λj)Cj for all j such that λj > H. The code fragment

red +3 x1 +4 x2 +2 x3 +2 x5 >= 5 ; ; begin 3x1 + 4x2 + 2x3 + 2x5 ≥ 7 (28)
pol 28 14 + x1 + 3x2 + 3x3 + x5 ≥ 5 (29)
pol 29 ~x1 + 3 d x2 + x3 + x5 ≥ 2 (30)
pol 28 30 2 * + 15 + 2x4 ≥ 3 (31)

end 3x1 + 4x2 + 2x3 + 2x5 ≥ 5 (32)

shows how the MIR cut example can be formalized as a valid VeriPB derivation.
In Appendix A, we describe how proof logging for MIR cuts is done in full generality.

4 Proof Logging for Pseudo-Boolean Core-Guided Optimization

RoundingSat solves optimization problems using linear search, core-guided search, or a
“hybrid” combination of the two [26]. Proof logging for linear search is straightforward,
since the solution-improving constraint added by the solver is what is derived by the soli
rule. For core-guided optimization the proof logging is more complicated, but we explain by
example below. The overall approach is similar to core-guided optimization in MaxSAT [6],
from which the technique has been imported, but the details differ significantly since the
solver deals with general pseudo-Boolean constraints rather than clauses. Pseudo-Boolean
constraints in the VeriPB code examples of this section are mathematically formatted to
improve clarity, which is not correct VeriPB syntax.

Consider a minimization problem with objective function fo
.= x1 + 2x2 + 3x3 + 4x4 +

5x5 + 6x6. We initially have an implicit lower bound fo ≥ 0.
We begin by running the solver with an additional assumption that fo = 0, equivalently

x1 = . . . = x6 = 0. We either find a solution, which must be optimal, or our assumption is
too strong. In that case the solver finds a conflict, say 3x2 + 2x3 + x4 + x5 ≥ 4, which we
derive with some proof line

pol (...) 3x2 + 2x3 + x4 + x5 ≥ 4 (33)

as done for conflict analysis. Such a core constraint shows that the assumptions are incon-
sistent with the input formula. We then turn the core constraint (33) into a cardinality
constraint, also called a cardinality core. The most obvious way to do so is to divide by the
largest coefficient in the constraint, but it is possible to obtain stronger cardinality constraints
through a more complicated algorithm. All of these algorithms can be logged as a sequence
of weakening, saturation, and division steps. In our case, the derivation step

pol 33 3 d x2 + x3 + x4 + x5 ≥ 2 (34)

divides by 3 to get x2 + x3 + x4 + x5 ≥ 2. We proceed to rewrite the objective using the
cardinality core (34). To do so, we introduce two new slack variables y3 and y4 so that we can
write x2 +x3 +x4 +x5 = 2+y3 +y4. Equivalently, writing ∆1

.= x2 +x3 +x4 +x5−(2+y3 +y4),
we have ∆1 = 0. We log the two sides of this equality using the redundance rule. We first
log the at-most constraint ∆1 ≤ 0 with witness y3 = y4 = 1 and trivial justification. Then
we log the at-least constraint ∆1 ≥ 0 in two steps, with witnesses y3 = 0 and y4 = 0, and
justifications the cardinality core (34) and the previous step (36):

red x2 + x3 + x4 + x5 ≤ 2 + y3 + y4 ; y3 -> 1 y4 -> 1 (35)
red x2 + x3 + x4 + x5 ≥ 2 + y3 ; y3 -> 0 (36)
red x2 + x3 + x4 + x5 ≥ 2 + y3 + y4 ; y4 -> 0 (37)

CP 2025

42:10 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

To speed up search we give slack variables the additional meaning that yj is true if and only
if x2 + x3 + x4 + x5 ≥ j. We do so with an ordering constraint of the form y3 ≥ y4, which
we derive using the redundance rule and witness swapping y3 and y4:

red y3 ≥ y4 ; y3 -> y4 y4 -> y3 (38)

We then proceed to rewrite the objective to fr
.= fo −∆, where ∆ .= 2∆1 is the difference

between the reformulated and original objectives. The multiplier 2 is the largest number that
keeps all coefficients of fr positive. The new objective is fr

.= x1 + x3 + 2x4 + 3x5 + 6x6 +
2y3 + 2y4 + 4, and, because ∆ = 0, it is equivalent to the original objective. Furthermore,
the new objective contains a constant term 4, which gives us a lower bound of 4. We log
the global reformulation constraint ∆ ≥ 0 as 2 times (37), then log the objective lower bound
fo ≥ 4 by first logging the trivial constraint fr ≥ 4 and then adding ∆ ≥ 0:

pol 37 2 * 2x2 + 2x3 + 2x4 + 2x5 ≥ 4 + 2y3 + 2y4 (39)
rup x1 + x3 + 2x4 + 3x5 + 6x6 + 2y3 + 2y4 ≥ 0 (40)
pol 40 39 + x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≥ 4 (41)

At this point we run the solver with assumptions xi = yi = 0 again. Suppose that we now
obtain a conflict constraint x4 + x5 + x6 + y3 ≥ 1, which is already a cardinality core.

We now have ∆2
.= x4 + x5 + x6 + y3− (1 + z2 + z3 + z4). We introduce at-most, at-least,

and ordering constraints:

red x4 + x5 + x6 + y3 ≤ 1 + z2 + z3 + z4 ; z2 -> 1 z3 -> 1 z4 -> 1 (42)
red x4 + x5 + x6 + y3 ≥ 1 + z2 ; z2 -> 0 (43)
red x4 + x5 + x6 + y3 ≥ 1 + z2 + z3 ; z3 -> 0 (44)
red x4 + x5 + x6 + y3 ≥ 1 + z2 + z3 + z4 ; z4 -> 0 (45)
red z2 ≥ z3 ; z2 -> z3 z3 -> z2 (46)
red z3 ≥ z4 ; z2 -> z4 z3 -> z2 z4 -> z3 (47)

We rewrite the objective again, with ∆ .= 2∆1 + 2∆2. The new objective is fr
.= x1 + x3 +

x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 + 6. We derive the global reformulation constraint ∆ ≥ 0
from the previous global reformulation constraint, and then we log the lower bound fo ≥ 6:

pol 39 45 2 * + 2x2 + 2x3 + 4x4 + 4x5 + 2x6 ≥ 6 + 2y4 + 2z2 + 2z3 + 2z4 (48)
rup x1 + x3 + x5 + 4x6 + 2y4 + 2z2 + 2z3 + 2z4 ≥ 0 (49)
pol 49 48 + x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≥ 6 (50)

We run the solver with assumptions xi = yi = zi = 0 yet another time. Suppose that
these assumptions extend to a solution. We log the solution using soli and obtain the
objective upper bound fo ≤ 6, completing the proof.

Expert readers may note that in practice it is too slow to introduce all the slack variables
when we reformulate the objective, and we need to introduce variables lazily instead. This
means that when we find the first cardinality core, we only introduce y3. Therefore, we define
∆(1)

1
.= x2 + x3 + x4 + x5 − (2 + y3), where the notation ∆(j)

i refers to the i-th cardinality
core after j slack variables have been introduced. We log constraints encoding that y3 is true
if and only if x2 + x3 + x4 + x5 ≥ 3 is true. We first log the at-most constraint encoding that
x2 + x3 + x4 + x5 ≥ 3 implies y3

red x2 + x3 + x4 + x5 ≤ 2 + 2y3 ; y3 -> 1 (51)

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:11

with witness y3 = 1 and trivial justification, and then the at-least constraint encoding that
y3 implies x1 + x3 + x4 + x5 ≥ 3, or equivalently ∆(1)

1 ≥ 0,

red x2 + x3 + x4 + x5 ≥ 2 + y3 ; y3 -> 0 (52)

with witness y3 = 0 and justification the cardinality core (34).
We rewrite the objective to fr

.= fo−∆ with ∆ .= 2∆(1)
1 . Observe that we no longer have

∆ = 0 but only ∆ ≥ 0, therefore all we can say about the objective is fo ≤ fr. Nevertheless,
this is enough to derive a lower bound on the objective.

Suppose that our next core constraint is x4 + x5 + x6 + y3 ≥ 1. We now have ∆(1)
2

.=
x4 + x5 + x6 + y3 − (1 + z2). We introduce at-most and at-least constraints:

red x4 + x5 + x6 + y3 ≤ 1 + 3z2 ; z2 -> 1 (53)
red x4 + x5 + x6 + y3 ≥ 1 + z2 ; z2 -> 0 (54)

Since y3 appears in this cardinality core and will disappear from the objective, we
introduce y4 and extend ∆(1)

1 to ∆(2)
1

.= x2 + x3 + x4 + x5 − (2 + y3 + y4). We first log the
at-most constraint with witness y4 = y3 and justification the previous at-most constraint (51),

red x2 + x3 + x4 + x5 ≤ 2 + y3 + y4 ; y4 -> y3 (55)

and then the at-least constraint with witness y4 = 0 and justification the previous at-least
constraint (52).

red x2 + x3 + x4 + x5 ≥ 2 + y3 + y4 ; y4 -> 0 (56)

We derive the ordering constraint from previous constraints instead of by redundance, as
there might be constraints containing y3 which are not obvious to derive under the witness:

pol 56 51 + y3 ≥ y4 (57)

We rewrite the objective to fr
.= fo−∆ with ∆ .= 2∆(2)

1 + 2∆(1)
2 . As ∆(1)

1 has been extended
to ∆(2)

1 , we cannot obtain the new global reformulation constraint from the previous global
reformulation constraint, therefore we rederive it from scratch.

pol 56 2 * 54 2 * + 2x2 + 2x3 + 4x4 + 4x5 + 2x6 ≥ 6 + 2y4 + 2z2 (58)

Assuming that we next find an optimal solution, we complete the proof analogously to
the eager case.

We provide proofs of correctness and some further constructions in Appendix B. Most
importantly, we touched on eager and lazy sum encodings, but we also support a third
reified encoding. Additionally, if we have upper bounds on the objective, we can use that
information to derive unit constraints by hardening, and to derive upper bounds on cores,
which in turn can be used to derive stronger at-most constraints and stop extending lazy
variables earlier.

5 Implementation

In this section, we discuss our work on implementing proof logging in the pseudo-Boolean
solvers Sat4j and RoundingSat, and how we have optimized the proof checkers VeriPB and
CakePB to get close to the levels of SAT proof logging performance.

CP 2025

42:12 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

5.1 Proof Logging in Sat4j
The solver Sat4j [52] for SAT and pseudo-Boolean problems was designed more than 20 years
ago, when proof logging was not a standard feature, but the fine-grained event-driven design
allows for precise visualization and remote control of solver behaviour [7]. As such, when
DRUP proof logging became mandatory in the SAT 2013 competition, including support
for this was very fast. In 2024 incremental proof logging with IDRUP [35] was added. Such
support for incremental solver calls also paved the way for proof logging for optimization.

The Sat4j optimization engine uses linear solution-improving search, for which proof
logging is straightforward. However, for the conflict analysis the solver has two versions Sat4j
Resolution with SAT-style, clausal, reasoning and Sat4j Cutting Planes with cutting-planes-
based reasoning. Proof logging for SAT conflict analysis is easy to implement with RUP
statements and is robust to syntactic changes of the underlying constraints, but dealing with
cutting planes derivations requires exact control of the syntactic representation of constraints.

Sat4j inherits from MiniSat [29] that the constraints are simplified during parsing, so
that, e.g., satisfied constraints are ignored and variables with fixed values are removed from
constraints. In addition, unit propagation and saturation are applied. RUP proofs can
essentially be written as if these simplifications were not performed, but explicit cutting
planes proofs quickly fail when there is a mismatch between the original input constraint and
the simplified constraint stored in the constraint database. Dealing with this turns out to be
a formidable challenge. Sat4j has more than 30 different implementations of constraints with
individual simplification rules, and any changes to the 15-20-year-old code must be limited
so that none of the many software packages that depend on the solver breaks.

The @-labels for constraints discussed in Section 2.2 make book-keeping easier, in that
we can represent falsified literals xj = 0 by unit constraints xj ≥ 1, which we can derive by
RUP and give labels @xj. Removing a falsified literal then amounts to adding @xj to the
constraint, whereas satisfied literals can simply be removed by weakening.

To illustrate how this works, suppose that the Mth input constraint read by Sat4j
is 6x1 + 2x2 + x3 + x4 ≥ 5 and that x4 = 0 is already known at this point. Then the
falsified literal x4 is removed to derive 6x1 + 2x2 + x3 ≥ 5; saturation is applied to yield
5x1 + 2x2 + x3 ≥ 5; and finally x1 = 1 is propagated. The first two steps yields proof lines

@x4 rup 1 ~x4 >= 1 x4 ≥ 1 (59)
@M pol M @x4 + s 5x1 + 2x2 + x3 ≥ 5 (60)

while the unit x1 ≥ 1 is only derived later when needed. Note that because of the intermediate
derivations the simplified version of the Mth input constraint will not get constraint ID M ,
but by defining the label @M we can avoid having to keep track of the exact number.

Continuing our example, suppose that the solver later reads the Nth input constraint
3x1 + 2x2 + 2x3 + x4 + 2x5 ≥ 3. Then the solver simplifies this to 2x2 + 2x3 + 2x5 ≥ 2, which
is semantically equivalent to the clause x2 ∨ x3 ∨ x5, and justifies this with the proof steps

@x1 rup 1 x1 >= 1 x1 ≥ 1 (61)
@N pol N @x1 3 * + x4 w 2x2 + 2x3 + 2x5 ≥ 2 (62)

Using labels for input constraints and fixed literals make proof generation in Sat4j significantly
simpler in that we just use a flag to keep track of whether the Nth constraint was simplified
or not, and to refer to this constraint by @N or N accordingly. Another helpful VeriPB feature
during implementation was that the proof can be terminated at any time and checked for
correctness with respect to the upper and lower bound on the objective known at that time.

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:13

5.2 Proof Logging in RoundingSat
An important part of making the proof logging in RoundingSat efficient is to deal with fixed
variable assignments x ≥ 1 or x ≤ 0 inferred by the solver (i.e., unit constraints). As in
several previous works (e.g., [6, 30, 38, 50]), our work on implementing proof logging helped
us find and eliminate bugs which previous extensive testing had failed to detect.

RoundingSat simplifies all derived constraints C
.=

∑
i aiℓi ≥ A by removing unit

constraints. Satisfied literals ℓi ≥ 1 can just be weakened away, but falsified literals ℓj ≤ 0
require a justification. Adding aj · (ℓj ≤ 0) to C for all falsified literals causes performance
issues during proof checking. A better solution turns out to be to derive the fully simplified
version of C in one go using a RUP statement annotated with the units ℓj ≤ 0 used.

In contrast to constraints learned during conflict analysis, unit constraints are typically
discovered during propagation before the solver has made any decisions (i.e., at decision
level 0). To see why proof logging for this scenario requires care, consider the constraints

C1
.= x2 + x3 + 2x4 + 2x5 + 4x6 ≥ 7 (63)

C2
.= x1 + x2 + 2x3 + 2x4 + 4x5 + 4x6 ≥ 7 (64)

unit propagating x6 = 1, x5 = 0, x4 = 1, x3 = 0, x2 = 1, and x1 = 0 in that order. Explicit
cutting planes derivations of these units would require adding all previous unit constraints
to either C1 or C2, yielding a quadratic number of steps overall. And this is not just a
theoretical pathological case—we observed instances where constraints propagated many
units and where writing proofs for such units dominated the cost of proof logging. What
we do instead is to derive such units using annotated RUP, explicitly mentioning which
constraints are needed for propagation. While checking such RUP steps can in theory incur a
linear overhead for “ping-ponging” propagations as between constraints (63) and (64) above,
this does not seem to be a problem in practice.

The fact that cutting planes proof depends on the exact syntactic representation of
constraints is not only a source of complications, as discussed in Section 5.1, but can also
help detect bugs, including mistakes that do not affect soundness but makes solver reasoning
weaker than it should. When generating MIR cuts as in (12), RoundingSat computed the
coefficient

(
ai

d + 1
)
(A mod d) for ℓi when d | ai and ai < 0 instead of the correct value

ai

d (A mod d). Since the resulting coefficient is always larger, this is not unsound, but yields
a weaker constraint than intended. This was discovered since the constraint derived in the
proof did not match what was in the solver constraint database.

Another example, which is related to the discussion at the end of Section 4, is that when an
objective upper bound f ≤ UB is known and X is a linear form such that f −wX ≥ 0 holds,
then the solver derived X ≤ ⌊UB/w⌋. However, in this scenario the constraint database in
fact contains the solution-improving constraint f ≤ UB − 1, and so the solver should infer
the stronger constraint X ≤ ⌊(UB − 1)/w⌋ instead. This was again discovered thanks to a
mismatch between proof log and constraint database.

5.3 Optimizations in VeriPB
We have done substantial work on VeriPB to improve performance and robustness of proof
checking and elaboration. Much of this concerns technical implementation details that are
hard to explain briefly, but we try to give two examples below.

To make it convenient to log solutions with the sol and soli rules, VeriPB is guaranteed to
apply unit propagation before checking that the provided assignment satisfies all constraints.
Such propagation can cause substantial overhead, especially when solutions are logged

CP 2025

42:14 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

frequently during optimization. Since pseudo-Boolean solvers can easily specify the full
assignment to all variables, we modified the default behaviour of VeriPB to check first if the
provided assignment satisfies all constraints before applying unit propagation.

We have also improved autoproving, i.e., the ability of VeriPB to automatically infer
constraints, by changing the syntactic implication check so that it first applies unit propagation
to the premises. Such autoproving is crucial to be able to minimize the size of the generated
proofs, especially for strengthening rules, but involves delicate trade-offs with performance.

5.4 Optimizations in CakePB
Significant effort has also been invested to speed up CakePB and to update the formal
verification following our code changes. The verification shows that, upon successful proof
checking by CakePB, the conclusions of the proof log are sound with respect to the semantics
of the input decision or optimization problem. Formally verified compilation [67] extends this
guarantee all the way to the CakePB machine code (see [39, Section 3.3] for more details).

The CakePB updates include implementing and verifying standard code optimizations
such as introducing tail recursion and carefully choosing data structures, but below we discuss
some more interesting changes specific to pseudo-Boolean proof checking.

1. RUP with annotations: In prior work [49], VeriPB elaborated RUP steps into
cutting planes proofs to be checked by CakePB. This meant that VeriPB expanded RUP
statements to cutting planes derivations, which CakePB then checked using its general
procedure for cutting planes. A much more efficient approach is for CakePB to support
annotated RUP steps, which include a list of constraints in the order they propagate.
The verified RUP implementation in CakePB tracks these propagations with a mutable
bitset, which allows units to be calculated in linear passes over the annotated constraints.

2. Simplifications for cutting planes proofs: CakePB now makes a syntactic simplifica-
tion pass on pol lines, where adjacent literal weakening steps are merged into a single
simultaneous step internally, and adjacent additions of literal axioms (possibly multiplied
by constants) are also merged. In this way CakePB can use a single pass over the resulting
merged step to carry out all these operations.

3. Space-efficient occurrence mapping: CakePB tracks a mapping from variables to the
IDs of all constraints containing them [49]; this is used as an efficient heuristic for skipping
proof obligations in strengthening rules. However, such a mapping is space-inefficient
as many of the variables are never looked up. Our new heuristic instead tracks only a
fixed number of constraints per variable. We also changed the mapping to use an in-place
array-based representation as opposed to the previous, purely functional implementation.

6 Experiments

We have run experiments on the 397 decision instances and 478 optimization instances in
the Pseudo-Boolean Competition 2024 [62] on hardware with i5-1145G7 CPUs, 14GB of
available RAM, a 100GB solid state drive as storage, and Rocky Linux 8.10 as operating
system. We first ran the solvers without proof logging to establish a baseline, and only kept
instances solved within a one-hour time limit. We then ran solvers with proof logging, had
VeriPB elaborate the proofs, and fed them to the formally verified checker CakePB. Noise
due to very small running times was smoothed by computing all ratios as (1 + x)/(1 + y).

Sat4j Cutting Planes (Figure 1) solves 199 decision and 123 optimization instances.
The worst overhead for proof generation is 51.7%; 95% of the instances have an overhead

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:15

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sat4j without proof logging (s)

a
d
d
it
io
n
a
l
ti
m
e
fo
r
p
ro
o
f
lo
g
gi
n
g
(s
)

decision
optimization

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)

V
er
iP
B

+
C
a
ke
P
B

p
ro
o
f
ch
ec
k
in
g
(s
)

decision
optimization

Figure 1 Sat4j Cutting Planes overhead for proof logging and logging versus checking time.

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sat4j without proof logging (s)

ad
d
it
io
n
al

ti
m
e
fo
r
p
ro
of

lo
gg

in
g
(s
)

decision
optimization

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)

V
er
iP
B

+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Figure 2 Sat4j Resolution overhead for proof logging and logging versus checking time.

below 14.2%; and the median is 2.6%. All instances are successfully checked within 6,158s.
The worst ratio of checking to solving time is 3.83; 95% of the instances are checked within a
factor 1.60, and the median is a factor 0.54, which is even faster than solving.

Sat4j Resolution (Figure 2) solves 243 decision and 123 optimization instances. The
worst proof logging overhead is 71%; 95% of the instances have an overhead below 42%; and
the median is 9.7%. For 3 instances, VeriPB times out after 10h. The worst ratio of proof
checking time compared to solving time is a whopping 338. However, 95% of the instances
are checked within a factor 20.9; and the median is a factor 1.33. The main reason for the
much larger overheads for checking is that Sat4j Resolution essentially writes SAT-style
DRAT proofs using RUP steps without annotations. This means that VeriPB has to perform
propagation for every clause learned, but pseudo-Boolean propagation is more expensive
than clausal propagation and VeriPB has no special handling of clausal proofs.

RoundingSat (Figure 3) solves 297 decision and 258 optimization instances. The worst
proof logging overhead is 46.2%; 95% of the instances have an overhead below 21.1%; and
the median is 2.7%. One optimization instance cannot be elaborated by VeriPB because the
proofs exceed the 100GB of available disk space. On 3 decision and 4 optimization instances
VeriPB runs out of memory, and on a further 1 decision and 1 optimization instance CakePB
does. All remaining instances are checked within 11,730s. The worst ratio of checking to

CP 2025

42:16 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

RoundingSat without proof logging (s)

a
d
d
it
io
n
a
l
ti
m
e
fo
r
p
ro
o
f
lo
g
gi
n
g
(s
)

decision
optimization

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

RoundingSat with proof logging (s)

V
er
iP
B

+
C
a
ke
P
B

p
ro
o
f
ch
ec
k
in
g
(s
)

decision
optimization

Figure 3 RoundingSat overhead for proof logging and logging versus checking time.

solving time is 19.17; 95% of the instances are checked within a factor 9.22; and the median
is a factor 1.43. This is arguably quite close to what would be expected of SAT proof logging.

7 Concluding Remarks

In this work, we present a practically feasible and fully formally verified toolchain based on
VeriPB and CakePB for certified pseudo-Boolean solving and optimization. Our work covers
the full range of techniques in the state-of-the-art solvers RoundingSat and Sat4j, and so
should be eminently possible to adapt to other pseudo-Boolean solvers.

From a solver author perspective, however, a key concern for adoption of proof logging
is ease of use. One of the lessons learned from our work is that proof logging for basic
constraint simplifications such as removing fixed variables is both common and surprisingly
tricky to implement correctly and efficiently. Further investigations are warranted into how
such simplifications could be handled more smoothly in the proof system. Also, adding a
proof rule for mixed integer rounding (MIR) cuts would greatly simplify the proof logging
for solvers that employ MIR cut generation techniques from mixed integer programming.

Regarding VeriPB performance, a substantial amount of time is spent on writing and
parsing files. Introducing a binary file format for pseudo-Boolean formulas and proofs would
alleviate this issue. Checking reverse unit propagation (RUP) steps is another bottleneck. For
Sat4j Resolution the obvious remedy would be to implement RUP with annotations. In general,
more sophisticated propagation algorithms [24, 59] would probably be helpful. However, for
SAT-like proofs with DRAT -style, non-annotated, RUP steps, implementing a dedicated
clausal checker along the lines of [71] inside VeriPB appears to be the best way to get truly
efficient proof checking, but this seems like an engineering rather than a research problem.

For verified proof checking with CakePB, working on PB solving has led to several improve-
ments on top of earlier optimizations for subgraph solving [39] and MaxSAT preprocessing [49].
Profiling shows the potential for further efficiency gains in checking strengthening steps
and cutting planes derivations. Parallelizing the proof elaboration by VeriPB and checking by
CakePB also seems worth exploring, especially since both tools support streaming proof files.

To the best of our knowledge, we present the first certified solving toolchain for an optimiz-
ation problem beyond SAT with performance approaching that of SAT proof logging tools. We
are hopeful that our work could point the way towards practically feasible certified solving also
for stronger paradigms such as constraint programming and mixed integer programming.

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:17

References

1 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-
morphic testing of constraint solvers. In Proceedings of the 24th International Conference on
Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes
in Computer Science, pages 727–736. Springer, August 2018.

2 Katherine I. Albanese, Sophie Barbe, Shunsuke Tagami, Derek N. Woolfson, and Thomas
Schiex. Computational protein design. Nature Reviews Methods Primers, 5(13), February
2025.

3 Bruno Andreotti, Hanna Lachnitt, and Haniel Barbosa. Carcara: An efficient proof checker
and elaborator for SMT proofs in the alethe format. In Proceedings of the 29th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’23),
volume 13993 of Lecture Notes in Computer Science, pages 367–386. Springer, April 2023.

4 Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare
Tinelli, and Clark Barrett. Flexible proof production in an industrial-strength SMT solver. In
Proceedings of the 11th International Joint Conference on Automated Reasoning (IJCAR ’22),
volume 13385 of Lecture Notes in Computer Science, pages 15–35. Springer, August 2022.

5 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter
Vandesande. Certifying without loss of generality reasoning in solution-improving maximum
satisfiability. In Proceedings of the 30th International Conference on Principles and Practice
of Constraint Programming (CP ’24), volume 307 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:28, September 2024.

6 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.
Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on
Automated Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages
1–22. Springer, July 2023.

7 Daniel Le Berre and Stéphanie Roussel. Sat4j 2.3.2: on the fly solver configuration: System
description. Journal on Satisfiability, Boolean Modelling and Computation, 8(3/4):197–202,
August 2012.

8 Frédéric Besson, Pascal Fontaine, and Laurent Théry. A flexible proof format for SMT:
a proposal. In Proceedings of the 1st Workshop on Proof eXchange for Theorem Proving
(PxTP ’11), pages 15–26, August 2011.

9 Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.
10 Armin Biere and Daniel Kröning. SAT-based model checking. In Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, chapter 10, pages 277–303. Springer, December 2018.

11 Péter Biró, Joris van de Klundert, David F. Manlove, William Pettersson, Tommy Andersson,
Lisa Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, Aline
Hemke, Rachel Johnson, Xenia Klimentova, Dirk Kuypers, Alessandro Nanni Costa, Bart
Smeulders, Frits C. R. Spieksma, María O. Valentín, and Ana Viana. Modelling and optimisa-
tion in European kidney exchange programmes. European Journal of Operational Research,
291(2):447–456, June 2021.

12 Péter Biró, Bernadette Haase-Kromwijk, Tommy Andersson, Eyjólfur Ingi Ásgeirsson, Tatiana
Baltesová, Ioannis Boletis, Catarina Bolotinha, Gregor Bond, Georg Böhmig, Lisa Burnapp,
Katarína Cechlárová, Paola Di Ciaccio, Jiri Fronek, Karine Hadaya, Aline Hemke, Christian
Jacquelinet, Rachel Johnson, Rafal Kieszek, Dirk R. Kuypers, Ruthanne Leishman, Marie-
Alice Macher, David Manlove, Georgia Menoudakou, Mikko Salonen, Bart Smeulders, Vito
Sparacino, Frits C. R. Spieksma, María Oliva Valentín, Nic Wilson, and Joris van der Klundert.
Building kidney exchange programmes in Europe—an overview of exchange practice and
activities. Transplantation, 103(7):1514–1522, June 2019.

CP 2025

http://fmv.jku.at/tracecheck/

42:18 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

13 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence
Research, 77:1539–1589, August 2023. Preliminary version in AAAI ’22.

14 Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In Proceedings
of the 7th International Workshop on Satisfiability Modulo Theories (SMT ’09), pages 1–5,
August 2009.

15 Randal E. Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn J. H. Heule. Certified
knowledge compilation with application to verified model counting. In Proceedings of the
26th International Conference on Theory and Applications of Satisfiability Testing (SAT ’23),
volume 271 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–6:20, 2023.

16 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

17 Florent Capelli. Knowledge compilation languages as proof systems. In Mikolás Janota
and Inês Lynce, editors, Proceedings of the 22nd International Conference on Theory and
Applications of Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in Computer
Science, pages 90–99. Springer, 2019.

18 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

19 William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

20 William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-
bound approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

21 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer
Science, pages 220–236. Springer, August 2017.

22 Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified
resolution proof checking. In Proceedings of the 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’17), volume 10205 of
Lecture Notes in Computer Science, pages 118–135. Springer, April 2017.

23 Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and
Konstantin Sidorov. Pseudo-Boolean reasoning about states and transitions to certify dynamic
programming and decision diagram algorithms. In Proceedings of the 30th International
Conference on Principles and Practice of Constraint Programming (CP ’24), volume 307 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:21, September 2024.

24 Jo Devriendt. Watched propagation of 0-1 integer linear constraints. In Proceedings of the 26th
International Conference on Principles and Practice of Constraint Programming (CP ’20),
volume 12333 of Lecture Notes in Computer Science, pages 160–176. Springer, September
2020.

25 Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer
linear programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55,
October 2021. Preliminary version in CPAIOR ’20.

26 Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting
to the core of pseudo-Boolean optimization: Combining core-guided search with cutting planes
reasoning. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21),
pages 3750–3758, February 2021.

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:19

27 Simon Dold, Malte Helmert, Jakob Nordström, Gabriele Röger, and Tanja Schindler. Pseudo-
Boolean proof logging for optimal classical planning. In Proceedings of the 35th International
Conference on Automated Planning and Scheduling (ICAPS ’25), November 2025. To appear.

28 Nicholas Downing, Thibaut Feydy, and Peter J. Stuckey. Explaining alldifferent. In Proceedings
of the 35th Australasian Computer Science Conference (ACSC ’12), pages 115–124, January
2012.

29 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT ’03), Selected Revised Papers, volume
2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

30 Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed
integer programming. Mathematical Programming, 197(2):793–812, February 2023.

31 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

32 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18),
pages 1291–1299, July 2018.

33 Salomé Eriksson, Gabriele Röger, and Malte Helmert. Unsolvability certificates for classical
planning. In Proceedings of the 27th International Conference on Automated Planning and
Scheduling (ICAPS ’17), pages 88–97, June 2017.

34 Salomé Eriksson, Gabriele Röger, and Malte Helmert. A proof system for unsolvable planning
tasks. In Proceedings of the 28th International Conference on Automated Planning and
Scheduling (ICAPS ’18), pages 65–73, June 2018.

35 Katalin Fazekas, Florian Pollitt, Mathias Fleury, and Armin Biere. Certifying incremental
SAT solving. In Proceedings of the 25th Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2024), volume 100 of EPiC Series in Computing, pages
321–340, May 2024.

36 Johannes Klaus Fichte, Markus Hecher, and Valentin Roland. Proofs for propositional model
counting. In Proceedings of the 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 30:1–30:24, August 2022.

37 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

38 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Proceedings of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages
338–357. Springer, September 2020.

39 Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Proceedings of the 38th
AAAI Conference on Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

40 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

41 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint program-
ming solver. In Proceedings of the 28th International Conference on Principles and Practice
of Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:18, August 2022.

CP 2025

42:20 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

42 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI ’21), pages 3768–3777, February 2021.

43 Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’03), pages 886–891, March 2003.

44 Mark A. Hallen and Bruce Randall Donald. Protein design by provable algorithms. Commu-
nications of the ACM, 62(10):76–84, October 2019.

45 Peter L. Hammer and Sergiu Rudeanu. Boolean Methods in Operations Research and Related
Areas. Springer Verlag, New York, 1968.

46 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking
clausal proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

47 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In Proceedings of the 24th International Conference on Automated
Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359.
Springer, June 2013.

48 Jochen Hoenicke and Tanja Schindler. A simple proof format for SMT. In Proceedings of the
20th Internal Workshop on Satisfiability Modulo Theories (SMT ’22), volume 3185 of CEUR
Workshop Proceedings, pages 54–70, August 2022.

49 Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O.
Myreen, and Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th
International Joint Conference on Automated Reasoning (IJCAR ’24), volume 14739 of Lecture
Notes in Computer Science, pages 396–418. Springer, July 2024.

50 Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorph-
ism problems faster through clique neighbourhood constraints. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August
2021.

51 Peter Lammich. Efficient verified (UN)SAT certificate checking. Journal of Automated
Reasoning, 64(3):513–532, March 2020. Extended version of paper in CADE 2017.

52 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59–64, July 2010.

53 Hugues Marchand and Laurence A. Wolsey. Aggregation and mixed integer rounding to solve
MIPs. Operations Research, 49(3):325–468, June 2001.

54 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning, 24:165–203, February 2000.

55 Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In
Proceedings of the 29th International Conference on Principles and Practice of Constraint Pro-
gramming (CP ’23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:17, August 2023.

56 Matthew McIlree and Ciaran McCreesh. Certifying bounds propagation for integer multi-
plication constraints. In Proceedings of the 39th AAAI Conference on Artificial Intelligence
(AAAI ’25), pages 11309–11317, February-March 2025.

57 Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit
constraint. In Proceedings of the 21st International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24), volume 14743
of Lecture Notes in Computer Science, pages 38–55. Springer, May 2024.

58 Esther Mugdan, Remo Christen, and Salomé Eriksson. Optimality certificates for classical
planning. In Proceedings of the 33rd International Conference on Automated Planning and
Scheduling (ICAPS ’23), pages 286–294, July 2023.

59 Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao. Speeding up
pseudo-Boolean propagation. In Proceedings of the 27th International Conference on Theory

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:21

and Applications of Satisfiability Testing (SAT ’24), volume 305 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1–22:18, August 2024.

60 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, January 2009.

61 Florian Pollitt, Mathias Fleury, and Armin Biere. Faster LRAT checking than solving with
CaDiCaL. In Proceedings of the 26th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’23), volume 271 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:12, July 2023.

62 Pseudo-Boolean competition 2024. https://www.cril.univ-artois.fr/PB24/, August 2024.
63 The International SAT Competitions web page. https://satcompetition.github.io.
64 Dominik Schreiber. Lilotane: A lifted SAT-based approach to hierarchical planning. Journal

of Artificial Intelligence Research, 70:1117–1181, March 2021.
65 Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, and Pascal Fontaine. Alethe: Towards

a generic SMT proof format (extended abstract). In Proceedings of the 7th Workshop on
Proof eXchange for Theorem Proving (PxTP ’21), volume 336 of Electronic Proceedings in
Theoretical Computer Science, pages 49–54, July 2021.

66 Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. cake_lpr: Verified propagation
redundancy checking in CakeML. In Proceedings of the 27th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’21), volume 12652 of
Lecture Notes in Computer Science, pages 223–241. Springer, March-April 2021.

67 Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott Owens, and
Michael Norrish. The verified CakeML compiler backend. Journal of Functional Programming,
29:e2:1–e2:57, February 2019.

68 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International
Symposium on Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at
http://isaim2008.unl.edu/index.php?page=proceedings.

69 Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Proceedings of the
24th AAAI Conference on Artificial Intelligence (AAAI ’10), pages 204–209, July 2010.

70 VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/software/
VeriPB.

71 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of
Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.

CP 2025

https://www.cril.univ-artois.fr/PB24/
https://satcompetition.github.io
http://isaim2008.unl.edu/index.php?page=proceedings
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

42:22 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

Algorithm 1 MIR cut generation in RoundingSat.

input : Set of indices J , list C⃗ of constraints Cj
.=

∑
jaijxj ≥ Aj for j ∈ J ,

list λ⃗ of multipliers λj ∈ Z for j ∈ J , divisor d ∈ N+, variable set P

1 CutGeneration(J, C⃗, λ⃗, d, P) :
2 for j ∈ J do
3 define C ′

j
.=

∑
jaijxj − sj = Aj ; // Introduce slack variables

4 D ←
∑

j λjC ′
j ;

5 partially weaken xi for all i ∈ P ;
6 B ← RHS(D);
7 D ← MIR(D, d);
8 for j ∈ J do
9 add M(−λj , d, B mod d) times C ′

j to D ; // Cancel slack variables

10 return D;

A Proof Logging for MIR Cut Generation

We start by analyzing the cut computed by RoundingSat, as summarized in Algorithm 1.
Let inequalities Cj

.=
∑

i aijxi ≥ Aj , multipliers λj , and a divisor d be given. We introduce
an integer-valued integral slack variable sj ≥ 0 for each constraint Cj to get the equality
C ′

j
.=

∑
i aijxi − sj = Aj . The constraint D

.=
∑

j λjC ′
j can then, after grouping terms by

variable, be written as∑
i

(∑
j

λjaij

)
xi −

∑
j

λjsj =
∑

j
λjAj . (65)

Write b′
i =

∑
j λjaij and let P be the set of variables on which we partially weaken (which

means that we add literal axioms to reduce the coefficients of the variables in P to the largest
smaller multiple of the divisor d). Partially weakening on the variables in P yields∑

i ̸∈P
b′

ixi +
∑

i∈P
d
⌊b′

i

d

⌋
xi +

∑
j
(−λj)sj =

∑
j

λjAj −
∑

i∈P
(b′

i mod d). (66)

Write B =
∑

j λjAj −
∑

i∈P (b′
i mod d), and let bi = b′

i for i ̸∈ P and bi = d⌊b′
i/d⌋ for i ∈ P .

Next, we apply a MIR cut with divisor d. Write H = B mod d, and write M(a, d, H) =
⌊a/d⌋H + min(a mod d, H). This yields:∑

i
M(bi, d, H)xi +

∑
j

M(−λj , d, H)sj ≥ ⌈B/d⌉H. (67)

We now cancel the integral slack variables by adding∑
j

M(−λj , d, H)
(∑

i
aijxi − sj

)
=

∑
j

M(−λj , d, H)Aj . (68)

Write fi =
∑

j M(−λj , d, H)aij and F =
∑

j M(−λj , d, H)Aj . Then this yields∑
i

(
M(bi, d, H) + fi

)
xi ≥ ⌈B/d⌉H + F, (69)

which is the final cut derived by RoundingSat and returned by Algorithm 1.
We note that the cut only depends on the values of the multipliers modulo d. Hence, we

may assume without loss of generality that 0 ≤ λj ≤ d− 1 for all j. We now show how to
proof log the cut. We prove (69) by contradiction. The negation of (69) is given by∑

i
(−M(bi, d, H)− fi) xi ≥ −⌈B/d⌉H − F + 1. (70)

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:23

Write δ = d−H and µj = −M(−λj , d, H). We now want to add constraint Cj with multiplier
λj −µj − δ1µj>0, which we show to be nonnegative in Lemma 1. Intuitively, the −µj cancels
out the fi and F in (70), while we need the −δ1µj>0 later on to cancel the fi again.

▶ Lemma 1. We have λj − µj − δ1µj>0 ≥ 0.

Proof. If λj = 0, then µj = 0 and hence the claim follows.
Otherwise, we have 0 ≤ d− λj ≤ d− 1, and hence (−λj) mod d = d− λj .
If 0 < λj ≤ δ, then d− λj ≥ H, so µj = M(−λj , d, H) = −H + min(d− λj , H) = 0 and

hence λj − µj − (d−H)1µj>0 = λj ≥ 0, as required.
If λj > δ, we have M(−λj , d, H) = −H + min(d− λj , H) = −H + d− λj > 0. Then we

have λj − µj − δ1µj>0 = λj −H + d− λj − (d−H) = 0, as required. ◀

Let T = {j : µj > 0}. Since
∑

j λjCj
.=

∑
i

(∑
j λjaij

)
xi ≥

∑
j λjAj

.=
∑

i b′
ixi ≥

∑
j λjAj

and similarly −
∑

j µjCj
.=

∑
i

(∑
j(−µj)aij

)
xi ≥

∑
j(−µj)Aj

.=
∑

i fixi ≥ F , we can
write the constraint

∑
j(λj − µj − δ1µj>0)Cj as∑

i
(b′

i + fi)xi − δ
∑

j∈T

∑
i
aijxi ≥

∑
j

λjAj + F − δ
∑

j∈T
Aj . (71)

We partially weaken this on variables in P by adding
∑

i∈P (b′
i mod d)xi ≥ 0, to obtain∑

i
(bi + fi)xi − δ

∑
j∈T

∑
i
aijxi ≥ B + F − δ

∑
j∈T

Aj . (72)

Hence, adding this to Equation (70) yields∑
i
(bi −M(bi, d, H)) xi − δ

∑
j∈T

∑
i
aijxi ≥ B − ⌈B/d⌉H + 1− δ

∑
j∈T

Aj . (73)

To analyze this, we write bi = gid + hi with 0 ≤ hi ≤ d− 1. Note that M(gid + hi, d, H) =
giH + min(hi, H). Also, we have B − ⌈B/d⌉H = Gd + H − (G + 1)H = G(d −H) = Gδ.
Hence, we can write Equation (73) as∑

i

(
giδ + hi −min(hi, H)

)
xi − δ

∑
j∈T

∑
i
aijxi ≥ Gδ + 1− δ

∑
j∈T

Aj . (74)

We now apply the division rule with divisor δ = d−H (which is possible since H < d). To
compute the result, write S = {i : hi > H}. If i ∈ S, then

giδ < giδ + hi −min(hi, H) < (gi + 1)δ,

since hi < d. Hence,
⌈

giδ+hi−min(hi,H)
δ

⌉
= gi + 1. On the other hand, if i ̸∈ S, then

hi −min(hi, H) = 0 so
⌈

giδ+hi−min(hi,H)
δ

⌉
= gi. Hence, the result is∑

i
gixi +

∑
i∈S

xi −
∑

j∈T

∑
i
aijxi ≥ G + 1−

∑
j∈T

Aj . (75)

Here, we use that all coefficients in −δ
∑

j∈T

∑
i aijxi are divisible by δ, and hence do not

affect the division of the xi, even though the variables overlap. However, this division
potentially not in normalized form. Nevertheless, any division which is not in normalized
form can be simulated in VeriPB by applying partial weakening before dividing.

We now proceed by showing how we can combine Equation (70) with Equation (75) to
derive a contradiction. In the newly introduced notation, we can write Equation (70) as

−
∑

i
(giH + min(hi, H)) xi −

∑
i
fixi ≥ −(G + 1)H − F + 1, (76)

CP 2025

42:24 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

where we have also rewritten the terms involving the fi in variable form.
Multiplying Equation (75) with H and adding it to Equation (76) yields

−
∑

i ̸∈S
hixi +

∑
i

(
−fi −H

∑
j∈T

aij

)
xi ≥ −F −H

∑
j∈T

Aj + 1. (77)

Note that we can write fi = −
∑

j aijµj and F = −
∑

j Ajµj , which yields

−
∑

i ̸∈S
hixi +

∑
i

∑
j∈T

(µj −H)aijxi ≥
∑

j∈T
(µj −H)Aj + 1. (78)

Since µj ≤ H, we have H − µj ≥ 0. Hence, we can add Cj with multiplier H − µj ≥ 0 for
all j with µj > 0 to Equation (78), which yields −

∑
i ̸∈S hixi ≥ 1. Since hi ≥ 0, this yields a

contradiction by adding literal axioms xi ≥ 0.

B Core-Guided PB Logging

In this section use XS as a shortcut to denote
∑

S xi. We do not normalise constraints. We
assume without loss of generality that all weights and literals in the objective are positive, so
we can write fo

.=
∑

wixi.
During optimization we repeatedly call the solver with assumptions. Learned constraints

are logged in the standard way. The solver might return in either of two states. If the solver
found a solution, we log it using the soli rule and obtain a solution-improving constraint
fo ≤ u− 1. Otherwise the solver finds the assumptions are contradictory. We process the
contradiction into a cardinality constraint

∑
i∈S xi ≥ d, or XS ≥ d for short, which we log

and call the “core lower bound” constraint. We use this to reformulate the objective.

▶ Lemma 2. The core lower bound is derivable with standard conflict analysis.

To do this we introduce counting variables yj for j ∈ [0, |S|] with intended semantics
yj = JXS ≥ jK. Then we can reformulate the objective to fr

.= fo−w∆K where ∆K
.= XS−Y .

Observe that ∆K = 0, hence the objective does not change. We call a triple (S, d, w) a core,
and denote the set of all cores by K.

Taking all cores into account, we have ∆ .=
∑

K∈K ∆K = 0, which we can use to log
objective lower bounds fo ≥ ℓ and to translate solution-improving constraints fo ≤ u for the
original objective into solution-improving constraints fr ≤ u for the reformulated objective.
Observe that we only use the fact that the reformulated objective lower bounds the original
objective, in other words fr ≤ fo or ∆ ≥ 0. We call such constraint the “global reformulation
constraint”, and we discuss how to derive it later.

In principle we might have |S| + 1 counting variables, but fewer variables are enough.
Since XS ≥ d, we already know that yi = 1 for i ≤ d. Similarly, if we have an upper bound
on the core of the form u ≥ XS , then we also know that Y>u = 0, i.e., yi = 0 for i > u.

We always have a trivial upper bound of the form |S| ≥ XS , but sometimes we can obtain
a better bound from the solution-improving constraint. Let the “objective-to-core” constraint
be fo − wXS ≥ 0. If we have fo ≤ u, we have XS ≤ ⌊u/w⌋. If ⌊u/w⌋ < |S| then we log this
constraint as the “core upper bound” constraint.

▶ Lemma 3. The objective-to-core constraint is derivable from the global reformulation
constraint.

Proof. We have fr − wXS ≥ 0 trivially. We add ∆ ≥ 0 and obtain fo − wXS ≥ 0. ◀

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:25

It is worth mentioning that, as an optimization, we delay logging this constraint until the
time it is needed, if at all. This means that the reformulated objective may have changed
in the meantime, and the actual way in which we log the objective-to-core constraint is by
marking it as syntactically implied from ∆ ≥ 0.

▶ Lemma 4. The core upper bound is derivable from the solution-improving constraint and
the objective-to-core constraint.

Proof. We add fo ≤ u and fo − wXS ≥ 0 and obtain wXS ≤ u. Then we divide by w. ◀

Another use of the global reformulation constraint is hardening. Given the objective
improving constraint fr ≤ u, any literal appearing in fr with coefficient larger than u can be
fixed to 0. We log such constraints by RUP.

How to proceed depends on how we encode yj = JXS ≥ jK.

B.1 Eager Encoding

With an eager encoding we reformulate the objective to fr
.= fo − w∆K where ∆K

.=
XS − Y

.= XS − Y[d+1,u] − d. We need to derive an upper and a lower bound on ∆K .

▶ Lemma 5. The at-most constraint ∆K ≤ 0 is derivable from the core upper bound.

Proof. We derive Y[d+1,u] + d ≥ XS by redundance with witness Y[d+1,u] 7→ 1. Previously
derived constraints are syntactically untouched by the witness and do not need proving. The
conclusion becomes u ≥ XS , which is syntactically identical to the core upper bound. ◀

▶ Lemma 6. The at-least constraint ∆K ≥ 0 is derivable from the core lower bound.

Proof. For j = d + 1, . . . , u, we derive XS ≥ Y[d+1,j] + d by redundance with witness yj 7→ 0.
Previous constraints are untouched. The at-most constraint becomes Y[d+i,u]\{j} + d ≥ XS ,
which is a weakening of the negated conclusion Y[d+1,j] + d− 1 ≥ XS . Intermediate at-least
constraints are untouched. The conclusion becomes XS ≥ Y[d+1,j) + d, which is either
syntactically identical to the core lower bound if j = d + 1, or to the previous intermediate
at-least constraint otherwise.

We delete all intermediate at-least constraints at the end. ◀

Note that we do not use a single application of the redundance rule with witness
Y[d+1,u] 7→ 0 because the negation of the at-least constraint does not necessarily imply the
at-most constraint after applying the witness substitution.

▶ Lemma 7. The ordering constraints yj ≥ yj+1 are derivable.

Proof. For j = d + 1, . . . , u − 1 we derive yj ≥ yj+1 by redundance with witness yj+1 7→
yj 7→ yj−1 7→ · · · 7→ yd+1 7→ yj+1. Its negation propagates yj = 0 and yj+1 = 1. The at-least
and at-most constraints are mapped to themselves. yd+1 ≥ yd+2 is mapped to yj+1 ≥ yd+1,
which is satisfied by unit propagation. Other previous ordering constraints are mapped
to (different) previous ordering constraints. The conclusion is also mapped to a previous
ordering constraint. ◀

CP 2025

42:26 Practically Feasible Proof Logging for Pseudo-Boolean Optimization

B.2 Reified Encoding
Since introducing many variables at once may slow down the solver, an alternative to an
eager encoding is to use a lazy encoding, where we introduce counting variables one by one
on demand.

That is, instead of ∆K , we subtract ∆(j)
K

.= XS − Y[d+1,d+j] − d from the objective.
Observe that ∆(j)

K ≥ 0, hence the reformulated objective still lower bounds the original
objective, even though they might no longer be equal.

We begin by introducing a new variable yd+1, and two constraints yd+1 → JXS ≥ d + 1K
and JXS ≥ d + 1K → yd+1. As linear constraints, these correspond to XS ≥ yd+1 + d (“at
least”) and XS ≤ (u− d)yd+1 + d (“at most”) respectively.

If we remove the counting variable from the objective during a subsequent objective
reformulation, then the core would become useless and we would not be able to prove an exact
lower bound on the objective. Therefore, in that case, we introduce a new counting variable
and the relevant constraints, namely XS ≥ jyd+j +d and XS ≤ (u−d− j +1)yd+j +d+ j−1.
We write ξ = (u− d− j + 1).

▶ Lemma 8. The at-most constraint is derivable from the core upper bound.

Proof. We derive ξyd+j −XS ≥ −d− j + 1 by redundance with witness yd+j 7→ 1. Previous
constraints are untouched. The conclusion becomes u−XS ≥ 0, which is trivial for u = |S|
and syntactially identical to the core upper bound otherwise. ◀

▶ Lemma 9. The at-least constraint is derivable from the core lower bound.

Proof. We derive XS−jyd+j ≥ d by redundance with witness yd+j 7→ 0. Previous constraints
are untouched. The at-most constraint becomes −XS ≥ −d− j + 1, which is a weakening of
the negated conclusion −XS + jyd+1 ≥ −d + 1. The conclusion becomes XS ≥ d, which is
syntactically identical to the core lower bound. ◀

▶ Lemma 10. The ordering constraint yj ≥ yj+1 is derivable from the at-least and previous
at-most constraints.

Proof. Add the at-least and the previous at-most constraints. Then divide by a large enough
number such as |S|. ◀

The local reformulation constraint changes each time that we introduce a variable. The
first constraint is ∆(1)

K
.= XS − yd+1 − d ≥ 0, which is syntactically identical to the at-least

constraint. Subsequent reformulation constraints need to be derived.

▶ Lemma 11. The local reformulation constraint ∆(j)
K is derivable from the at-most constraint

and ∆(j−1)
K .

Proof. Take a linear combination of (j − 1)∆(j−1)
K and the at-most constraint. Then divide

by j. ◀

Observe that on a lazy encoding, bounds on the core need not stay constant. If we find
better solutions, we may end up with better upper bounds. In that case we need to rederive
the core upper bound. Note that the objective might have changed in the meantime, but
the objective-to-core constraint already takes that into account by using the reformulation
constraint from the time the core was found.

In general, a better core upper bound will be taken automatically into account when a
new variable is introduced. However, it may be that the new upper bound makes introducing

Koops, Le Berre, Myreen, Nordström, Oertel, Tan, and Vinyals 42:27

new variables unnecessary. In that case we have d + j = u, and we may improve the last
at-most constraint to XS ≤ yd+j + d + j − 1 = yd+j + u− 1 instead.

▶ Lemma 12. The improved at-most constraint is derivable from the core upper bound and
the at-most constraint.

Proof. Take a linear combination of (ξ − 1)(XS ≤ u) and the at-most constraint. Then
divide by ξ. ◀

B.3 Lazy Sum Encoding
The lazy sum encoding follows the same principles as the reified encoding, but we use stronger
at-most and at-least constraints for subsequent counter variables. Instead of XS ≥ jyd+j + d

we have XS ≥ Y[d+1,d+j] + d, and instead of XS ≤ (u− d− j + 1)yd+j + d + j − 1 we have
XS ≤ (u− d− j + 1)yd+j + Y[d+1,d+j−1] + d. Observe that we can derive the reified at-least
constraint as a linear combination of its lazy sum counterpart and ordering constraints, and
that the reified at-most constraint is a weakening of the lazy-sum at-most constraint.

The first at-least and at-most constraints are derived identically to the reified case.
Subsequent constraints are derived as follows.

▶ Lemma 13. The at-most constraint is derivable from the previous at-most constraint.

Proof. We derive ξyd+j +Y[d+1,d+j−1]−XS ≥ −d by redundance with witness yd+j 7→ yd+j−1.
Previous constraints are untouched. The conclusion becomes syntactically identical to the
previous at-most constraint. ◀

▶ Lemma 14. The at-least constraint is derivable from the previous at-least constraint.

Proof. We derive XS − Yd+1,d+j ≥ d by redundance with witness yd+j 7→ 0. Previous
constraints are untouched. The at-most constraint becomes Y[d+1,d+j−1] −XS ≥ −d, which
is a weakening of the negated conclusion −XS + Yd+1,d+j ≥ −d + 1. The conclusion becomes
syntactically identical to the previous at-least constraint. ◀

The ordering constraint yj ≥ yj+1 is derivable from the at-least and previous at-most
constraints identically to the reified case. The local reformulation constraint is always
identical to the at-least constraint and does not need to be derived.

We need to handle updated core upper bounds in a different way since logging the at-most
constraint depends on the previous at-most constraint, which is based on a different core
upper bound. What we do instead is to first derive an improvement of the previous at-most
constraint, and then log the current at-most constraint as usual.

▶ Lemma 15. The improved at-most constraint is derivable from the core upper bound, the
ordering constraints, and the at-most constraint.

Proof. Let d be the core lower bound. Let u = ξ + d be the previous core upper bound (so
ξ is the previous expected number of counting variables). Let u′ = η + d be the new core
upper bound (so η is the new expected number of counting variables).

We derive XS ≤ (η − j + 1)yd+j + Y[d+1,d+j−1] + d by redundance with an empty
witness. We add the current at-most constraint and the negation of the conclusion to obtain
(u− u′)yd+j ≥ 1, which we saturate to yd+j ≥ 1. The ordering constraints then propagate
yd+1 = · · · = yd+j = 1. We take a linear combination of these and XS ≤ u to obtain the
conclusion. ◀

CP 2025

	1 Introduction
	2 Preliminaries
	2.1 Pseudo-Boolean Reasoning and the Cutting Planes Proof System
	2.2 VeriPB Syntax and Semantics

	3 Proof Logging for Linear Programming Integration
	4 Proof Logging for Pseudo-Boolean Core-Guided Optimization
	5 Implementation
	5.1 Proof Logging in Sat4j
	5.2 Proof Logging in RoundingSat
	5.3 Optimizations in VeriPB
	5.4 Optimizations in CakePB

	6 Experiments
	7 Concluding Remarks
	A Proof Logging for MIR Cut Generation
	B Core-Guided PB Logging
	B.1 Eager Encoding
	B.2 Reified Encoding
	B.3 Lazy Sum Encoding

